函数发展史PPT
- 格式:ppt
- 大小:1.96 MB
- 文档页数:9
函数发展简史最早提出函数(function)概念的,是17世纪德国数学家莱布尼茨.后又经历了贝努利、欧拉等人的改译。
1821年,法国数学家柯西给出了类似现在中学课本的函数定义:“在某些变数间存在着一定的关系,当一经给定其中某一变数的值,其他变数的可随着而确定时,则将最初的变数叫自变量,其他各变数叫做函数,在柯西的定义中,首先出现了自变量一词。
1834年,俄国数学家罗巴契夫斯基进一步指出了对应关系(条件)的必要性,利用这个关系以求出每一个x的对应值.康托尔自从德国数学家康托尔的集合论被大家接受后,用集合对应关系来定义函数概念就是现在高中课本里用的了。
. 中文数学书上使用的“函数”一词是转译词.是我国清代数学家李善兰在翻译《代数学》一书时,把“function”译成函数。
优美的函数图象笛卡尔的故事当时法国正流行黑死病,笛卡儿不得不逃离法国,于是他流浪到瑞典当乞丐。
某天,他在市场乞讨时,有一群少女经过,其中一名少女发现他的口音不像是瑞典人,她对笛卡儿非常好奇,于是上前问他…… 你从哪来的啊? “法国”“你是做什么的啊?” “我是数学家。
” 这名少女叫克丽丝汀,18岁,是一个公主,她和其它女孩子不一样,并不喜欢文学,而是热衷于数学。
当她听到笛卡儿说名身份之后,感到相当大的兴趣,于是把笛卡儿邀请回宫。
笛卡儿就成了她的数学老师,将一生的研究倾囊相授给克丽丝汀。
而克丽丝汀的数学也日益进步,直角坐标当时也只有笛卡儿这对师生才懂。
后来,他们之间有了不一样的情愫,发生了喧腾一时的师生恋。
这件事传到国王耳中,让国王相当愤怒!下令将笛卡儿处死,克丽丝汀以自缢相逼,国王害怕宝贝女儿真的会想不开,于是将笛卡儿放逐回法国,并将克丽丝汀软禁。
笛卡儿一回到法国后,没多久就染上了黑死病,躺在床上奄奄一息。
笛卡儿不断地写信到瑞典给克丽丝汀,但却被国王给拦截没收。
所以克丽丝汀一直没收到笛卡儿的信…… 在笛卡儿快要死去的时候,他寄出了第13封信,当他寄出去没多久后...就气绝身亡了。
函数概念的发展历程
函数是数学中一种重要的概念,它可以将一组输入值映射到一组输出值。
函数的发展历史可以追溯到古希腊时期,当时古希腊数学家们就开始研究函数的概念。
古希腊数学家们发现,函数可以用来描述数学关系,并且可以用来解决复杂的数学问题。
例如,古希腊数学家们发现,可以使用函数来描述一个点在平面上的位置,以及一个点在三维空间中的位置。
17世纪,英国数学家约翰·斯托克斯发明了函数的概念,他把函数定义为“一种从一组输入值到一组输出值的映射”。
他还发现,函数可以用来描述复杂的数学关系,并且可以用来解决复杂的数学问题。
18世纪,德国数学家卡尔·莱布尼茨发明了函数的概念,他把函数定义为“一种从一组输入值到一组输出值的映射,其中输入值和输出值都是实数”。
他还发现,函数可以用来描述复杂的数学关系,并且可以用来解决复杂的数学问题。
19世纪,法国数学家亚历山大·德拉克罗斯发明了函数的概念,他把函数定义为“一种从一组输入值到一组输出值的映射,其中输入值和输出值都是实数或复数”。
他还发现,函数可以用来描述复杂的数学关系,并且可以用来解决复杂的数学问题。
20世纪以来,函数的概念发展得非常快,函数的概念已经被广泛应用于计算机科学、物理学、统计学等领域。
函数的概念也被用来描述复杂的系统,并且可以用来解决复杂的问题。
总之,函数是一种重要的概念,它可以用来描述复杂的数学关系,并且可以用来解决复杂的数学问题。
函数的发展历史可以追溯到古希腊时期,它已经被广泛应用于计算机科学、物理学、统计学等领域。
函数发展的历史过程嘿,朋友们!今天咱来聊聊函数发展的历史过程,这可真是一段超级有趣的旅程啊!你想想看,最开始的时候,人们面对各种数量关系那叫一个头疼啊!就好像在黑暗中摸索。
突然,函数就像一盏明灯出现了!它开始帮我们理清这些复杂的关系。
最早的函数概念啊,那可是相当简单朴素。
就跟小孩子学走路似的,摇摇晃晃的。
但就是这样一个小小的开始,却开启了一扇通往数学奇妙世界的大门。
随着时间的推移,数学家们不断地给函数添砖加瓦。
就好比盖房子,一层一层地往上盖,越来越高,越来越精致。
函数的定义不断完善,适用的范围也越来越广。
到了后来,函数简直无处不在!从自然科学到社会科学,从日常生活到高深的理论研究,哪里都有它的身影。
这不就跟咱生活里离不开手机似的嘛!你说函数是不是很神奇?它能把看似毫无头绪的事情变得有条有理。
就好像一个神奇的魔法师,挥一挥魔法棒,问题就迎刃而解啦!咱再说说函数的图像,那可真是千奇百怪、丰富多彩啊!有的像波浪一样起伏,有的像直线一样笔直,还有的像弯弯的月牙。
这多有意思啊!而且,函数的应用那叫一个广泛。
在物理学里,它能描述物体的运动;在经济学里,它能分析市场的变化;在计算机科学里,它更是发挥着巨大的作用。
这就好比一把万能钥匙,能打开好多好多扇门。
你难道不觉得函数就像是一个默默奉献的好朋友,一直在背后支持着我们去探索世界、解决问题吗?它不声不响,却无比重要。
回顾函数发展的历史,那真的是一部充满智慧和创造力的史诗啊!数学家们前赴后继,不断地探索、创新,才让函数有了今天这样的辉煌。
所以啊,我们可不能小瞧了函数。
它虽然看起来普普通通,但却蕴含着无尽的奥秘和力量。
让我们一起好好地去学习它、研究它,感受它带给我们的奇妙吧!原创不易,请尊重原创,谢谢!。
函数历史函数概念的萌芽时期函数思想是随着人们开始运用数学知识研究事物的运动变化情况而出现的,16世纪,由于实践的需要,自然科学界开始转向对运动的量进行研究,各种变化着的物理量之间的关系也就成为数学家们关注的对象。
17世纪意大利数学家、科学家伽利略(Galileo,1564-16421是最早研究这方面的科学家,伽俐略在《两门新科学》一书中多处使用比例关系和文字表述了量与量之间的依赖关系,例如,从静止状态自由下落的物体所经过的距离与所用时间的平方成正比,这实际上就运用了函数思想,与此同时,英国著名的物理学家、数学家、天文学家牛顿(Newton,1642-1727)在对微积分的讨论中,使用了“流量”一词来表示变量间的关系,1673年,法国数学家笛卡尔(Descartes,1596-1650)在研究曲线问题时,发现了量的变化及量与量之间的依赖关系,引进了变量思想,并在他的《几何学》一书中指出:所谓变量是指“不知的和未定的量”,这成为数学发展的里程碑,也为函数概念的产生奠定了基础。
直到17世纪后期,在德国数学家莱布尼兹(Leib-niz,1646-1716)、牛顿建立微积分学时,还没有人明确函数的一般意义,大部分的函数是被当作研究曲线的工具,最早把“函数”(function)一词用作数学术语的是莱布尼兹,当时,莱布尼兹用“函数”(function)一词表示幂,后来又用函数表示任何一个随着曲线上的点变动而变动的量,例如曲线上的点的横坐标、纵坐标、切线的长度、垂线的长度等,从这个定义,我们可以看出,莱布尼兹利用几何概念,在几何的范围内揭示了某些量之间的依存关系。
函数概念的初步形成18世纪微积分的发展促进了函数概念“解析定义”的发展,瑞士著名数学家约翰·贝努利(Bernoulli Jo-hann,1667-1748)在研究积分计算问题时提出,积分工作的目的是在给定变量的微分中,找出变量本身之间的关系,而要用莱布尼兹定义的函数表示出变量本身之间的关系是很困难的,于是,1718年贝努利从解析的角度,把函数定义为:变量的函数就是由某个变量及任意一个常数结合而成的量,其意思是凡变量x和常量构成的式子都叫作x的函数,并且贝努利强调,函数要用公式来表示才行。
函数发展简史最早提出函数(function)概念的,是17世纪德国数学家莱布尼茨.后又经历了贝努利、欧拉等人的改译。
1821年,法国数学家柯西给出了类似现在中学课本的函数定义:“在某些变数间存在着一定的关系,当一经给定其中某一变数的值,其他变数的可随着而确定时,则将最初的变数叫自变量,其他各变数叫做函数,在柯西的定义中,首先出现了自变量一词。
1834年,俄国数学家罗巴契夫斯基进一步指出了对应关系(条件)的必要性,利用这个关系以求出每一个x的对应值.康托尔自从德国数学家康托尔的集合论被大家接受后,用集合对应关系来定义函数概念就是现在高中课本里用的了.. 中文数学书上使用的“函数”一词是转译词.是我国清代数学家李善兰在翻译《代数学》一书时,把“function"译成函数。
优美的函数图象笛卡尔的故事当时法国正流行黑死病,笛卡儿不得不逃离法国,于是他流浪到瑞典当乞丐。
某天,他在市场乞讨时,有一群少女经过,其中一名少女发现他的口音不像是瑞典人, 她对笛卡儿非常好奇,于是上前问他…… 你从哪来的啊?“法国"“你是做什么的啊?” “我是数学家." 这名少女叫克丽丝汀,18岁,是一个公主,她和其它女孩子不一样,并不喜欢文学,而是热衷于数学。
当她听到笛卡儿说名身份之后,感到相当大的兴趣,于是把笛卡儿邀请回宫. 笛卡儿就成了她的数学老师,将一生的研究倾囊相授给克丽丝汀。
而克丽丝汀的数学也日益进步,直角坐标当时也只有笛卡儿这对师生才懂。
后来,他们之间有了不一样的情愫,发生了喧腾一时的师生恋。
这件事传到国王耳中,让国王相当愤怒!下令将笛卡儿处死,克丽丝汀以自缢相逼,国王害怕宝贝女儿真的会想不开, 于是将笛卡儿放逐回法国,并将克丽丝汀软禁。
笛卡儿一回到法国后,没多久就染上了黑死病,躺在床上奄奄一息。
笛卡儿不断地写信到瑞典给克丽丝汀,但却被国王给拦截没收。
所以克丽丝汀一直没收到笛卡儿的信…… 在笛卡儿快要死去的时候,他寄出了第13封信,当他寄出去没多久后。
函数发展简史最早提出函数(function)概念的,是17世纪德国数学家莱布尼茨.后又经历了贝努利、欧拉等人的改译。
1821年,法国数学家柯西给出了类似现在中学课本的函数定义:“在某些变数间存在着一定的关系,当一经给定其中某一变数的值,其他变数的可随着而确定时,则将最初的变数叫自变量,其他各变数叫做函数,在柯西的定义中,首先出现了自变量一词。
1834年,俄国数学家罗巴契夫斯基进一步指出了对应关系(条件)的必要性,利用这个关系以求出每一个x的对应值.康托尔自从德国数学家康托尔的集合论被大家接受后,用集合对应关系来定义函数概念就是现在高中课本里用的了。
. 中文数学书上使用的“函数”一词是转译词.是我国清代数学家李善兰在翻译《代数学》一书时,把“function”译成函数。
优美的函数图象笛卡尔的故事当时法国正流行黑死病,笛卡儿不得不逃离法国,于是他流浪到瑞典当乞丐。
某天,他在市场乞讨时,有一群少女经过,其中一名少女发现他的口音不像是瑞典人,她对笛卡儿非常好奇,于是上前问他…… 你从哪来的啊? “法国”“你是做什么的啊?” “我是数学家。
” 这名少女叫克丽丝汀,18岁,是一个公主,她和其它女孩子不一样,并不喜欢文学,而是热衷于数学。
当她听到笛卡儿说名身份之后,感到相当大的兴趣,于是把笛卡儿邀请回宫。
笛卡儿就成了她的数学老师,将一生的研究倾囊相授给克丽丝汀。
而克丽丝汀的数学也日益进步,直角坐标当时也只有笛卡儿这对师生才懂。
后来,他们之间有了不一样的情愫,发生了喧腾一时的师生恋。
这件事传到国王耳中,让国王相当愤怒!下令将笛卡儿处死,克丽丝汀以自缢相逼,国王害怕宝贝女儿真的会想不开,于是将笛卡儿放逐回法国,并将克丽丝汀软禁。
笛卡儿一回到法国后,没多久就染上了黑死病,躺在床上奄奄一息。
笛卡儿不断地写信到瑞典给克丽丝汀,但却被国王给拦截没收。
所以克丽丝汀一直没收到笛卡儿的信…… 在笛卡儿快要死去的时候,他寄出了第13封信,当他寄出去没多久后...就气绝身亡了。
函数发展史1。
函数的起源现在,我们所用到的函数多是从无到有的。
最早使用“函数”一词的是文艺复兴时期的意大利数学家莱布尼兹。
他在1536年发表的《关于“切线”和“求极大量”的论文》一文中首先使用了“函数”一词。
他将自变量取自方程,因变量是含x, y的一个未知数,并把这种方程称为“增量方程”,也就是说,自变量在方程两端,因变量是一个数。
这种“增量方程”是与二元一次方程组联系着的,这个定义反映了当时人们对函数性质的认识。
由于现在各种高科技的发展,人们又陆续发明了另外一些函数。
下面让我来介绍几种比较常见的函数吧。
1。
对数函数是以自然对数e为底,以自然对数e的对数(以底数)为顶角的函数。
这个函数有许多特殊值。
在某一点处,它的单调增加;而在某一点处,它的单调减少。
因此我们称这个函数为减函数。
例如:当自然对数等于1时,它就成为“正”函数。
2。
指数函数以自然对数e为底,以e的对数f(以底数)为顶角的函数。
记作: exp(记住要把f读成大写的“ e”,而不是小写的“ e”),又叫“指数”函数。
通俗地说,这个函数是把自然对数的底数乘以e以后再除以2。
这个函数也有很多特殊值。
当它的值等于1时,它就成为“正”函数。
3。
对数指数函数这个函数的图像是一条直线,所以我们把它简称为“直线函数”。
第一代,主要是建立在莱布尼兹的“函数”基础上的。
是对“函数”的认识。
2。
第二代,指数函数。
这一阶段,有“柯西”。
伽罗瓦。
阿贝尔等人对“函数”做出了贡献。
3。
第三代,幂函数。
这个阶段,是与计算机有关的。
到了电脑普及的今天,函数就不仅限于人类使用,各种专业都开始运用电脑来解决问题。
函数的发展史已经过去,但它带给我们的东西却不会消失。
从现在开始,一个更广阔的世界向我们打开了大门。
“函数”这个名字随着时间的流逝被更广泛地接受了,并被加入到了各个领域之中。
在教育领域中,我相信“函数”的身影会越来越多。
在我们的生活中,“函数”带给我们的好处会越来越多。
函数概念的起源,最早和人们对动点轨迹的研究密不可分。
再也没有其他的例子,如同象动点作曲线运动时,它的x坐标和y坐标相互依依赖并同时发生变化那样,更有利于促使人们产全变量、因变量—产生函数的概念了.而这又正是解析几何学的主耍内容.14 世纪时,法国数学家奥莱斯姆(Oresme,1323-1382)在表示依时间t而变的变数x 时,他画出了图形, 把t 称为“经度(longitude), 把x 称为“纬度”(latitude)。
但是他并没有连续的概念, 只是建立了孤立的点与点之简的对应. 这种方法被开普勒(Kepler,德,1571 -1630)和伽利略(Galilei,意大利,1564 -1642)应用于关于天体运行方面的研究〔2〕。
17世纪的绝大部分函数是被当作曲线来研究的, 而曲线被看作运动着的点的路径这样的思想通过牛顿等人的工作而获得了认可与接受。
牛顿在他的《求曲边形的面积》中说:“我认为这里的数学量,不是由小块合成的, 而是由连续运动描出的”。
英国数学家哈略特(Harriot,1560一1621)应用了直角坐标的概念求出了曲线的方程. 当坐标系一经给定,则某些几何问题便可以用代数的形式表现出,这正是解析几何学的主耍方法.这样,函数的概念便又和轨迹的代数表达式发生了密切联系.法国着名的数学家费尔玛(Fermat,1601 -1665)在他的《平面、立体曲线导论》中, 取相交的直线建立坐标系,导出了直线、圆还有其它一些圆锥曲线的方程。
法国着名数学家笛卡尔(Descartes, 1596 -1650)在他的《几何学》中明确地给出了点的坐标概念, 由此当点P 根据某特定条件运动时,它的两个坐标之间的互变关系可用曲线的方程表示。
人们通常把变量概念的引入和解析几何的诞生归功与笛卡尔,他确实让用代数关系式表示变化的量间的关系(主要是曲线)的方法逐渐流行起来了〔2〕。
总的说来, 尽管描绘曲线方程的解析几何的方法已出现, 但至少到17 世纪上半叶, 纯粹的函数概念并没有被提出来。