2018-2019学年 七年级数学上第一次联考试题含答案
- 格式:doc
- 大小:242.50 KB
- 文档页数:4
东阳镇初中2018-2019学年初中七年级上学期数学第一次月考试卷班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.(2分)备受宁波市民关注的象山港跨海大桥在2012年12月29日建成通车,此项目总投资约77亿元,77亿元用科学记数法表示为()A. 7.7×109元B. 7.7×1010元C. 0.77×1010元D. 0.77×1011元2.(2分)(2015•大连)方程3x+2(1﹣x)=4的解是()A. x=B. x=C. x=2D. x=13.(2分)(2015•贺州)观察下列等式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,…,解答下面问题:2+22+23+24+…+22015﹣1的末位数字是()A. 0B. 3C. 4D. 84.(2分)(2015•桂林)桂林冬季里某一天最高气温是7℃,最低气温是﹣1℃,这一天桂林的温差是()A. ﹣8℃ B. 6℃ C. 7℃ D. 8℃5.(2分)(2015•恩施州)恩施气候独特,土壤天然含硒,盛产茶叶,恩施富硒茶叶2013年总产量达64000吨,将64000用科学记数法表示为()A. B. C. D.6.(2分)(2015•遵义)在0,﹣2,5,,﹣0.3中,负数的个数是()A. 1B. 2C. 3D. 47.(2分)(2015•天津)计算(﹣18)÷6的结果等于()A. -3B. 3C. -D.8.(2分)(2015•鄂州)某小区居民王先生改进用水设施,在5年内帮助他居住小区的居民累计节水39400吨,将39400用科学记数法表示(结果保留2个有效数字)应为()A. B. C. D.9.(2分)(2015•眉山)下列四个图形中是正方体的平面展开图的是()A. B. C. D.10.(2分)计算的结果为A. -5x2B. 5x2C. -x2D. x211.(2分)(2015•咸宁)如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数.从轻重的角度看,最接近标准的是()A. B. C. D.12.(2分)(2015•甘南州)2的相反数是()A. 2B. -2C.D.二、填空题13.(1分)(2015•衡阳)在﹣1,0,﹣2这三个数中,最小的数是________ .14.(1分)(2015•湘西州)每年的5月31日为世界无烟日,开展无烟日活动旨在提醒世人吸烟有害健康,呼吁全世界吸烟者主动放弃吸烟,全世界每年因吸烟而引发疾病死亡的人数大约为5400000人,数据5400000人用科学记数法表示为________ .15.(1分)(2015•通辽)一列数x1,x2,x3,…,其中x1=,x n=(n为不小于2的整数),则x2015= ________.16.(1分)(2015•梧州)如图是由等圆组成的一组图,第①个图由1个圆组成,第②个图由5个圆组成,第③个图由12个圆组成…按此规律排列下去,则第⑥个图由 ________个圆组成.17.(1分)(2015•来宾)﹣2015的相反数是 ________.18.(1分)(2015•资阳)太阳半径大约是696 000千米,用科学记数法表示为________ 米.三、解答题19.(20分)(阅读理解)第一届现代奥运会于1896年在希腊雅典举行,此后每4年举行一次,奥运会如因故不能举行,届数照算.则奥运会的年份可排成如下一列数:1896,1900,1904,1908,…观察上面一列数,我们发现这一列数从第二项起,每一项与它前一项的差都等于同一个常数4,这一列数在数学上叫做等差数列,这个常数4叫做等差数列的公差.(1)等差数列2,5,8,…的第五项多少;(2)若一个等差数列的第二项是28,第三项是46,则它的公差为多少,第一项为多少,第五项为多少;(3)聪明的小雪同学作了一些思考,如果一列数a1,a2,a3,…是等差数列,且公差为d,根据上述规定,应该有:a 2-a1=d,a3-a2=d,a4-a3= d,…所以a 2=a1+d,a3=a2+d=(a1+d)+d=a1+2d,a4=a3+d=(a1+2d)+d=a1+3d,…则等差数列的第n项a n多少(用含有a1、n与d的代数式表示);(4)按照上面的推理,2008年中国北京奥运会是第几届奥运会,2050年会不会(填“会”或“不会”)举行奥运会.20.(10分)小华家买了一辆轿车,他连续10天记录了他家轿车每天行驶的路程,以40km为标准,超过或不足部分分别用正数、负数表示,得到的数据分别如下(单位:km)+3,+1,2,+8,-7,+2.5,4,+5,-3,+2(1)请你运用所学知识估计小华家一个月(按30天算)轿车行驶的路程(2)若已知该轿车每行驶100km耗用汽油7L,且汽油的价格为每升804元,试根据第(1)题估计小华家一年(按12个月算)的汽油费用21.(7分)探索规律:观察下面由“※”组成的图案和算式,解答问题:(1)请猜想1+3+5+7+9+…+19=________;(2)请猜想1+3+5+7+9+…+(2n-1)+(2n+1)=________;(3)请用上述规律计算:51+53+55+…+2011+2013.22.(10分)燕尾槽的截面如图所示(1)用代数式表示图中阴影部分的面积;(2)若x=5,y=2,求阴影部分的面积23.(15分)“十一”黄金周期间,淮安动物园在7天假期中每天接待的人数变化如下表(正数表示比前一(1)若9月30日的游客人数记为a万人,请用含a的代数式表示10月2日的游客人数;(2)请判断七天内游客人数最多的是哪天,有多少人?(3)若9月30日的游客人数为2万人,门票每人10元,则黄金周期间淮安动物园门票收入是多少元?24.(7分)观察下列等式:请解答下列问题:(1)按以上规律列出第5个算式:________(2)由此计算:(3)用含n的代式表示第n个等式:a n= ________(n为正整数);25.(11分)如图,已知A、B是数轴上的两个点,点A表示的数为13,点B表示的数为,动点P 从点B出发,以每秒4个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t>0)秒.(1)点P表示的数为________(用含t的代数式表示);(2)点P运动多少秒时,PB=2PA?(3)若M为BP的中点,N为PA的中点,点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请直接写出线段MN的长.26.(7分)小明同学积极参加体育锻炼,天天坚持跑步,他每天以2000m为标准,超过的米数记作正数,m):(2)他跑得最多的一天比最少的一天多跑了________m;(3)若他跑步的平均速度为200m/min,求这周他跑步的时间.东阳镇初中2018-2019学年初中七年级上学期数学第一次月考试卷(参考答案)一、选择题。
2018-2019学年七年级(上)第一次月考数学试卷一、选择题(共12小题,共36分)1.﹣6的相反数是()A.6 B.1 C.0 D.﹣62.小明存折中原有450元,取出260元,又存入150元,现在存折中还有()A.340元B.240元C.540元D.600元3.﹣2的倒数是()A.2 B.﹣2 C.﹣D.4.下列说法错误的是()A.一个数与1相乘仍得这个数B.互为相反数(除0外)的两个数商为1C.一个数与﹣1相乘得这个数的相反数D.互为倒数的两个数的积为15.在2×(﹣7)×5=﹣7×(2×5)中运用了()A.乘法交换律B.乘法结合律C.乘法分配律D.乘法交换律和乘法结合律6.若等式0□1=﹣1成立,则□内的运算符号为()A.+ B.﹣C.×D.÷7.算式的值为()A.﹣1 B.1 C.D.8.若a是有理数,则下列叙述正确的是()A.a一定是正数B.a一定是负数C.a可能是正数、负数、0 D.﹣a一定是负数9.某粮店出售的三种品牌的面粉袋上,分别标有质量为(25±0.1)kg、(25±0.2)kg、(25±0.3)kg的字样,从中任意拿出两袋,它们的质量最多相差()A.0.8kg B.0.6kg C.0.5kg D.0.4kg10.下列计算(﹣55)×99+(﹣44)×99﹣99正确的是()A.原式=99×(﹣55﹣44)=﹣9801B.原式=99×(﹣55﹣44+1)=﹣9702C.原式=99×(﹣55﹣44﹣1)=﹣9900D.原式=99×(﹣55﹣44﹣99)=﹣1960211.绝对值小于3的整数有()A.6个B.5个C.4个D.3个12.如图1,圆的周长为4个单位,在该圆的4等分点处分别标上字母m,n,p,q,如图2,先让圆周上表示m的点与数轴原点重合,再将数轴按逆时针方向环绕在该圆上,则数轴上表示﹣2018的点与圆周上重合的点对应的字母是()A.m B.n C.p D.q二、填空题(共6小题,共18分)13.化简:﹣(﹣3)=.14.数轴上A、B两点所表示的有理数的和是.15.数学活动课上,王老师给同学们出了一道题:规定一种新运算“★”对于任意两个有理数a和b,有a★b=ab+1,请你根据新运算,计算2★3的值是.16.如果|x|=6,则x=.17.某地气象局统计资料表明,高度增加1千米,气温会降低6℃,现在地面气温是20℃,某飞机在地面上空5千米处,则飞机所在高度的气温是℃.18.有理数a,b,c在数轴上的位置如图所示,下面结论不正确的为(填序号)①c >a;②|c|>|b;|③a>b;④|a|<|b|.三.解答题(共66分)19.计算:(1)36+(﹣76)+(﹣24)+64(2)20.计算:(1)(﹣5)×(﹣7)(2)21.计算:(1)(2)﹣1﹣×[2+(﹣3)×3]22.已知|a+3|+|b﹣5|=0,求3a+b的值.23.一架直升机的起始位置为460m,上升速度为20m/s,下降速度为12m/s,先上升60s,然后下降120s.(1)求此时直升机的高度是多少?(2)若直升机再次回到起始位置至少还需要上升多少秒钟?24.如图所示,数轴上的点A、B、C、D表示的数分别是:﹣1.5,﹣3,2,3.5(1)将A、B、C、D表示的数按从小到大的顺序用“<”号连接起来;(2)若将原点改在C点,则A、B、C、D点所对应的数分别为多少?将这些数按从小到大的顺序用“<”连接起来;(3)改变原点位置后,点A,B,C,D所表示的数的大小顺序改变了吗?这说明了数轴的什么性质?25.请你观察:=﹣,=﹣;=﹣;…+=﹣+﹣=1﹣=;++=﹣+﹣+﹣=1﹣=;…以上方法称为“裂项相消求和法”请类比完成:(1)+++=;(2)++++…+=.(3)计算:++++的值.26.设0!表示自然数由1到n的连乘积,并规定0!=1,A n m=,∁n m=(n ≥0,n≥m)例如1!=1,2!=1×2=2,3!=1×2×3=6,A53==60,C64==15,请回答以下问题:(1)求C32,A32;(2)试根据C32,A32,2!的值写出C32,A32,2!满足的等量关系;试根据C43,A43,3!的值写出C43,A43,3!满足的等量关系;试根据C54,A54,4!的值写出C54,A54,4!满足的等量关系;(3)探究A m n,∁m n与n!之间满足的等量关系(不需要证明).参考答案与试题解析一.选择题(共12小题)1.﹣6的相反数是()A.6 B.1 C.0 D.﹣6【分析】根据相反数的定义求解即可.【解答】解:﹣6的相反数是6,故选:A.2.小明存折中原有450元,取出260元,又存入150元,现在存折中还有()A.340元B.240元C.540元D.600元【分析】根据有理数的混合运算的方法,用小明存折中原有的钱数减去取出的钱数,再加上又存入的钱数,求出现在存折中还有多少元即可.【解答】解:450﹣260+150=190+150=340(元)∴现在存折中还有340元.故选:A.3.﹣2的倒数是()A.2 B.﹣2 C.﹣D.【分析】根据倒数的定义求解即可.【解答】解:﹣2得到数是﹣,故选:C.4.下列说法错误的是()A.一个数与1相乘仍得这个数B.互为相反数(除0外)的两个数商为1C.一个数与﹣1相乘得这个数的相反数D.互为倒数的两个数的积为1【分析】根据有理数的乘法法则逐一判别可得.【解答】解:∵一个数与1相乘,仍得这个数,∴选项A正确;∵互为相反数(除0外)的两个数商为﹣1,∴选项B错误;∵一个数与﹣1相乘得这个数的相反数,∴选项C正确;∵互为倒数的两个数的积为1,∴选项D正确.故选:B.5.在2×(﹣7)×5=﹣7×(2×5)中运用了()A.乘法交换律B.乘法结合律C.乘法分配律D.乘法交换律和乘法结合律【分析】根据乘法的运算律求解可得.【解答】解:在2×(﹣7)×5=﹣7×(2×5)中运用了乘法交换律和乘法结合律,故选:D.6.若等式0□1=﹣1成立,则□内的运算符号为()A.+ B.﹣C.×D.÷【分析】根据有理数的减法运算法则进行计算即可得解.【解答】解:∵0﹣1=﹣1,∴□内的运算符号为﹣.故选:B.7.算式的值为()A.﹣1 B.1 C.D.【分析】先把带分数化成假分数,然后根据有理数的乘法法则计算即可.【解答】解:原式=(﹣)×=﹣×=﹣1.故选:A.8.若a是有理数,则下列叙述正确的是()A.a一定是正数B.a一定是负数C.a可能是正数、负数、0 D.﹣a一定是负数【分析】根据字母表示数的任意性即可求解.【解答】解:若a是有理数,则a可能是正数、负数、0.故选:C.9.某粮店出售的三种品牌的面粉袋上,分别标有质量为(25±0.1)kg、(25±0.2)kg、(25±0.3)kg的字样,从中任意拿出两袋,它们的质量最多相差()A.0.8kg B.0.6kg C.0.5kg D.0.4kg【分析】根据题意给出三袋面粉的质量波动范围,并求出任意两袋质量相差的最大数.【解答】解:根据题意从中找出两袋质量波动最大的(25±0.3)kg,则相差0.3﹣(﹣0.3)=0.6kg.故选:B.10.下列计算(﹣55)×99+(﹣44)×99﹣99正确的是()A.原式=99×(﹣55﹣44)=﹣9801B.原式=99×(﹣55﹣44+1)=﹣9702C.原式=99×(﹣55﹣44﹣1)=﹣9900D.原式=99×(﹣55﹣44﹣99)=﹣19602【分析】逆用乘法的分配律进行计算即可.【解答】解:(﹣55)×99+(﹣44)×99﹣99=99×(﹣55﹣44﹣1)=﹣9900.故选:C.11.绝对值小于3的整数有()A.6个B.5个C.4个D.3个【分析】根据绝对值的定义,求得绝对值小于3的整数,即可得出答案.【解答】解:绝对值小于3的整数:﹣2,﹣1,0,1,2;故选:B.12.如图1,圆的周长为4个单位,在该圆的4等分点处分别标上字母m,n,p,q,如图2,先让圆周上表示m的点与数轴原点重合,再将数轴按逆时针方向环绕在该圆上,则数轴上表示﹣2018的点与圆周上重合的点对应的字母是()A.m B.n C.p D.q【分析】根据数据的缠绕概率,除以4余1对应点q,余2对应点p,余3对应点n,正好整除对应点m,【解答】解:﹣2018÷4=﹣504…﹣2,因此数轴上表示﹣2018的点与圆周上重合的点对应的字母是p,故选:C.二.填空题(共6小题)13.化简:﹣(﹣3)= 3 .【分析】根据相反数的性质,负负为正化简求解即可.【解答】解:本题是求﹣3的相反数,根据概念(﹣3的相反数)+(﹣3)=0,则﹣3的相反数是3.故化简后为3.14.数轴上A、B两点所表示的有理数的和是﹣1 .【分析】此题借助数轴用数形结合的方法求解.由数轴可知点A表示的数是﹣3,点B 表示的数是2,所以A,B两点所表示的有理数的和是﹣1.【解答】解:由数轴得,点A表示的数是﹣3,点B表示的数是2,∴A,B两点所表示的有理数的和是﹣3+2=﹣1.15.数学活动课上,王老师给同学们出了一道题:规定一种新运算“★”对于任意两个有理数a和b,有a★b=ab+1,请你根据新运算,计算2★3的值是7 .【分析】直接利用a★b=ab+1,代入相关数据进而得出答案.【解答】解:2★3=2×3+1=7.故答案为:7.16.如果|x|=6,则x=±6 .【分析】绝对值的逆向运算,因为|+6|=6,|﹣6|=6,且|x|=6,所以x=±6.【解答】解:|x|=6,所以x=±6.故本题的答案是±6.17.某地气象局统计资料表明,高度增加1千米,气温会降低6℃,现在地面气温是20℃,某飞机在地面上空5千米处,则飞机所在高度的气温是﹣10 ℃.【分析】根据题意列出算式20﹣6×5,再依据法则计算可得.【解答】解:飞机所在高度的气温是20﹣6×5=20﹣30=﹣10(℃),故答案为:﹣10.18.有理数a,b,c在数轴上的位置如图所示,下面结论不正确的为①②③(填序号)①c>a;②|c|>|b;|③a>b;④|a|<|b|.【分析】从有理数a,b,c在数轴上的位置,判断各个数的大小,各个数单位绝对值的大小,进而做出判断.【解答】解:由有理数a,b,c在数轴上的位置,可得a>0,c<0,那么a>c,故①错误;c离原点近,而b离原点远,故②不正确;a在b的左侧,因此a<b,故③不正确;a离原点近,而b离原点远,因此|a|<|b|,故④正确;故答案为:①②③.三.解答题(共8小题)19.计算:(1)36+(﹣76)+(﹣24)+64(2)【分析】应用加法交换律、加法结合律,求出每个算式的值各是多少即可.【解答】解:(1)36+(﹣76)+(﹣24)+64=(36+64)+[(﹣76)+(﹣24)]=100+(﹣100)=0;(2)=(﹣+)+(+)+=0+1+=1.20.计算:(1)(﹣5)×(﹣7)(2)【分析】先确定积的符号,再计算积的绝对值.【解答】解:(1)原式=5×7=35;(2)原式=5×6××=6.21.计算:(1)(2)﹣1﹣×[2+(﹣3)×3]【分析】(1)原式先计算除法运算,再计算减法运算即可求出值;(2)原式先计算乘法运算,再计算加减运算即可求出值.【解答】解:(1)原式=2﹣5×(﹣)=2+3=5;(2)原式=﹣1﹣×(﹣7)=﹣1+=.22.已知|a+3|+|b﹣5|=0,求3a+b的值.【分析】利用非负数的性质求出a与b的值,代入计算即可求出值.【解答】解:∵|a+3|+|b﹣5|=0,∴a+3=0,b﹣5=0,解得a=﹣3,b=5,则3a+b=3×(﹣3)+5=﹣9+5=﹣4.所以3a+b的值是﹣4.23.一架直升机的起始位置为460m,上升速度为20m/s,下降速度为12m/s,先上升60s,然后下降120s.(1)求此时直升机的高度是多少?(2)若直升机再次回到起始位置至少还需要上升多少秒钟?【分析】(1)根据题意列出算式,计算即可求出值;(2)根据题意列出算式,计算即可求出值.【解答】解:(1)根据题意得:460+20×60+12×120=460+1200+1440=3100(m),则此时直升机的高度是3100m;(2)根据题意得:(3100﹣460)÷120=22(s),则直升机再次回到起始位置至少还需要上升22秒.24.如图所示,数轴上的点A、B、C、D表示的数分别是:﹣1.5,﹣3,2,3.5(1)将A、B、C、D表示的数按从小到大的顺序用“<”号连接起来;(2)若将原点改在C点,则A、B、C、D点所对应的数分别为多少?将这些数按从小到大的顺序用“<”连接起来;(3)改变原点位置后,点A,B,C,D所表示的数的大小顺序改变了吗?这说明了数轴的什么性质?【分析】(1)根据数轴上右边的数总比左边的大得出结论;(2)如果将原点改在C点,写出数轴上A、B、C、D点所对应的数,并比较大小;(3)不变,因为数轴上表示的两个数右边的总比左边的大.【解答】解:(1)根据数轴可知:数轴上的数右边的数总比左边的大得:﹣3<﹣1.5<2<3.5;(2)若将原点改在C点,则点A表示﹣3.5,点B表示﹣5,点C表示0,点D表示1.5,则﹣5<﹣3.5<0<1.5;(3)从(1)和(2)发现,改变原点位置后,点A,B,C,D所表示的数的大小顺序不会改变,这说明数轴上表示的两个数右边的总比左边的大.25.请你观察:=﹣,=﹣;=﹣;…+=﹣+﹣=1﹣=;++=﹣+﹣+﹣=1﹣=;…以上方法称为“裂项相消求和法”请类比完成:(1)+++=;(2)++++…+=.(3)计算:++++的值.【分析】(1)将已知等式相加后两两相消可得;(2)根据=﹣裂项相消可得;(3)根据=﹣裂项相消可得.【解答】解:(1)原式=﹣+﹣+﹣+﹣=1﹣=,故答案为:;(2)原式=﹣+﹣+﹣+﹣+…+﹣=1﹣=,故答案为:;(3)原式=(1﹣)+(﹣)+(﹣)+(﹣)+(﹣)=(1﹣+﹣+﹣+﹣+﹣)=×(1﹣)=×=.26.设0!表示自然数由1到n的连乘积,并规定0!=1,A n m=,∁n m=(n ≥0,n≥m)例如1!=1,2!=1×2=2,3!=1×2×3=6,A53==60,C64==15,请回答以下问题:(1)求C32,A32;(2)试根据C32,A32,2!的值写出C32,A32,2!满足的等量关系;试根据C43,A43,3!的值写出C43,A43,3!满足的等量关系;试根据C54,A54,4!的值写出C54,A54,4!满足的等量关系;(3)探究A m n,∁m n与n!之间满足的等量关系(不需要证明).【分析】(1)根据题中的新定义计算求出值即可;(2)利用题中的新定义计算得到所求关系式即可;(3)归纳总结得到一般性规律,写出即可.【解答】解:(1)根据题中的新定义得:C32===3,A32===6;(2)由C32=3,A32=6,2!=2,得到A32=2!•C32;同理得到:A43=3!•C43;A54=4!•C54;(3)归纳总结得:A m n=n!•∁m n.。
2018-2019学年七年级(上)第一次月考数学试卷一、选择题(共12小题,每小题3分,满分36分)1.﹣的绝对值为()A.B.3 C.﹣ D.﹣32.下列说法正确的个数是()①一个有理数不是整数就是分数;②一个有理数不是正有理数就是负有理数;③一个整数不是正的,就是负的;④一个分数不是正的,就是负的.A.1 B.2 C.3 D.43.如果a与2的和为0,那么a是()A.2 B.C.﹣ D.﹣24.下列算式正确的是()A.(﹣14)﹣5=﹣9 B.0﹣(﹣3)=3 C.(﹣3)﹣(﹣3)=﹣6 D.|5﹣3|=﹣(5﹣3)5.比较﹣2.4,﹣0.5,﹣(﹣2),﹣3的大小,下列正确的是()A.﹣3>﹣2.4>﹣(﹣2)>﹣0.5 B.﹣(﹣2)>﹣3>﹣2.4>﹣0.5C.﹣(﹣2)>﹣0.5>﹣2.4>﹣3 D.﹣3>﹣(﹣2)>﹣2.4>﹣0.56.我国教育事业快速发展,去年普通高校招生人数达540万人,用科学记数法表示540万人为()A.5.4×102人B.0.54×104人C.5.4×106人D.5.4×107人7.下列各数中互为相反数的是()A.﹣与0.2 B.与﹣0.33 C.﹣2.25与2 D.5与﹣(﹣5)8.在0,﹣1,|﹣2|,﹣(﹣3),5,3.8,,中,正整数的个数是()A.1个B.2个C.3个D.4个9.小明的家,学校和书店依次坐落在一条南北方向的大街上,学校在家南边20米,书店在家北边100米,小明从家出来向北走了50米,又向北走了﹣70米,此时,小明的位置在()A.家B.学校 C.书店 D.不在上述地方10.一潜水艇所在的海拔高度是﹣60米,一条海豚在潜水艇上方20米,则海豚所在的高度是海拔()A.﹣60米B.﹣80米C.﹣40米D.40米第1页(共13页)。
汉四中2018-2019学年第一学期七年级第一次月考数学试题一、选择题1.在下面的图形中,不能够折叠成正方体的是2.下列说法正确的是A.绝对值等于自身的数是正数B.绝对值最小的有理数是1C.相反数等于自身的数是0D.绝对值等于自身的数是0 3.-0.17632是A.是负数,但不是分数B.不是分数,是有理数C.是分数,不是有理数D.是分数也是负数 4.如图是一个物体从上面看到的形状图,它所对应的物体是5.下列各组数中,互为相反数的是A.212与 B.()112与- C.11-与 D.22--与6.下列图形中,属于棱柱的是7.小明信用卡中有6元,取出600元,又支出1082元,在不考虑利息、手续费的情况下,你能算出信用卡中透支额度______元钱A.1006B.-1006C.2358D.-1008 8.已知b a 、在数轴上对应的点如图所示,下列结论正确的是A.b a >B.b a <C.b a --<D.b a -<9.用一个平面去截下列几何体:①圆柱;②正方体;③长方体;④球;⑤棱柱;⑥圆锥,其中截面可能是圆的有A.2个B.3个C.4个D.5个 10.若,>,<,<y x xy y x 00+则有A.y x y x >,<,>00B.x y y x >,<,>00C.y x y x >,>,<00D.x y y x >,>,<00二、填空题11.=-14.3π______;若,6.2=-x 则=x _______.12.直升机的螺旋桨转起来形成一个圆形的面,这说明_________. 13.用一个平面去截五棱柱,边数最多的截面是_______形.14.已知整数⋯⋯、、、、4321x x x x 满足以下条件: ,,,,,⋯+-=+-=+-==32103423121x x x x x x x 则=2018x ________. 三、解答题15.计算:(1)()()725-+- (2)565+⎪⎭⎫⎝⎛-(3)3173312741++⎪⎭⎫ ⎝⎛-+ (4)()6.09.46552---⎪⎭⎫⎝⎛-+⎪⎭⎫ ⎝⎛-16.计算: (1)3125.4413151521+-+--- (2)()()2.125.73.6----+-(3)()()()()()4.27.26.17.25.2++----+--(4)10099654321-+⋯+-+-+-17.如图是一个由小正体搭成的几何体的上面看,小正方形中的数字表示该位置的小的小正方体的个数,请你画出它的正面看与上面看的视图。
新人教版2018-2019学年度(上)第一次月考卷七年级数学B 卷(考试时间:100分钟试卷满分:120分)第Ⅰ卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.(六盘水中考)大米包装袋上(10±0.1)kg 的标识表示此袋大米重()A.(9.9~10.1)kgB.10.1kgC .9.9kgD .10kg2.数轴上表示整数的点称为整点,某数轴的单位长度是1厘米,若在这个数轴上随意画一条长15厘米的线段AB ,则AB 盖住的整数点有()A.13或14个B.14或15个C.15或16个D.16或17个3.若a 与-1互为相反数,则|a +2|等于()A .2B .-2C .3D .-34.某登山队离开海拔5200米的“珠峰大本营”,向山顶攀登.他们在海拔每上升100米,气温就下降0.6℃的低温和缺氧的情况下,成功登上海拔8844.43米的地球最高点.而此时“珠峰大本营”的温度为-4℃,峰顶的温度为(结果保留整数)()A .-26℃B .-22℃C .-18℃D .22℃5.若a ,b 互为相反数(a ≠0,b ≠0),n 是自然数,则()A.a 2n 和b 2n 互为相反数B.a 2n +1和b 2n +1互为相反数C.a 2和b 2互为相反数D.a n 和b n 互为相反数6.(自贡中考)填在下面各正方形中四个数之间都有相同的规律,根据这种规律m 的值为()A .180B .182C .184D .1867.在如图所示的运算程序中,若开始输入的x 值为48,我们发现第一次输出的结果为24,第二次输出的结果为12,…,则第2018次输出的结果为()A .6B .3 C.322018D.321009+3×10098.(德州中考)我市“全面改薄”和解决大班额工程成绩突出,两项工程累计开工面积达477万平方米,各项指标均居全省前列.477万用科学记数法表示正确的是(C)A.4.77×105B.47.7×105C.4.77×106D.0.477×1069.对于由四舍五入得到的近似数8.8×104,下列说法正确的是()A.精确到十分位B.精确到个位C.精确到千位D.精确到万位10.点A ,B 在数轴上的位置如图所示,其对应的数分别是a 和b.对于以下结论:甲:b -a <0;乙:a +b >0;丙:|a|<|b|;丁:ba>0.其中正确的是()A .甲乙B .丙丁C .甲丙D .乙丁第Ⅱ卷二、填空题(本大题共5小题,每小题3分,共15分)11.当x =2时,|x -2|有最小值,这个最小值为.12.上周五某股民小王买进某公司股票1000股,每股35元,下表为本周内每日股票的涨跌情况(单位:元):星期一二三四五每股涨跌+4+4.5-1-2.5-6则在星期五收盘时,每股的价格是元.13.(黔南中考)已知C 23=3×21×2=3,C 35=5×4×31×2×3=10,C 46=6×5×4×31×2×3×4=15,…观察以上计算过程,寻找规律计算C 58=.14.一列数:-3,9,-27,81,则第10个数为(-3)10,第n 个数用n 表示为.15.观察下列等式:21=2,22=4,23=8,24=16,25=32;26=64,…根据这个规律,则21+22+23+24+25+…+22018的末尾数字是.三、解答题(本大题共8小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.(本小题满分20分)计算(1)(-2)3×8-8×(12)3+8×18;解:(2)(-3)2-16×5+16×(-32);解:(3)[1-(1-0.5×13)]×(-10+9);解:(4)-43÷(-32)-[(-23)3×(-32)+(-113)].解:17.(本题满分5分)已知数a ,b ,c ,d ,e ,且a ,b 互为倒数,c ,d 互为相反数,e 的绝对值为2,求12ab+c +d 5+e 2的值.解:18.(本小题满分5分)若|x -2|与(y +7)2互为相反数,试求y x 的值.解:19.(本小题满分5分)在王明的生日宴会上,摆放着8个大盾牌,有7名同学藏在大盾牌后面,男同学盾牌前写的是一个正数,女同学盾牌前写的是一个负数,这8个盾牌如图,请说出盾牌后男、女同学各几个人.(-1)+(-5)-2+6(-2.5)+213312+(-278)0-(-2)7-86+(-6)-|42-30|解:20.(本小题满分8分)2017年国庆,全国从1日到7日放假七天,各地景区游人如织.其中广州白云山风景区,在9月30日的游客人数为0.9万人,接下来的七天中,每天的游客人数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数).日期10月1日10月2日10月3日10月4日10月5日10月6日10月7日人数变化(万人)+3.1+1.78-0.58-0.8-1-1.6-1.15(1)10月3日的人数为万人;(2)七天假期里,游客人数最多的是10月2日,达到万人;游客人数最少的是10月7日,达到万人;(3)请问白云山风景区在这八天内一共接待了多少游客?(结果精确到万位)解:21.(本题满分8分)(教材P48习题T11变式)(宜昌中考)(1)根据已知条件填空:①已知(-1.2)2=1.44,那么(-120)2=,(-0.012)2=;②已知(-3)3=-27,那么(-30)3=,(-0.3)3=;(2)观察上述计算结果我们可以看出:22.(本小题满分12分)(教材P43例4变式)观察下面三行数:2,-4,8,-16,…;①-1,2,-4,8,…;②3,-3,9,-15,….③(1)第①行数按什么规律排列?(2)第②③行数与第①行数分别有什么关系?(3)取每行数的第9个数,计算这三个数的和.解:23.(本小题满分12分)a,b分别是数轴上两个不同点A,B所表示的有理数,且|a|=5,|b|=2,A,B两点在数轴上的位置如图所示:(1)试确定数a,b;(2)A,B两点相距多少个单位长度?(3)若C点在数轴上,C点到B点的距离是C点到A点距离的13,求C点表示的数;(4)点P从A点出发,先向左移动一个单位长度,再向右移动2个单位长度,再向左移动3个单位长度,再向右移动4个单位长度,依次操作2019次后,求P点表示的数.解:解析2018-2019学年度(上)第一次月考七年级数学B 卷(考试时间:100分钟试卷满分:120分)第Ⅰ卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.(六盘水中考)大米包装袋上(10±0.1)kg 的标识表示此袋大米重(A)A.(9.9~10.1)kgB.10.1kgC .9.9kgD .10kg2.数轴上表示整数的点称为整点,某数轴的单位长度是1厘米,若在这个数轴上随意画一条长15厘米的线段AB ,则AB 盖住的整数点有(C)A.13或14个B.14或15个C.15或16个D.16或17个3.若a 与-1互为相反数,则|a +2|等于(C)A .2B .-2C .3D .-34.某登山队离开海拔5200米的“珠峰大本营”,向山顶攀登.他们在海拔每上升100米,气温就下降0.6℃的低温和缺氧的情况下,成功登上海拔8844.43米的地球最高点.而此时“珠峰大本营”的温度为-4℃,峰顶的温度为(结果保留整数)(A)A .-26℃B .-22℃C .-18℃D .22℃5.若a ,b 互为相反数(a ≠0,b ≠0),n 是自然数,则(B)A.a 2n 和b 2n 互为相反数B.a 2n +1和b 2n +1互为相反数C.a 2和b 2互为相反数D.a n 和b n 互为相反数6.(自贡中考)填在下面各正方形中四个数之间都有相同的规律,根据这种规律m 的值为(C)A .180B .182C .184D .1867.在如图所示的运算程序中,若开始输入的x 值为48,我们发现第一次输出的结果为24,第二次输出的结果为12,…,则第2018次输出的结果为(B)A .6B .3 C.322018D.321009+3×10098.(德州中考)我市“全面改薄”和解决大班额工程成绩突出,两项工程累计开工面积达477万平方米,各项指标均居全省前列.477万用科学记数法表示正确的是(C)A.4.77×105B.47.7×105C.4.77×106D.0.477×1069.对于由四舍五入得到的近似数8.8×104,下列说法正确的是(C)A.精确到十分位B.精确到个位C.精确到千位D.精确到万位10.点A ,B 在数轴上的位置如图所示,其对应的数分别是a 和b.对于以下结论:甲:b -a <0;乙:a +b >0;丙:|a|<|b|;丁:ba>0.其中正确的是(C)A .甲乙B .丙丁C .甲丙D .乙丁第Ⅱ卷二、填空题(本大题共5小题,每小题3分,共15分)11.当x =2时,|x -2|有最小值,这个最小值为0.12.上周五某股民小王买进某公司股票1000股,每股35元,下表为本周内每日股票的涨跌情况(单位:元):星期一二三四五每股涨跌+4+4.5-1-2.5-6则在星期五收盘时,每股的价格是34元.13.(黔南中考)已知C 23=3×21×2=3,C 35=5×4×31×2×3=10,C 46=6×5×4×31×2×3×4=15,…观察以上计算过程,寻找规律计算C 58=56.14.一列数:-3,9,-27,81,则第10个数为(-3)10,第n 个数用n 表示为(-3)n .15.观察下列等式:21=2,22=4,23=8,24=16,25=32;26=64,…根据这个规律,则21+22+23+24+25+…+22018的末尾数字是6.三、解答题(本大题共8小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.(本小题满分20分)计算(1)(-2)3×8-8×(12)3+8×18;解:原式=-8×8-8×18+8×18=-64.(2)(-3)2-16×5+16×(-32);解:原式=9-56+16×(-9)=9-56-96=203.(3)[1-(1-0.5×13)]×(-10+9);解:原式=[1-(1-12×13)]×(-10+9)=(1-56)×(-1)=-16.(4)-43÷(-32)-[(-23)3×(-32)+(-113)].解:原式=-64÷(-32)-[-827×(-9)-113]=2-(83-113)=2-(-1)=3.17.(本题满分5分)已知数a ,b ,c ,d ,e ,且a ,b 互为倒数,c ,d 互为相反数,e 的绝对值为2,求12ab+c +d 5+e 2的值.解:因为a ,b 互为倒数,所以ab =1.因为c ,d 互为相反数,所以c +d =0.因为e 的绝对值为2,所以e =±2.所以e 2=(±2)2=4.所以12ab +c +d 5+e 2=12+0+4=412.18.(本小题满分5分)若|x -2|与(y +7)2互为相反数,试求y x 的值.解:由题意,得|x -2|+(y +7)2=0,因为|x -2|≥0,(y +7)2≥0,所以|x -2|=(y +7)2=0.解得x =2,y =-7,所以y x =(-7)2=49.19.(本小题满分5分)在王明的生日宴会上,摆放着8个大盾牌,有7名同学藏在大盾牌后面,男同学盾牌前写的是一个正数,女同学盾牌前写的是一个负数,这8个盾牌如图,请说出盾牌后男、女同学各几个人.(-1)+(-5)-2+6(-2.5)+213312+(-278)0-(-2)7-86+(-6)-|42-30|解:由题意,知(-1)+(-5)=-6<0,(-2.5)+213=-16<0,0-(-2)=2>0,6+(-6)=0,-2+6=4>0,312+(-278)=58>0,7-8=-1<0,-|42-30|=-12<0.因为8个盾牌上共有3个正数,4个负数,所以有3名男同学,4名女同学.20.(本小题满分8分)2017年国庆,全国从1日到7日放假七天,各地景区游人如织.其中广州白云山风景区,在9月30日的游客人数为0.9万人,接下来的七天中,每天的游客人数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数).日期10月1日10月2日10月3日10月4日10月5日10月6日10月7日人数变化(万人)+3.1+1.78-0.58-0.8-1-1.6-1.15(1)10月3日的人数为5.2万人;(2)七天假期里,游客人数最多的是10月2日,达到5.78万人;游客人数最少的是10月7日,达到0.65万人;(3)请问白云山风景区在这八天内一共接待了多少游客?(结果精确到万位)解:0.9+4+5.78+5.2+4.4+3.4+1.8+0.65=26.13≈26(万).答:白云山风景区在这八天内一共接待了约26万游客.21.(本题满分8分)(教材P48习题T11变式)(宜昌中考)(1)根据已知条件填空:①已知(-1.2)2=1.44,那么(-120)2=14__400,(-0.012)2=0.000__144;②已知(-3)3=-27,那么(-30)3=-27__000,(-0.3)3=-0.027;(2)观察上述计算结果我们可以看出:①当底数的小数点向左(右)每移动一位,它的平方的幂的小数点向左(右)移动两位;②当底数的小数点向左(右)每移动一位,它的立方的幂的小数点向左(右)移动三位.22.(本小题满分12分)(教材P43例4变式)观察下面三行数:2,-4,8,-16,…;①-1,2,-4,8,…;②3,-3,9,-15,….③(1)第①行数按什么规律排列?(2)第②③行数与第①行数分别有什么关系?(3)取每行数的第9个数,计算这三个数的和.解:(1)第①行数的规律是21,-22,23,-24,25…(2)第②行每一个数是第①行每个数除以-2得到的;第③行每个数是第①行每个数加1得到的.(3)2×(-2)8+2×(-2)8÷(-2)+2×(-2)8+1=2×(-2)8-(-2)8+2×(-2)8+1=(2-1+2)×(-2)8+1=3×28+1=3×256+1=768+1=769.23.(本小题满分12分)a,b分别是数轴上两个不同点A,B所表示的有理数,且|a|=5,|b|=2,A,B两点在数轴上的位置如图所示:(1)试确定数a,b;(2)A,B两点相距多少个单位长度?(3)若C点在数轴上,C点到B点的距离是C点到A点距离的13,求C点表示的数;(4)点P从A点出发,先向左移动一个单位长度,再向右移动2个单位长度,再向左移动3个单位长度,再向右移动4个单位长度,依次操作2019次后,求P点表示的数.解:(1)因为|a|=5,|b|=2,所以a=5或-5,b=2或-2.由数轴可知,a<b<0,所以a=-5,b=-2.(2)-2-(-5)=3.答:A,B两点相距3个单位长度.(3)①若C点在B点的右侧,则CB=13CA=13(CB+AB).所以CB =12AB =32.所以点C 表示的数为-2+32=-12;②若C 点在A ,B 点之间,则CB =13CA =13(AB -CB).所以CB =14AB =34.所以点C 表示的数为-2-34=-112.综上,C 点表示的数为-12或-114.(4)-5-1+2-3+4-5+6-7+…-2017+2018-2019=-1015.答:P 点表示的数为-1015.。
2018-2019学年七年级(上)名校联考期中数学试卷一.选择题(每题3分,共30分)1.下列四个式子中,是一元一次方程的是()A.2x﹣6B.x﹣1=0C.2x+y=25D.=12.x=2是下列方程()的解.A.2x=6B.(x﹣3)(x+2)=0C.x2=3D.3x﹣6=03.下列等式变形中,结果不正确的是()A.如果a=b,那么a+2b=3b B.如果a=b,那么a﹣m=b﹣mC.如果a=b,那么=D.如果3x=6y﹣1,那么x=2y﹣14.如图,若m∥n,∠1=105°,则∠2=()A.55°B.60°C.65°D.75°5.如图,图中∠1与∠2是同位角的是()A.(2)(3)B.(2)(3)(4)C.(1)(2)(4)D.(3)(4)6.如图,由AD∥BC可以得到的是()A.∠1=∠2B.∠3+∠4=90°C.∠DAB+∠ABC=180°D.∠ABC+∠BCD=180°7.如图,AB∥EF,EF∥CD,EG∥BD,则图中与∠1相等的角(除∠1外)共有()A.6个B.5个C.4个D.2个8.某校在举办“读书月”的活动中,将一些图书分给了七年一班的学生阅读,如果每人分3本,则剩余20本:如果每人分4本,则还缺25本.若设该校七年一班有学生x人,则下列方程正确的是()A.3x﹣20=24x+25B.3x+20=4x﹣25C.3x﹣20=4x﹣25D.3x+20=4x+259.下列说法中①过一点有且只有一条直线与已知直线平行;②在同一平面内,过一点有且只有一条直线与已知直线垂直;③两直线平行,同旁内角互补;④直线外一点到已知直线的垂线段就是点到直线的距离,其中正确的有()个A.4个B.3个C.2个D.1个10.下面的程序计算,若开始输入的值为正数,最后输出的结果为131,则满足条件的x的不同值最多有()A.0个B.1个C.2个D.3个二、填空题(每題3分,共30分)11.关于x的方程ax+1=4的解是x=1,则a=.12.已知∠1与∠2是对顶角,∠2与∠3是邻补角,则∠1+∠3=.13.若2x3﹣2k+2k=41是关于x的一元一次方程,则k=.14.如图所示,∠1=100°,∠3=110°,∠2=100°,则∠4的度数为.15.若关于x的方程3x+2=0与5x+k=20的解相同,则k的值为.16.如图,直线AB与直线CD相交于点O,E是∠AOD内一点,已知OE⊥AB,∠BOD=45°,则∠COE的度数是.17.已知小名比小丽大3岁,一天小名对小丽说“再过十五年,咱俩年龄和的2倍就是110岁了”那么现在小名年龄是岁.18.如图,已知DE∥BC,∠ABC=100°,点F在射线BA上,且∠EDF=120°,则∠DFB的度数为.19.某轮船在松花江沿岸的两城市之间航行,已知顺流航行要6小时由A市到达B市,逆流航行要10小时由B市到达A市,则江面上的一片树叶由A市漂到B市需要小时.20.如图,有两个正方形夹在AB与CD中,且AB∥CD,若∠FEC=10°,两个正方形临边夹角为150°,则∠1的度数为度(正方形的每个内角为90°)三、解答題(21題10分,22、23题各7分,24、25题各8分,26、27题各10分,共计60分21.解方程(1)2x+5=3x﹣3(2)=2﹣22.已知x=3是方程4(x﹣1)﹣mx+6=8的解,求m2+2m﹣3的值.23.某车间有技术工人85人,平均每天每人可加工甲种部件16个或乙种部件10个.两个甲种部件和三个乙种部件配成一套,问加工甲乙部件各安排多少人才能使每天加工的甲、乙两种部件刚好配套?24.如图,BD是∠ABC的平分线,ED∥BC,∠4=∠5,则EF也是∠AED的平分线.完成下列推理过程:证明:∵BD是∠ABC的平分线(已知)∴∠1=∠2(角平分线定义)∵ED∥BC(已知)∴∠5=∠2()∴∠1=∠5(等量代换)∵∠4=∠5(已知)∴EF∥()∴∠3=∠1()∴∠3=∠4(等量代换)∴EF是∠AED的平分线(角平分线定义)25.如图,E为DF上的点,B为AC上的点,DF∥AC,∠C=∠D,求证:∠2=∠1.26.小明爸爸装修要粉刷断居室的墙面,在家装商场选购某品牌的乳胶漆:小明爸估算家里的粉刷面积,若买“大桶装”,则需若干桶但还差2升;若买“小桶装”,则需多买11桶但会剩余1升,(1)小明爸预计墙面的粉刷需要乳胶漆多少升?(2)喜迎新年,商场进行促销:满1000减120元现金,并且该品牌商家对“小桶装”乳胶漆有“买4送1“的促销活动,小明爸打算购买“小桶装”,比促销前节省多少钱?(3)在(2)的条件下,商家在这次乳胶漆的销售买卖中,仍可盈利25%,则小桶装乳胶漆每桶的成本是多少元?27.已知,点A,点B分别在线段MN,PQ上∠ACB﹣∠MAC=∠CBP(1)如图1,求证:MN∥PQ;(2)分别过点A和点C作直线AG、CH使AG∥CH,以点B为顶点的直角∠DBI绕点B旋转,并且∠DBI的两边分别与直线CH,AG交于点F和点E,如图2试判断∠CFB、∠BEG是之间的数量关系,并证明;(3)在(2)的条件下,若BD和AE恰好分别平分∠CBP和∠CAN,并且∠ACB=60°,求∠CFB的度数.参考答案一.选择题(每题3分,共30分)BDDDC CBBCD11.3.12.180°.13.1.14.70°.15..16.135°.1714岁.18.20°或140°.①如图,延长ED交AB于G,∵DE∥BC,∴∠FGD=∠B=100°,又∵∠EDF=120°,∴∠DFB=120°﹣100°=20°;②如图,过F作FG∥BC,∵DE∥BC,∴FG∥DE,∴∠D+∠DFG=180°,∠B+∠BFG=180°,又∵∠ABC=100°,∠EDF=120°,∴∠BFG=80°,∠DFG=60°,∴∠DFB=140°,193020.70解:如图,延长KH交EF的延长线于M,作MG⊥AB于G,交CD于H.∵∠GHM=∠GFM=90°,∴∠HMF=180°﹣150°=30°,∵∠HMF=∠MKG+∠MEH,∠MEH=10°,∴∠MKG=20°,∴∠1=90°﹣20°=70°,21.解:(1)2x﹣3x=﹣3﹣5,﹣x=﹣8,x=8;(2)3(3y﹣2)=24﹣4(2y﹣1),9y﹣6=24﹣8y+4,9y+8y=24+4+6,17y=34,y=2.22.解:根据题意,将x=3代入方程4(x﹣1)mx+6=8,得:4×(3﹣1)﹣3m+6=8,解得:m=2,则m2+2m﹣3=22+2×2﹣3=4+4﹣3=5.23.解:设加工的甲部件的有x人,加工的乙部件的有y人.,由②得:12x﹣5y=0③,①×5+③得:5x+5y+12x﹣5y=425,即17x=425,解得x=25,把x=25代入①解得y=60,所以答:加工的甲部件的有25人,加工的乙部件的有60人.24.证明:∵BD是∠ABC的平分线(已知)∴∠1=∠2(角平分线定义)∵ED∥BC(已知)∴∠5=∠2(两直线平行,内错角相等)∴∠1=∠5(等量代换)∵∠4=∠5(已知)∴EF∥BD(内错角相等,两直线平行)∴∠3=∠1(两直线平行,同位角相等)∴∠3=∠4(等量代换)∴EF是∠AED的平分线(角平分线定义)25.证明:∵DF∥AC,∴∠C=∠CEF,又∵∠C=∠D,∴∠CEF=∠D,∴BD∥CE,∴∠3=∠4,又∵∠3=∠2,∠4=∠1,∴∠2=∠1.26.解:(1)设需购买“大桶装”乳胶漆x桶,则需购买“小桶装”乳胶漆(x+11)桶,依题意,得:18x+2=5(x+11)﹣1,解得:x=4,∴18x+2=74.答:小明爸预计墙面的粉刷需要乳胶漆74升.(2)由(1)可知,需购买15桶“小桶装”乳胶漆.∵商家对“小桶装”乳胶漆有“买4送1“的促销活动,∴只需购买15×=12(桶),∴比促销前可节省15×90﹣(12×90﹣120)=390(元).答:比促销前节省390元钱.(3)设“小桶装”乳胶漆每桶的成本是y元,依题意,得:12×90﹣120﹣15y=15y×25%,解得:y=51.2.答:“小桶装”乳胶漆每桶的成本是51.2元.27.解:(1)过C作CE∥MN,∴∠1=∠MAC,∵∠2=∠ACB﹣∠1,∴∠2=∠ACB﹣∠MAC,∵∠ACB﹣∠MAC=∠CBP,∴∠2=∠CBP,∴CE∥PQ,∴MN∥PQ;(2)过B作BR∥AG,∵AG∥CH,∴BR∥HF,∴∠BEG=∠EBR,∠RBF+∠CFB=180°,∵∠EBF=90°,∴∠BEG=∠EBR=90°﹣∠RBF,∴∠BEG=90°﹣∠RBF=90°﹣(180°﹣∠CFB),∴∠CFB﹣∠BEG=90°;(3)过E作ES∥MN,∵MN∥PQ,∴ES∥PQ,∴∠NAE=∠AES,∠QBE=∠EBC,∵BD和AE分别平分∠CBP和∠CAN,∴∠NAE=∠EAC,∠CBD=∠DBP,∴∠CAE=∠AES,∵∠EBD=90°,∴∠EBQ+∠PBD=∠EBC+∠CBD=90°,∴∠QBE=∠EBC,∴∠AEB=∠AES+∠BES=∠CAE+∠CBE=,∵∠ACB=60°,∴∠AEB=150°,∴∠BEG=30°,∵∠CFB﹣∠BEG=90°,∴∠CFB=120°.。
2018-2019学年重庆实验外国语学校七年级(上)第一次月考数学试卷(考试时间:120分钟满分:150分)一、选择题(每小题4分,共40分)1.﹣5的倒数是()A.B.5 C.﹣D.﹣52.一种巧克力的质量标识为“23±0.25千克”,则下列哪种巧克力的质量是合格的()A.23.30千克B.22.70千克C.23.55千克D.22.80千克3.计算﹣12018的值为()A.1 B.﹣1 C.2018 D.﹣20184.在﹣(﹣2)、|﹣1|、﹣|﹣3|、(﹣3)2、﹣(﹣4)2中,正数有()A.1个B.2个C.3个D.4个5.已知点A、B、C是数轴上的三个点,点A表示的数是﹣5,点B表示的数是1,且A、B两点间的距离是B、C两点间距离的2倍,则点C表示的数是()A.4 B.﹣1 C.﹣1或3 D.﹣2或46.若a3+b3=0,那么有理数a,b的关系是()A.a=b=0 B.a,b至少一个是0C.a+b=0 D.a,b不都是07.下列说法正确的有()个①0是绝对值最小的有理数;②相反数大于本身的数是负数;③数轴上原点两侧的数互为相反数;④|a|=|b|,则a=b.A.1 B.2 C.3 D.48.墨尔本与北京的时差是+3小时(即同一时刻墨尔本时间比北京时间早3小时).班机从墨尔本飞到北京需用12小时,若乘坐从题尔本10:00(当地时间)起飞的航班,到达北京机场时,北京时间是()A.22:00 B.19:00 C.18:00 D.15:009.若|a|=1,|b|=4,且|a﹣b|=a﹣b,则a﹣b等于()A.5 B.3 C.﹣5或5 D.5或310.有一列数a1,a2,a3,…,a n,从第二个数开始,每一个数都等于1与它前面那个数的倒数的差,若a1=2,则a2018为()A.2017 B.C.2 D.﹣1二、填空题(每小题4分,共40分)11.用“>”“<”或“=”填空:(1)0 2018;(2)0.33;(3)﹣(+5)﹣|﹣5|12.﹣9的绝对值是,的相反数是,﹣1的倒数是.13.用四舍五入法,将100.009精确到十分位为.14.已知|x+3|+(y﹣2)2=0,则x+y=.15.设a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,则a﹣b+c=.16.大于﹣2且不大于3的所有非负整数的和是.17.当x=时,式子﹣|x﹣3|+5有值.18.已知a,b互为相反数,c,d互为倒数,x的绝对值等于2,则式子x2+cd+a+b的值为.19.如图,从左边第一个格子开始向右数,在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,若取最左端3个格子中的后两个数记作m、n,那么|m﹣n|是.9 m n ﹣6 2 …20.我校每年12月30日晚上各班的元旦晚会是同学们施展才艺的舞台.在某班晚会上,主持人为同学们准备了一个游戏:从100个外形相同的气球中找到唯一的里面装有奖品的气球.主持人将这些气球按1至100的顺序编号排成一列,第一次先请一位同学从中取出所有序号为单数的球,均没发现装有奖品.接着主持人将剩下的球又按1﹣50重新编号排成一列(即原来的2号变为1号,原来的4号变为2号,…,原来的100号变为50号),又请一位同学从中取出所有新序号为单数的球,也没有发现奖品,…如此下去,直到最后一个气球才是装有奖品的,那么这个装有奖品的气球最初的序号是.三、解答题(共70分)21.(6分)在规定直线上画出数轴,将数字0,﹣3,2,﹣1,0.5表示在数轴上,并用“<”符号将这些数连接起来.22.(24分)计算:(1)(+4.3)﹣(﹣4)+(﹣2.3)﹣(+4)(2)﹣49÷×(﹣)÷(﹣10)(3)﹣32×(﹣2)+(﹣4)2﹣(﹣2)+(4)3﹣36×(﹣+)(5)|﹣1.2+3|﹣3﹣|4.5﹣5.2| (6)19×(﹣8)+19.5×6﹣1.5×6 (10分)某自行车厂规定每天要生产200辆自行车,由于各种原因实际每天生产量与规定量相比有出入.下23.表是某一周的实际生产情况(超产为正、减产为负):星期一二三四五六日与规定量的差值+6 ﹣3 ﹣4 +12 ﹣9 +17 ﹣11(1)根据记录可知前三天共生产辆;(2)产量最多的一天比产量最少的一天多生产辆;(3)该厂实行每天计件工资制,每生产一辆车可得50元,若超额完成任务,则超过部分每辆另奖25元;少生产一辆则扣10元,那么该厂工人这一周的工资总额是多少?24.(8分)已知,|a|=5、|b|=3、c2=81,又知,|a+b|=a+b且|a+c|=a+c,求2a﹣3b+c的值.25.(10分)我们知道,|x|表示x在数轴上对应的点到原点的距离我们可以把|x|看作|x﹣0|,所以,|x ﹣3|就表示x在数轴上对应的点到3的距离,|x+1|=|x﹣(﹣1)|就表示x在数轴上对应的点到﹣1的距离,由上面绝对值的几何意义,解答下列问题:(1)求|x﹣4|+|x+2|的最小值,并写出此时x的取值情况;(2)求|x﹣3|+|x+2|+|x+6|的最小值,并写出此时x的取值情况;(3)已知|x﹣1|+|x+2|+|y﹣3|+|y+4|=10,求2x+y的最大值和最小值.26.(12分)如图,数轴上有两个长方形ABCD和FFGH,这两个长方形的宽都是1个单位长度,长方形ABCD 的长AD是2个单位长度,长方形EFGH的长EH是4个单位长度,点E在数轴上表示的数是5,且E、D两点之间的距离为12.(1)填空:点H在数轴上表示的数是,点A在数轴上表示的数是;(2)若长方形ABCD以每秒2个单位的速度向右匀速运动,当点D运动到E时,两个长方形开始有重叠部分,此时长方形ABCD运动了秒;若长方形ABCD继续向右运动,再经过秒后,两个长方形不再有重叠部分.经过6.5秒时,两个长方形重叠部分的面积是个平方单位;(3)设AD的中点为M,若两个长方形ABCD和EFGH同时从图中位置出发,长方形EFGH以每秒2个单位的速度向左匀速运动,长方形ABCD仍以每秒2个单位的速度向右匀速运动,运动多少秒时,点M与线段EH 端点E的距离为1个单位长度.1.【解答】解:﹣5的倒数是.故选:C.2.【解答】解:∵23+0.25=23.25,23﹣0.25=22.75,∴巧克力的重量在23.25与22.75kg之间.故选:D.3.【解答】解:﹣12018=﹣1.故选:B.4.【解答】解:﹣(﹣2)=2、|﹣1|=1、﹣|﹣3|=﹣2、(﹣3)2=9、﹣(﹣4)2=﹣16,则正数有3个,故选:C.5.【解答】解:设点C表示的数是x,由题意得|1﹣(﹣5)|=2|1﹣x|,解得:x=﹣2或8.故选:D.6.【解答】解:∵a3+b3=0,∴a3与b3互为相反数,∴a与b互为相反数.故选:C.7.【解答】解:①0是绝对值最小的有理数是正确的;②相反数大于本身的数是负数是正确的;③数轴上原点两侧的数并且与原点的距离相等的数互为相反数,故错误;④|a|=|b|,则a=b或a=﹣b,故错误.故选:B.8.【解答】解:10+12﹣3=19,即乘坐从墨尔本10:00(当地时间)起飞的航班,到达北京机场时,北京时间是19:00.故选:B.9.【解答】解:∵|a|=1,|b|=4,且|a﹣b|=a﹣b,∴a=1或﹣1,b=﹣8,∴a﹣b等于5或3.故选:D.10.【解答】解:依题意得:a1=2,a2=1﹣=,a3=1﹣2=﹣6,a4=1+1=3;周期为3;所以a2018=a2=.故选:B.11.【解答】解:(1)0<2018;(2)<0.33;(3)﹣(+5)=﹣|﹣5|,故答案为:<;<;=.12.【解答】解:﹣9的绝对值是 9,的相反数是﹣,﹣1的倒数是﹣,故答案为:9,﹣,﹣.13.【解答】解:将100.009精确到十分位为100.0,故答案为:100.0.14.【解答】解:∵|x+3|+(y﹣2)2=3,∴x=﹣3,y=2,故答案为:﹣1.15.【解答】解:根据题意,最小的正整数是1,最大的负整数﹣1,绝对值最小的有理数是0,∴a=1,b=﹣1,c=0,故应填2.16.【解答】解:大于﹣2且不大于3的所有非负整数为:0,1,2,80+1+2+3=5,故答案为:617.【解答】解:∵﹣|x﹣3|≤0,∴﹣|x﹣3|+5≤8,故答案为:3,最大.18.【解答】解:∵a,b互为相反数,c,d互为倒数,x的绝对值等于2,∴a+b=0,cd=1,x=±2,∴x2+cd+a+b=4+6+0故答案为:5.19.【解答】解:设第四个数为x,∵任意三个相邻格子中所填整数之和都相等,解得x=9,∴m=﹣6,第9个数与第三个数相同,即n=2,故答案为:8.20.【解答】解:第一次取出的是单号的气球,剩下的气球的序号是2的倍数,因为原来是100只,所以还剩50只;第二次取出后,剩下的气球的序号是4的倍数,所以还剩25只;第四次取出后,剩下的气球的序号是16的倍数,所以还剩6只;第六次取出后,剩下的气球的序号是64的倍数,所以还剩1只;故答案为:64.21.【解答】解:所画数轴和数轴上表示数如图所示:由数轴的特点可知,﹣3<﹣1<7<0.5<2.22.【解答】解:(1)(+4.3)﹣(﹣4)+(﹣2.4)﹣(+4)=4.3+4+(﹣2.3)+(﹣4)(2)﹣49÷×(﹣)÷(﹣10)=﹣;=﹣9×(﹣2)+16+4+=36;=5﹣8+27﹣3(5)|﹣1.2+3|﹣3﹣|4.5﹣6.2|=﹣1.9;=(19+)×(﹣8)+(19.5﹣1.5)×8=﹣152﹣7.5+108=﹣51.5.23.【解答】解:(1)3×200+6﹣3﹣7=599(辆);(2)17﹣(﹣11)=28(辆);=1408×50+35×25﹣27×10=70400+875﹣270=71005(元).答:该厂工人这一周的工资总额是71005元.24.【解答】解:∵|a|=5、|b|=3、c2=81,|a+b|=a+b且|a+c|=a+c,∴a=±7,b=±3,c=±9,a+b≥0,a+c≥0,当a=4,b=﹣3,c=9时,原式=10+9+9=28.25.【解答】解:(1)|x﹣4|+|x+2|的最小值为4﹣(﹣2)=3,此时x的取值情况是﹣2≤x≤4;(2)|x﹣3|+|x+2|+|x+6|的最小值为(﹣2+6)+0+(3+5)=9,此时x的取值情况是x=﹣2;∴﹣2≤x≤1,﹣7≤y≤3,故2x+y的最大值为5,最小值为﹣8.26.【解答】解:(1)∵点E在数轴上表示的数是5,EH是4个单位长度,∴H点表示9,∴D点表示﹣7,∴A点表示﹣9,(2)∵E、D之间的距离是12,长方形ABCD以每秒2个单位的速度向右匀速运动,∵当A点运动到H时,两个长方形没有重叠,∴A运动到H,运动了9秒;此时D点在数轴上表示的点是2,故答案为6,9,1;此时t=12÷4=7秒;②当E在D的左侧,距离为2时,此时t=14÷4=3.5秒;综上所述:当E、D运动3秒,4.5秒时,点M与线段EH端点E的距离为1个单位长度。
2018-2019年福建省龙岩市上杭四中七年级(上)第一次月考数学考试试卷(解析版)2018-2019学年福建省龙岩市上杭四中七年级(上)第一次月考数学试卷一、选择题(本大题共10小题,共40.0分)1.的相反数是A. 2B.C.D.【答案】A【解析】解:根据相反数的定义,的相反数是2.故选:A.根据相反数的意义,只有符号不同的数为相反数.本题考查了相反数的意义注意掌握只有符号不同的数为相反数,0的相反数是0.2.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,若气温为零上记作,则表示气温为A. 零上B. 零下C. 零上D. 零下【答案】B【解析】解:若气温为零上记作,则表示气温为零下.故选:B.此题主要用正负数来表示具有意义相反的两种量:若零上记为正,则零下就记为负,直接得出结论即可.此题主要考查正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负.3.下列运算正确的是A. B. C. D.【答案】D【解析】解:A、,故本选项错误;B、,故本选项错误;C、,故本选项错误;D、,故本选项正确.故选:D.1 / 10根据相反数的意义判断A;根据绝对值的意义判断B;根据有理数乘方的意义判断C;根据有理数除法法则判断D.本题考查了相反数,绝对值,有理数的乘方,有理数的除法,熟练掌握定义与法则是解题的关键.4.下列说法正确的是A. 最小的整数是0B. 一个数不是正数就是负数C. 有理数分为正数和负数D. 互为相反数的两个数的绝对值相等【答案】D【解析】解:A、无最小的整数,此选项错误;B、一个数不是正数就是负数或者是0,此选项错误;C、有理数分为正数、负数和0,此选项错误;D、互为相反数的两个数的绝对值相等,此选项正确;故选:D.根据有理数的定义和分类及相反数的性质求解可得.本题主要考查有理数,解题的关键是掌握有理数的定义和分类及相反数的性质.5.如图,数轴上一点A向左移动2个单位长度到达点B,再向右移动5个单位长度到达点C,若点C表示的数为1,则点A表示的数A. B. C. 3 D. 7【答案】B【解析】解:由题意可知:,,,由于A在原点的左侧,表示,故选:B.根据数轴的三要素即可判断A的位置.本题考查数轴的三要素,涉及线段计算问题.6.检查了4个足球的重量单位:克,其中超过标准重量的数量记为正数,不足的数量记为负数,结果如下从轻重的角度看,最接近标准的足球是A. B. C. D.【答案】B2018-2019年福建省龙岩市上杭四中七年级(上)第一次月考数学考试试卷(解析版) 3 / 10【解析】解:根据题意得: , 故选:B .根据题意可知绝对值最小的即为最接近标准的足球,即可得出答案.此题考查了正数和负数,正确理解题意,能够正确比较绝对值的大小是本题的关键.7. 如图,数轴上点A 所表示的数的倒数是A.B. 2C.D.【答案】D【解析】解:由题意得数轴上点A 所表示的数为 , 的倒数是, 故选:D .由题意先读出数轴上A 的数,然后再根据倒数的定义进行求解. 此题主要考查倒数的定义,是一道基础题.8. 绝对值大于或等于1,而小于4的所有的正整数的和是A. 8B. 7C. 6D. 5【答案】C【解析】解:根据题意,得: 符合题意的正整数为1,2,3, 它们的和是 . 故选:C .根据绝对值的性质,求出所有符合题意的数,进行计算求得结果.此题考查了绝对值的性质 一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.9. 如图,数轴上A 、B 两点分别对应有理数a 、b ,则下列结论: ; ;; 中正确的有A. 1个B. 2个C. 3个D. 4个【答案】A【解析】解: 由数轴可知, , , , , , , 故 错误, 正确. 故选:A .根据数轴可知 ,,从而可以判断题目中的结论哪些是正确的,哪些是错误的,从而解答本题.本题考查数轴,解题的关键是根据数轴可以明确a、b的符号和与原点的距离.10.我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”如图,一位母亲在从右到左依次排列的绳子上打结,满七进一,用来记录孩子自出生后的天数,由图可知,孩子自出生后的天数是A. 84B. 336C. 510D. 1326【答案】C【解析】解:,故选:C.类比于现在我们的十进制“满十进一”,可以表示满七进一的数为:千位上的数百位上的数十位上的数个位上的数.本题是以古代“结绳计数”为背景,按满七进一计算自孩子出生后的天数,运用了类比的方法,根据图中的数学列式计算;本题题型新颖,一方面让学生了解了古代的数学知识,另一方面也考查了学生的思维能力.二、填空题(本大题共6小题,共24.0分)11.把下列算式写成省略括号的形式:______.【答案】【解析】解:.故答案为:.先把加减法统一成加法,再省略括号和加号.本题考查了有理数的加减混合运算,对有理数加减法统一成加法,并且要熟练掌握有理数的减法法则:减去一个数等于加上这个数的相反数.12.比较大小:______.【答案】【解析】解:,,而,.故答案为:.先计算,,然后根据负数的绝对值越大,这个数反而越小即可得到它们的关系关系.本题考查了有理数的大小比较:正数大于零,负数小于零;负数的绝对值越大,这个数反而越小.2018-2019年福建省龙岩市上杭四中七年级(上)第一次月考数学考试试卷(解析版) 5 / 1013. 中国人最先使用负数,魏晋时期的数学家刘徽在“正负术”的注文中指出,可将算筹 小棍形状的记数工具 正放表示正数,斜放表示负数 如图,根据刘徽的这种表示法,观察图 ,可推算图 中所得的数值为______. 【答案】【解析】解:图 中表示 , 故答案为: .根据有理数的加法,可得答案.本题考查了有理数的运算,利用有理数的加法运算是解题关键.14. 若 ,则 的值为______. 【答案】11【解析】解: , , , 解得: , ,则 . 故答案为:11利用非负数的性质求出m 与n 的值,即可确定出 的值. 此题考查了有理数的减法,熟练掌握减法法则是解本题的关键.15. 对整数2,3, , 每个数只用一次 进行加减乘除四则运算,使其运算结果等于17,运算式可以是______ 发散你的思维,积极思考 【答案】【解析】解:根据题意得: , 故答案为: 根据题意列出算式,计算即可求出值.此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.16. 观察下列有规律的数:1,,,,, ,则第n 个数表示为______. 【答案】【解析】解:因为1,,,,,,所以,故答案为:,观察发现,分子是从1开始的连续奇数,分母是的数,然后根据此规律写出即可.本题考查了数字变化规律,观察发现分子是从1开始的连续奇数,分母是的数是解题的关键,本题同学们对数字的敏感性比较重要.三、计算题(本大题共5小题,共48.0分)17.计算:;【答案】解:原式;原式;原式.【解析】原式利用减法法则法则变形,计算即可求出值;原式从左到右依次计算即可求出值;原式先计算乘除运算,再计算加减运算即可求出值.此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.18.计算:;【答案】解:;2018-2019年福建省龙岩市上杭四中七年级(上)第一次月考数学考试试卷(解析版).【解析】根据乘法分配律可以解答本题;根据有理数的除法和加减法可以解答本题.本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.19.已知a、b互为倒数,c、d互为相反数,且m是最大的负整数,求的值.【答案】解:、b互为倒数,c、d互为相反数,且m是最大的负整数,,,,.【解析】根据a、b互为倒数,c、d互为相反数,且m是最大的负整数,可以求得ab、和m的值,从而可以求得所求式子的值.本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.20.如图所示,a、b是有理数,请化简式子.【答案】解:由数轴上a、b两点的位置可知,,,,,原式.【解析】先根据a、b两点在数轴上的位置判断出其取值范围,再根据绝对值的性质进行解答即可.本题考查的是绝对值的性质及数轴的特点,能根据a、b两点在数轴上的位置判断出其取值范围是解答此题的关键.21.规定一种新的运算:,如.计算的值比较与的大小.【答案】解:根据题中的新定义得:原式;,,则.7 / 10【解析】原式利用已知的新定义计算即可得到结果;两式利用题中的新定义计算得到结果,比较大小即可.此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.四、解答题(本大题共4小题,共38.0分)22.将下列各数填在相应的圆圈里每个数只能写在一个对应区域:,,75,,0,,,,【答案】解:如图所示.【解析】根据有理数的定义及其分类可得.本题主要考查有理数,解题的关键是掌握有理数的定义及其分类.23.画数轴,在数轴上表示出下列有理数,0,,,;并比较大小,用“”号连接起来.【答案】解:,0,,,,如图所示:,故.【解析】直接化简各数,进而在数轴上表示出各数进而得出答案.此题主要考查了有理数大小比较,正确在数轴上表示出各数是解题关键.24.晓静用50元钱买了10支钢笔,准备以一定的价格出售,如果每支钢笔以6元的价格为标准,超过的记作正数,不足的记为负数,记录如下单位:元:,,,,,1,,,,.请你求出这10支钢笔的最高售价和最低售价各是多少元?当晓静卖完这10支钢笔后是盈利还是亏损?盈利或亏损多少元?请计算说明.2018-2019年福建省龙岩市上杭四中七年级(上)第一次月考数学考试试卷(解析版)【答案】解:最高价为:元,最低价为:元;,元,是正数,当晓静卖完这10支钢笔后是盈利,盈利元.【解析】根据正负数的意义找出最大的数加上6为最高价,最小的数加上6为最低价;把所有的记录相加,然后再加上10元,是正数则盈利,负数则亏本.此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.25.【概念学习】规定:求若干个相同的有理数均不等的除法运算叫做除方,如,等类比有理数的乘方,我们把记作,读作“2的圈3次方”,记作,读作“的圈4次方”一般地,把个记作读作“a的圈n次方”【初步探究】直接写出计算结果:______,______关于除方,下列说法错误的是______A.任何非零数的圈2次方都等于1 对于任何正整数n,C.负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数【深入思考】我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘法运算呢?试一试:仿照上面的算式,将下列运算结果直接写成幂的形式______.想一想:将一个非零有理数a的圈n次方写成幂的形式等于______.算一算:【答案】 4 C【解析】解:【初步探究】故答案为:,4;、任何非零数的圈2次方都等于1;所以选项A正确;9 / 10B、因为多少个1相除都是1,所以对于任何正整数n,;所以选项B正确;C、,,则;所以选项C错误;D、负数的圈奇数次方,相当于奇数个负数相除,则结果是负数,负数的圈偶数次方,相当于偶数个负数相除,则结果是正数所以选项D正确;本题选择说法错误的,故选C;【深入思考】,故答案为:;由题意得:;故答案为:;,,,.【初步探究】分别按公式进行计算即可;根据定义依次判定即可;【深入思考】根据规律同理可得;把除法化为乘法,第一个数不变,从第二个数开始依次变为倒数,结果第一个数不变为a,第二个数及后面的数变为,则;将第二问的规律代入计算,注意运算顺序.本题考查了有理数的混合运算,也是一个新定义的理解与运用;一方面考查了有理数的乘除法及乘方运算,另一方面也考查了学生的阅读理解能力;注意:负数的奇数次方为负数,负数的偶数次方为正数,同时也要注意分数的乘方要加括号,对新定义,其实就是多个数的除法运算,要注意运算顺序.。
2018-2019学年七年级(上)第一次月考数学试卷一、选择题1.若﹣a=2,则a等于()A.2 B.C.﹣2 D.2.两个非零有理数的和为零,则它们的商是()A.0 B.﹣1 C.1 D.不能确定3.在有理数中有()A.最大的数 B.最小的数C.绝对值最小的数D.不能确定4.若x=(﹣3)×,则x的倒数是()A.﹣ B.C.﹣2 D.25.在﹣2与1.2之间有理数有()A.2个B.3 个 C.4 个 D.无数个6.在﹣1,1.2,﹣2,0,﹣(﹣2),﹣23中,负数的个数有()A.2个B.3个C.4个D.5个7.有理数a、b在数轴上的对应的位置如图所示:则()A.﹣a<﹣b B.﹣b<a C.b=a D.﹣a>b8.在﹣5,﹣,﹣3.5,﹣0.01,(﹣2)2,(﹣22)各数中,最大的数是()A.﹣22B.﹣C.﹣0.01 D.(﹣2)29.已知(1﹣m)2+|n+2|=0,则(m+n)2013的值为()A.﹣1 B.1 C.2 013 D.﹣2 01310.下列计算①(﹣1)×(﹣2)×(﹣3)=6;②(﹣36)÷(﹣9)=﹣4;③×(﹣)÷(﹣1)=;④(﹣4)÷×(﹣2)=16.其中正确的个数()A.4个B.3个C.2个D.1个11.下列等式不成立的是()A.(﹣3)3=﹣33 B.﹣24=(﹣2)4 C.|﹣3|=|3| D.(﹣3)100=310012.已知|a|=5,|b|=8,且满足a+b<0,则a﹣b的值为()A.﹣13 B.13 C.3或13 D.13或﹣13二、填空题13.肥料口袋上标有50kg±0.5kg表示什么意思.14.在数轴上,点A所表示的数为2,那么到点A的距离等于3个单位长度的点所表示的数是.15.若|x+2|与|y﹣3|互为相反数,则x+y= ,x y= .16.用“☆”定义新运算:对于任意有理数a、b,都有a b=b2﹣a﹣1,例如:74=42﹣7﹣1=8,那么(﹣5)(﹣3)= .三.解答题17.计算题:(1)22﹣5×+|﹣2|;( 2)(+4.3)﹣(﹣4)+(﹣2.3)﹣(+4);(3)+(﹣)﹣(﹣)+(﹣)﹣(+);(4)﹣9÷3+(﹣)×12+32;( 5)(﹣48)+(﹣2)3﹣(﹣25)×(﹣4)+(﹣2)2;(6)﹣23﹣×[2﹣(﹣3)2]+(﹣32).18.把下列各数分别填入相应的集合里.﹣23,﹣|﹣|,0,,﹣(﹣3.14),2006,﹣(+5),+1.88,(1)正数集合:{ …};(2)负数集合:{ …};(3)整数集合:{ …};(4)分数集合:{ …}.19.规定一种运算: =ad﹣bc,例如=2×5﹣3×4=﹣2,请你按照这种运算的规定,计算的值.20.已知a,b互为相反数,c,d互为倒数,x的绝对值为1,求a+b+x2﹣cdx.21.气象统计资料表明:海拔高度每增加100 米,气温降低大约0.6℃.小明和小亮为考证地方教材中星斗山海拔高度,国庆期间他们两个进行实地测量,小明在山下一个海拔高度为1020米的小山坡上测得的气温为14℃,小亮在星斗山顶峰的最高位置测得的气温为2℃,那么你知道星斗山顶峰的海拔高度是多少米吗?请列式计算.22.小明从文斗中学出发,先向西走2千米到达A村,继续向西走3千米到达B村,然后向东走10千米到C村,后回到学校.(1)以学校为原点,向东为正,用1厘米表示1千米在数轴上表示出,A,B.C三个村庄的位置;(2)小明一共走了多少千米?(3)若D村与A,B,C在一条线上,D到C村有1千米.那么D到B村有多少千米?23.20袋小麦以每袋450千克为准,超过的千克数记为正数,不足的千克数记为负数,分别记为:﹣6,4,3,﹣2,﹣3,1,0,5,8,﹣5,与标准质量相比较,(1)这20袋小麦总计超过或不足多少千克?(2)20袋小麦总质量是多少千克?(3)有几袋是非常标准的?一、选择题1.若﹣a=2,则a等于()A.2 B.C.﹣2 D.【考点】相反数.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:﹣a=2,则a等于﹣2,故选:C.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.两个非零有理数的和为零,则它们的商是()A.0 B.﹣1 C.1 D.不能确定【考点】有理数的乘法;有理数的加法;有理数的除法.【分析】根据互为相反数的两数的和等于0判断出这两个数是互为相反数,再根据异号得负解答.【解答】解:∵两个非零有理数的和为零,∴这两个数互为相反数,∴它们的商是负数.故选B.【点评】本题考查了有理数的除法,有理数的加法,判断出这两个数互为相反数是解题的关键.3.在有理数中有()A.最大的数 B.最小的数C.绝对值最小的数D.不能确定【考点】绝对值;有理数.【分析】根据有理数的知识和绝对值的性质作出正确地判断即可.【解答】解:没有最大的有理数也没有最小的有理数,绝对值最小的数是0,故选C【点评】本题主要考查了绝对值和有理数的知识,解题的关键是掌握有理数的有关知识以及绝对值的性质.4.若x=(﹣3)×,则x的倒数是()A.﹣ B.C.﹣2 D.2【考点】有理数的乘法;倒数.【分析】先求出x的值,再根据倒数的定义即可求出x的倒数.【解答】解:∵x=(﹣3)×=﹣,∴x的倒数是﹣2,故选C.【点评】此题主要考查了有理数的乘法和倒数的定义,两数相乘,同号得正,异号得负,并把绝对值相乘.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.要求掌握并熟练运用.5.在﹣2与1.2之间有理数有()A.2个B.3 个 C.4 个 D.无数个【考点】有理数.【分析】根据有理数分为整数与分数,判断即可得到结果.【解答】解:在数轴上﹣2与1.2之间的有理数有无数个.故选D.【点评】此题考查了数轴,熟练掌握有理数的定义是解答本题的关键.6.在﹣1,1.2,﹣2,0,﹣(﹣2),﹣23中,负数的个数有()A.2个B.3个C.4个D.5个【考点】相反数;正数和负数.【分析】注意﹣(﹣2)=2,﹣23=﹣8,指出所有的负数即可.【解答】解:负数有﹣1,﹣2,﹣23,一共有3个,故答案为:B.【点评】本题考查了有理数的分类,本题比较简单,明确有理数分为正数、负数和0即可做出正确判断.7.有理数a、b在数轴上的对应的位置如图所示:则()A.﹣a<﹣b B.﹣b<a C.b=a D.﹣a>b【考点】数轴.【分析】根据数轴可以得到a、0、b的关系,从而可以解答本题.【解答】解:由数轴可得,a<﹣1<0<b<1,∴﹣a>﹣b,故选项A错误,﹣b>a,故选项B错误,a<b,故选项C错误,﹣a>b,故选项D正确,故选D.【点评】本题考查数轴,解题的关键是明确数轴的特点,利用数形结合的思想解答.8.在﹣5,﹣,﹣3.5,﹣0.01,(﹣2)2,(﹣22)各数中,最大的数是()A.﹣22B.﹣C.﹣0.01 D.(﹣2)2【考点】有理数大小比较.【分析】根据正数大于一切负数即可解答.【解答】解:(2)2=4,(﹣22)=﹣2,∴最大的数是(﹣2)2,故选:D.【点评】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.9.已知(1﹣m)2+|n+2|=0,则(m+n)2013的值为()A.﹣1 B.1 C.2 013 D.﹣2 013【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】根据非负数的性质列方程求出m、n的值,再代入代数式进行计算即可得解.【解答】解:由题意得,1﹣m=0,n+2=0,解得m=1,n=﹣2,所以,(m+n)2013=(1﹣2)2013=﹣1.故选A.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.10.下列计算①(﹣1)×(﹣2)×(﹣3)=6;②(﹣36)÷(﹣9)=﹣4;③×(﹣)÷(﹣1)=;④(﹣4)÷×(﹣2)=16.其中正确的个数()A.4个B.3个C.2个D.1个【考点】有理数的除法;有理数的乘法.【分析】根据有理数的乘法和除法法则分别进行计算即可.【解答】解:①(﹣1)×(﹣2)×(﹣3)=﹣6,故原题计算错误;②(﹣36)÷(﹣9)=4,故原题计算错误;③×(﹣)÷(﹣1)=,故原题计算正确;④(﹣4)÷×(﹣2)=16,故原题计算正确,正确的计算有2个,故选:C.【点评】此题主要考查了有理数的乘除法,关键是注意结果符号的判断.11.下列等式不成立的是()A.(﹣3)3=﹣33 B.﹣24=(﹣2)4 C.|﹣3|=|3| D.(﹣3)100=3100【考点】有理数的乘方;绝对值.【分析】根据有理数的乘方分别求出即可得出答案.【解答】解:A:(﹣3)3=﹣33,故此选项正确;B:﹣24=﹣(﹣2)4,故此选项错误;C:|﹣3|=|3|=3,故此选项正确;D:(﹣3)100=3100,故此选项正确;故符合要求的为B,故选:B.【点评】此题主要考查了有理数的乘方运算,熟练掌握有理数乘方其性质是解题关键.12.已知|a|=5,|b|=8,且满足a+b<0,则a﹣b的值为()A.﹣13 B.13 C.3或13 D.13或﹣13【考点】有理数的减法;绝对值.【专题】分类讨论.【分析】根据绝对值的意义及a+b<0,可得a,b的值,再根据有理数的减法,可得答案.【解答】解:由|a|=5,|b|=8,且满足a+b<0,得a=5,或a=﹣5,b=﹣8.当a=﹣5,b=﹣8时,a﹣b=﹣5﹣(﹣8)=﹣5+8=3,当a=5,b=﹣8时,a﹣b=5﹣(﹣8)=5+8=13,故选:D.【点评】本题考查了有理数的减法,分类讨论是解题关键,以防漏掉.二、填空题13.肥料口袋上标有50kg±0.5kg表示什么意思净含量最大不超过50kg+0.5kg,最少不低于50kg ﹣0.5kg..【考点】正数和负数.【分析】意思是净含量最大不超过50kg+0.5kg,最少不低于50kg﹣0.5kg.【解答】解:由题意可知:“50kg±0.5kg”表示净含量的浮动范围为上下0.5kg,即含量范围在(50+0.5)=50.5kg到(50﹣0.5)=49.5kg之间.即:它表示净含量的浮动范围为上下5kg,最多重50.5kg,最少重49.5kg;故答案为:净含量最大不超过50kg+0.5kg,最少不低于50kg﹣0.5kg.【点评】此题考查正负数在实际生活中的应用,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.14.在数轴上,点A所表示的数为2,那么到点A的距离等于3个单位长度的点所表示的数是﹣1和5 .【考点】数轴.【分析】点A所表示的数为2,到点A的距离等于3个单位长度的点所表示的数有两个,分别位于点A的两侧,分别是﹣1和5.【解答】解:2﹣3=﹣1,2+3=5,则A表示的数是:﹣1或5.故答案为:﹣1或5.【点评】本题考查了数轴的性质,理解点A所表示的数是2,那么点A距离等于3个单位的点所表示的数就是比2大3或小3的数是关键.15.若|x+2|与|y﹣3|互为相反数,则x+y= 1 ,x y= ﹣8 .【考点】非负数的性质:绝对值.【分析】根据非负数的性质列出算式,求出x、y的值,计算即可.【解答】解:由题意得,|x+2|+|y﹣3|=0,则x+2=0,y﹣3=0,解得,x=﹣2,y=3,则x+y=1,x y=﹣8,故答案为:1;﹣8.【点评】本题考查的是相反数的概念和非负数的性质,掌握当几个非负数相加和为0时,则其中的每一项都必须等于0是解题的关键.16.用“☆”定义新运算:对于任意有理数a、b,都有a b=b2﹣a﹣1,例如:74=42﹣7﹣1=8,那么(﹣5)(﹣3)= 13 .【考点】有理数的混合运算.【专题】新定义.【分析】利用题中的新定义计算即可得到结果.【解答】解:根据题中的新定义得:(﹣5)(﹣3)=9﹣(﹣5)﹣1=9+5﹣1=13.故答案为:13.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.三.解答题17.(2015秋•利川市校级月考)计算题:(1)22﹣5×+|﹣2|;( 2)(+4.3)﹣(﹣4)+(﹣2.3)﹣(+4);(3)+(﹣)﹣(﹣)+(﹣)﹣(+);(4)﹣9÷3+(﹣)×12+32;( 5)(﹣48)+(﹣2)3﹣(﹣25)×(﹣4)+(﹣2)2;(6)﹣23﹣×[2﹣(﹣3)2]+(﹣32).【考点】有理数的混合运算.【专题】计算题;实数.【分析】(1)原式先计算乘方及绝对值运算,再计算乘法运算,最后算加减运算即可得到结果;(2)原式利用减法法则变形,计算即可得到结果;(3)原式利用减法法则变形,计算即可得到结果;(4)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(5)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果;(6)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:(1)原式=4﹣1+2=5;(2)原式=4.3+4﹣2.3﹣4=2;(3)原式=﹣﹣﹣+=﹣;(4)原式=﹣3+6﹣8+9=4;(5)原式=﹣48﹣8﹣100+4=﹣156+4=﹣152;(6)原式=﹣8+1﹣9=﹣16.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.18.把下列各数分别填入相应的集合里.﹣23,﹣|﹣|,0,,﹣(﹣3.14),2006,﹣(+5),+1.88,(1)正数集合:{ ,﹣(﹣3.14),2006,+1.88 …};(2)负数集合:{ ﹣23,﹣|﹣|,﹣(+5)…};(3)整数集合:{ ﹣23,0,2006,﹣(+5)…};(4)分数集合:{ ﹣|﹣|,,﹣(﹣3.14),+1.88 …}.【考点】有理数.【分析】按照有理数分类即可求出答案.【解答】解:故答案为:正数:,﹣(﹣3.14),2006,+1.88;负数:﹣23,﹣|﹣|,﹣(+5);整数:﹣23,0,2006,﹣(+5);分数:﹣|﹣|,,﹣(﹣3.14),+1.88;【点评】本题考查有理数的分类,属于基础题型.19.规定一种运算: =ad﹣bc,例如=2×5﹣3×4=﹣2,请你按照这种运算的规定,计算的值.【考点】有理数的混合运算.【专题】新定义.【分析】根据新运算得出1×0.5﹣(﹣3)×(﹣2),算乘法,最后算减法即可.【解答】解:=1×0.5﹣(﹣3)×(﹣2)=0.5﹣6=﹣5.5.【点评】本题考查了有理数的混合运算的应用,能根据新运算得出1×0.5﹣(﹣3)×(﹣2)是解此题的关键.20.已知a,b互为相反数,c,d互为倒数,x的绝对值为1,求a+b+x2﹣cdx.【考点】倒数;相反数;绝对值.【专题】计算题.【分析】根据相反数,绝对值,倒数的概念和性质求得a与b,c与d及x的关系或值后,代入代数式求值.【解答】解:∵a,b互为相反数,∴a+b=0,∵c,d互为倒数,∴cd=1,∵|x|=1,∴x=±1,当x=1时,a+b+x2﹣cdx=0+(±1)2﹣1×1=0;当x=﹣1时,a+b+x2+cdx=0+(±1)2﹣1×(﹣1)=2.【点评】本题主要考查相反数,绝对值,倒数的概念及性质.(1)相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0;(2)倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数;(3)绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.21.气象统计资料表明:海拔高度每增加100 米,气温降低大约0.6℃.小明和小亮为考证地方教材中星斗山海拔高度,国庆期间他们两个进行实地测量,小明在山下一个海拔高度为1020米的小山坡上测得的气温为14℃,小亮在星斗山顶峰的最高位置测得的气温为2℃,那么你知道星斗山顶峰的海拔高度是多少米吗?请列式计算.【考点】有理数的混合运算.【分析】根据题意,可以知道顶峰的温度与小明所在位置的温差,从而可以求得顶峰的高度.【解答】解:由题意可得,星斗山顶峰的海拔高度是:1020+(14﹣2)÷0.6×100=1020+12÷0.6×100=1020+2000=3020(米),即星斗山顶峰的海拔高度是3020米.【点评】本题考查有理数的混合运算,解题的关键是明确有理数混合运算的计算方法.22.小明从文斗中学出发,先向西走2千米到达A村,继续向西走3千米到达B村,然后向东走10千米到C村,后回到学校.(1)以学校为原点,向东为正,用1厘米表示1千米在数轴上表示出,A,B.C三个村庄的位置;(2)小明一共走了多少千米?(3)若D村与A,B,C在一条线上,D到C村有1千米.那么D到B村有多少千米?【考点】数轴.【分析】(1)数轴三要素:原点,单位长度,正方向.依此表示出家以及A、B、C三个村庄的位置;(2)距离相加的和即为所求;(3)分两种情况:①D村在C村左边时;②D村在C村右边时;分别计算即可.【解答】解:(1)如图所示:(2)2+3+10=15,即小明一共走了15千米;(3)分两种情况:①D村在C村左边时,则C、D村表示的数分别是5千米、4千米,4﹣(﹣2﹣3)=4+5=9(千米);②D村在C村右边时,则C、D村表示的数分别是5千米、6千米,6﹣(﹣2﹣3)=6+5=11(千米);综上所述:D到B村有9千米或11千米.【点评】本题考查的是数轴、绝对值的有关内容,用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点.23.20袋小麦以每袋450千克为准,超过的千克数记为正数,不足的千克数记为负数,分别记为:﹣6,4,3,﹣2,﹣3,1,0,5,8,﹣5,与标准质量相比较,(1)这20袋小麦总计超过或不足多少千克?(2)20袋小麦总质量是多少千克?(3)有几袋是非常标准的?【考点】正数和负数.【分析】(1)将各数据相加即可求出20袋小麦是不足或超过;(2)将(1)中的数据与20袋标准小麦总量相加即可求出答案;(3)记数为0时,小麦重量非常标准.【解答】解:(1)﹣6+4+3﹣2﹣3+1+0+5+8﹣5=5,这20袋小麦总计超过5千克;(2)20袋小麦总质量是:20×450+5=9005;(3)只有一袋非常标准,由于该袋小麦与标准质量相比较为0;【点评】本题考查正负数的意义,属于基础题型。
2018-2019学年七年级数学上学期第一次联考试题
一、选择题(每小题3分,共30分) 1.﹣2的相反数是( ) A .2
B .﹣2 C
. D
.﹣
2.|3.14﹣π|的值为( ) A .0 B .3.14﹣π C .π﹣3.14 D .0.14 3.下列各组数中,不相等的一组是( ) A .﹣(+7),﹣|﹣7| B .﹣(+7),﹣|+7| C .+(﹣7),﹣(+7) D .+(+7),﹣|﹣7|
4.比较(﹣4)3和﹣43,下列说法正确的是( ) A .它们底数相同,指数也相同 B .它们底数相同,但指数不相同
C .它们所表示的意义相同,但运算结果不相同
D .虽然它们底数不同,但运算结果相同
5.在数轴上,原点两旁与原点等距离的两点所表示的数的关系是( ) A .相等 B .互为倒数 C .互为相反数 D .不能确定 6.中国航空母舰“辽宁号”的满载排水量为67500吨.将数67500用科学记数法表示为( ) A .0.675×105 B .6.75×104 C .67.5×103 D .675×102 7.一个数和它的倒数相等,则这个数是( ) A .1 B .﹣1 C .±1 D .±1和0 一个三位数百位数字为x ,十位数字为y ,个位数字是z ,这个三位数字可以表示为 ( ) x+10y+z B. 100x+10y+z C.100x+y+z D.1000x+y+10 9.丁丁做了以下4道计算题:①(﹣1)2014=2014;②0﹣(﹣1)=1
;③;
④.请你帮他检查一下,他一共做对了 ( ) A .1题 B .2题 C .3题 D .4题 下列说法正确的是 ( )
A. 2
2x 的系数为2,次数为3 B. 221xy 的系数为31,次数为2
C. 2
5-x 的系数为5,次数为2 D. 2
3x 的系数为3,次数为2 二、填空题(每小题3分,共24分)
11.在知识抢答中,如果用+10表示得10分,那么扣20分表示为 . 12
.﹣的绝对值是
,﹣的相反数是
,﹣的倒数是 . 13.数632400精确到千位是 .
14.最大的负整数与最小的正整数的和是.
15.若|a﹣6|+|b+5|=0,则a+b的值为.
16.下列四个整式:100t,v+2.5,πr2,0.1. 其中是多项式.
17.已知p是数轴上的一点﹣4,把p点向左移动3个单位后再向右移1个单位长度,那么p点表示的数是.
18.观察下列数据,按某种规律在横线上填上适当的数:
1,﹣,,﹣,,…
三、计算题(共8分)
19.计算:
(1)(﹣0.9)+(+4.4)+(﹣8.1)+(+5.6)(2)﹣24+×[6+(﹣4)2].
四、解答题(共38分)
20.(8分)回顾多项式的有关概念,解决下列问题
(1)求多项式
y
x
y
x4
3
3
3
1
4
1
-+
中各项的系数和次数;
(2)若多项式
y
x
y
x
y
x a4
3
3
2
1
3
1
4
1
5-+
-
+
的次数是7,求a的值.
21.(10分)某工厂一周计划每日生产自行车100辆,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(以计划量为标准,增加的车辆数记为
(2)本周总的生产量是多少辆?
22.(10分)①将下列各数填在相应的集合里.
﹣(﹣2.5),(﹣1)2,﹣|﹣2|,﹣22,0;
整数集合{ …} 分数集合{ …}
②把表示上面各数的点画在数轴上,再按从小到大的顺序,用“<“号把这些数连接起来.
23.(10分)请阅读下列材料,解决问题:
计算:
解法一:原式=
=
=
解法二:原式=]
=
=
=
解法三:原式的倒数为(
=﹣20+3﹣5+12
=﹣10
故原式=
上述得出的结果不同,肯定有错误的解法,你认为解法是错误的,在正确的解法中,你认为解法最简捷.
然后请解答下列问题
计算:.
七年级数学参考答案
一.选择题1-10: A C D D C B C B C D
二.填空题11. -20 12.,,13 .14. 0
15. 1 16. v+2.5 17. -6 18.
三.计算题
19.解:(1)(﹣0.9)+(+4.4)+(﹣8.1)+(+5.6)
=-0.9+4.4-8.1+5.6
=(﹣0.9﹣8.1)+(4.4+5.6)
=﹣9+10
=1
(2)﹣24+×[6+(﹣4)2]
=﹣16+×[6+16]
=﹣16+11
=﹣5
四.解答题
20.(1)的系数是,次数是6;的系数是,次数是5.
(2)由多项式的次数是7,可知-5xa+1y2的次数是7,即a+3=7,解得a=4.
解:(1)7﹣(﹣10)=17(辆);
(2)100×7+(﹣1+3﹣2+4+7﹣5﹣10)=696(辆),
答:(1)生产量最多的一天比生产量最少的一天多生产17辆;
(2)本周总生产量是696辆.
22.解:①整数集合{ (﹣1)2,﹣|﹣2|,﹣22,0},分数集合{﹣(﹣2.5)};
②画数轴表示:
﹣22<﹣|﹣2|<0<(﹣1)2<﹣(﹣2.5).
23.上述得出的结果不同,肯定有错误的解法,你认为解法一是错误的,
在正确的解法中,你认为解法二最简捷(注:回答解法三也可以给分)
=(﹣)÷[()﹣()]
=(﹣)÷(﹣)
=﹣.
(利用解法三也可给分)。