椭圆中焦点三角形的性质(含答案)
- 格式:doc
- 大小:368.50 KB
- 文档页数:6
焦点三角形习题性质一:过椭圆焦点的所有弦中通径(垂直于焦点的弦)最短,通径为ab 22性质二:已知椭圆方程为),0(12222>>=+b a by a x 两焦点分别为,,21F F 设焦点三角形21F PF 中,21θ=∠PF F 则2tan221θb S PF F =∆.证明:记2211||,||r PF r PF ==,由椭圆的第一定义得.4)(,2222121a r r a r r =+∴=+在△21PF F 中,由余弦定理得:.)2(cos 22212221c r r r r =-+θ配方得:.4cos 22)(22121221c r r r r r r =--+θ 即.4)cos 1(242212c r r a =+-θ.cos 12cos 1)(222221θθ+=+-=∴b c a r r由任意三角形的面积公式得:2tan 2cos 22cos2sin2cos 1sin sin 2122222121θθθθθθθ⋅=⋅=+⋅==∆b b b r r S PF F ..2tan 221θb S PF F =∴∆同理可证,在椭圆12222=+bx a y (a >b >0)中,公式仍然成立.性质三:已知椭圆方程为),0(12222>>=+b a b y a x 两焦点分别为,,21F F 设焦点三角形21F PF 中,21θ=∠PF F 则.21cos 2e -≥θ性质三证明:设,,2211r PF r PF ==则在21PF F ∆中,由余弦定理得:1222242)(2cos 212221221221212212221--=--+=-+=r r c a r r c r r r r r r F F r r θ.2112221)2(222222222122e a c a r r c a -=--=-+-≥ 命题得证。
例1. 若P 是椭圆16410022=+y x 上的一点,1F 、2F 是其焦点,且︒=∠6021PF F , 求△21PF F 的面积.例1.解法一:在椭圆16410022=+y x 中,,6,8,10===c b a 而.60︒=θ 记.||,||2211r PF r PF ==点P 在椭圆上,∴由椭圆的第一定义得:.20221==+a r r在△21PF F 中,由余弦定理得:.)2(cos 22212221c r r r r =-+θ配方,得:.1443)(21221=-+r r r r.144340021=-∴r r 从而.325621=r r .336423325621sin 212121=⨯⨯==∆θr r S PF F 解法二:在椭圆16410022=+y x 中,642=b ,而.60︒=θ.336430tan 642tan221=︒==∴∆θb S PF F 例2.已知P 是椭圆192522=+y x 上的点,1F 、2F 分别是椭圆的左、右焦点,212121=,则△21PF F 的面积为( ) A. 33 B. 32 C. 3 D.33 解:设θ=∠21PF F ,则21cos 2121==θ,.60︒=∴θ .3330tan 92tan221=︒==∴∆θb S PF F 故选答案A.例3.已知椭圆191622=+y x 的左、右焦点分别是1F 、2F ,点P 在椭圆上. 若P 、1F 、2F 是一个直角三角形的三个顶点,则点P 到x 轴的距离为( ) A.59 B. 779 C. 49 D. 49或779解:若1F 或2F 是直角顶点,则点P 到x 轴的距离为半通径的长492=a b ;若P 是直角顶点,设点P到x 轴的距离为h ,则945tan 92tan221=︒==∆θb S PF F ,又,7)2(2121h h c S PF F =⋅⋅=∆ 97=∴h ,.779=h 故选D. 1. 椭圆1244922=+x y 上一点P 与椭圆两个焦点1F 、2F 的连线互相垂直,则△21PF F 的面积为( )A. 20B. 22C. 28D. 24 解:24,90221=︒==∠b PF F θ,∴2445tan 242tan221=︒==∆θb S PF F .故选D.2. 椭圆1422=+y x 的左右焦点为1F 、2F , P 是椭圆上一点,当△21PF F 的面积为1时,21PF PF ⋅的值为( )A. 0B. 1C. 3D. 6 解:设θ=∠21PF F , 12tan2tan221===∆θθb S PF F ,∴︒=︒=90,452θθ,021=⋅PF PF .故选A.3. 椭圆1422=+y x 的左右焦点为1F 、2F , P 是椭圆上一点,当△21PF F 的面积最大时,21PF PF ⋅的值为( )A. 0B. 2C. 4D. 2- 解:3,1,2===c b a ,设θ=∠21PF F , 2tan 2tan 221θθ==∆b S PF F ,∴当△21PF F 的面积最大时,θ为最大,这时点P 为椭圆短轴的端点,︒=120θ, ∴2120cos cos ||||22121-=︒=⋅=⋅a PF PF PF PF θ.故答案选D. 4.已知椭圆1222=+y ax (a >1)的两个焦点为1F 、2F ,P 为椭圆上一点,且︒=∠6021PF F ,则||||21PF PF ⋅的值为( )A .1B .31C .34D .32 解:︒==∠6021θPF F ,1=b ,3330tan 2tan221=︒==∆θb S PF F , 又 ||||43sin ||||21212121PF PF PF PF S PF F ⋅=⋅=∆θ, ∴33||||4321=⋅PF PF ,从而34||||21=⋅PF PF . 故答案选C.5. 已知椭圆的中心在原点,对称轴为坐标轴,1F 、2F 为焦点,点P 在椭圆上,直线1PF 与2PF 倾斜角的差为︒=∠9021PF F ,△21PF F 的面积是20,且c/a=√5/3, 求椭圆的标准方程.解:设θ=∠21PF F ,则︒=90θ. 2045tan 2tan 22221==︒==∆b b b S PF F θ,又 3522=-==a b a ace , ∴95122=-ab ,即952012=-a .解得:452=a .∴所求椭圆的标准方程为1204522=+y x 或1204522=+x y .专题2:离心率求法:1.若椭圆的两个焦点与它的短轴的两个端点是一个 正方形的四个顶点,则椭圆的离心率为( )A.22B.32C.53D.631.解析:选A.如图所示,四边形B 1F 2B 2F 1为正方形,则△B 2OF 2为等腰直角三角形, ∴c a =22. 2.若一个椭圆长轴的长度、短轴的长度和焦距 成等差数列,则该椭圆的离心率是( ) A.45 B.35 C.25 D.152.解析:选B.由题意知2b =a +c ,又b 2=a 2-c 2,∴4(a 2-c 2)=a 2+c 2+2ac .∴3a 2-2ac -5c 2=0.∴5c 2+2ac -3a 2=0.∴5e 2+2e -3=0.∴e =35或e =-1(舍去).3.若椭圆的短轴长为6,焦点到长轴的一个端点的最近距离是1,则椭圆的离心率为________. 3.解析:依题意,得b =3,a -c =1.又a 2=b 2+c 2,解得a =5,c =4,∴椭圆的离心率为e =c a =45. 答案:454.已知A 为椭圆x 2a 2+y 2b2=1(a >b >0)上的一个动点,直线AB 、AC 分别过焦点F 1、 F 2,且与椭圆交于B 、C 两点,若当AC 垂直于x 轴时,恰好有|AF 1|∶|AF 2|=3∶1,求该椭圆的离心率.4.解:设|AF 2|=m ,则|AF 1|=3m ,∴2a =|AF 1|+|AF 2|=4m . 又在Rt△AF 1F 2中,|F 1F 2|=|AF 1|2-|AF 2|2=22m .∴e =2c 2a =|F 1F 2|2a =22m 4m =22.5.如图所示,F 1、F 2分别为椭圆的左、右焦点,椭圆上点M 的横坐标等于右焦点的横坐标,其纵坐标等于短半轴长的23,求椭圆的离心率.5. 解:法一:设椭圆的长半轴、短半轴、半焦距长分别为a 、b 、c .则焦点为F 1(-c,0),F 2(c,0),M 点的坐标为(c ,23b ),则△MF 1F 2为直角三角形. 在Rt△MF 1F 2中,|F 1F 2|2+|MF 2|2=|MF 1|2,即4c 2+49b 2=|MF 1|2.而|MF 1|+|MF 2|=4c 2+49b 2+23b =2a ,整理得3c 2=3a 2-2ab .又c 2=a 2-b 2,所以3b =2a .所以b 2a 2=49.∴e 2=c 2a 2=a 2-b 2a 2=1-b 2a 2=59, ∴e =53.法二:设椭圆方程为x 2a 2+y 2b 2=1(a >b >0),则M (c ,23b ).代入椭圆方程,得c 2a 2+4b29b2=1,所以c 2a 2=59,所以c a =53,即e =53.椭圆中焦点三角形的性质及应用(答案)性质二离心率求法:。
椭圆中的“焦点三角形”性质及应用
作者:章显军
来源:《中学教学参考·中旬》 2013年第5期
浙江苍南县钱库高级中学(325804)章显军
“焦点三角形”问题是考试中比较常见的考题.椭圆“焦点三角形”的定义为:椭圆上的任意一点(除长轴端点外)与两个焦点构成的三角形.通常“焦点三角形”的问题都有意地考查了椭圆的定义、三角形中的正弦、余弦定理、三角形的面积、内角大小等知识,现笔者就椭圆“焦点三角形”的性质及应用举例分析如下.
综上对椭圆“焦点三角形”性质及其应用的分析,我们可以总结出:学生的学习只有通过自身的操作活动和创造性地做才可能是有效的.教师应通过引发创新思维的问题,让学生学会自主学习,培养他们独立思考的能力,这是培养创造能力的重要手段.学生具有这种能力,就会不断获取新知识,创造也就有了根基.
(责任编辑黄春香)。
椭圆中焦点三角形的性质及应用
又,故满足:故为直角三角形、说明:考查定义、利用已知、发挥联想,从而解题成功、性质一:已知椭圆方程为两焦点分别为设焦点三角形中则。
性质二:已知椭圆方程为左右两焦点分别为设焦点三角形,若最大,则点P为椭圆短轴的端点。
证明:设,由焦半径公式可知:,在中, = 性质三:过椭圆焦点的所有弦中通径(垂直于焦点的弦)最短,通径为性质四:已知椭圆方程为两焦点分别为设焦点三角形中则证明:设则在中,由余弦定理得:
命题得证。
(2000年高考题)已知椭圆的两焦点分别为若椭圆上存在一点使得求椭圆的离心率的取值范围。
简解:由椭圆焦点三角形性质可知即 ,于是得到的取值范围是性质五:已知椭圆方程为两焦点分别为设焦点三角形,则椭圆的离心率。
由正弦定理得:由等比定理得:而,∴。
已知椭圆的焦点是F1(-1,0)、F2(1,0),P为椭圆上一点,且|F1F2|是|PF1|和|PF2|的等差中项.(1)求椭圆的方程;(2)若点P在第三象限,且∠PF1F2=120,求tanF1PF2.解:(1)由题设2|F1F2|=|PF1|+|PF2|∴2a=4,又2c=2,∴b=∴椭圆的方程为=1.(2)设∠F1PF2=θ,则∠PF2F1=60-θ椭圆的离心率则,整理得:5sinθ=(1+cosθ)∴故,tanF1PF2=tanθ=.
第 1 页共 1 页。
椭圆的焦点三角形公式椭圆是我们在数学学习中经常会碰到的一个重要图形,而椭圆的焦点三角形则有着一些独特的公式和有趣的性质。
先来说说啥是椭圆的焦点三角形。
想象一下,椭圆上有一个点 P,然后连接椭圆的两个焦点 F₁和 F₂,这样就形成了一个三角形,这个三角形就叫做焦点三角形。
在焦点三角形中,有几个重要的公式。
比如说,焦点三角形的周长公式是 2a + 2c ,其中 a 是椭圆的长半轴,c 是椭圆的半焦距。
还有一个特别常用的公式是在焦点三角形 PF₁F₂中,设∠F₁PF₂ = θ,那么三角形的面积 S = b² × tan(θ/2) ,这里的 b 是椭圆的短半轴。
那这些公式到底有啥用呢?我给您讲个事儿您就明白了。
记得有一次我给学生们上课,讲完这些公式后,我出了一道题让他们做。
题目是这样的:已知椭圆方程为 x²/25 + y²/16 = 1 ,点 P 在椭圆上,∠F₁PF₂ = 60°,求焦点三角形 PF₁F₂的面积。
大多数同学看到题目就开始埋头苦算,又是设坐标,又是用距离公式的,算得那叫一个费劲。
但有个聪明的同学就不一样啦,他马上想到了我们刚讲的面积公式S = b² × tan(θ/2) 。
这个椭圆里,b² = 16 ,θ = 60°,所以tan(θ/2) = √3/3 ,那面积 S 一下子就算出来是16√3/3 。
这时候其他同学都恍然大悟,原来用对了公式能这么轻松地解决问题。
从那以后,同学们对这些公式的印象可深刻了,遇到类似的题目也不再害怕。
咱们再回到焦点三角形的公式上来。
这些公式的推导其实也挺有意思的。
就拿面积公式来说吧,它是通过余弦定理和一些巧妙的代数变形得到的。
在学习和运用这些公式的时候,一定要注意理解每个字母代表的含义,还要多做一些练习题来巩固。
比如说,给您一个椭圆方程,让您求焦点三角形的周长或者面积,您就得能迅速判断出要用哪个公式,然后准确地代入数值计算。
2020年高考数学试题调研之秒杀圆锥曲线压轴题之秒杀题型三:椭圆、双曲线焦点三角形椭圆的焦点三角形:椭圆上任意一点P 与两焦点1F 、2F 构成的三角形:12PF F ∆。
秒杀题型一:性质:1.周长为定值:2()a c +。
2.12,F PF θ∠=当点P 靠近短轴端点时θ增大,当点P 靠近长轴端点时θ减小;与短轴端点重合时θ最大。
类比:(注:椭圆中端点三角形(长轴两端点与椭圆上一点构成)当P 在短轴端点时顶角最大。
)。
1.(2017年新课标全国卷I 文12)设A 、B 是椭圆C 1323=+m y x 长轴的两个端点,若C 上存在点M 满足︒=∠120AMB ,则m 的取值范围是()A.(][)+∞,91,0 B.(][)+∞,93,0 C.(][)+∞,41,0 D.(][)+∞,43,0【解析】:当03m <<时,椭圆的焦点在x 轴上,要使C 上存在点M 满足120AMB ∠=,则tan 60ab≥= ,即≥.得01m <≤;当3m >时,椭圆的焦点在y 轴上,要使C 上存在点M 满足120AMB ∠= ,则tan 60ab ≥= ,≥,得9m ≥,故m 的取值范围为(][)+∞,91,0 ,选A.秒杀题型二:3.三角形面积:212tan 22S c y c y b θ=⨯⨯=⨯=,max ,S bc =即P 与短轴端点重合时面积最大。
1.(高考题)已知1F ,2F 是椭圆1:2222=+by a x C )0(>>b a 的两个焦点,P 为椭圆C 上一点,21PF PF ⊥.若21F PF ∆的面积为9,则b =.【解析】:由椭圆焦点三角形面积公式得:94tanb 22==b π,3=∴b 。
〖母题1〗已知12,F F 是椭圆22195x y +=的焦点,点P 在椭圆上且123F PF π∠=,求12F PF ∆的面积.【解析】:由椭圆定义及余弦定理得:533。
22a -m椭圆中常考的十六条焦点性质及其证明(一)椭圆中,PT 平分△ PF 1F 2在点P 处的外角,则焦点在 直线PT 上的射影H 点的轨迹是以长轴为直径的圆, 除去长轴的 两个端点. 证明:延长F 2H 至M ,交PF i 于M ••• PT 平分/ MPF 2 ,又 F 2H 丄 PT,.・.|PM |#PF 2 | 又 I PF i | +| PF 2 |=2a , ••• |PM | +| PR |=2|OH ^|OH |=a . ••• H 轨迹是以长轴为直径的圆,除长轴端点 . (二)椭圆中,椭圆焦点三角形中 ,以焦半径为直径的圆必 与以椭圆长轴为直径的圆相内切 . 证明:如图,设以焦半径 MF 2为直径的圆的半径为 「1, 圆心为O i , 由椭圆定义知[MF t | +| MF 2 曰 AB 匕| MF , |# AB | —| MF 2 | 1 1 •- |OO i | 石| MF i |=3(| AB| _|MF 2 |) =a-r i •••O O 、O O i 相内切B X(三)设A i 、A 2为椭圆的左、右顶点,则△ PF I F 2在边PF 2 (或PF i )上的旁切圆,必与A I A 2所在的直线切于 A 2 (或A i ). 证明:设旁切圆切x 轴于A',切PF 2于M , F i P 于N ,则 |PN|#P M| , |MF 2| 斗 MA'| , |F i N|=|F i A'| ,••• | PF i |+| PM UF i F 2| +|MF 2 ||PF i |+| PF 2| —| F 2A'|=|F i F 2|+|F 2A'| =2a =2c +2| F 2A'^| F 2A'^^c^ F 2A 2 | ••• A'与A 2重合.2 2(四)椭圆务+与=((a>b>o )的两个顶点为 a b 与y 轴平行的直线交椭圆于 P i 、P 2时, 2 2A i P i 与A 2P 2父点的轨迹方程是 务-■yr =i- a b 证明:设交点 S (X o ,y o ) , Rg n ) , P 2(m, 7) * K p i A =K A I S K F 2A> =K P 2S , A (7,0) ,A 2(a,0),p -A .an _ y 。
焦点三角形习题性质一:过椭圆焦点的所有弦中通径(垂直于焦点的弦)最短,通径为ab 22性质二:已知椭圆方程为),0(12222>>=+b a b y a x 两焦点分别为,,21F F 设焦点三角形21F PF 中,21θ=∠PF F 则2tan221θb S PF F =∆.证明:记2211||,||r PF r PF ==,由椭圆的第一定义得.4)(,2222121a r r a r r =+∴=+在△21PF F 中,由余弦定理得:.)2(cos 22212221c r r r r =-+θ配方得:.4cos 22)(22121221c r r r r r r =--+θ 即.4)cos 1(242212c r r a =+-θ.cos 12cos 1)(222221θθ+=+-=∴b c a r r由任意三角形的面积公式得:2tan 2cos 22cos2sin2cos 1sin sin 2122222121θθθθθθθ⋅=⋅=+⋅==∆b b b r r S PF F ..2tan 221θb S PF F =∴∆同理可证,在椭圆12222=+bx a y (a >b >0)中,公式仍然成立.性质三:已知椭圆方程为),0(12222>>=+b a by a x 两焦点分别为,,21F F 设焦点三角形21F PF 中,21θ=∠PF F 则.21cos 2e -≥θ性质三证明:设,,2211r PF r PF ==则在21PF F ∆中,由余弦定理得:1222242)(2cos 212221221221212212221--=--+=-+=r r c a r r c r r r r r r F F r r θ.2112221)2(222222222122e a c a r r c a -=--=-+-≥ 命题得证。
例1. 若P 是椭圆16410022=+y x 上的一点,1F 、2F 是其焦点,且︒=∠6021PF F , 求△21PF F 的面积.例1.解法一:在椭圆16410022=+y x 中,,6,8,10===c b a 而.60︒=θ 记.||,||2211r PF r PF ==点P 在椭圆上,∴由椭圆的第一定义得:.20221==+a r r在△21PF F 中,由余弦定理得:.)2(cos 22212221c r r r r =-+θ配方,得:.1443)(21221=-+r r r r.144340021=-∴r r 从而.325621=r r .336423325621sin 212121=⨯⨯==∆θr r S PF F 解法二:在椭圆16410022=+y x 中,642=b ,而.60︒=θ.336430tan 642tan221=︒==∴∆θb S PF F例2.已知P 是椭圆192522=+y x 上的点,1F 、2F 分别是椭圆的左、右焦点,212121=,则△21PF F 的面积为( ) A. 33 B. 32 C. 3 D.33 解:设θ=∠21PF F ,则21cos 2121==θ,.60︒=∴θ .3330tan 92tan221=︒==∴∆θb S PF F 故选答案A.例3.已知椭圆191622=+y x 的左、右焦点分别是1F 、2F ,点P 在椭圆上. 若P 、1F 、2F 是一个直角三角形的三个顶点,则点P 到x 轴的距离为( ) A.59 B. 779 C. 49 D. 49或779解:若1F 或2F 是直角顶点,则点P 到x 轴的距离为半通径的长492=a b ;若P 是直角顶点,设点P 到x 轴的距离为h ,则945tan 92tan221=︒==∆θb S PF F ,又,7)2(2121h h c S PF F =⋅⋅=∆ 97=∴h ,.779=h 故选D.1. 椭圆1244922=+x y 上一点P 与椭圆两个焦点1F 、2F 的连线互相垂直,则△21PF F 的面积为( )A. 20B. 22C. 28D. 24 解:24,90221=︒==∠b PF F θ,∴2445tan 242tan 221=︒==∆θb S PF F .故选D.2. 椭圆1422=+y x 的左右焦点为1F 、2F , P 是椭圆上一点,当△21PF F 的面积为1时,21PF PF ⋅的值为( )A. 0B. 1C. 3D. 6 解:设θ=∠21PF F , 12tan2tan221===∆θθb S PF F ,∴︒=︒=90,452θθ,021=⋅PF PF .故选A.3. 椭圆1422=+y x 的左右焦点为1F 、2F , P 是椭圆上一点,当△21PF F 的面积最大时,21PF PF ⋅的值为( )A. 0B. 2C. 4D. 2- 解:3,1,2===c b a ,设θ=∠21PF F , 2tan 2tan 221θθ==∆b S PF F ,∴当△21PF F 的面积最大时,θ为最大,这时点P 为椭圆短轴的端点,︒=120θ, ∴2120cos cos ||||22121-=︒=⋅=⋅a PF PF PF PF θ.故答案选D. 4.已知椭圆1222=+y ax (a >1)的两个焦点为1F 、2F ,P 为椭圆上一点,且︒=∠6021PF F ,则||||21PF PF ⋅的值为( )A .1B .31C .34D .32 解:︒==∠6021θPF F ,1=b ,3330tan 2tan221=︒==∆θb S PF F , 又 ||||43sin ||||21212121PF PF PF PF S PF F ⋅=⋅=∆θ, ∴33||||4321=⋅PF PF ,从而34||||21=⋅PF PF . 故答案选C.5. 已知椭圆的中心在原点,对称轴为坐标轴,1F 、2F 为焦点,点P 在椭圆上, 直线1PF 与2PF 倾斜角的差为︒=∠9021PF F ,△21PF F 的面积是20,且c/a=√5/3, 求椭圆的标准方程.解:设θ=∠21PF F ,则︒=90θ. 2045tan 2tan 22221==︒==∆b b b S PF F θ,又 3522=-==a b a ace , ∴95122=-ab ,即952012=-a .解得:452=a .∴所求椭圆的标准方程为1204522=+y x 或1204522=+x y .专题2:离心率求法:1.若椭圆的两个焦点与它的短轴的两个端点是一个 正方形的四个顶点,则椭圆的离心率为( )A.22B.32C.53D.631.解析:选A.如图所示,四边形B 1F 2B 2F 1为正方形,则△B 2OF 2为等腰直角三角形, ∴c a =22.2.若一个椭圆长轴的长度、短轴的长度和焦距 成等差数列,则该椭圆的离心率是( ) A.45 B.35 C.25 D.15 2.解析:选B.由题意知2b =a +c ,又b 2=a 2-c 2, ∴4(a 2-c 2)=a 2+c 2+2ac .∴3a 2-2ac -5c 2=0.∴5c 2+2ac -3a 2=0.∴5e 2+2e -3=0.∴e =35或e =-1(舍去).3.若椭圆的短轴长为6,焦点到长轴的一个端点的最近距离是1,则椭圆的离心率为________.3.解析:依题意,得b =3,a -c =1. 又a 2=b 2+c 2,解得a =5,c =4,∴椭圆的离心率为e =c a =45. 答案:454.已知A 为椭圆x 2a 2+y 2b2=1(a >b >0)上的一个动点,直线AB 、AC 分别过焦点F 1、 F 2,且与椭圆交于B 、C 两点,若当AC 垂直于x 轴时,恰好有|AF 1|∶|AF 2|=3∶1, 求该椭圆的离心率.4.解:设|AF 2|=m ,则|AF 1|=3m ,∴2a =|AF 1|+|AF 2|=4m . 又在Rt △AF 1F 2中,|F 1F 2|=|AF 1|2-|AF 2|2=22m .∴e =2c 2a =|F 1F 2|2a =22m 4m =22.5.如图所示,F 1、F 2分别为椭圆的左、右焦点,椭圆上点M 的横坐标等于右焦点的横坐标,其纵坐标等于短半轴长的23,求椭圆的离心率.5. 解:法一:设椭圆的长半轴、短半轴、半焦距长分别为a 、b 、c .则焦点为F 1(-c,0),F 2(c,0),M 点的坐标为(c ,23b ),则△MF 1F 2为直角三角形. 在Rt △MF 1F 2中,|F 1F 2|2+|MF 2|2=|MF 1|2,即4c 2+49b 2=|MF 1|2.而|MF 1|+|MF 2|=4c 2+49b 2+23b =2a ,整理得3c 2=3a 2-2ab .又c 2=a 2-b 2,所以3b =2a .所以b 2a 2=49.∴e 2=c 2a 2=a 2-b 2a 2=1-b 2a 2=59, ∴e =53.法二:设椭圆方程为x 2a 2+y 2b 2=1(a >b >0), 则M (c ,23b ).代入椭圆方程,得c 2a 2+4b 29b 2=1,所以c 2a 2=59,所以c a =53,即e =53.椭圆中焦点三角形的性质及应用(答案)性质二离心率求法:(注:文档可能无法思考全面,请浏览后下载,供参考。
可复制、编制,期待你的好评与关注!)。