楚雄州2017—2018学年八年级下期末教学质量监测数学试题有答案-(北师大版)
- 格式:docx
- 大小:230.86 KB
- 文档页数:11
学年末教学质量监测八年级数学试卷—20182017分钟)分,考试时间120(全卷三个大题,共23个小题,满分120分)324分,满分(本大题共8个小题,每小题只有一个正确选项,每小题一、选择题)、下列各组数中,是勾股数的为( 1 9,7,8,,D、4,5,6,C、3,4,51 A、,2,3,B、Q(升)与行驶时间40升,如果每小时耗油5升,则油箱内的余油量2、汽车开始行驶时,油箱内有油)(t小时)之间的函数关系的图象是() Q(升)升Q(升) Q(升) Q(40 4040 40O OO O ) 8 t(小时) ) 8 t(小时8 t(小时) 8 t(小时A C B D)则这组数据的众数与中位数分别是(32 ,D、16 C、16,16 A、32,32 B、32,16)4、若a<0,则下列不等式不成立的是( Baa、>a<7-a D、<a +7 B、5 a>7 a C5-A、a+575 A′C AOB绕点O顺时针旋转5、如图,在△AOB中,∠B=25°,将△,OB交于点C(A′不在OB上),得到△60°A′OB′,边A′B′与边′BA 的度数为()则∠A′COOD、105°、B、75° C 95°A、85°第5题)6、下列图形中,既是轴对称图形,又是中心对称图形的是()7、下列多项式中不能用公式分解的是(E 5122222D -4-b+25b DB、-ab--2ab C、-a、a A、++a 1 44 A 是五边形ABCDE的外角,52,∠3,∠4,∠18、如图,∠,∠2 )AED的度数是(2=且∠1=∠∠3=∠4=75°,则∠CB 3 D、100°、115°C 、、A120°B110°y 18分)个小题,每小题二、填空题(本大题共63分,满分C33;aba9、分解因式:b- =A 1BO的坐标为10、如图,在直角坐标平面内的△ABC中,点A 与,5),如果要使△ABD0(,2),点C的坐标为(5 ;全等,且点D坐标在第四象限,那么点D的坐标是ABC△,交BC于点D,、在△ABC中,∠C=90°,AC=BC,AD平分∠CAB11 ,则△EDB的周长是________;DE⊥AB于点E,且AB=10 CA D EBCF ABE)13题(第(第11题)22;,则代数式、若m+n=32m +4mn+2n -6的值为12AC交BC 于点F,∥13、如图,E为△ABC中AB边的中点,EF .若EF=3cm,则AC=,,-5) 和+ b y = ax-3的图象交于点P(-214、如图,已知函数y = 3x题14第;x则根据图象可得不等式3+b>ax-3的解集是分)(本大题共9个小题,满分70三、解答题1??0?1?12?3??8?化简:分)615、(本题3分)解下列不等式组,并把它的解集表示在数轴上。
ADCB第4题图2017-2018学年末教学质量监测八年级数学 试卷(全卷满分120分,考试时间120分钟)一、填空题(本大题共6个小题,每小题3分,满分18分)1.9的平方根是 .2.分解因式:328x x -= .3.使二次根式x 的取值范围是 .4.如图,在四边形ABCD 中,AB ∥CD ,请你添加一个条件,使得四边形ABCD 成为平行四边形,你添加的条件是 .5.不等式组25031x x ->⎧⎨-<-⎩的解集是.6.正比例函数的图像经过点A(-2, 3),B (a ,-3),则a =.二、选择题(本大题共8个小题,每小题只有一个正确选项,每小题4分,满分32分)7.下列计算正确的是()AB .C.3+D 8.不等式1+x <0的解集在数轴上表示正确的是( )A .B .C .D .9.下列说法不正确的是( )A .平行四边形的对边平行且相等B .平行四边形对角线互相平分C .平行四边形是轴对称图形D .平行四边形是中心对称图形10.因式分解x 3-2x 2+x 正确的是( ) A .(x -1) 2B .x (x -1) 2C .x ( x 2-2x +1)D .x (x +1) 211.等腰三角形的一个角是30°,那么它的顶角为( ) A .30°B .60°C .120° D .30°或120°AB EC FDG12.我县今年5月某地6天的最高气温如下(单位︒C ):32,29,30,32,30,32. 则这组数据的众数和中位数分别是( ) A .30,32 B .32,30C .32,31D .32,3213.一次函数y kx b =+的图像如图,则k 和b 的值为( ) A .k <0,b <0 B .k >0,b <0C .k >0,b >0D .k <0,b >014.下列几组数能作为直角三角形的三边长的是( ) A .6,8,10 B .4,5,7 C .2,3,4 D .1,2,3三、解答题(本大题共9个小题,满分70分)15.(7分)解方程组: 428x y x y -=⎧⎨+=⎩16.(7分)解分式方程:2211x x x+=--17.(7分)如图,点B 、E 、C 、F 在同一直线上,AC 与DE 相交于点G , ∠A=∠D ,AC ∥DF .求证:AB ∥DE .第13题图BDC第19题图E AF18.(8分)先化简,再求值:22111xx x x x x ⎛⎫+÷ ⎪-+-⎝⎭,其中23x =.19.(8分)如图,在△ABC 中,AB=AC ,D 为BC 的中点,点E ,F 分别在AB 和AC 上,并且AE=AF . 求证:DE=DF .20.(9分)已知一次函数y=kx +b 的图象经过点A (-3,0),B (2,5)两点.正比例函数y=kx 的图象经过点B (2,3). (1)求这两个函数的表达式.(2)在直角坐标系中,画出这个函数的图象. (3)求三角形AOB 的面积.x第20题图EDFABC第23题图21.(7分)如图,在平面直角坐标系中,每个小正方形边长都为1个单位长度. (1)画出将△ABC 向下平移4个单位得到的△A 1B 1C 1; (2)画出△ABC 关于原点O 的中心对称图形△A 2B 2C 2;(3)画出△A 1B 1C 1绕着点A 1顺时针方向旋转90°后得到的△A 3B 3C 3.22.(8分)某学校要制作一批安全工作的宣传材料.甲公司提出:每份材料收费10元,另收1000元的版面设计费;乙公司提出:每份材料收费20元,不收版面设计费.请你帮助该学校选择制作方案.23.(9分)如图,E 、F 是□ABCD 对角线AC 上两点,且AE=CF .(1)求证:四边形BFDE 是平行四边形.(2)如果把条件AE=CF 改为B E ⊥AC ,DF ⊥AC ,试问四边形BFDE 是平行四边形吗?为什么?(3)如果把条件AE=CF 改为BE=DF ,试问四边形BFDE 还是平行四边形吗?为什么?B DC第19题图E AF参考答案一、填空题(本大题共6个小题,每小题3分,满分18分)1.±3 2. 2x (x +2)(x -2) 3.x ≥2 4.AB=CD 或AD ∥BC 或∠A=∠C 或∠B=∠D 或∠A+∠B=180°或∠C+∠D=180°等 5.x >4 6.2二、选择题(本大题共8个小题,每小题只有一个正确的选项,每小题4分,满分32分)7.A 8.A 9.C 10.B 11.D 12.C 13.D 14.A三、解答题(本大题共9个小题,满分70分)15.(7分) 16.(7分) 解:方程两边同乘以x -1得, x -2=2(x -1)解得x =0经检验x =0是原方程的根 因此原方程的解是x =017.(7分)证明:∵AC ∥DF∴∠D=∠EGC 又∵∠A=∠D ∴∠A=∠EGC ∴AB ∥DE 18.(8分) 2222222222222222221111111211112(1)312(1)2(1)11111122131(31)11x x x xx x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x -⎛⎫⎛⎫+÷=+⋅ ⎪ ⎪-+--+⎝⎭⎝⎭--=⋅+⋅-+=++-=-+--⎛⎫⎡⎤+÷=+⋅ ⎪⎢⎥-+---⎝⎭⎣⎦++-----=⋅=⋅=---【解法一】【解法二】21311x x x-⋅=-当23x =时,原式=2313113x -=⨯-= 19.(8分)【证明一】∵ AB=AC∴∠B =∠C (等边对等角) 又∵ AE=AF∴AB -AE =AC - AF 即 EB=FC又∵ D 为BC 的中点 ∴ BD=CD∴△EBD ≌△FCD (SAS ) ∴DE=DF【证明二】连接AD ,∵ AB=AC ,D 为BC 的中点∴∠BAD =∠CAD (等腰三角形三线合一定理) 即∠EAD =∠FAD又∵ AE=AF ,且AD=AD ∴△EAD ≌△FAD (SAS )∴DE=DF20.(9分)解:(1)∵一次函数y=kx +b 的图象经过两点A (-3,0)、B (2,5)∴301,253k b k k b b -+==⎧⎧⎨⎨+==⎩⎩解得 ∴y=x +3 ∵正比例函数y=kx 的图象经过点B (2,5∴2k =5 得k =52 ∴y=52x (2)函数图像如右图 (3)∵△AOB 的底边OA=3,底边OA ∴△AOB 的面积=3×5÷2=7.5x第20题图4 12821231244040x y x y x x x y x y -=⎧⎨+=⎩+=====⎧⎨=⎩()()解:()()得 得将代入(1)得所以EDFABC第23题图O21.(7分)解:如图所示:(1)△A 1B 1C 1 (2)△A 2B 2C 2 (3)△A 3B 3C 322.(8分)解:设制作x 份材料时,甲公司收费y 1元,乙公司收费y 2元,则y 1=10x +1000 y 2=20x由y 1= y 2,得10x +1000=20x ,解得x =100 由y 1>y 2,得10x +1000>20x ,解得x <100 由y 1<y 2,得10x +1000<20x ,解得x >100所以,当制作材料为100份时,两家公司收费一样,选择哪家都可行;当制作材料超过100份时,选择甲公司比较合算; 当制作材料少于100份时,选择乙公司比较合算.23.(9分) (1)【证明一】∵ABCD 是平行四边形∴ AB=CD 且AB ∥CD (平行四边形的对边平行且相等) ∴∠BAE =∠DCF 又∵ AE=CF∴△BAE ≌△DCF (SAS ) ∴BE=DF ,∠AEB =∠CFD ∴∠BEF =180°-∠AEB ∠DFE =180°-∠CFD即:∠BEF=∠DFE∴BE ∥DF ,而BE=DF∴四边形BFDE 是平行四边形(一组对边平行且相等的四边形是平行四边形)【证明二】连接BD ,交AC 于点O∵ABCD 是平行四边形∴OA=OC OB=OD (平行四边形的对角线互相平分) 又∵ AE=CF∴OA -AE=OC -CF ,即OE=OF∴四边形BFDE 是平行四边形(对角线互相平分的四边形是平行四边形)(2)四边形BFDE 是平行四边形∵ABCD 是平行四边形∴ AB=CD 且AB ∥CD (平行四边形的对边平行且相等) ∴∠BAE =∠DCF ∵B E ⊥AC ,DF ⊥AC ∴∠BEA =∠DFC=90°,BE ∥DF∴△BAE ≌△DCF (AAS ) ∴BE=DF∴四边形BFDE 是平行四边形(一组对边平行且相等的四边形是平行四边形) (3)四边形BFDE 不是平行四边形因为把条件AE=CF 改为BE=DF 后,不能证明△BAE 与△DCF 全等。
2017〜2018学年度(下)期末中小学学习质量评价八年级数学试卷(一)一、单项选择题(本大题共有15小题,每小题3分,共45分)1、关于的一次函数的图象可能正确的是( )A. B.C. D.2、下列各式中,正确的是( )A. B. C. D.3、下列说法中,正确的是()A. 两点之间线段最短B. 已知直线、、,且,,那么与相交C. 过一点有且只有一条直线与已知直线平行D. 在同一平面内,两条线段不平行,就一定相交4、若等于它的倒数,则分式的值为()A. B. C. 或 D.5、在图形中,由图()仅通过平移得到的是( ).A. B. C. D.6、某企业在生产甲、乙两种节能产品时,需用、两种原料,生产每吨节能产品所需原料的数量如下表所示:销售甲、乙两种产品的利润(万元)与销售量(吨)之间的函数关系如图所示.已知该企业生产了甲种产品吨和乙种产品吨,共用去原料吨.若为了保证生产的这批甲种、乙种产品售后的总利润不少于万元,则至少要用原料()A. 吨B. 吨C. 吨D. 吨7、不等式组的解集在数轴上表示为()A. B.C. D.8、在直角坐标平面内,已知在轴与直线之间有一点,如果该点关于直线的对称点的坐标为,那么的值为()A. B. C. D.9、如图,在平面中直角坐标系中,将沿直线平移后,点的纵坐标为,则点平移的距离为()A. B. C. D.10、如图,在方格纸中选择标有序号①②③④的一个小正方形涂黑,使它与图中阴影部分组成的新图形为中心对称图形,该小正方形的序号是()A. ①B. ②C. ③D. ④11、若与的关系式为,当时,的值为()A. B. C. D.12、在某次实验中,测得两个变量和之间的组对应数据如下表:则与之间的关系最接近于下列各关系式中的()A. B. C. D.13、如图,平行四边形的对角线和相交于点,与面积相等的三角形(不包括自身)的个数是()A. B. C. D.14、与方程组有相同解的方程组是()A. B. C. D.15、定义为不超过的最大整数,如,,.对于任意实数,下列式子中错误的是()A. (为整数)B.C. D. (为整数)二、填空题(本大题共有5小题,每小题5分,共25分)16、在函数中,自变量的取值范围是_______ .17、有下列现象:①水平运输带上砖块的运动;②高楼电梯上上下下迎接乘客;③健身做呼啦圈运动;④火车飞驰在一段平直的铁轨上;⑤沸水中气泡的运动.以上属于平移的是________.18、已知函数,当时,则_______.19、若点在正比例函数的图像上,则此函数的表达式为.20、已知的周长是,斜边上的中线长是,则.(若结果为分数,写成a/b形式,如:1/2)三、解答题(本大题共有3小题,每小题10分,共30分)21、解不等式组,把解集表示在数轴上,并求出不等式组的整数解.22、已知直线与的交点为,试确定方程组的解和的值.23、化简:.。
2017-2018学年八年级数学下学期期末试卷一、选择题(共6小题,每小题3分,满分18分。
每小题只有一个正确选项)1.不等式2x﹣1>3的解集为()A.x<2 B.x>1 C.x<1 D.x>22.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是()A.B. C.D.3.分式方程=的解为()A.x=0 B.x=3 C.x=5 D.x=94.如图所示,在△ABC中,AC=BC,∠C=90°,AD平分∠CAB交BC于点D,DE⊥AB于点E,若AB=6cm,则△DEB的周长为()A.12cm B.8cm C.6cm D.4cm5.如图,已知在平行四边形ABCD中,AE⊥BC交于点E,以点B为中心,取旋转角等于∠ABC,把△BAE顺时针旋转,得到△BA′E′,连接DA′,若∠ADC=60°,∠ADA′=50°,则∠DA′E′的大小为()A.130°B.150°C.160°D.170°6.一次函数y1=kx+b与y2=x+a的图象如图,则下列结论:①当x<3时,y1>0;②当x<3时,y2>0;③当x>3时,y1<y2中,正确的个数是()A.0 B.1 C.2 D.3二、填空题(共6小题,每小题3分,满分18分)7.如果分式有意义,那么x的取值范围是______.8.如图是由射线AB,BC,CD,DE,EA组成的平面图形,则∠1+∠2+∠3+∠4+∠5=______.9.阅读下面材料:在数学课上,老师提出如下问题:尺规作图:作一条线段的垂直平分线.已知:线段AB.(如图1)小芸的作法如下:如图2(1)分别以点A和点B为圆心,大于AB的长为半径作弧,两弧相交于C,D两点.(2)作直线CD老师说:“小芸的作法正确.”请回答:小芸的作图依据是______.10.分解因式(a﹣b)(a﹣4b)+ab的结果是______.11.如图,四边形ABCD中,∠A=90°,AB=3,AD=3,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为______.12.在同一平面内,已知点P在等边△ABC外部,且与等边△ABC三个顶点中的任意两个顶点形成的三角形都是等腰三角形,则∠APC的度数为______.三、解答题(共5小题,每小题6分,满分30分)13.解不等式组,并写出它的所有整数解.请结合题意填空,完成本题的解答.(1)解不等式①,得______.(2)解不等式②,得______;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式的解集为______.(5)则不等式组的所有整数解为:______.14.如图,在△ABC中,AB=AC,AD是BC上边的中线,BE⊥AC于点E,求证:∠CBE=∠BAD.15.先化简:(﹣1)÷,再选择一个恰当的x值代入求值.16.在三个整式x2+2xy,y2+2xy,x2中,请你任意选出两个进行加(或减)运算,使所得整式可以因式分解,并进行因式分解.17.已知:如图,平行四边形ABCD的对角线相交于点O,点E在边BC的延长线上,且OE=OB,连接DE.求证:DE⊥BE.四、解答题(共4小题,每小题8分,满分32分)18.为解决“最后一公里”的交通接驳问题,某市投放了大量公租自行车使用,到2014年底,全市已有公租自行车25000辆,租赁点600个,预计到2016年底,全市将有公租自行车50000辆,并且平均每个租赁点的公租自行车数量是2014年底平均每个租赁点的公租自行车数量的1.2倍,预计到2016年底,全市将有租赁点多少个?19.如图1,▱ABCD中,点O是对角线AC的中点,EF过点O,与AD,BC分别相交于点E,F,GH过点O,与AB,CD分别相交于点G,H,连接EG,FG,FH,EH.(1)求证:四边形EGFH是平行四边形;(2)如图2,若EF∥AB,GH∥BC,在不添加任何辅助线的情况下,请直接写出图2中与四边形AGHD面积相等的所有平行四边形(四边形AGHD除外).20.△ABC在平面直角坐标系xOy中的位置如图所示.(1)作△ABC关于点C成中心对称的△A1B1C1.(2)将△A1B1C1向右平移4个单位,作出平移后的△A2B2C2.(3)在x轴上求作一点P,使PA1+PC2的值最小,并写出点P的坐标(不写解答过程,直接写出结果)21.小明到服装店参加社会实践活动,服装店经理让小明帮助解决以下问题:服装店准备购进甲乙两种服装,甲种每件进价80元,售价120元;乙种每件进价60元,售价90元.计划购进两种服装共100件,其中甲种服装不少于65件.(1)若购进这100件服装的费用不得超过7500,则甲种服装最多购进多少件?(2)在(1)的条件下,该服装店在6月21日“父亲节”当天对甲种服装以每件优惠a(0<a<20)元的价格进行优惠促销活动,乙种服装价格不变,那么该服装店应如何调整进货方案才能获得最大利润?五、解答题(共1小题,满分10分)22.(10分)(2015•重庆)如果把一个自然数各数位上的数字从最高位到个位依次排出的一串数字,与从个位到最高位依次排出的一串数字完全相同,那么我们把这样的自然数叫做“和谐数”.例如:自然数64746从最高位到个位排出的一串数字是6,4,7,4,6,从个位到最高位排出的一串数字也是:6,4,7,4,6,所以64746是“和谐数”.再如:33,181,212,4664,…,都是“和谐数”.(1)请你直接写出3个四位“和谐数”,猜想任意一个四位数“和谐数”能否被11整除,并说明理由;(2)已知一个能被11整除的三位“和谐数”,设个位上的数字为x(1≤x≤4,x为自然数),十位上的数字为y,求y与x的函数关系式.六、解答题(共1小题,满分12分)23.(12分)(2015•重庆)在△ABC中,AB=AC,∠A=60°,点D是线段BC的中点,∠EDF=120°,DE与线段AB相交于点E.DF与线段AC(或AC的延长线)相交于点F.(1)如图1,若DF⊥AC,垂足为F,AB=4,求BE的长;(2)如图2,将(1)中的∠EDF绕点D顺时针旋转一定的角度,DF仍与线段AC相交于点F.求证:BE+CF=AB;(3)如图3,将(2)中的∠EDF继续绕点D顺时针旋转一定的角度,使DF与线段AC的延长线相交于点F,作DN⊥AC于点N,若DN⊥AC于点N,若DN=FN,求证:BE+CF=(BE﹣CF).2017-2018学年八年级数学下学期期末试卷参考答案与试题解析一、选择题(共6小题,每小题3分,满分18分。
2017〜2018学年度(下)期末中小学学习质量评价八年级数学试卷(八)一、选择题(本题有12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确的选项用铅笔涂在答题卡上................) 1. 不等式212+>+x x 的解集是 A.1>x B.1<x C.1≥x D.1≤x2. 多项式2222y x -分解因式的结果是 A. 2)(2y x +B. 2)(2y x -C. ))((2y x y x -+D. ))((2x y x y -+ 3. 下列图案中,不是中心对称图形的是A .B .C .D .4. 如图,△ABC 中,AB 的垂直平分线DE 交AC 于D ,如果AC =5cm ,BC =4cm ,那么△DBC的周长是A. 6 cmB. 7 cmC. 8 cmD. 9 cm5. 要使分式9632++-x x x 有意义,那么x 的取值范围是 A .x ≠3 B .x ≠3且x ≠-3 C .x ≠0且x ≠-3 D .x ≠-3 6.如果关于x 的不等式(a +1) x >a +1的解集为x <1,则a 的取值范围是 A .a <0 B. a <-1 C. a >1 D. a >-17. 如图,在平行四边形ABCD 中,AD=2AB ,CE 平分∠BCD 交AD 边于点E ,且AE=3,则AB 的长为A .4B .3C .52D .2 8. 将一个有45°角的三角板的直角顶点放在一张宽为3cm 的纸带边沿上.另一个顶点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30°角,如图,则三角板的最大边的长为A .3cmB .6cmC .cmD .cm9. 如图,在□错误!未找到引用源。
中,错误!未找到引用源。
⊥错误!未找到引用源。
于点错误!未找到引用源。
2017-2018学年八年级(下)期末数学试卷一、用心选一选(本题有10个小题,每小题3分,共30分.)1.使式子有意义的条件是()A.x≥4 B.x=4 C.x≤4 D.x≠42.已知一次函数y=2x+b,其中b<0,它的函数图象可能是()3.直角三角形的两直角边长分别为6和8,则斜边上的中线长是()A.10 B.2.5 C.5 D.84.如图,由4个相同的直角三角形与中间的小正方形拼成一个大正方形,若大正方形面积是9,小正方形面积是1,直角三角形较长直角边为a,较短直角边为b,则ab的值是()A.4 B.6 C.8 D.105.如图,在菱形ABCD中,AC与BD相交于点O,AC=6,BD=8,则菱形边长AB等于()A.10 B.C.5 D.66.“古诗•送郎从军:送郎一路雨飞池,十里江亭折柳枝;离人远影疾行去,归来梦醒度相思.”中,如果用纵轴y表示从军者与送别者行进中离原地的距离,用横轴x表示送别进行的时间,从军者的图象为O→A→B→C,送别者的图象为O→A→B→D,那么下面的图象与上述诗的含义大致吻合的是()7.为了解某小区家庭垃圾袋的使用情况,小亮随机调查了该小区10户家庭一周的使用数量,结果如下(单位:个):7,9,11,8,7,14,10,8,9,7.关于这组数据,下列结论错误的是()A.极差是7 B.众数是8 C.中位数是8.5 D.平均数是98.关于一次函数y=x﹣1,下列说法:①图象与y轴的交点坐标是(0,﹣1);②y随x 的增大而增大;③图象经过第一、二、三象限;④直线y=x﹣1可以看作由直线y=x向右平移1个单位得到.其中正确的有()A.1个 B.2个 C.3个 D.4个9.如图,在平面直角坐标系中,直线y=x﹣与矩形ABCO的边OC、BC分别交于点E、F,已知OA=3,OC=4,则△CEF的面积是()A.6 B.3 C.12 D.10.如图,四边形ABCD中,AC=a,BD=b,且AC丄BD,顺次连接四边形ABCD各边中点,得到四边形A1B1C1D1,再顺次连接四边形A1B1C1D1各边中点,得到四边形A2B2C2D2…,如此进行下去,得到四边形A n B n C n D n.下列结论正确的有()①四边形A2B2C2D2是矩形;②四边形A4B4C4D4是菱形;③四边形A5B5C5D5的周长是④四边形A n B n C n D n的面积是.A.①②B.②③C.②③④D.①②③④二、耐心填一填(本题有6个小题,每小题4分,共24分,)11.若最简二次根式与是同类二次根式,则a=.12.若3,4,a和5,b,13是两组勾股数,则a+b的值是.13.在矩形ABCD中,AB=6cm,BC=8cm,则点A到对角线BD的距离为.14.已知关于x的方程ax﹣5=7的解为x=1,则一次函数y=ax﹣12与x轴交点的坐标为.15.如图,三个正比例函数的图象分别对应表达式:①y=ax,②y=bx,③y=cx,将a,b,c从小到大排列并用“<”连接为.16.如图,已知△ABC中,AB=AC,AD平分∠BAC,E是AC的中点,若AB=6,则DE的长为.三、细心答一答(本题有3小题,每小题6分,共18分.)17.计算:6﹣5﹣+3.18.已知一次函数y=kx+b的图象经过点(﹣1,﹣5)和(2,1),求一次函数的解析式.19.如图,从电线杆离地面5m处向地面拉一条长13m的缆绳,这条缆绳在地面的固定点距离电线杆底部有多远?四、细心答一答(本题有3小题,每小题7分,共21分.)20.(7分)如图,E,F是平行四边形ABCD的对角线AC上的点,CE=AF.请你猜想:BE与DF有怎样的位置关系和数量关系?并对你的猜想加以证明.21.(7分)某市团委举办“我的中国梦”为主题的知识竞赛,甲、乙两所学校参赛人数相等,比赛结束后,发现学生成绩分别为70分,80分,90分,100分,并根据统计数据绘制了如下不完整的统计图表:乙校成绩统计表(1)在图①中,“80分”所在扇形的圆心角度数为;(2)请你将图②补充完整;(3)求乙校成绩的平均分;(4)经计算知S甲2=135,S乙2=175,请你根据这两个数据,对甲、乙两校成绩作出合理评价.22.(7分)已知求代数式:x=2+,y=2﹣.(1)求代数式x2+3xy+y2的值;(2)若一个菱形的对角线的长分别是x和y,求这个菱形的面积?五、细心答一答(本题有3小题,每小题9分,共27分.)23.(9分)某市在城中村改造中,需要种植A、B两种不同的树苗共3000棵,经招标,承包商以15万元的报价中标承包了这项工程,根据调查及相关资料表明,A、B两种树苗的成本价及成活率如表:设种植A种树苗x棵,承包商获得的利润为y元.(1)求y与x之间的函数关系式;(2)政府要求栽植这批树苗的成活率不低于93%,承包商应如何选种树苗才能获得最大利润?最大利润是多少?24.(9分)如图,直线y=﹣x+8与x轴、y轴分别相交于点A、B,设M是OB上一点,若将△ABM沿AM折叠,使点B恰好落在x轴上的点B′处.求:(1)点B′的坐标;(2)直线AM所对应的函数关系式.25.(9分)如图,在△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的角平分线于点E,交∠BCA的外角平分线于点F.(1)求证:EO=FO;(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论.(3)当点O运动到何处,且△ABC满足什么条件时,四边形AECF是正方形?并说明理由.参考答案一、用心选一选(本题有10个小题,每小题3分,共30分.)1-5:AACAC6-10:CBCBC二、耐心填一填(本题有6个小题,每小题4分,共24分,)11.4.12.17.13.4.8cm.14.(1,0).15.a<c<b.16.3.三、细心答一答(本题有3小题,每小题6分,共18分.)17.解:原式=(6﹣5)+(﹣1+3)=+2.18.解:∵一次函数y=kx+b经过点(﹣1,﹣5)和(2,1),∴,解得:,∴这个一次函数的解析式为y=2x﹣3.19.解:如图所示:由题意可得,AB=5m,AC=13m,在Rt△ABC中,BC==12(m),答:这条缆绳在地面的固定点距离电线杆底部12m.四、细心答一答(本题有3小题,每小题7分,共21分.)20.解:结论:BE∥DF,BE=DF.理由:连接BD,交AC于点O,连接DE,BF.∵四边形ABCD是平行四边形,∴BO=OD,AO=CO,又∵AF=CE,∴AE=CF.∴EO=FO.∴四边形BEDF是平行四边形.∴BE∥DF,BE=DF.21.解:(1)6÷30%=20,3÷20=15%,360°×15%=54°;(2)20﹣6﹣3﹣6=5,统计图补充如下:(3)20﹣1﹣7﹣8=4,=85;(4)∵S甲2<S乙2,∴甲校20名同学的成绩比较整齐.22.解:(1)∵x=2+,y=2﹣.∴x+y=4,xy=2,∴x2+3xy+y2=(x+y)2+xy=16+2=18.(2)菱形的面积=×(2+)(2﹣)=1.五、解:(1)由题意可得,y=150000﹣28x﹣40(3000﹣x)=30000+12x,即y与x之间的函数关系式是y=12x+30000;(2)由题意可得,90%x+95%(3000﹣x)≥3000×93%,解得,x≤1200,∵y=12x+30000,∴当x=1200时,y取得最大值,此时y=44400,即承包商购买A种树苗1200棵,B种树苗1800棵时,能获得最大利润,最大利润是44400元.24.解:(1)y=﹣x+8,令x=0,则y=8,令y=0,则x=6,∴A(6,0),B(0,8),∴OA=6,OB=8 AB=10,∵A B'=AB=10,∴O B'=10﹣6=4,∴B'的坐标为:(﹣4,0).(2)设OM=m,则B'M=BM=8﹣m,在Rt△OMB'中,m2+42=(8﹣m)2,解得:m=3,∴M的坐标为:(0,3),设直线AM的解析式为y=kx+b,则,解得:,故直线AM的解析式为:y=﹣x+3.25.解:(1)∵MN∥BC,∴∠3=∠2,又∵CF平分∠GCO,∴∠1=∠2,∴∠1=∠3,∴FO=CO,同理:EO=CO,∴EO=FO.(2)当点O运动到AC的中点时,四边形AECF是矩形.∵当点O运动到AC的中点时,AO=CO,又∵EO=FO,∴四边形AECF是平行四边形,由(1)可知,FO=CO,∴AO=CO=EO=FO,∴AO+CO=EO+FO,即AC=EF,∴四边形AECF是矩形.(3)当点O运动到AC的中点时,且△ABC满足∠ACB为直角的直角三角形时,四边形AECF是正方形.∵由(2)知,当点O运动到AC的中点时,四边形AECF是矩形,∵MN∥BC,∴∠AOE=∠ACB∵∠ACB=90°,∴∠AOE=90°,∴AC⊥EF,∴四边形AECF是正方形.。
2017-2018学年度第二学期期末测试题八年级数学本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷共2页,满分为36分;第Ⅱ卷共6页,满分为84分.本试题共8页,满分为120分.考试时间为120分钟.答卷前,请考生务必将自己的姓名、准考证号、座号、考试科目涂写在答题卡上,并同时将考点、姓名、准考证号、座号填写在试卷规定的位置.考试结束后,将本试卷和答题卡一并交回.本考试不允许使用计算器.第I 卷(选择题 共36分)注意事项:第Ⅰ卷为选择题,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案写在试卷上无效.一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.下列从左到右的变形是分解因式的是( )A 、(x -4)(x +4)=x 2-16B 、x 2-y 2+2=(x +y )(x -y )+2C 、2ab +2ac =2a (b +c )D 、(x -1)(x -2)=(x -2)(x -1).2.下列方程是关于x 的一元二次方程的是( );A 、02=++c bx ax B 、2112=+x xC 、1222-=+x x xD 、)1(2)1(32+=+x x3.分式222b ab a a+-,22b a b-,2222b ab a b ++的最简公分母是( )A 、(a ²-2ab+b ²)(a ²-b ²)(a ²+2ab+b ²)B 、(a+b )2(a -b )2²C 、(a+b )²(a-b )²(a ²-b ²)D 、44b a -4.把方程x 2-4x+1=0配方后所得到的方程是( ).A. (x -2)2+1=0 B. (x -4)2+5=0 C. (x -2)2-3=0 D. (x -2)2+5= 0 5.下列命题中正确的是( ).A. 对角线相等的四边形是矩形B. 对角线互相垂直的四边形是菱形C. 对角线互相平分的四边形是平行四边形D. 对角线平分每一组对角的四边形是正方形6.如图,矩形ABCD ,对角线AC 、BD 交于点O ,AE ⊥BD 于点E ,∠AOB =45°,则∠BAE的大小为( ). A. 15° B. 22.5° C. 30° D. 45°7.若一个正多边形的每个内角等于120°,则这个多边形的边数是( ) A .8B .7C .6D .58.若关于x 的一元二次方程ax 2-4x +1=0有实数根,则a 满足( )A .a ≠0B .4a ≤C .40a a ≤≠且D .40a a <≠且9.正方形ABCD 在坐标系中的位置如图所示,将正方形ABCD 绕D点顺时针方向旋转90后,B 点的坐标为( )A .(22)-,B .(41),C .(31),D .(40), 10.如下图左:∠A+∠B+∠C+∠D+∠E+∠F 等于( ) A 、180º B 、360º C 、540ºD 、720º11.如图,已知□ABCD 中,点M 是BC 的中点,且AM =6,BD =12,AD =45,则该平行四边形的面积为( ). A .245 B .36 C . 48 D .72 12.如图,E 、F 分别是正方形ABCD 的边CD 、AD 上的点,且CE =DF ,AE 、BF 相交于点O ,下列结论:(1)AE =BF ;(2)AE ⊥BF ;A B C DE O 第6题F E DCBAABCDM第11题(3)AO =OE ;(4)AOB DEOF S S ∆=四边形中正确的有( ) A .4个 B .3个C .2个D .1个第Ⅱ卷(非选择题 共84分)注意事项:1.第Ⅱ卷为非选择题,请考生用蓝、黑色钢笔(签字笔)或圆珠笔直接在试卷上作答. 2.答卷前,请考生先将考点、姓名、准考证号、座号填写在试卷规定的位置.二、填空题(本大题共6个小题.每小题3分,共18分.把答案填在题中横线上.)13.分解因式:a 3b+2a 2b 2+a b 3= 。
2017-2018学年八年级(下)期末数学试卷一、选择题(共10小题,每小题3分,满分30分)1要使式子有意义,则x的取值范围是()A . x>0B . x >- 2C . x > 2D . x w 22 •下列计算正确的是()A. ' =1B . ,- . C. •,=2 D. :: —:■3. 数据2, 4, 3, 4, 5, 3, 4的众数是()A . 5B . 4C . 3D . 24. 一次函数y= - 3x- 2的图象不经过()A .第一象限B .第二象限C .第三象限D.第四象限5. 某种商品共10件,第一天以50元/件卖出3件,第二天以45元/件卖出2件,第三天以40元/件卖出5件,则这种商品的平均售价为每件()A . 42B . 44C . 45D . 466. 在下列长度的各组线段中,能构成直角三角形的是()A . 3, 5, 9B . 4, 6, 8C . 1 ,二,2D .二,「,「7. 在Rt△ ABC 中,/ C=90 ° AC=6 , AB=10,则BC 的值为()A . 6B . 8C . 10D . 2 =&菱形ABCD中,已知AC=6 , BD=8,则此菱形的周长为()A . 5B . 10C . 20D . 409.已知点(-4, y1),(2, y2)都在直线y= - ,:x+2上,则,y2大小关系是()A . y1 >y2B . y1=y 2C . y1< y2 D.不能比较10 .两条对角线相等且互相垂直平分的四边形是()A .平行四边形B.矩形C .菱形D.正方形二、填空题11. 一-= __________________ (结果用根号表示)12 .计算:13 .在口ABCD中,如果/ A=55 °那么/ C=14 •将直线y=2x 向上平移1个单位后所得的图象对应的函数解析式为 ____________________________ . 15 •直角三角形的两边长是 6和8,则这个三角形的面积是 __________________________ •16.如图,直线y=kx+b ( k >0)与x 轴的交点为(-2, 0),写出k 与b 的关系式 ______________________________________ ,则关于三、解答题(共9小题,满分66分)17•计算:—七.肖-(:+. — )(—- _)18 •某市举行一次少年滑冰比赛,各年龄组的参赛人数如下表所示:年龄组 13岁 14岁 15岁 16岁 参赛人数5191214(1) 求全体参赛选手年龄的众数、中位数; (2) 小明说,他所在年龄组的参赛人数占全体参赛人数的28% •你认为小明是哪个年龄组的选手?请说 明理由.19.若正比例函数 y= - x 的图象与一次函数 y=x+m 的图象交于点 A ,且点A 的横坐标为-1 •(1) 求该一次函数的解析式;戸-£(2) 直接写出方程组乜的解.21.如图,在 口ABCD 中,点E 、F 分别在BC 、AD 上,且AF=CE .求证四边形 AECF 是平行四边形.AC=6,求AB 边上的高CD •ACB=90 ° / A=45 °甲队178177179178177178177179178179乙队178179176178180178176178177180(1)分别计算两组数据的平均数;(2)若乙队的方差S1 2乙=1.8,请计算甲队的方差,并指出哪支仪仗队的身高更为整齐?323 .如图,已知直线I : y= x+3,它与x轴、y轴的交点分别为A、B两点.4(1)求点A、点B的坐标;(1)求CD, AD的值; AC=4 , BC=3 , DB=「.b(2)判断△ ABC的形状,并说明理由.AG为边作一个正方形线段EB和GD相交于点H .AEFG ,参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1要使式子-有意义,贝U x的取值范围是()A . x>0B . x >- 2 C. x > 2 D . x< 2【考点】二次根式有意义的条件.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:根据题意得,2-x > 0,解得x< 2.故选D.【点评】本题考查的知识点为:二次根式的被开方数是非负数.2. 下列计算正确的是()A •、迁+ =1B . 'I C. $三:卓=2 D .拦二一孑;【考点】二次根式的混合运算.【专题】计算题.【分析】根据二次根式的乘法法则对A进行判断;根据二次根式的加减法对B进行判断;根据二次根式的除法法则对C进行判断;根据算术平方根的定义对D进行判断.【解答】解:A、原式=丁匕二三=1,所以A选项正确;B、原式=2 - 二所以B选项错误;c、原式=—「一=二,所以C选项错误;D、原式=2二,所以D选项错误.故选A .【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.3. 数据2, 4, 3, 4, 5, 3, 4的众数是()A . 5B . 4C . 3D . 2【考点】众数.【分析】根据众数的定义:一组数据中出现次数最多的数据求解即可. 【解答】解:这组数据的众数为: 4.故选B .【点评】本题考查了众数的知识,属于基础题,解答本题的关键是掌握一组数据中出现次数最多的数据叫 做众数.4.一次函数y= - 3x - 2的图象不经过()A .第一象限B .第二象限C .第三象限D .第四象限【考点】一次函数的性质.【分析】根据一次函数的性质容易得出结论.【解答】解:•••解析式 y= - 3x - 2中,-3v 0, - 2v 0, •••图象过二、三、四象限.故选A .5•某种商品共10件,第一天以50元/件卖出3件,第二天以45元/件卖出2件,第三天以40元/件卖出5 件,则这种商品的平均售价为每件()A . 42B . 44C . 45D . 46【考点】加权平均数.【分析】算出10件商品所卖的总钱数,再除以10即可得到这种商品的平均售价.【解答】解:平均售价 =(50 X 3+45 X 2+40 X 5)- 10=44 (元/件). • ••这种商品的平均售价为 44元/件. 故选:B .【点评】此题主要考查了加权平均数,关键是熟记加权平均数的计算公式:若n 个数X 1, X 2, X 3,…,x n的权分别是w 1, w 2, w 3,…,w n ,则平均数=—1 '.W [+旳2+'" +w n6.在下列长度的各组线段中,能构成直角三角形的是( )A . 3, 5, 9B . 4, 6, 8C . 1 ,: , 2 D .「, . I,.【点评】在直线 y=kx+b 中,当k > 0 时,y 随x 的增大而增大;当k v 0时,y 随x 的增大而减小.【考点】勾股定理的逆定理.【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可•如果有这种关系,就是直角三角形,没有这种关系,就不是直角三角形.【解答】解:A、32+52工92,故不是直角三角形,此选项错误;B、42+62工82,故不是直角三角形,此选项错误;C、12+ ( .一)2=22,故是直角三角形,此选项正确;D、(2+ (J R2工(「)2,故不是直角三角形,此选项错误.故选:C.【点评】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.7. 在Rt△ ABC 中,/ C=90 ° AC=6 , AB=10,贝U BC 的值为()A. 6B. 8C. 10D. 2 -" |【考点】勾股定理.【分析】直接根据勾股定理求解即可.【解答】解:•••在Rt△ ABC 中,/ C=90 ° AC=6 , AB=10 ,•-BC=讥止一打m' 广8.故选B .【点评】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.&菱形ABCD中,已知AC=6 , BD=8,则此菱形的周长为()A . 5B . 10 C. 20 D . 40【考点】菱形的性质;勾股定理.【分析】根据菱形对角线互相垂直平分的性质,可以求得BO=OD , AO=OC,在Rt△ AOD中,根据勾股定理可以求得AB的长,即可求菱形ABCD的周长.【解答】解:根据题意,设对角线AC、BD相交于O .则AC丄BD .AO匚AC=3, BO= - BD=4.则由菱形对角线性质知,所以,在直角厶ABO中,由勾股定理得AB= F ; - .. =5.则此菱形的周长是4AB=20 .故选C .【点评】本题考查了勾股定理在直角三角形中的运用,考查了菱形各边长相等的性质,本题中根据勾股定理计算AB的长是解题的关键.9. 已知点(-4, y i),(2, y2)都在直线y= - , x+2上,则y i, y2大小关系是()A. y i >y2B. y i=y2C. y i< y2D.不能比较【考点】一次函数图象上点的坐标特征.【分析】先根据一次函数的解析式判断出函数的增减性,再根据两点横坐标的大小即可得出结论.【解答】解:••• k= - < 0,••• y随x的增大而减小.•/- 4< 2,• y i> y2.故选:A.【点评】本题考查的是一次函数图象上点的坐标特点,先根据题意判断出一次函数的增减性是解答此题的关键.10. 两条对角线相等且互相垂直平分的四边形是()A .平行四边形B .矩形C.菱形D.正方形【考点】正方形的判定.【分析】两条对角线互相垂直平分的四边形是菱形,对角线相等的菱形是正方形,所以该四边形是正方形.【解答】解:根据正方形的判别方法知,两条对角线互相垂直平分的四边形是菱形,且相等又可判定为正方形,故选D .【点评】本题是考查正方形的判别方法,判别一个四边形为正方形主要根据正方形的概念,途经有两种:①先说明它是矩形,再说明有一组邻边相等;②先说明它是菱形,再说明它有一个角为直角.、填空题11. 二+二=_§二_ (结果用根号表示)【考点】二次根式的加减法.【分析】先把各根式化为最减二次根式,再合并同类项即可.【解答】解:原式=4 =+ -=5 . _.故答案为:5 一.【点评】本题考查的是二次根式的加减法,熟知二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变是解答此题的关键.12.【考点】二次根式的性质与化简.【分析】利用二次根式的性质直接求出即可.【解答】解:故答案为:'.7【点评】此题主要考查了二次根式的化简,正确把握二次根式的性质是解题关键.13.在口ABCD 中,如果/ A=55 ° 那么/ C= 55°.【考点】平行四边形的性质.【分析】根据平行四边形两组对角分别相等可得/ A= / C=55 °【解答】解:•••四边形ABCD是平行四边形,•••/ A= / C,•••/ A=55 °•••/ C=55 °故答案为:55 °【点评】此题主要考查了平行四边形的性质,关键是掌握①边:平行四边形的对边相等. ②角:平行四边形的对角相等. ③ 对角线:平行四边形的对角线互相平分.第9页(共17页)14 •将直线y=2x向上平移1个单位后所得的图象对应的函数解析式为y=2x+1 .【考点】一次函数图象与几何变换.【分析】根据上加下减”的原则进行解答即可.【解答】解:由上加下减”的原则可知,将函数y=2x的图象向上平移1个单位所得函数的解析式为y=2x+1 • 故答案为:y=2x+i •【点评】本题考查的是一次函数的图象与几何变换,熟知上加下减”的原则是解答此题的关键.15 •直角三角形的两边长是6和8,则这个三角形的面积是24或「二•【考点】勾股定理.【专题】计算题.【分析】求直角三角形的面积时,只需知道两直角边即可,利用勾股定理可以已知直角三角形的两边长求第三边,在解题时要分清直角边和斜边.【解答】解:当6和8是两直角边时,此时三角形的面积为:X 6 X 8=24 ,2当8是斜边时,设另一条直角边为h,由勾股定理得:h=*:j二二:=2 r:,此时三角形的面积为:-X 6 X 2二=6 一•故答案为:24或6二【点评】本题考查了利用勾股定理求直角三角形的边长的知识,在解题时要分清斜边和直角边.16.如图,直线y=kx+b (k>0)与x轴的交点为(-2, 0),写出k与b的关系式b=2k ,则关于x【分析】直接把(-2, 0)代入函数关系式,进而求出答案,再利用函数图形得出不等式kx+b v 0的解集【解答】解:•••直线y=kx+b (k> 0)与x轴的交点为(-2, 0), ••• 0= - 2k+b,••• b=2k;•••直线与x轴交于(-2, 0),•关于x的不等式kx+b v 0的解集是x v- 2,故答案为:b=2k ;x v- 2.【点评】此题主要考查了一次函数与一元一次不等式,正确利用图形获取正确信息是解题关键.三、解答题(共9小题,满分66分)17•计算:—x ' -(T+ 一)(一- _)【考点】二次根式的混合运算.【分析】先根据二次根式的乘法法则和平方差公式计算得到原式减法运算.【解答】解:原式=3 - 2 =1 .【点评】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.18 •某市举行一次少年滑冰比赛,各年龄组的参赛人数如下表所示:年龄组13岁14岁15岁16岁参赛人数5191214(1)求全体参赛选手年龄的众数、中位数;(2)小明说,他所在年龄组的参赛人数占全体参赛人数的28% •你认为小明是哪个年龄组的选手?请说明理由.【考点】众数;统计表;中位数.【专题】应用题.【分析】(1)中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;(2)根据其所占的比例即可求得其所在的是16岁的年龄组.【解答】解:(1)众数是:14岁;中位数是:15岁.(2)解法一:•••全体参赛选手的人数为:5+19+12+14=50名又••• 50 X 28%=14 (名)•••小明是16岁年龄组的选手.解法二:•••全体参赛选手的人数为:5+19+12+14=50名又..T6岁年龄组的选手有14名,而14-50=28%•小明是16岁年龄组的选手.【点评】本题属于基础题,考查了确定一组数据的中位数和众数的能力•要明确定义•一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项•注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求;如果是偶数个则找中间两位数的平均数.19.若正比例函数y= - x的图象与一次函数y=x+m的图象交于点A,且点A的横坐标为-1 •(1)求该一次函数的解析式;(2)直接写出方程组出尸*的解.,尸x+in【考点】一次函数与二元一次方程(组);两条直线相交或平行问题.【分析】(1)先将x= - 1代入y= - x,求出y的值,得到点A坐标,再将点A坐标代入y=x+m,禾U用待定系数法可得一次函数的解析式;(2)方程组的解就是正比例函数y= - x的图象与一次函数y=x+m的交点,根据交点坐标即可写出方程组的解.【解答】解:(1)将x= - 1代入y= - x,得y=1 ,则点A坐标为(-1, 1).将A (- 1, 1)代入y=x+m,得-1+m=1 ,解得m=2,所以一次函数的解析式为y=x+2;(2)方程组* '的解为.[尸 1【点评】此题主要考查了一次函数与二元一次方程(组)的关系及待定系数法求解析式,难度适中.【分析】由已知直角三角形 ABC 中,/ ACB=90 ° CD 是AB 边上的高可结合三角函数得到 CD 的值.【解答】解:•••/ ACB=90 ° / A=45 ° CD 丄 AB ,••• si nA=± ,.-■..J 空又••• AC=6 ,•••CD=:【点评】本题主要考查了特殊三角函数值的运用,熟记三角函数值,找准对应边是解题的关键.21.如图,在 口ABCD 中,点E 、F 分别在BC 、AD 上,且AF=CE .求证四边形 AECF 是平行四边形.【考点】平行四边形的判定. 【专题】证明题.【分析】由四边形 ABCD 是平行四边形,可得 AF // CE ,又AF=CE ,所以四边形 AECF 是平行四边形. 【解答】证明:•••四边形 ABCD 是平行四边形,• AD // BC• AF // CE . 又••• AF=CE ,•四边形AECF 是平行四边形.【点评】此题主要考查平行四边形的判定:一组对边平行且相等的四边形是平行四边形. 第13页(共仃页)AC=6,求AB 边上的高CD ./ A=45 °22.甲、乙两支队员的身高(单位:厘米)如下:甲队 178 177 179 178 177 178 177 179 178 179 乙队178179176178180178176178177180(1) 分别计算两组数据的平均数;(2)若乙队的方差S 2乙=1.8,请计算甲队的方差,并指出哪支仪仗队的身高更为整齐?【考点】方差;加权平均数.【分析】(1 )根据加权平均数的计算公式代值计算即可;(2)根据方差的公式先求出甲队的方差,再根据方差的意义即可得出答案.【解答】解:(1)甲队的平均数是:(178X 4+177X 3+179X 3)十10=178 (厘米),乙队的平均数是:(178 X 4+177+176 X 2+179+180X 2)- 10=177.9 (厘米);(3) 甲的方差是:S 甲2= , [ 4X52 2••• S 甲=1.2 , S 乙=1.8 ,S 甲 2< S?乙,•••甲支仪仗队的身高更为整齐. 2般地设n 个数据,x 1 , x 2, ••x n 的平均数为,:,则方差S =| [ (X 1-.:)2+ ( X 2 - ■:) 2+・・+ ( X n - .:) 2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.23 •如图,已知直线I : y= x+3,它与x 轴、y 轴的交点分别为 A 、B 两点.【考点】一次函数图象上点的坐标特征.178 - 178) 2+3X ( 177 - 178) 2+3X ( 179 - 178) 2]=1.2, 【点评】此题考查了方差和加权平均数,(1)求点A 、点B 的坐标;【专题】计算题.【分析】(1)分别计算函数值为0所对应的自变量的值和自变量为 0所对应的函数值即可得到点 A 、点B的坐标;(2)利用三角形的面积公式求解.【解答】解:(1)当y=0时, x+3=0,解得x=4,则A (- 4, 0),4当 x=0 时,y=--x+3=3,贝U B (0, 3);4(2)^ AOB 的面积=X 3X 4=6 .2【点评】本题考查了一次函数图象上点的坐标特征:次函数y=kx+b ,( k z 0,且k , b 为常数)的图象是一条直线.它与 x 轴的交点坐标是(- —,0);与y 轴的交点坐标是(0, b ).直线上任意一点的坐标1-都满足函数关系式 y=kx+b .24.如图,在△ ABC 中,CD 丄AB 于 D , AC=4 , BC=3 , DB=;. 5(1)求CD , AD 的值;(2)判断△ ABC 的形状,并说明理由.利用勾股定理求出 CD 和AD 则可,再运用勾股定理的逆定理判定△ABC 是直角三角形.解:(1)v CD 丄AB 且CB=3 , BD=;,故△ CDB 为直角三角形,5•••在 Rt △ CDB 中,CD =二 ]二 一一 _在 Rt △ CAD 中,AD=才.迤⑺△ ABC 为直角三角形.理由:••• AD= W , BD= ,• AB=AD +BD= +=5,5 5 5 5【解答】 【分析】•••根据勾股定理的逆定理,△ ABC为直角三角形.【点评】本题考查了勾股定理和它的逆定理,题目比较典型,是一个好题目.25 .如图,点G是正方形ABCD对角线CA的延长线上任意一点,以线段AG为边作一个正方形AEFG,线段EB和GD相交于点H .(1)求证:△ EAB GAD ;(2)若AB=3 二AG=3,求EB 的长.【考点】正方形的性质;全等三角形的判定与性质.【分析】(1)由四边形ABCD、AGFE是正方形,即可得AB=AD , AE=AG,/ DAB= / EAG,然后利用SAS即可证得厶EAB GAD ,(2)由(1)则可得EB=GD,然后在Rt△ ODG中,利用勾股定理即可求得GD的长,继而可得EB的长.【解答】(1)证明:•••四边形ABCD、AGFE是正方形,••• AB=AD , AE=AG,/ DAB= / EAG ,•••/ EAB= / GAD ,在厶AEB和厶AGD中,‘AB 二AG•ZEAB^ZGAD,AB 二AD•△ EAB 也厶GAD ( SAS);(2)v^ EAB ◎△ GAD ,• EB=GD ,•••四边形ABCD是正方形,AB=3匚,••• BD 丄AC , AC=BD= =AB=6 ,•••/ DOG=90 ° OA=OD= ±BD=3 ,2•/ AG=3 ,第仃页(共仃页)••• OG=OA +AG=6 ,•••GD=』u『工仁3 ,.• EB=3 :【点评】此题考查了正方形的性质、全等三角形的判定与性质以及勾股定理•此题难度适中,注意掌握数形结合思想的应用.• AC 2+BC 2=4 2+32=25=52=AB第16页(共仃页)。
ABO A´B ´C第5题Q(升)Q(升)Q(升)Q(升)楚雄州2017—2018学年末教学质量监测八年级数学试卷(全卷三个大题,共23个小题,满分120分,考试时间120分钟)一、选择题(本大题共8个小题,每小题只有一个正确选项,每小题4分,满分32分) 1、下列各组数中,是勾股数的为( )A 、1,2,3,B 、4,5,6,C 、3,4,5,D 、7,8,9,2、汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内的余油量Q (升)与行驶时间(t 小时)之间的函数关系的图象是( )3、我国在近几年奥运会上所获金牌数(单位:枚)统计如下:则这组数据的众数与中位数分别是( )A 、32,32B 、32,16C 、16,16D 、16,32 4、若a <0,则下列不等式不成立的是( ) A 、 a +5<a +7 B 、5 a >7 a C 、5-a <7-a D 、5a >7a 5、如图,在△AOB 中,∠B=25°,将△AOB 绕点O顺时针旋转60°,得到△A´OB´,边A´B´与边OB 交于点C (A´不在OB 上),1 2 345ABCDEF EACB则∠A´CO 的度数为( )A 、85°B 、75°C 、 95°D 、105°6、下列图形中,既是轴对称图形,又是中心对称图形的是( )7、下列多项式中不能用公式分解的是( )A 、 a 2+a +41B 、-a 2-b 2-2abC 、-a 2+25bD 、-4-b 2 8、如图,∠1,∠2,∠3,∠4,∠5是五边形ABCDE 的外角,且∠1=∠2=∠3=∠4=75°,则∠AED 的度数是( ) A 、120° B 、110° C 、115° D 、100° 二、填空题(本大题共6个小题,每小题3分,满分18分) 9、分解因式:a 3b -ab 3 = ;10、如图,在直角坐标平面内的△ABC 中,点A 的坐标为 (0,2),点C 的坐标为(5,5),如果要使△ABD 与△ABC 全等,且点D 坐标在第四象限,那么点D 的坐标是 ; 11、在△ABC 中,∠C=90°,AC=BC ,AD 平分∠CAB ,交BC 于点D , DE ⊥AB 于点E ,且AB=10,则△EDB 的周长是________;(第11题) (第13题)A12、若m+n=3,则代数式2m 2+4mn+2n 2-6的值为 ; 13、如图,E 为△ABC 中AB 边的中点,EF ∥AC 交BC 于点F ,若EF=3cm ,则AC= .14、如图,已知函数y = 3x + b 和y = ax -3的图象交于点P(-2,-5) , 则根据图象可得不等式3x +b >ax -3的解集是 ; 三、解答题(本大题共9个小题,满分70分)15、(本题6分)化简:()01831312+++⨯-π16、(本题7分)解下列不等式组,并把它的解集表示在数轴上。
⎪⎩⎪⎨⎧-≥-->+386634)1(513x x x x17、(本题7分)解分式方程:114112=---+x x x18、(本题8分)先化简:2344111a a a a a -+⎛⎫-+÷ ⎪++⎝⎭,然后给a 选择一个你喜欢的数代入求值。
19、(本题8分)如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,4),请解答下列问题:(1)画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标;(2)画出△A1B1C1绕原点O旋转180°后得到的△A2B2C2,并写出点A2的坐标;20、(本题7分)已知:在平行四边形ABCD中,AM=CN。
求证:四边形MBND是平行四边形。
21、(本题9分)如图,直线1l 过点A (0,4),点D (4,0),直线2l :121+=x y 与x 轴交于点C ,两直线1l ,2l 相交于点B 。
(1)求直线1l 的解析式和点B 的坐标; (2)求△ABC 的面积。
22、(本题9分)某石化乙烯厂某车间生产甲、乙两种塑料的相关信息如下表,请你解答下列问题:1212与x 的函数关系式(注:利润=总收入-总支出);(2)已知该车间每月生产甲、乙两种塑料均不超过400吨,若某月要生产甲、乙两种塑料共700吨,求该月生产甲、乙塑料各多少吨时,获得的总利润最大?最大利润是多少?23、(本题9分)将两块全等的三角板如图①摆放,其中∠A1CB1=∠ACB=90°,∠A1=∠A=30°.(1)将图①中的△A1B1C顺时针旋转45°得图②,点P1是A1C与AB的交点,点Q是A1B1与BC的交点,求证:CP1=CQ;(2)在图②中,若AP1=2,则CQ等于多少?楚雄州2017—2018学年末教学质量监测八年级数学参考答案一、选择题(本大题共8个小题,每小题只有一个正确选项,每小题4分,满分32分)二、填空题(本大题共6个小题,每小题3分,满分18分)9、ab(a+b)(a-b) 10、(5,-1) 11、10 12、12 13、6cm 14、x> -2;三、解答题(本大题共9个小题,满分70分)15、(本题6分)解:原式=1+......(4分)=1......(6分)16、(本题7分)解:解不等式①得,x<3;......(2分)解不等式②得,x≥2;......(4分)在同一条数轴上表示不等式①②的解集为:...(6分)所以,原不等式组的解集为2≤x<3. ......(7分)17、(本题7分)解:方程两边同时乘以x2-1,得......(1分)(x+1)2-4= x2-1 ......(3分)2x =2 ......(4分)x =1 ......(5分)检验:经检验x =1是原方程的增根; ......(6分) 所以,原分式方程无解。
......(7分)18、(本题8分) 解:原式=()221111a 3-+∙⎪⎭⎫⎝⎛--+a a a ......(2分) =()22211a 11a 3-+∙⎪⎪⎭⎫ ⎝⎛+--+a a a ......(3分)=()22211a -4-+∙+a a a ......(4分) =()222-4a a - ......(5分) =aa-+22 ......(6分) ∵要使分式有意义,故a +1≠0且a -2≠0 ∴ a ≠-1且a ≠2 ......(7分) ∴a =1时,原式=31-212=+ ......(8分) (注意:a 取其它值时,参照给分,但是a ≠-1且a ≠2)19、(本题8分)解:(1)如图所示:点A 1的坐标(2,﹣4); ….(4分)(2)如图所示,点A 2的坐标(﹣2,4).……(8分)20、(本题7分)证明:∵平行四边形ABCD∴AD ∥CB 且AD=CB ......(2分)又∵AM=CN ∴AD-AM=CB-CN即DM=BN ......(5分) 又∵DM ∥BN ......(6分) ∴四边形MBND 是平行四边形。
......(7分)(其它方法参照给分)21、(本题9分)解:(1)设直线1l 的解析式为y=kx +b ......(1分) ∵直线1l 经过点A(0,4)和D(4,0)∴⎩⎨⎧=-=⎩⎨⎧=+=41k ,044b b k b ......(3分) ∴直线1l 的解析式为y=-x+4 ......(4分) ∵点B 是直线1l 和直线2l 的交点由⎩⎨⎧==⎪⎩⎪⎨⎧+=--=22x 解之,得,1214y y x y x∴点B 的坐标为(2,2) ......(6分)(2)∵点C 是直线2l 与x 轴的交点 ∴在121+=x y 中令y=0,得01x 21=+,解之,得x=-2 ∴ OC=2, CD=6 ......(7分) ∴B BCD ACD ABC y CD OA CD S S S ∙-∙=-=2121△△△ (平方单位)661226214621=-=⨯⨯-⨯⨯=......(9分) (其它解法参照给分)22、(本题9分) 解:(1)根据题意,得:1y =(2100-800-200)x=1100x2y =(2400-1100-100)x-20000=1200x-20000 ......(4分) ∴1y 与x 的函数关系式为1y =1100x ;2y 与x 的函数关系式为2y =1200x-20000 ......(5分)(2)设该月生产甲种塑料m 吨,则乙种塑料(700-m)吨,总利润为w 元,根据题意,得:w=1100m+1200(700-m)-20000=-100m+820000 ......(6分) ∵400m 300解之,得,400700400m ≤≤⎩⎨⎧≤-≤m ......(7分)∵在w=-100m+820000中,w 随m 的增大而减小∴当m=300时,W 最大=-30000+820000=790000(元),此时,700-m=400(吨) 所以,该月生产甲、乙两种塑料分别为300吨和400吨时总利润最大, 最大总利润是790000元。
......(9分)23、(本题9分) 解:(1)∵ACB CB A ≌△△11 ∴CA CA =1 A A ∠=∠1 ......(1分) 又∵图①中的C B A 11△顺时针旋转45°得到图② ∴︒=∠=∠4511CA A CB B ∴︒=︒︒=∠-∠=∠4545-901111CB B CA B BCP ......(2分) 在A CP 1△和1△CQA 中∵⎪⎩⎪⎨⎧∠=∠=∠=∠1111A A CA CA QCA CA P ∴A CP 1△≌1△CQA (ASA ) ∴1CP =CQ ......(5分)(2)过点P 1作P 1P ⊥CA 于点P∵∠A=30°,AP 1=2 ∴12212111=⨯==AP P P ......(6分) ∵在Rt ︒=∠45中,△11CP P CP P ∴CP=P 1P=1 ......(7分) 在Rt 211中,由勾股定理,得△2211=+=CP CP P ......(8分)∴CQ=CP 1=2 ......(9分) (其它解法,参照给分)。