大肠杆菌表达系统-3
- 格式:pdf
- 大小:754.54 KB
- 文档页数:54
大肠杆菌表达体系的特点
大肠杆菌表达体系是一种常用的重组蛋白表达方法,具有以下特点:
1. 简单易用:大肠杆菌是一种常见的细菌,易于培养和操作。
其表达体系基于质粒介导的转化和表达,具有操作简单、成本低廉的优点。
2. 高表达水平:大肠杆菌表达体系能够实现高表达水平,通常可以达到10-50%的总蛋白含量。
这一特点使其成为生物制药和科学研究领域中最受欢迎的表达体系之一。
3. 多种表达宿主:大肠杆菌表达体系有多种表达宿主,包括
BL21(DE3)、Rosetta(DE3)、Origami(DE3)等。
这些表达宿主具有不同的特点,能够适应不同的表达需求。
4. 可定制化:大肠杆菌表达体系可以通过基因工程技术进行改造,实现蛋白质的定制化表达。
例如,可以通过融合表达标签、选择性培养、调控表达等方式来优化表达效果。
5. 可用于生物制药:大肠杆菌表达体系可以用于制备多种蛋白药物,如重组人胰岛素、干扰素、白介素等。
这些蛋白药物已经被广泛应用于临床治疗和研究领域。
总之,大肠杆菌表达体系是一种快速、高效、可定制化的表达系统,已经成为蛋白质表达和生物制药领域中最常用的表达系统之一。
- 1 -。
大肠杆菌表达系统总结随着分子生物学和蛋白组学的迅猛发展,外源基因表达的遗传操作技术日趋成熟。
表达系统是外源基因表达的核心,常用表达系统一般为模式生物,包括真核表达系统和原核表达系统,其中真核系统包括了哺乳动物细胞表达系统、植物体表达系统、昆虫杆状病毒表达载体系统以及酵母表达系统,原核表达系统则主要为大肠杆菌表达系统。
大肠杆菌是目前应用最广泛的原核表达系统,也是最早进行研究的外源基因表达系统,其遗传学背景清晰、生长快、较易实现高密度培养、成本低、产量高,相较于其它表达系统具有难以比拟的优越性,是商业生产中应用最广泛的表达系统,取得了巨大的科研价值和经济效益。
大肠杆菌表达系统目前广泛应用于表达生产多种蛋白质/多肽类药物和生物化学产品,包括:重组人胰岛素、a2b型干扰素、兰尼单抗、紫色杆菌素和牡丹皮葡萄糖苷等。
据统计,1986-2018年由美国FDA和欧洲EMA批准上市的重组蛋白类药物中有26%来自于大肠杆菌。
与此同时,目前通过大肠杆菌表达的基因工程疫苗也进入市场或处于临床实验阶段,如戊型肝炎疫苗、人乳头瘤病毒疫苗、流感A型疫苗等。
常见的大肠杆菌表达系统有BL21系列、JM109系列、 W3110系列和K802系列等,其中大肠杆菌 BL21( DE3)菌株是目前应用于重组蛋白表达研究最广泛的菌株之一,BL21(DE3)是由大肠杆菌B系列与K-12系列的衍生菌株通过 P1 转导等遗传突变获得的。
该类菌株通常为宿主蛋白酶缺失型,以保证外源蛋白在表达过程中不被降解,维持表达的稳定性。
大肠杆菌表达系统在商业生产中具有巨大的优越性和价值,但建立高效匹配的表达系统是实现商业价值的关键,包括宿主菌、外源基因、载体的选择与匹配。
宿主菌的选择是第一步,对表达活性和表达量影响很大,理想的宿主菌株是蛋白酶缺陷型,避免蛋白酶过多引起的产物不稳定,常见的蛋白酶缺陷型菌株为BL21系列菌株。
其次是外源基因,外源基因决定了是否可获得目的产物,原核基因可在大肠杆菌中直接表达,而真核基因不能再大肠杆菌中直接表达。
原核大肠杆菌蛋白表达系统是一种常用的表达系统,它基于细菌细胞(通常为大肠杆菌)对外源基因的转录和翻译过程。
在表达载体中,包含有启动子、激活子和选择子等元件,这些元件使得外源基因能够被细菌细胞识别、转录成mRNA,并通过翻译过程合成目标蛋白。
大肠杆菌表达载体的要求如下:
1. 操纵子以及相应的调控序列,因为外源基因产物可能会对大肠杆菌有毒害作用。
2. SD序列,即核糖体识别序列,一般SD序列与起始密码子之间间隔7\~13bp翻译效率最高。
3. 多克隆位点以便目的基因插入到适合位置。
此外,目的基因在大肠杆菌表达体系中要表达的基因即外源基因,包括原核基因和真核基因。
原核基因可以在大肠杆菌中直接表达出来,但是真核基因含有内含子不能直接表达,大肠杆菌不能对mRNA进行剪切,从而形成成熟的mRNA,所以真核基因一般以cDNA的形式在大肠杆菌表达系统中表达。
同时还需要提供大肠杆菌能识别的且能转录翻译真核基因的元件。
以上内容仅供参考,如需更多信息,建议查阅相关文献或咨询生物学家。
基因工程制药综述班级:生技132XX:学号:大肠杆菌表达系统的研究进展综述自上世纪70 年代以来, 大肠杆菌一直是基因工程中应用最为广泛的表达系统。
尽管基因工程表达系统已经从大肠杆菌扩大到酵母、昆虫、植物及哺乳动物细胞,并且近年来出现了很多新型的真核表达系统, 但是大肠杆菌仍然是基因表达的重要工具。
尤其是进入后基因组时代以来, 有关蛋白构造以及功能研究的开展,对基因表达的要求更高,这时大肠杆菌往往是表达的第一选择。
文章综述了近年来有关大肠杆菌表达载体及宿主细胞的改造工作。
1 表达载体1. 1 表达调控构建有效的表达载体是表达目的基因的根本要求, 同时也是影响基因表达水平以及蛋白活性的重要因素。
标准的大肠杆菌表达载体的主要组成: 启动子、操纵子、核糖体结合位点、翻译起始区、多克隆位点、终止子、复制起点以及抗性筛选因子等。
理想的表达载体要求在转录和翻译水平上可以控制目的基因的表达,然而目的基因在宿主体内过分表达(选用较强的启动子等)会对宿主造成压力, 引起相关的细胞应答反响, 影响蛋白的活性等。
基因组、RNA 转录组、蛋白质组、代谢调控组等领域的研究成果给我们提供了大量关于基因表达调控的信息[ 1]。
现已能从基因和细胞的整体水平来方便地选择适宜的启动子或合理开发新的载体系统。
譬如Lee 等利用二维凝胶电泳法比较了重组载体和空载体被分别转入宿主细胞后蛋白组学的差异,发现两者都产生了大肠杆菌热休克蛋白并引起了cAMPCRP 调节蛋白的应答, 其中重组子的影响更为强烈;另外, 还发现外源基因的表达使宿主核糖体合成速率、翻译延长因子和折叠酶表达水平、细胞生长率下降, 而使细胞呼吸活力上升[ 2]。
目前应用的表达载体主要问题是表达过程中出现的全或无的情况, 通常表达的培养物都是非纯种的细胞群, 其中有一些细胞可以最大限度地被诱导,而另一些细胞在诱导后基因的表达被关闭。
别离具有适宜强度启动子及翻译速率的载体变种可以优化表达水平,说明启动子的选择对于基因的诱导表达非常重要。
PinPoint Xa-3编号 载体名称北京华越洋生物VECT4320 PinPoint X a-‐3PinPoint X a-‐3载体基本信息载体名称: PinPoint X a-‐3质粒类型: 大肠杆菌表达载体;蛋白纯化表达水平: 高启动子: -‐-‐克隆方法: 多克隆位点,限制性内切酶载体大小: 3333 b p5' 测序引物及序列: -‐-‐3' 测序引物及序列: -‐-‐载体标签: -‐-‐载体抗性: Ampicillin筛选标记: -‐-‐备注: -‐-‐稳定性: 瞬表达组成型: 组成型病毒/非病毒: 非病毒PinPoint X a-‐3载体质粒图谱和多克隆位点信息PinPoint X a-‐3载体简介PinPoint™ Xa Protein Purification System (PinPoint™ Xa 蛋白纯化系统) 被设计用于制备和纯化体内表达的生物素化的融合蛋白。
将编码目的蛋白的DNA 克隆到PinPoint™ Vector(PinPoint™ 载体) 的下游,该位置编码的肽段在体内可被生物素化。
生物素化融合蛋白在大肠杆菌内生成,然后用SoftLink™ S oft R elease A vidin R esin 进行亲和纯化。
该树脂是基于专利技术设计的,可将融合蛋白以非变性形式洗脱出来。
PinPoint™ Vector(PinPoint™ 载体) 的特点是含有编码内源蛋白酶因子Xa(发音为"ten a") 的蛋白水解位点,使得纯化标签可从天然蛋白上分离。
载体还带有多克隆区域,便于方便地构建融合蛋白。
该系统中含有几种载体,这些载体涵盖了所有可能的有义读码框。
大肠杆菌蛋白表达系统
大肠杆菌蛋白表达系统是一种常用的生物技术手段,用于在大肠杆菌细胞中表达外源蛋白质。
该系统主要包括以下步骤:
1. 克隆外源基因:将要表达的外源基因克隆至适合大肠杆菌表达的载体中。
2. 转化大肠杆菌:将重组的载体导入大肠杆菌内,并使其稳定地继承到细胞内。
3. 诱导表达:通过添加易于诱导的物质如IPTG等刺激载体内的传导子启动表达过程。
4. 收获蛋白:通过破细胞壁等方法收获蛋白质。
该系统的优点是表达效率高、成本低、操作简便。
缺点是存在蛋白质降解、折叠不正常等问题,需要通过优化表达条件等方法提高表达质量。