计算化学6-密度泛函理论
- 格式:ppt
- 大小:436.00 KB
- 文档页数:44
计算化学密度泛函理论化学密度泛函理论(DFT)是一种计算化学的方法,用于研究分子和材料的性质。
该理论基于电子的密度分布来描述体系的能量和性质,被广泛应用于各个领域,如药物设计、材料科学、催化化学等。
化学密度泛函理论的基础是Hohenberg-Kohn定理和Kohn-Sham方程。
Hohenberg-Kohn定理指出,一个体系的基态能量是其电子密度的唯一函数。
Kohn-Sham方程则是通过将体系的电子运动问题转换为一个类似单电子薛定谔方程的形式来近似描述体系的电子结构。
在DFT的计算中,首先需要确定电子的密度分布。
这可以通过多种方法来实现,其中最常见的是使用交换-相关(exchange-correlation)泛函。
交换-相关泛函是一个由物理理论或实验测量得出的函数,用于描述电子之间的交换和相关效应。
目前有很多不同的交换-相关泛函可供选择,如局域密度近似(LDA)和广义梯度近似(GGA)等。
确定了电子的密度分布之后,可以计算体系的总能量以及其它性质。
通过求解Kohn-Sham方程,可以得到包括分子轨道(MO)能量、电荷密度等在内的信息。
这些信息可以用来计算分子的结构、活性、光谱等性质。
与传统的量子化学方法相比,DFT具有一些显著的优点。
首先,DFT可以处理大分子和复杂体系,这在传统基于波函数的方法中往往是非常困难的。
其次,DFT可以利用多种交换-相关泛函的组合和调整,以适应不同体系的需求,从而提高计算结果的准确性。
此外,DFT的计算速度相对较快,使得它成为广泛应用于大规模计算的方法。
然而,DFT也存在一些限制和挑战。
目前仍然没有一个适用于所有体系和问题的通用交换-相关泛函。
选择合适的泛函对于计算结果的准确性至关重要,但这需要在实际应用中进行尝试和优化。
此外,DFT通常以准确性为代价来换取计算效率,其中一些情况下可能会引入较大的误差。
因此,在计算结果的解释和应用中需要谨慎对待。
尽管存在一些限制,化学密度泛函理论仍然是一个强大且灵活的工具,被广泛应用于化学研究中。
计算化学中的密度泛函理论计算化学是利用计算机模拟分子和反应过程的科学,它已经成为化学研究的重要手段。
其中密度泛函理论(DFT)作为一种重要的计算化学方法,在现代物理、化学、地球科学等领域中得到了广泛应用。
密度泛函理论起源于1964年,由P. Hohenberg与W. Kohn提出。
它通过波函数的精确形式表达计算繁琐的多电子系统中的相互作用能和电子密度分布,以一种简单有效的方式计算分子结构和反应性质。
DFT的中心思想是,一个系统的性质完全由其电子密度决定。
因此,在密度泛函理论中,系统的电子密度是基本变量。
DFT方法的基本思想是,将多电子体系中的每个电子采用一个局部函数来描述,将多个电子的局部函数合成为总的电子密度函数。
由此,可以得到一个只依赖于电子密度的交换-相关能泛函。
这个泛函通过对体系中的电子密度进行积分得到的结果,就是体系的总能量和电子密度分布。
因此,可以通过直接计算电子密度与其相关的总能量和反应性质。
DFT的另一个优点是可以用较小的计算代价解决大量问题。
DFT不需要精确计算电子波函数,在采用比较合适的基组(基本波函数集合)的情况下,可以避免多电子问题中的指数级增长。
此外,DFT还可以通过密度分析和分子轨道理论等方法,更加清楚直观地描述化学反应。
尽管DFT方法显示出许多优点,但仍然存在着一些问题,特别是对于过渡金属和配位化合物等需要包含精细关联关系的系统而言。
此外,构建准确的交换-相关泛函仍是DFT方法的一个重要挑战。
因此,未来的研究目标是发展新的交换-相关泛函,并将DFT与其他方法结合起来,以便更好地解决多电子体系的化学性质计算问题。
总之,DFT作为一种重要的计算化学方法,通过波函数的精确形式表达计算繁琐的多电子系统中的相互作用能和电子密度分布,以一种简单有效的方式计算分子结构和反应性质。
DFT的一些成果,如发现纳米材料,显示了它的极大推广价值。
随着计算化学、高性能计算技术、基础数学等领域的进一步发展,DFT的应用前景将会更加广阔。
密度泛函理论导言密度泛函理论(Density Functional Theory, DFT)是一种用于计算量子力学体系中电子密度的方法。
它是由Hohenberg 和Kohn于1964年首次提出,并在Kohn和Sham于1965年进行进一步发展。
密度泛函理论在固体物理、化学和生物物理等领域中得到了广泛的应用,并成为计算材料科学的重要工具。
基本原理密度泛函理论的基本思想是通过电子密度来描述体系的基态性质。
根据Hohenberg和Kohn的第一定理,任何物质的基态性质都可以通过其基态电子密度唯一确定。
而根据第二定理,存在一个能泛函,即总能量泛函,使得该能泛函在给定的电子密度下取得最小值。
根据Kohn和Sham的工作,总能量泛函可以分解为以下三个部分:动能泛函、外势能泛函和电子间排斥能泛函。
•动能泛函是电子动能的泛函,它可以用Kohn-Sham 方程的非相互作用的体系的Kohn-Sham轨道来表示。
该方程可以看作是一组单电子Schrödinger方程,其中电子之间的相互作用通过有效的外势能来描述。
•外势能泛函是不包括电子间相互作用的外势能的泛函,它可以通过实验数据或密度泛函理论本身得到。
•电子间排斥能泛函是电子之间的库伦相互作用的泛函,其一般采用Coulomb势能或同时考虑交换-相关作用的LDA(局域密度近似)或GGA(广义梯度近似)泛函来表示。
密度泛函理论的实现在实际计算中,密度泛函理论的实现包括以下几个关键步骤:1.选择适当的泛函:根据系统的性质选择合适的泛函,其中包括局域密度近似(LDA)和广义梯度近似(GGA)等方法。
2.确定电子密度:通过求解Kohn-Sham方程或自洽场方法确定电子密度。
3.计算物理性质:利用求解得到的电子密度计算相应的物理性质,如能带结构、吸附能等。
4.校正方法研究误差:对于一些复杂体系,密度泛函理论可能存在误差,可以通过校正方法如GW近似、自洽微扰理论等来提高计算的精度。
密度泛函理论, Density functional theory (DFT)是一种研究多电子体系电子结构的量子力学方法。
密度泛函理论在物理和化学上都有广泛的应用,特别是用来研究分子和凝聚态的性质,是凝聚态物理和计算化学领域最常用的方法之一。
电子结构理论的经典方法,特别是Hartree-Fock方法和后Hartree-Fock方法,是基于复杂的多电子波函数的。
密度泛函理论的主要目标就是用电子密度取代波函数做为研究的基本量。
因为多电子波函数有 3N个变量(N为电子数,每个电子包含三个空间变量),而电子密度仅是三个变量的函数,无论在概念上还是实际上都更方便处理。
虽然密度泛函理论的概念起源于Thomas-Fermi模型,但直到Hohenberg-Kohn定理提出之后才有了坚实的理论依据。
Hohenberg-Kohn第一定理指出体系的基态能量仅仅是电子密度的泛函。
Hohenberg-Kohn第二定理证明了以基态密度为变量,将体系能量最小化之后就得到了基态能量。
最初的HK理论只适用于没有磁场存在的基态,虽然现在已经被推广了。
最初的Hohenberg-Kohn定理仅仅指出了一一对应关系的存在,但是没有提供任何这种精确的对应关系。
正是在这些精确的对应关系中存在着近似(这个理论可以被推广到时间相关领域,从而用来计算激发态的性质[6])。
密度泛函理论最普遍的应用是通过Kohn-Sham方法实现的。
在Kohn-Sham DFT的框架中,最难处理的多体问题(由于处在一个外部静电势中的电子相互作用而产生的)被简化成了一个没有相互作用的电子在有效势场中运动的问题。
这个有效势场包括了外部势场以及电子间库仑相互作用的影响,例如,交换和相关作用。
处理交换相关作用是KS DFT 中的难点。
目前并没有精确求解交换相关能E XC的方法。
最简单的近似求解方法为局域密度近似(LDA)。
LDA近似使用均匀电子气来计算体系的交换能(均匀电子气的交换能是可以精确求解的),而相关能部分则采用对自由电子气进行拟合的方法来处理。
密度泛函理论密度泛函理论(DFT)是20世纪60年代建立的并在局域密度近似(LDA)下导出了著名的Koho-Sham(KS)方程。
DFT一直是凝聚态物理领域计算电子结构及其特性的有力工具它是一种最常见最成功的研究多电子体系电子结构的量子力学方法。
近几年来DFT与分子动力学相结合,在材料设计,合成,模拟计算和评价诸多方面有明显进展,成为计算材料科学的重要基础和核心技术. 特别在量子化学计算领域,1987年以前主要用Hartree-Fock(HF)方法。
但近年来,用DFT的工作以指数增加,以致于HF方法应用已相当减少。
W.Kohn因提出DFT获得1998年诺贝尔化学奖,已经表明了DFT在计算化学领域的核心作用与应用的广泛性。
密度泛函理论的主要目标就是用电子密度取代波函数作为研究的基本量。
因为多电子波函数有3N个变量(N为电子数,每个电子包含三个空间变量),而电子密度仅是三个变量的函数,无论在概念上还是实际上都更方便处理。
虽然密度泛函理论的概念起源于Thomas-Fermi模型,但直到Hohenberg-Kohn定理提出之后才有了坚实的理论依据。
Hohenberg-Kohn第一定理指出体系的基态能量仅仅是电子密度的泛函。
Hohenberg-Kohn第二定理证明了以基态密度为变量,将体系能量最小化之后就得到了基态能量。
最初的HK理论只适用于没有磁场存在的基态,虽然现在已经被推广了。
最初的Hohenberg-Kohn定理仅仅指出了一一对应关系的存在,但是没有提供任何这种精确的对应关系。
正是在这些精确的对应关系中存在着近似(这个理论可以被推广到时间相关领域,从而用来计算激发态的性质。
密度泛函理论最普遍的应用是通过Kohn-Sham方法实现的。
在Kohn-Sham DFT的框架中,最难处理的多体问题(由于处在一个外部静电势中的电子相互作用而产生的)被简化成了一个没有相互作用的电子在有效势场中运动的问题。
这个有效势场包括了外部势场以及电子间库仑相互作用的影响,例如,交换和相关作用。
密度泛函理论引言密度泛函理论(Density Functional Theory,简称DFT),是一种理解和计算电子结构的方法。
它是解决多体问题的一种近似方法,它通过考虑物质中电子的密度来描述系统的性质。
密度泛函理论在凝聚态物理、量子化学和材料科学等领域都有广泛的应用。
DFT的基本原理密度泛函理论的基本原理是根据单体密度的基本原理制定的。
基本原理包含两个主要部分:\1.霍恩堡定理:一个体系的总能量可以通过经典电磁场和电子的交变相互作用来表示。
这个定理表明体系的总能量主要由电子的运动决定。
2.雅可比定理:任何一个电子系统的外势能和密度之间都有一一对应的关系。
根据这两个基本原理,密度泛函理论可以将多体问题转化为求解一个单粒子波函数的问题,进而可以计算得到体系的总能量和物理性质。
密度泛函的近似实际上,精确求解密度泛函的方程是非常困难的。
因此,人们提出了一系列近似方法来简化计算过程。
其中最著名的近似方法是局域密度近似(Local DensityApproximation,LDA)和广义梯度近似(Generalized Gradient Approximation,GGA)。
LDA近似假设体系的局部化性质是均匀的,通过将非均匀体系映射为均匀电子气来近似计算。
这种近似方法在实际计算中取得了一定的成功,但是对于一些体系来说,精度相对较低。
GGA近似在LDA的基础上引入了梯度信息,优化了近似表达式。
它对于局部化性质和径向分布提供了更准确的描述,因此在描述分子间相互作用和共价键性质方面更为准确。
应用领域密度泛函理论广泛应用于固体材料的研究。
例如,研究晶体的能带结构、电子态密度以及光谱性质等。
此外,密度泛函理论还可以用于研究分子的结构、反应动力学等。
密度泛函理论在计算材料性质和设计新材料方面也有广泛应用。
例如,它可以用于计算材料的弹性模量、热膨胀系数、热导率等宏观性质,以及预测新型材料的性质。
最后,密度泛函理论还可以应用于计算化学反应的能垒和速率常数,从而在催化剂的设计和反应机理的研究中发挥重要作用。
密度泛函理论摘要:介绍了密度泛函理论的发展与完善,运⽤密度泛函理论研究了钒(Vanadium)在⾼压下的结构相变。
通过计算体⼼⽴⽅结构的钒在不同压强下剪切弹性系数C44,发现当压强约95 GPa时C44<0,说明体⼼⽴⽅结构的钒在此条件下是不稳定的。
进⼀步计算分析得到钒在⾼压下发⽣了从体⼼⽴⽅到菱⾯体的结构相变,相变压强约70 GPa,这⼀结果与实验结果符合。
还⾸次发现当压强约380 GPa时,将会发⽣菱⾯体到体⼼⽴⽅的结构相变,这有待实验的验证。
引⾔:相变的研究受到⼴泛重视,通过相变研究可以认识物质的内部结构,可以了解原⼦核的内部性质。
尤其是极端条件下—⾼温、⾼压下相变的研究⼀直是⼈们关注的热点,能量很⾼的重离⼦反应能形成⾼温、⾼密的区域,在这种条件下会出现许多奇异现象[1]。
原⼦在⾼压下也会出现许多新的特征,如发⽣结构相变。
过渡⾦属钒由于有较⾼的超导转变温度Tc,最近成为实验和理论研究的主题[2—8]。
Ishizuka等[2]对钒的实验研究发现:常压下钒的转变温度Tc为5.3 K,并随压强成线性增长的关系,当压强为120 GPa时Tc=17.2 K(迄今是⾦属中最⼤的Tc),但压强⼤于120 GPa,Tc出现了反常,即不再随压强成线性增长⽽保持不变。
Takemura等[8]对⾼压下的钒进⾏了X射线衍射实验,结果显⽰状态⽅程并没有奇异性,体⼼⽴⽅结构的钒在压强达到154 GPa时仍是稳定的。
Suzuki和Ostani利⽤第⼀性原理对进⾏了计算,发现横向声⼦模在加压下有明显的软化,当压强约130 GPa时变成虚的,能说明可能发⽣了结构相变,但并未给出相变细节[3]。
Nirmal等[4]理论计算表明,压强约140 GPa时会发⽣体⼼⽴⽅到简⽴⽅(sc)的结构相变。
Landa等[5,6]计算了体⼼⽴⽅结构的钒在加压下剪切弹性系数C44的⼤⼩,发现压强约200 GPa时会出现⼒学不稳定,并⽤费⽶⾯嵌套解释了不稳定的原因,但并没有给出相变后的结构。
密度泛函理论-定理介绍点击查看大图Density functional theory (DFT)密度泛函理论是一种研究多电子体系电子结构的量子力学方法。
密度泛函理论在物理和化学上都有广泛的应用,特别是用来研究分子和凝聚态的性质,是凝聚态物理和计算化学领域最常用的方法之一。
电子结构理论的经典方法,特别是Hartree-Fock方法和后Hartree-Fock 方法,是基于复杂的多电子波函数的。
密度泛函理论的主要目标就是用电子密度取代波函数做为研究的基本量。
因为多电子波函数有 3N 个变量(N 为电子数,每个电子包含三个空间变量),而电子密度仅是三个变量的函数,无论在概念上还是实际上都更方便处理。
虽然密度泛函理论的概念起源于Thomas-Fermi模型,但直到Hohenberg-Kohn定理提出之后才有了坚实的理论依据。
Hohenberg-Kohn第一定理指出体系的基态能量仅仅是电子密度的泛函。
Hohenberg-Kohn第二定理证明了以基态密度为变量,将体系能量最小化之后就得到了基态能量。
最初的HK理论只适用于没有磁场存在的基态,虽然现在已经被推广了。
最初的Hohenberg-Kohn定理仅仅指出了一一对应关系的存在,但是没有提供任何这种精确的对应关系。
正是在这些精确的对应关系中存在着近似(这个理论可以被推广到时间相关领域,从而用来计算激发态的性质[6])。
密度泛函理论最普遍的应用是通过Kohn-Sham方法实现的。
在Kohn-Sham DFT的框架中,最难处理的多体问题(由于处在一个外部静电势中的电子相互作用而产生的)被简化成了一个没有相互作用的电子在有效势场中运动的问题。
这个有效势场包括了外部势场以及电子间库仑相互作用的影响,例如,交换和相关作用。
处理交换相关作用是KS DFT中的难点。
目前并没有精确求解交换相关能 EXC 的方法。
最简单的近似求解方法为局域密度近似(LDA)。
LDA近似使用均匀电子气来计算体系的交换能(均匀电子气的交换能是可以精确求解的),而相关能部分则采用对自由电子气进行拟合的方法来处理。
chemdraw 密度泛函
密度泛函是一种计算化学方法,用于研究分子和固体的电子结构和性质。
它是基于量子力学的原理,通过计算电子密度来描述分子和固体的性质。
在化学领域中,密度泛函理论已经成为了一种非常重要的工具,被广泛应用于材料科学、生物化学、有机化学等领域。
密度泛函理论的基本思想是将分子或固体中的电子密度视为基本变量,通过计算电子密度的变化来描述分子或固体的性质。
在密度泛函理论中,电子密度是通过求解薛定谔方程得到的。
薛定谔方程是描述量子力学中粒子运动的基本方程,它可以用来计算分子或固体中的电子密度。
在密度泛函理论中,电子密度可以通过一些密度泛函来计算。
密度泛函是一个函数,它将电子密度映射到一个能量值上。
这个能量值可以用来描述分子或固体的性质。
在计算电子密度时,需要使用一些近似方法来简化计算。
这些近似方法包括局部密度近似、广义梯度近似等。
在化学领域中,密度泛函理论已经被广泛应用于材料科学、生物化学、有机化学等领域。
例如,在材料科学中,密度泛函理论可以用来计算材料的电子结构和性质,从而预测材料的性能。
在生物化学中,密度泛函理论可以用来研究生物分子的结构和功能,从而帮助人们理解生命的基本原理。
在有机化学中,密度泛函理论可以用来研究有机分子的反应机理和性质,从而帮助人们设计新的有机化合
物。
密度泛函理论是一种非常重要的计算化学方法,它可以用来研究分子和固体的电子结构和性质。
在化学领域中,密度泛函理论已经被广泛应用于材料科学、生物化学、有机化学等领域。
随着计算机技术的不断发展,密度泛函理论将会在化学领域中发挥越来越重要的作用。
密度泛函理论在计算化学中的应用研究密度泛函理论(Density Functional Theory,简称DFT)是计算化学中一种重要的理论方法。
它以电子密度为核心变量,尝试通过电子的总能量泛函来描述分子体系内的电子结构和化学反应。
DFT在化学计算中的应用广泛,包括了原子、分子和材料的能量计算,分子结构预测和反应动力学研究等领域。
DFT的基本原理DFT的基本思想是将具有N个电子的分子系统的能量表示为电子密度ρ的某个泛函E[ρ]的函数。
该泛函描述电子间相互作用和电子与原子核作用之间的复杂关系,因此可以看作一个包含全波函数的一阶近似。
这样,电子密度便成为了唯一的变量,通过求解变分问题,可以得到电子密度分布和能量值。
此外,DFT还可以用于描述分子的几何构型和轨道能级等性质。
DFT的适用性和优缺点DFT方法被广泛应用于分子结构预测、反应动力学研究以及材料物理和表面科学等领域。
与传统的量子化学方法相比,DFT的计算成本更低,且可处理的分子系统规模更大,因此具有更高的适用性和灵活性。
另外,DFT还具有较高的精度和稳定性,能够对分子间相互作用和溶剂效应等进行良好的描述。
但是,DFT也存在一些重要的局限性。
其中最主要的问题是相互作用的误差,尤其是描述弱相互作用的误差。
此外,DFT方法在描述电子激发态、磁性行为和化学反应机理等方面也存在不足。
因此,在具体应用中需要根据具体问题的需要来选择最合适的方法和理论。
DFT在化学计算中的应用DFT在化学计算中的应用非常广泛,涉及了不同领域、不同体系及不同的问题。
下面介绍几个典型的应用例子。
分子结构预测和能量计算DFT可用于预测分子的几何构型和能量值,并指导实验的设计和合成策略。
例如,在有机合成中,DFT计算可以用于优化反应路径、预测络合反应等转化反应。
此外,DFT还可用于预测生物分子的构型和相互作用,为药物设计提供依据。
催化剂设计在催化剂设计中,DFT被广泛应用于研究催化反应的机理和催化剂性能。