激光切割工艺
- 格式:doc
- 大小:30.50 KB
- 文档页数:3
激光切割机切割工艺参数激光切割技术是一种先进的金属材料加工方法,广泛应用于金属加工、汽车制造、航空航天等领域。
激光切割机切割工艺参数的设置直接影响到激光切割的效率和质量。
在进行激光切割时,需要合理设置激光功率、切割速度、气体类型和流量等参数,以确保切割工艺顺利进行,同时获得高质量的切割结果。
一、激光功率激光功率是指激光切割机产生的激光的功率大小,通常以瓦(W)为单位。
激光功率的选择需根据被加工材料的类型和厚度来确定。
对于不同材料和厚度,需要调整激光功率以获得最佳的切割效果。
一般来说,对于较薄的金属材料,可以选择较低的激光功率,而对于较厚的金属材料,则需要较高的激光功率。
二、切割速度切割速度是指激光切割机在切割过程中移动的速度,通常以毫米/分钟(mm/min)为单位。
切割速度的选择需考虑到材料的种类、厚度以及激光功率等因素。
一般来说,对于相同材料,在增加激光功率的情况下,切割速度可以相应提高;而在降低激光功率的情况下,切割速度则需要适当减小。
合理的切割速度可以提高切割效率,同时保证切割质量。
三、气体类型和流量在激光切割过程中,通常需要利用辅助气体来吹扫切割区域,并帮助排除熔融材料。
常用的辅助气体包括氮气、氧气和纯净的惰性气体等。
不同的气体在激光切割中具有不同的作用,需要根据具体的切割要求来选择。
还需要根据切割材料的种类和厚度来确定合理的气体流量,以保证切割效果。
四、聚焦镜焦距聚焦镜焦距是指激光束在通过聚焦镜后的聚焦焦点距离镜片的距离,通常以毫米(mm)为单位。
合理选择聚焦镜焦距可以影响激光束的聚焦效果,进而影响切割质量。
一般来说,对于不同的材料和厚度,需要选择合适的聚焦镜焦距,以获得理想的切割效果。
在进行激光切割机切割工艺参数设置时,需要根据实际加工需求和技术要求来综合考虑各个参数的影响,调整合理的数值。
还需要在实际加工过程中不断进行试验和调整,以获得最佳的切割效果。
只有合理设置切割工艺参数,才能确保激光切割机在加工过程中取得高效、高质量的切割结果。
激光切割是一种利用激光功率密度达到一定标准后可加工各种钢板材质,且可加工几毫米厚的板料的切割工艺。
激光切割属于热切割方法之一,具体包括以下几种:
1. 激光汽化切割:利用高能量密度的激光束加热工件,使温度迅速上升,在非常短的时间内达到材料的沸点,材料开始汽化,形成蒸气。
这些蒸气的喷出速度很大,在蒸气喷出的同时,在材料上形成切口。
材料的汽化热一般很大,所以激光汽化切割时需要很大的功率和功率密度。
2. 激光熔化切割:激光熔化切割时,用激光加热使金属材料熔化,然后通过与光束同轴的喷嘴喷吹非氧化性气体(Ar、He、N等),依靠气体的强大压力使液态金属排出,形成切口。
激光熔化切割不需要使金属完全汽化,所需能量只有汽化切割的1/10。
3. 激光氧气切割:激光氧气切割原理类似于氧乙炔切割。
它是用激光作为预热热源,用氧气等活性气体作为切割气体。
此外,激光切割还可以分为激光划片与控制断裂、激光氧气切割和激光滑片与控制断裂四类。
与其他热切割方法相比较,激光切割总的特点是切割速度快、质量高。
大多数激光切割机都由数控程序进行控制操作或做成切割机器人。
激光切割工艺王瑞延徐世璞付百泉编写目录激光切割工艺 (1)第一章影响切割的因素 (1)一激光模式 (2)二焦点位置 (2)1. 焦点位置与切割面的关系 (2)2. 焦点位置对切割断面的影响 (3)3. 焦点寻找 (3)三喷嘴 (3)1. 喷嘴的作用 (4)2. 喷嘴与切割品质的关系 (5)3. 喷嘴孔与激光束同轴度的调整 (5)4. 喷嘴孔径 (7)5. 喷嘴高度的调整 (7)四切割速度 (9)1. 速度过快 (9)2. 速度太慢 (9)3. 确定适当的切割速度 (9)五切割辅助气体 (11)1. 辅助气体对切割质量的影响 (11)2. 辅助气体对穿孔的影响 (12)3. 切割有机玻璃时的辅助气体 (12)六激光功率 (13)第二章切割工艺参数表 (14)一ROFIN激光器 (14)1. DC015切割不锈钢 (14)2. DC015切割低碳钢 (15)3. DC025切割不锈钢 (15)4. DC025切割AlMg3 (16)5. DC025切割低碳钢 (16)二PRC激光器 (17)1. PRC激光器切割不锈钢 (17)2. PRC激光器切割低碳钢 (19)三CP激光器 (22)1. CP4000激光器切割碳钢 (22)2. CP4000激光器切割不锈钢 (23)3. CP4000激光器切割铝合金(AlMg3) (23)第一章影响切割的因素切割工艺与下述因素关系紧密:激光模式激光功率焦点位置喷嘴高度喷嘴直径辅助气体辅助气体纯度辅助气体流量辅助气体压力切割速度板材材质板材表面质量与切割相关的各工艺参数如下图所示。
辅助气体压力割嘴直径透镜焦距材料表面割嘴相对板面距离光束直径焦点割缝宽切割气体类型图 1 切割工艺参数一 激光模式激光器的模式对切割影响很大,切割时要求到达钢板表面的模式较好。
这与激光器本身的模式和外光路镜片的质量有直接的关系。
二 焦点位置焦点位置是一个关键参数,应正确调节焦点位置。
1. 焦点位置与切割面的关系焦点位置示意图特征零焦距焦点在工件表面切幅喷嘴适用于5毫米以下薄碳钢等。
激光切割工艺发表于2009-10-2620:50|只看该作者发表的帖子#1本文章共4286字,分3页,当前第1页,快速翻页:123激光切割工艺激光切割的工艺参数(1)光束横模①基模又称为高斯模,是切割最理想的模式,主要出现在功率小于1kW的激光器。
②低阶模与基模比较接近,主要出现在1~2kW的中功率激光器。
③多模是高阶模的混合,出现在功率大于3kW的激光器。
切割速度与横模及板厚的关系见图1。
由图可以看出,300W的单模激光和500W的多模有同等的切割能力。
但是,多模的聚焦性差,切割能力低,单模激光的切割能力优于多模。
常用材料的单模激光切割工艺参数见表1,多模激光切割工艺参数见表2。
表1常用材料的单模激光切割工艺参数材料厚度/mm辅助气体切割速度/cmmin-1切缝宽度/mm功率/W低碳钢3.0O2600.2250不锈钢1.0O21500.140.0O2503.5钛合金10.0O22801.5有机透明玻璃10.0N2800.7氧化铝1.0O23000.1聚酯地毯N22600.5棉织品(多层)15.0N2900.5纸板0.5N23000.4波纹纸板8.0N23000.4石英玻璃1.9600.2聚丙烯5.5N2700.5聚苯乙烯3.2N24200.4硬质聚氯乙烯7.0N21200.5纤维增强塑料3.0N20.3木材(胶合板)18.0N2200.7低碳钢1.0N2450-5003.0N21506.0N2501.2O20.15 2.0 O2 400 0.15 3.0 O2 250 0.2 不锈钢1.0 O2 300 -3.0 O2 120 胶合板18.0 N2表2常用材料的多模激光切割工艺参数材料板厚/mm切割速度/cmmin-1切缝宽度/mm功率/kW铝12230115碳钢6230115304不锈钢4.61302硼/环氧复合材料8165115纤维/环氧复合材料124600.620胶合板25.41501.58有机玻璃25.41501.58WORD格式玻璃9.4150120混凝土38568(2)激光功率激光切割所需要的激光功率主要取决于切割类型以及被切割材料的性质。
激光切割工艺:最新的主流激光切割设备主要为光纤激光切割机和YAG激光切割机,而现阶段CO2激光切割机主要用于厚板的切割,但是可以实现对非金属材料的切割。
前两者主要是对薄板金属材料的切割,后者用于厚板切割和非金属切割(这里对非金属材料不做对比)。
激光切割的主要特点是切割速度快,以切割质量好、加工成本低著称。
线切割工艺:线切割只能切割导电物质,而限制了其应用范围,且在切割过程中需要有切削冷却液。
所以一些非金属材料如皮革等不到点、怕水、怕切削液污染的材料是无法实现线切割的。
其优点是可以实现厚板的一次性成型切割,但是其切割边缘会比较粗糙。
目前的线切割按照应用走丝类型分为快走丝和慢走丝,快走丝使用钼丝,可实现多次切割使用,慢走丝使用铜丝,只能使用一次,当然铜丝要比钼丝要便宜很多。
另外一台快走丝的设备比慢走丝设备便宜很多,慢走丝设备的价格大概是快走丝设备价格的五到六倍。
激光切割工艺的特点:用高能量密度激光束照射产生的高温熔化被切割材料的切口实现切割。
切割的金属材料不能太厚,否则热影响区可能过大,甚至无法实现切割。
激光切割的应用覆盖面积非常广泛,到多数的金属才俩都可以实现切割,且不受形状的限制,缺点是只能切割薄板。
线切割工艺的特点:用钼丝,通电产生高温切割被切割材料,通常做模具采用。
热影响区比较均匀,较小。
可实现厚板的切割,但是切割速度慢,只能切割导电材料,应用面小,因为有耗材,因此加工成本相比较于激光切割来讲更高。
两者互有优势,基本能够形成互补,但是随着工业化的需求发展,加工企业对于大批量的生产需求日益增大,也就意味着对工作效率要求越高,因而在金属切割上高速度、高质量、低成本的激光切割工艺更加适合现代化的生产需求,而线切割逐渐在市场中失去竞争力。
激光切割工艺流程解析激光切割工艺是一种高精度、高效率的切割方法,在工业生产中得到广泛应用。
本文将分析激光切割的工艺流程,从设备准备、工件定位到切割操作,逐步介绍每个环节的具体步骤和要点。
一、设备准备激光切割工艺的第一步是准备好切割设备。
这包括激光切割机、辅助气体供应系统以及相应的控制系统。
在准备过程中,需要检查设备的状态,确保激光切割机的参数和参数设置正确。
同时,需要检查气体供应系统中的气体压力和流量是否正常,并确保切割头和焦距的调整合适。
二、工件定位在开始切割之前,需要将待加工的工件进行定位。
通过使用夹具、定位块等固定工件,确保其位置准确无误。
对于复杂形状的工件,可以通过摄像头等辅助设备进行定位。
三、光斑调整激光切割通过聚焦光束在工件上进行切割。
在开始切割之前,需要根据不同的材料和厚度进行光斑调整。
通过调整切割头的焦距、光斑形状以及光斑大小,使其适应不同切割需求。
四、切割操作在设备准备和工件定位完成后,可以开始进行切割操作。
切割操作包括以下几个方面:1. 激活激光切割机和辅助气体供应系统。
2. 根据切割要求,设置好激光功率、切割速度等参数。
3. 手动或自动控制切割头进行切割操作,确保切割路径正确无误。
4. 同时,辅助气体将会与切割区域接触,实现清除熔融材料并保护切割区域。
五、质量检验切割完成后,需要对切割质量进行检验,以确保满足加工要求。
质量检验可以包括以下几个方面:1. 检查切割边缘是否平整,是否有明显的裂纹和毛刺。
2. 检查切割尺寸是否与设计要求相符。
3. 对关键部位进行精确测量,以验证切割质量的准确性和可靠性。
4. 如果出现质量问题,需要进行切割参数或设备调整,以提高切割质量。
总结:激光切割工艺流程涉及设备准备、工件定位、光斑调整和切割操作等环节。
通过合理的流程控制和严格的质量检验,可以实现高精度和高效率的切割效果。
同时,切割操作人员需要具备一定的专业知识和经验,以确保切割过程的安全和稳定性。
激光切割工艺参数激光切割是一种通过使用高能量密度的激光光束来切割材料的方法。
激光切割广泛应用于工业生产中的金属材料切割,如钢、铁、铝等。
激光切割工艺参数对于切割质量和效率有着重要的影响。
本文将从激光功率、切割速度、气体选择、焦距、切割厚度等方面介绍激光切割工艺参数。
1.激光功率:激光功率是指激光器输出的激光能量,通常以瓦特(W)为单位。
激光功率的选择一方面取决于材料的性质,另一方面取决于切割的厚度。
一般而言,切割较薄的材料可以选择较低的功率,而切割较厚的材料则需要较高的功率。
2.切割速度:切割速度是指激光切割头在切割过程中移动的速度,通常以毫米/秒(mm/s)为单位。
切割速度的选择一方面取决于切割质量的要求,另一方面取决于材料的性质和切割厚度。
一般而言,切割速度越快,切割质量越差,但生产效率更高;切割速度越慢,切割质量越好,但生产效率较低。
3.气体选择:激光切割过程中需要使用辅助气体,主要有氮气、氧气、氩气等。
气体的选择取决于切割材料的性质和切割要求。
一般而言,氮气适用于不锈钢、铝合金等材料的切割,氧气适用于碳钢材料的切割,氩气适用于钛合金等高反射材料的切割。
4.焦点位置:焦点位置是指激光束的最小聚焦点所处的位置。
焦点位置的选择取决于切割材料的厚度和所需的切割质量。
一般而言,对于切割较薄的材料,焦点位置选择在材料表面上方;对于切割较厚的材料,焦点位置选择在材料内部。
5.切割厚度:切割厚度是指一次切割中所能达到的最大厚度。
切割厚度的选择取决于激光功率、切割速度、焦点位置等因素。
一般而言,较低功率、较慢速度、合适焦点位置的激光切割机可以切割较薄的材料;较高功率、较快速度、合适焦点位置的激光切割机可以切割较厚的材料。
总结起来,激光切割工艺参数的选择是根据切割材料的性质、切割要求和切割机的性能来确定的。
合理选择激光功率、切割速度、气体选择、焦距和切割厚度等参数,可以提高切割质量和效率,满足不同材料的切割需求。
激光切割工艺的介绍:
1.工作原理:激光切割工艺的工作原理是将高能激光束照射到
材料表面,通过瞬间的高温使材料熔化、汽化或达到燃点,同时用高速气流将熔化或燃烧的材料吹走,从而实现切割。
2.特点:激光切割具有高精度、高效率、高自动化等优点,可
以实现快速、准确的切割,尤其适合于薄板材料和精密零件的加工。
此外,激光切割还可以通过改变激光参数或采用不同的辅助气体来切割不同材料。
3.分类:激光切割工艺可以根据不同的分类方式进行分类。
根
据切割方式,可以分为激光熔化切割、激光划片切割和激光控制断裂切割等。
根据激光器类型,可以分为固体激光切割和气体激光切割等。
4.应用范围:激光切割工艺广泛应用于汽车、航空、石油、化
工、轻工、食品等领域,可以加工各种金属材料和非金属材料,如不锈钢、碳钢、铝、铜、陶瓷、玻璃等。
5.发展趋势:随着科技的不断发展,激光切割工艺也在不断进
步和完善。
未来,激光切割工艺将朝着高速度、高精度、高质量、智能化的方向发展,同时随着新材料的不断涌现,对激光切割工艺的要求也将不断提高。
晶圆激光切割与刀片切割工艺介绍
1.晶圆激光切割工艺
(1)调节激光器参数,包括激光功率、脉冲宽度和重复频率等。
(2)将激光束通过透镜聚焦到晶圆表面上,形成高能量密度的小区域。
(3)控制激光束在晶圆上移动,沿着待切割的线路进行切割。
(4)激光照射到晶圆上,局部区域熔化或气化,形成切割线。
(5)通过剥离或折断等方式将晶圆切割成小尺寸的芯片或器件。
2.刀片切割工艺
刀片切割是利用金刚石刀片或金属刀片沿切割线切割晶圆。
其主要原理是通过刀片与晶圆的接触,施加切割力以分割晶圆。
刀片切割的工艺流程如下:
(1)选择合适的刀片材料和形状,并通过润滑液使其表面光滑,以减少切割阻力。
(2)安装刀片至切割机中,对刀片进行调整和校对。
(3)将晶圆放置在切割机工作台上,并固定好。
(4)启动切割机,使刀片与晶圆接触并施加切割力。
(5)刀片沿待切割的线路切割晶圆,直至完全分割。
刀片切割的优点是设备成本相对较低、切割效果稳定,且切割线宽度可控。
然而,刀片切割的切割速度较慢,且对刀片磨损较大,需要经常更换。
综上所述,晶圆激光切割与刀片切割是常见的硅晶圆切割工艺。
晶圆激光切割适用于要求高精度和高速切割的应用,而刀片切割适用于设备成本较低以及切割线宽度要求可控的应用。
在具体应用中,需要根据切割要求、设备条件和经济成本等因素选择合适的切割工艺。
在使用激光切割机的过程中,如何最大限度保证激光切割质量呢?提示您,切割速度、焦点位置的调整、辅助气体压力、激光输出功率和工件特性等是几大影响激光切割质量的主要因素。
除此之外,工件夹紧装置对保证切割质量也至关重要,因为在激光切割过程中,热和应力释放遍及整个工件,为此必须考虑采用相适应的固定工件方法,以避免引起工件移动,影响切割工件尺寸的准确性。
一、切割速度对切割质量的影响
对给定的激光功率密度和材料,切割速度符合于一个经验式,只要在通阈值以上,材料的切割速度与激光功率密度成正比,即增加功率密度可提高切割速度。
这里所指的功率密度不但与激光输出功率有关,而且与光束质量模式有关。
另外,光束聚焦系统的特征,即聚焦后的光斑大小也对激光切割有很大的影响。
切割速度与被切割材料的密度(比重)和厚度成反比。
当其他参数保持不变,提高切割速度的因素是:提高功率(在一定范围内,如500~2 000W);改善光束模式(如从高阶模到低阶模直至TEM00);减小聚焦光斑尺寸(如采用短焦距透镜聚焦);切割低起始蒸发能的材料(如塑料、有机玻璃等);切割低密度材料(如白松木等);切割薄型材料。
特别对金属材料而言,在其他工艺变量保持恒定的情况下,激光切割速度可以有一个相对调节范围而仍能保持较满意的切割质量,这种调节范围在切割薄金属时显得比厚件稍宽。
有时,切割速度偏慢也会导致排出热融材料烧蚀口表面,使切面很粗糙。
二、焦点位置调整对切割质量的影响
由于激光功率密度对切割速度影响很大,透镜焦长的选择是个重要问题。
激光束聚焦后光斑大小与透镜焦长成正比,光束经短焦长透镜聚焦后光斑尺寸很小,焦点处功率密度很高,对材料切割很有利;但它的缺点是焦深很短,调节余量小,一般比较适用于高速切割薄型材料。
由于长焦长透镜有较宽焦深,只要具有足够功率密度,比较适合切割厚工件。
在确定使用何种焦长的透镜以后,焦点与工件表面的相对位置对保证切割质量尤为重要。
由于焦点处功率密度最高,大多数情况下,切割时焦点位置刚处在工件表面,或稍微在表面以下。
在整个切割过程中,确保焦点与工件相对位置恒定是获得稳定的切割质量的重要条件。
有时,透镜工作中因冷却不善而受热从而引起焦长变化,这就需要及时调整焦点位置。
当焦点处于最佳位置时,割缝最小、效率最高,最佳切割速度可获得最佳切割结果。
在大多数应用情况下,光束焦点调整到刚处于喷嘴下。
喷嘴与工件表面间距一般为1.5mm 左右。
三、辅助气体压力对切割质量的影响
一般情况下,材料切割都需要使用辅助气体,问题主要牵涉到辅助气体的类型和压力。
通常,辅助气体与激光束同轴喷出,保护透镜免受污染并吹走切割区底部熔渣。
对非金属材料和部分金属材料,使用压缩空气或惰性气体,清除融化和蒸发材料,同时抑制切割区过度燃烧。
对大多数金属激光切割则使用活性气体(只要是O2),形成与炽热金属发生氧化放热反应,这部分附加热量可提高切割速度1/3~1/2。
在确保辅助气体前提下,气体压力大小是个极为重要的因素。
当高速切割薄型材料时,需要较高的气体压力以防止切口背面粘渣(热粘渣到工件上还会损伤切边)。
当材料厚度增加或切割速度较慢时则气体压力宜适当降低,为了防止塑料切边霜化,也以较低气体压力切割为好。
激光切割实践表明,当辅助气体为O2时,它的纯度对切割质量有明显影响。
O2纯度降低2%会降低50%的切割速度,并导致切口质量显著变差。
四、激光输出功率对切割质量的影响
对连续波输出的激光器来说,激光功率大小和模式好坏都会对切割发生重要影响。
实际操作时,常常设置最大功率以获得较高的切割速度,或用以切割较厚材料。
但光束模式(光束能量在
横断面上的分布)有时显得更加重要,而且,当提高输出功率时,模式常随之稍有变差。
常可发现,在小于最大功率状况下焦点处却获得最高功率密度,并获得最佳切割质量。
在激光器整个有效工作寿命期间,模式并不一致。
光学元件的状况、激光工作混合气体细微的变化和流量波动,都会影响模式机构。
综上所述,虽然影响激光切割的因素较为复杂,但切割速度、焦点位置、辅助气体压力和激光功率及模式结构是4个最重要的变量。
在切割过程中,如发现切割质量明显变差,就首先要检查以上讨论的因素并及时加以调控。
五、工件特性对切割质量的影响
对激光切割质量甚至能否切割影响最大的有如下因素:
1.材料表面反射率
对CO2激光器发射出的10.6mm远红外光束来说,非金属材料对它吸收较好,即具有高的吸收率,面金属材料则对10.6mm光束吸收较差,特别是具有高反射率的金、银、铜和铝金属等,对这类材料一般不适宜用CO2激光束,特别是连续波光束来切割。
对铝、铜金属而言,要形成足够的起始功率一般需要3kW以上,以获得穿透效果所需要的初始小孔。
黑色金属钢铁类材料及镍、钛等对10.6mm的CO2光束有一定吸收率,特别是当材料表面加热到一定温度或氧化膜以后,其吸收率还会大幅度提高,从而获得较好的切割效果。
对不透明材料,吸收率=(1-反射率),与材料表面状态、温度及波长有关。
材料对光束的吸收率大小在加热起始阶段具有重要作用,但一旦工件内部小孔形成,小孔的黑体效应使材料对光束的吸收率接近100%。
2.材料表面状态
材料的表面状态直接影响对光束的吸收,尤其是表面粗糙度和表面氧化层会造成表面吸收率的明显变化。
在激光切割实践中,有时可利用材料表面状态对光束吸收率的影响来改善材料的切割性能。
六、其他因素对切割质量的影响
1.割炬和喷嘴的影响
割炬的设计和制造对获得良好切割质量产生着重要影响,特别是喷嘴。
喷嘴如选用不当或维护不善易造成污染或损伤,或者由于喷嘴口的圆度不好或因热金属飞溅引起局部堵塞,都会在喷嘴中形成涡流,导致切割性能明显变差。
有时,喷嘴口与聚焦光束不同轴,形成光束剪切喷嘴边缘,也会影响切边质量,增加切缝宽度和使切割尺寸错位。
对喷嘴来说,要特别注意两个问题。
(1)喷嘴直径的影响。
喷嘴口大小对切割速度有一定的影响,喷嘴口大小也影响出口处压力分布。
喷嘴直径增加,由于喷气流对切割区母材的强烈冷却作用使热影响区变窄,但也会导致切缝过宽,而喷嘴大小会引起准直困难,喷嘴口有被光束削截的危险,而且,切缝过窄,在高的切割速度下会阻碍熔渣的顺利排出。
(2)喷嘴与工件表面间距的影响。
喷嘴与工件间距直接影响喷嘴气流与工件切缝的耦合。
喷嘴口太靠近工件表面,对透镜会产生强烈的返回压力,减弱了对溅散切割产物质点的驱散能力,对切割质量有不利影响,但距离太远又会造成不必要的动能损失,对有效切割也不利。
一般,喷口与工件间距控制在1~2mm为宜,现代激光切割系统的割炬都配有电感或电容式传感器反馈装置,以自动调节两者距离在预先设定的高度范围内。
2.外光路系统的影响
激光器射出的原始光束是经过外光路系统的传输(包括反射和透射),以极高的功率密度准确地照射到工件的表面。
外光路系统的光学元件应定期检查、及时调整,确保当切割炬在工件上方运行时,光束正确地传输到透镜中心并聚焦成很小的光点,对工件进行高质量切割。
一旦其中任何一光学元件位置发生变化或受到污染,都会影响切割质量,甚至造成切割不能进行。
外光路镜片受到气流中杂质污染和切割区飞溅质点粘结,或者镜片冷却不足,都会使镜片发生过热,影响光束能量传输。
引起光路准直度飘移而导致严重后果,透镜过热还会产生焦点失真,甚至危及透镜本身。
光学元件一旦受到污染甚至粘上切割产物小质点,对它的清理是个极为重要而往往会被忽视的问题,下面列出一些清洗要点:
(1)透镜的清洗:把擦镜头纸弯成几折,用几滴分析纯丙酮浸湿;用浸湿的镜头纸轻轻擦拭镜头表面,注意不能用手指压镜片;反复几次,直到镜片表面清洁、没有污垢和残存痕迹留在镜面;用干空气吹干;必要时可把用几滴丙酮弄湿的镜头纸卷成杆,轻轻地擦洗镜片表面,以去除重污滴。
要注意的是丙酮易从空气中吸收潮气和水分污染丙酮本身,所以要盖紧丙酮瓶,千万不要将清洗后剩下的丙酮液倒回到新的丙酮瓶中。
(2)反射镜镜片的清洗:从镜架上拆除镜片;镜面朝上,把镜头纸放在镜面上;在镜头纸上滴几滴丙酮,并轻拉镜头纸撩过镜面;反复上述工序,直至镜面清洁,无污秽和残渍留在镜面;再把镜片装入镜座。
如果采用钼镜作反射镜,因为它不能镀层,抛光后即可直接使用,所以它可用水(肥皂水或含洗洁精的水)清洗镜面。
但其他表面有镀层的镜片不能用水清洗,因为很多镀层溶解于水,镜片将遭破坏。