直升机的升降与飞行原理ppt课件
- 格式:ppt
- 大小:6.43 MB
- 文档页数:18
直升机前进原理直升机是一种能够垂直起降并在空中自由飞行的航空器。
它的前进原理是基于旋翼的产生升力和推力,通过控制旋翼的迎角和旋翼的旋转速度来实现前进。
直升机的旋翼是其最重要的部件之一,它由多个叶片组成。
旋翼的旋转产生了升力,使直升机能够悬停在空中。
旋翼的迎角决定了旋翼产生的升力大小,通过调整迎角可以控制直升机的升降。
当迎角增大时,旋翼产生的升力也增大,直升机就会上升;当迎角减小时,旋翼产生的升力也减小,直升机就会下降。
通过控制旋翼的迎角,直升机可以在空中实现垂直起降。
在直升机前进时,旋翼的迎角需要进行调整。
为了使直升机前进,旋翼的迎角需要减小,这样可以减小旋翼产生的升力,使直升机向前倾斜。
当直升机倾斜时,旋翼产生的升力不再垂直向上,而是有一个水平分量,这个水平分量就是直升机向前的推力。
通过调整旋翼的迎角和旋翼的旋转速度,直升机可以控制推力的大小和方向,从而实现前进。
除了旋翼的迎角调整之外,直升机还需要通过尾推器来实现前进。
尾推器是直升机上的一个推进装置,它可以产生向后的推力,使直升机前进。
当直升机倾斜时,尾推器的推力可以与旋翼产生的推力相互配合,使直升机向前运动。
直升机前进的速度和稳定性也与旋翼的旋转速度有关。
旋翼的旋转速度越快,直升机前进的速度就越快;旋翼的旋转速度越慢,直升机前进的速度就越慢。
通过控制旋翼的旋转速度,直升机可以调整前进的速度和稳定性。
直升机前进的原理是通过调整旋翼的迎角和旋翼的旋转速度来实现的。
通过控制旋翼的迎角,直升机可以产生向前的推力;通过控制旋翼的旋转速度,可以调整前进的速度和稳定性。
直升机前进的原理是复杂而精密的,它的实现离不开先进的航空技术和精湛的飞行技巧。
直升机的前进能力使其成为许多领域中不可或缺的工具,如救援、运输、勘察等。
第六章 直升机的操纵原理直升机不同于固定翼飞机,一般都没有在飞行中 供操纵的专用活动舵面。
这是由于在小速度飞行 或悬停中,其作用也很小,因为只有当气流速度 很大时舵面或副翼才会产生足够的空气动力。
单 旋翼带尾桨的直升机主要靠旋翼和尾桨进行操纵, 而双旋翼直升机靠两副旋翼来操纵。
由此可见, 旋翼还起着飞机的舱面和副翼的作用。
直升机操纵原理 旋翼不仅提供升力同时也是直升机的主要操 纵面。
总距操纵杆:通过自动倾斜器改变旋翼桨叶 总距,控制直升机的升降运动。
提杆,增大 总距,升力增大,直升机上升;压杆,减小 总距,直升机下降。
周期变距操纵杆:操纵周期变距操纵杆,使 自动倾斜器相应的倾斜,从而使桨叶的桨距 作每周一次的周期改变,造成旋翼拉力矢量 按相应的方向倾斜,达到控制直升机的前、 后(左、右)和俯仰(或横滚)运动。
直升机操纵原理 脚蹬:控制尾桨,实现航向操纵。
尾桨:平衡旋翼反扭矩、航向操纵。
垂尾:增加航向稳定性。
平尾:增加俯仰稳定性。
直升机操纵原理(续)6.1 直升机操纵特点 直升机驾驶员座舱 操纵机构及配置直 升机驾驶员座舱主 要的操纵机构是: 驾驶杆(又称周期 变距杆)、脚蹬、 油门总距杆。
此外 还有油门调节环、 直升机配平调整片 开关及其他手柄.驾驶杆和脚蹬 驾驶杆位于驾驶员座椅前面,通过操纵线系与旋翼 的自动倾斜器连接。
驾驶杆偏离中立位置表示: 向前——直升机低头并向前运动; 向后——直升机抬头并向后退; 向左——直升机向左倾斜并向左侧运动; 向右——直升机向右倾斜并向右侧运动。
脚蹬位于座椅前下部,对于单旋翼带尾桨的直升机来说,驾驶员蹬脚蹬操纵尾桨变距改变尾桨推(拉) 力,对直升机实施航向操纵。
油门总距杆 油门总距杆通常位于驾驶员座椅的左方,由 驾驶员左手操纵,此杆可同时操纵旋翼总距 和发动机油门,实现总距和油门联合操纵。
油门调节环位于油门总距杆的端部,在不动 总距油门杆的情况下,驾驶员左手拧动油门 调节环可以在较小的发动机转速范围内调整 发动机功率。
主编:杨俊杨军利叶露第 5 章平飞、上升、下降CONTENTS目录 5.1平飞5.2 巡航性能5.3 上升 5.4 下降0103平 飞5.1(L)、重力(W)、拉力(P)和阻力(D)。
平飞时,飞机无转动,各力对飞机重心的力矩相互平衡,因此,以上各力均通过重心。
飞机平飞作用力1. 平飞所需速度计算公式和影响因素可看出,影响平飞所需速度的因素有飞机重量、机翼面积、空气密度、升力系数。
2. 真速、指示空速、校正空速、当量空速真速是飞机相对于空气的真实速度,以vT 表示,其缩写形式为 TAS。
指示空速(表速)是飞机上空速表指针指示的空速,以 vI 表示,其缩写形式为 IAS。
校正空速(校正表速)是指示空速修正了仪表误差和位置误差后得到的空速,以 vC 表示,其缩写形式为 CAS。
当量空速是指示空速修正了所有误差后得到的空速,以vE 表示,其缩写形式为 EAS。
1)平飞所需拉力的计算阻比成反比。
即飞行重量越重,平飞所需拉力越大;升阻比越小,平飞所需拉力越大。
1. 平飞所需拉力2)平飞所需拉力曲线平飞所需拉力曲线从图中可看出,随着平飞速度增大,平飞所需拉力先减小,随后又增大。
这是因为:平飞速度增大,其对应的迎角减小,在临界迎角到有利迎角的范围内,迎角减小,升阻比增大,则平飞所需拉力减小;在小于有利迎角的范围内,迎角减小,升阻比减小,则平飞所需拉力增大。
以有利迎角平飞,升阻比最大,则平飞所需拉力最小。
2. 平飞所需功率根据平飞所需功率的定义,其计算公式为随着平飞速度增大,平飞所需功率先是减小,而后又增大。
这是因为:从临界迎角对应的最小速度开始,随着平飞速度增大,起初,由于平飞所需拉力的急剧减小,平飞所需功率迅速减小,及至平飞速度增大到一定程度之后,随着平飞速度继续增大,虽然平飞所需拉力仍旧减小,但其减小的变化量小于速度增大的变化量,故平飞所需功率增大。
当飞行速度大于最小阻力速度后,随着平飞速度增大,平飞所需拉力也增大,所以平飞所需功率显著增大。
直升机的飞行原理直升机是一种能够垂直起降、悬停飞行的飞行器,它的飞行原理与固定翼飞机有很大的不同。
直升机的飞行原理主要依靠旋翼的产生升力和推进力来实现飞行。
在本文中,我们将详细介绍直升机的飞行原理。
首先,我们来了解一下直升机的主要构造。
直升机的主要构造包括机身、旋翼、尾桨和发动机。
其中,旋翼是直升机最重要的部件,它由许多叶片组成,可以通过发动机提供的动力产生升力和推进力。
而尾桨则用来平衡和调整直升机的飞行姿态。
旋翼的工作原理是利用叶片的扭转运动和俯仰运动来产生升力和推进力。
当发动机提供动力驱动旋翼旋转时,旋翼叶片的扭转运动会产生升力,使直升机获得升力以支撑其重量。
同时,通过控制旋翼叶片的俯仰运动,可以调整旋翼产生的升力方向,从而实现直升机的飞行姿态调整和前进、后退、左右移动等飞行动作。
此外,直升机的尾桨也起着非常重要的作用。
尾桨的主要功能是平衡直升机的扭矩,防止直升机在旋翼产生升力时出现自旋现象。
同时,尾桨还可以通过改变叶片的俯仰角度来调整直升机的飞行姿态和方向。
除了旋翼和尾桨,直升机的发动机也是实现飞行的重要组成部分。
发动机通过提供动力,驱动旋翼和尾桨的运转,从而使直升机获得所需的升力和推进力。
不同类型的直升机使用的发动机也各有不同,常见的有活塞发动机、涡轮发动机等。
总的来说,直升机的飞行原理是通过旋翼产生升力和推进力,尾桨平衡扭矩和调整飞行姿态,发动机提供动力,共同实现直升机的垂直起降、悬停和飞行。
直升机的飞行原理虽然复杂,但正是这种独特的设计和工作原理,使得直升机成为一种独具特色的飞行器,具有许多固定翼飞机无法比拟的优势和应用价值。
通过本文的介绍,希望读者能够更加深入地了解直升机的飞行原理,对直升机的工作原理有更清晰的认识。
直升机作为一种重要的飞行器,其独特的飞行原理也为航空领域的发展带来了许多新的可能性和机遇。
直升机升降原理
直升机是一种能够垂直起降的飞行器,它的升降原理与固定翼飞机有很大的不同。
直升机的升降主要依靠旋翼的旋转产生升力,下面我们就来详细了解一下直升机的升降原理。
首先,我们需要了解旋翼的结构和工作原理。
旋翼由许多叶片组成,每个叶片的形状和角度都是精确设计的,当旋翼受到发动机提供的动力驱动旋转时,叶片就会产生升力。
这种升力的产生是由于叶片在旋转过程中改变了受到气流的压力分布,从而形成了一个向上的推力,使得直升机能够离开地面并且升空。
其次,我们需要了解旋翼的升力调节。
直升机的升降主要依靠旋翼的升力来实现,而旋翼的升力又是由叶片的角度和速度来调节的。
当直升机需要升高时,它会增加旋翼的升力,这可以通过增加叶片的角度或者增加发动机的输出功率来实现。
相反,当直升机需要下降时,它会减小旋翼的升力,这可以通过减小叶片的角度或者减小发动机的输出功率来实现。
最后,我们需要了解旋翼的操纵方式。
直升机的升降不仅仅依靠对旋翼升力的调节,还需要通过对旋翼的倾斜来实现。
通过改变
旋翼的倾斜角度,直升机可以实现向前、向后、向左、向右的飞行,从而能够完成各种复杂的飞行任务。
总的来说,直升机的升降原理是通过旋翼的旋转产生升力,并
通过调节旋翼的角度和速度来实现升降,同时通过对旋翼的倾斜来
实现飞行方向的控制。
这种独特的升降原理使得直升机能够在狭小
的空间内实现垂直起降和灵活飞行,成为了许多特殊任务和应用中
不可或缺的飞行器。
直升机和飞机的原理直升机和飞机是现代航空领域中常见的飞行器,它们在飞行原理和工作原理上存在一些不同。
我们来了解一下直升机的原理。
直升机是一种能够垂直起降和悬停在空中的飞行器。
它的主要特点是具有旋翼,通过旋转旋翼产生升力来维持飞行。
直升机的旋翼由多个桨叶组成,通过发动机提供的动力使其旋转。
旋翼的旋转产生了气流,通过改变桨叶的角度来控制气流的方向和大小,从而实现飞行器的悬停、上升、下降、前进、后退、左移、右移等动作。
直升机的升力产生原理是由旋翼上方的气流产生的。
当旋翼旋转时,桨叶的前缘受到空气的冲击,产生升力。
同时,由于桨叶的扭转和变化的空气流动,也会产生一定的侧向力和推力。
通过调整桨叶的角度和旋转速度,直升机可以实现在空中的各种动作。
与直升机相比,飞机的飞行原理则有所不同。
飞机是一种能够在大气中飞行的飞行器,其主要特点是具有机翼和发动机。
飞机的机翼通过产生升力来维持飞行,而发动机则提供了飞行所需的动力。
飞机的机翼通过空气动力学原理产生升力。
当飞机飞行时,机翼上的气流会产生上升的力量,使飞机能够克服重力并保持在空中飞行。
机翼的形状、面积和攻角等因素都会影响升力的大小。
通过调整发动机的推力和飞机的姿态,飞机可以实现前进、上升、下降等动作。
与直升机不同的是,飞机的飞行速度通常较快,而且无法垂直起降或悬停在空中。
飞机需要一定的起飞距离和降落距离,并且通常需要在专门的机场或跑道上进行起降操作。
总结来说,直升机和飞机虽然都是飞行器,但其飞行原理和工作原理存在一些区别。
直升机通过旋转的旋翼产生升力,能够垂直起降和悬停在空中;而飞机则通过机翼产生升力并依靠发动机提供的推力来维持飞行,速度较快但无法垂直起降。
这些不同的原理使得直升机和飞机在不同的领域和任务中发挥着重要的作用。