陕西省高考数学试卷(理科)答案与解析
- 格式:doc
- 大小:433.50 KB
- 文档页数:17
高考卷,一般高等学校招生全国统一考试数学(陕西卷·理科)(附答案,完全word版)通过整理的高考卷,一般高等学校招生全国统一考试数学(陕西卷·理科)(附答案,完全word版)相关文档,渴望对大家有所扶植,感谢观看!2008年一般高等学校招生全国统一考试(陕西卷)理科数学(必修+选修Ⅱ)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的(本大题共12小题,每小题5分,共60分).1.复数等于()A.B.C.1D.2.已知全集,集合,,则集合中元素的个数为()A.1B.2C.3D.4 3.的内角的对边分别为,若,则等于()A.B.2C.D.4.已知是等差数列,,,则该数列前10项和等于()A.64B.100C.110D.120 5.直线与圆相切,则实数等于()A.或B.或C.或D.或6.“”是“对随意的正数,”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.已知函数,是的反函数,若(),则的值为()A.B.1C.4D.10 8.双曲线(,)的左、右焦点分别是,过作倾斜角为的直线交双曲线右支于点,若垂直于轴,则双曲线的离心率为()A.B.C.D.9.如图,到的距离分别是和,与所成的角分别是和,在内的射影分别是和,若,则()A B a b lA.B.C.D.10.已知实数满足假如目标函数的最小值为,则实数等于()A.7B.5C.4D.3 11.定义在上的函数满足(),,则等于()A.2B.3C.6D.9 12.为提高信息在传输中的抗干扰实力,通常在原信息中按确定规则加入相关数据组成传输信息.设定原信息为(),传输信息为,其中,运算规则为:,,,,例如原信息为111,则传输信息为01111.传输信息在传输过程中受到干扰可能导致接收信息出错,则下列接收信息确定有误的是()A.11010B.01100C.10111D.00011 二、填空题:把答案填在答题卡相应题号后的横线上(本大题共4小题,每小题4分,共16分).13.,则.14.长方体的各顶点都在球的球面上,其中.两点的球面距离记为,两点的球面距离记为,则的值为.15.关于平面对量.有下列三个命题:①若,则.②若,,则.③非零向量和满足,则与的夹角为.其中真命题的序号为.(写出全部真命题的序号)16.某地奥运火炬接力传递路途共分6段,传递活动分别由6名火炬手完成.假如第一棒火炬手只能从甲、乙、丙三人中产生,最终一棒火炬手只能从甲、乙两人中产生,则不同的传递方案共有种.(用数字作答).三、解答题:解答应写出文字说明,证明过程或演算步骤(本大题共6小题,共74分)17.(本小题满分12分)已知函数.(Ⅰ)求函数的最小正周期及最值;(Ⅱ)令,推断函数的奇偶性,并说明理由.18.(本小题满分12分)某射击测试规则为:每人最多射击3次,击中目标即终止射击,第次击中目标得分,3次均未击中目标得0分.已知某射手每次击中目标的概率为0.8,其各次射击结果互不影响.(Ⅰ)求该射手恰好射击两次的概率;(Ⅱ)该射手的得分记为,求随机变量的分布列及数学期望.19.(本小题满分12分)三棱锥被平行于底面的平面所截得的几何体如图所示,截面为,,平面,,,,,.A1 A C1 B1 B D C (Ⅰ)证明:平面平面;(Ⅱ)求二面角的大小.20.(本小题满分12分)已知抛物线:,直线交于两点,是线段的中点,过作轴的垂线交于点.(Ⅰ)证明:抛物线在点处的切线与平行;(Ⅱ)是否存在实数使,若存在,求的值;若不存在,说明理由.21.(本小题满分12分)已知函数(且,)恰有一个极大值点和一个微小值点,其中一个是.(Ⅰ)求函数的另一个极值点;(Ⅱ)求函数的极大值和微小值,并求时的取值范围.22.(本小题满分14分)已知数列的首项,,.(Ⅰ)求的通项公式;(Ⅱ)证明:对随意的,,;(Ⅲ)证明:.2008年一般高等学校招生全国统一考试(陕西卷)理科数学(必修+选修Ⅱ)参考答案一、1.D2.B3.D4.B5.C6.A7.A8.B9.D10.B11.C12.C 二、13.114.15.②16.96 三、17.解:(Ⅰ).的最小正周期.当时,取得最小值;当时,取得最大值2.(Ⅱ)由(Ⅰ)知.又...函数是偶函数.18.(Ⅰ)设该射手第次击中目标的事务为,则,.(Ⅱ)可能取的值为0,1,2,3.的分布列为0 1 2 30.008 0.032 0.16 0.8. 19.解法一:(Ⅰ)平面平面,.在中,,,,又,,,即.又,平面,平面,平面平面.(Ⅱ)如图,作交于点,连接,A1 A C1 B1 B D C F E (第19题,解法一)由已知得平面.是在面内的射影.由三垂线定理知,为二面角的平面角.过作交于点,则,,.在中,.A1 A C1 B1 B D C z y x (第19题,解法二)在中,.,即二面角为.解法二:(Ⅰ)如图,建立空间直角坐标系,则,,.点坐标为.,.,,,,又,平面,又平面,平面平面.(Ⅱ)平面,取为平面的法向量,设平面的法向量为,则.,如图,可取,则,,即二面角为.20.解法一:(Ⅰ)如图,设,,把代入得,x A y 1 1 2 M N B O 由韦达定理得,,,点的坐标为.设抛物线在点处的切线的方程为,将代入上式得,直线与抛物线相切,,.即.(Ⅱ)假设存在实数,使,则,又是的中点,.由(Ⅰ)知.轴,.又.,解得.即存在,使.解法二:(Ⅰ)如图,设,把代入得.由韦达定理得.,点的坐标为.,,抛物线在点处的切线的斜率为,.(Ⅱ)假设存在实数,使.由(Ⅰ)知,则,,,解得.即存在,使.21.解:(Ⅰ),由题意知,即得,(*),.由得,由韦达定理知另一个极值点为(或).(Ⅱ)由(*)式得,即.当时,;当时,.(i)当时,在和内是减函数,在内是增函数.,,由及,解得.(ii)当时,在和内是增函数,在内是减函数.,恒成立.综上可知,所求的取值范围为.22.解法一:(Ⅰ),,,又,是以为首项,为公比的等比数列.,.(Ⅱ)由(Ⅰ)知,,原不等式成立.(Ⅲ)由(Ⅱ)知,对随意的,有.取,则.原不等式成立.解法二:(Ⅰ)同解法一.(Ⅱ)设,则,当时,;当时,,当时,取得最大值.原不等式成立.(Ⅲ)同解法一.B卷选择题答案:1.D2.C3.A4.B5.C6.A 7.D 8.C 9.C 10.B 11.B 12.D。
2015年陕西省高考数学试卷(理科)参考答案与试题解析一、选择题,共12小题,每小题5分,共60分1.(5分)(2015•陕西)设集合M={x|x2=x},N={x|lgx≤0},则M∪N=()A.[0,1]B.(0,1]C.[0,1)D.(﹣∞,1]考点:并集及其运算.专题:集合.分析:求解一元二次方程化简M,求解对数不等式化简N,然后利用并集运算得答案.解答:解:由M={x|x2=x}={0,1},N={x|lgx≤0}=(0,1],得M∪N={0,1}∪(0,1]=[0,1].故选:A.点评:本题考查了并集及其运算,考查了对数不等式的解法,是基础题.2.(5分)(2015•陕西)某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为()A.93 B.123 C.137 D.167考点:收集数据的方法.专题:计算题;概率与统计.分析:利用百分比,可得该校女教师的人数.解答:解:初中部女教师的人数为110×70%=77;高中部女教师的人数为40×150%=60,∴该校女教师的人数为77+60=137,故选:C.点评:本题考查该校女教师的人数,考查收集数据的方法,考查学生的计算能力,比较基础.3.(5分)(2015•陕西)如图,某港口一天6时到18时的水深变化曲线近似满足函数y=3sin (x+φ)+k.据此函数可知,这段时间水深(单位:m)的最大值为()A.5B.6C.8D.10考点:由y=Asin(ωx+φ)的部分图象确定其解析式.专题:三角函数的图像与性质.分析:由题意和最小值易得k的值,进而可得最大值.解答:解:由题意可得当sin(x+φ)取最小值﹣1时,函数取最小值y min=﹣3+k=2,解得k=5,∴y=3sin(x+φ)+5,∴当当sin(x+φ)取最大值1时,函数取最大值y max=3+5=8,故选:C.点评:本题考查三角函数的图象和性质,涉及三角函数的最值,属基础题.4.(5分)(2015•陕西)二项式(x+1)n(n∈N+)的展开式中x2的系数为15,则n=()A.7B.6C.5D.4考点:二项式定理的应用.专题:二项式定理.分析:由题意可得==15,解关于n的方程可得.解答:解:∵二项式(x+1)n(n∈N+)的展开式中x2的系数为15,∴=15,即=15,解得n=6,故选:B.点评:本题考查二项式定理,属基础题.5.(5分)(2015•陕西)一个几何体的三视图如图所示,则该几何体的表面积为()A.3πB.4πC.2π+4 D.3π+4考点:由三视图求面积、体积.专题:计算题;空间位置关系与距离.分析:根据几何体的三视图,得出该几何体是圆柱体的一部分,利用图中数据求出它的表面积.解答:解:根据几何体的三视图,得;该几何体是圆柱体的一半,∴该几何体的表面积为V几何体=π•12+π×1×2+2×2=3π+4.故选:D.点评:本题考查了利用空间几何体的三视图求表面积的应用问题,是基础题目.6.(5分)(2015•陕西)“sinα=cosα”是“cos2α=0”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:由cos2α=cos2α﹣sin2α,即可判断出.解答:解:由cos2α=cos2α﹣sin2α,∴“sinα=cosα”是“cos2α=0”的充分不必要条件.故选:A.点评:本题考查了倍角公式、简易逻辑的判定方法,考查了推理能力,属于基础题.7.(5分)(2015•陕西)对任意向量、,下列关系式中不恒成立的是()A.||≤|||| B.||≤|||﹣|||C.()2=||2D.()•()=2﹣2考点:平面向量数量积的运算.专题:平面向量及应用.分析:由向量数量积的运算和性质逐个选项验证可得.解答:解:选项A正确,∵||=|||||cos<,>|,又|cos<,>|≤1,∴||≤||||恒成立;选项B错误,由三角形的三边关系和向量的几何意义可得||≥|||﹣|||;选项C正确,由向量数量积的运算可得()2=||2;选项D正确,由向量数量积的运算可得()•()=2﹣2.故选:B点评:本题考查平面向量的数量积,属基础题.8.(5分)(2015•陕西)根据如图框图,当输入x为2006时,输出的y=()A.2B.4C.10 D.28考点:程序框图.专题:图表型;算法和程序框图.分析:模拟执行程序框图,依次写出每次循环得到的x的值,当x=﹣2时不满足条件x≥0,计算并输出y的值为10.解答:解:模拟执行程序框图,可得x=2006,x=2004满足条件x≥0,x=2002满足条件x≥0,x=2000…满足条件x≥0,x=0满足条件x≥0,x=﹣2不满足条件x≥0,y=10输出y的值为10.故选:C.点评:本题主要考查了循环结构的程序框图,属于基础题.9.(5分)(2015•陕西)设f(x)=lnx,0<a<b,若p=f(),q=f(),r=(f(a)+f(b)),则下列关系式中正确的是()A.q=r<p B.p=r<q C.q=r>p D.p=r>q考点:不等关系与不等式.专题:不等式的解法及应用.分析:由题意可得p=(lna+lnb),q=ln()≥ln()=p,r=(lna+lnb),可得大小关系.解答:解:由题意可得若p=f()=ln()=lnab=(lna+lnb),q=f()=ln()≥ln()=p,r=(f(a)+f(b))=(lna+lnb),∴p=r<q,故选:B点评:本题考查不等式与不等关系,涉及基本不等式和对数的运算,属基础题.10.(5分)(2015•陕西)某企业生产甲、乙两种产品均需用A、B两种原料.已知生产1吨每种产品所需原料及每天原料的可用限额如表所示.如果生产一吨甲、乙产品可获得利润分别为3万元、4万元,则该企业每天可获得最大利润为()甲乙原料限额A(吨) 3 2 12B(吨) 1 2 8A.12万元B.16万元C.17万元D.18万元考点:简单线性规划的应用.专题:不等式的解法及应用.分析:设每天生产甲乙两种产品分别为x,y顿,利润为z元,然后根据题目条件建立约束条件,得到目标函数,画出约束条件所表示的区域,然后利用平移法求出z的最大值.解答:解:设每天生产甲乙两种产品分别为x,y顿,利润为z元,则,目标函数为z=3x+4y.作出二元一次不等式组所表示的平面区域(阴影部分)即可行域.由z=3x+4y得y=﹣x+,平移直线y=﹣x+由图象可知当直线y=﹣x+经过点B时,直线y=﹣x+的截距最大,此时z最大,解方程组,解得,即B的坐标为x=2,y=3,∴z max=3x+4y=6+12=18.即每天生产甲乙两种产品分别为2,3顿,能够产生最大的利润,最大的利润是18万元,故选:D.点评:本题主要考查线性规划的应用,建立约束条件和目标函数,利用数形结合是解决本题的关键.11.(5分)(2015•陕西)设复数z=(x﹣1)+yi(x,y∈R),若|z|≤1,则y≥x的概率为()A.+B.+C.﹣D.﹣考点:几何概型.专题:概率与统计.分析:由题意易得所求概率为弓形的面积与圆的面积之比,分别求面积可得.解答:解:∵复数z=(x﹣1)+yi(x,y∈R)且|z|≤1,∴|z|=≤1,即(x﹣1)2+y2≤1,∴点(x,y)在(1,0)为圆心1为半径的圆及其内部,而y≥x表示直线y=x左上方的部分,(图中阴影弓形)∴所求概率为弓形的面积与圆的面积之比,∴所求概率P==故选:D.点评:本题考查几何概型,涉及复数以及圆的知识,属基础题.12.(5分)(2015•陕西)对二次函数f(x)=ax2+bx+c(a为非零整数),四位同学分别给出下列结论,其中有且只有一个结论是错误的,则错误的结论是()A.﹣1是f(x)的零点B.1是f(x)的极值点C.3是f(x)的极值D.点(2,8)在曲线y=f(x)上考点:二次函数的性质.专题:创新题型;函数的性质及应用;导数的综合应用.分析:可采取排除法.分别考虑A,B,C,D中有一个错误,通过解方程求得a,判断是否为非零整数,即可得到结论.解答:解:可采取排除法.若A错,则B,C,D正确.即有f(x)=ax2+bx+c的导数为f′(x)=2ax+b,即有f′(1)=0,即2a+b=0,①又f(1)=3,即a+b+c=3②,又f(2)=8,即4a+2b+c=8,③由①②③解得,a=5,b=﹣10,c=8.符合a为非零整数.若B错,则A,C,D正确,则有a﹣b+c=0,且4a+2b+c=8,且=3,解得a∈∅,不成立;若C错,则A,B,D正确,则有a﹣b+c=0,且2a+b=0,且4a+2b+c=8,解得a=﹣不为非零整数,不成立;若D错,则A,B,C正确,则有a﹣b+c=0,且2a+b=0,且=3,解得a=﹣不为非零整数,不成立.故选:A.点评:本题考查二次函数的极值、零点等概念,主要考查解方程的能力和判断分析的能力,属于中档题.二、填空题,共4小题,每小题5分,共20分13.(5分)(2015•陕西)中位数为1010的一组数构成等差数列,其末项为2015,则该数列的首项为5.考点:等差数列.专题:等差数列与等比数列.分析:由题意可得首项的方程,解方程可得.解答:解:设该等差数列的首项为a,由题意和等差数列的性质可得2015+a=1010×2解得a=5故答案为:5点评:本题考查等差数列的基本性质,涉及中位数,属基础题.14.(5分)(2015•陕西)若抛物线y2=2px(p>0)的准线经过双曲线x2﹣y2=1的一个焦点,则p=2.考点:抛物线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:先求出x2﹣y2=1的左焦点,得到抛物线y2=2px的准线,依据p的意义求出它的值.解答:解:双曲线x2﹣y2=1的左焦点为(﹣,0),故抛物线y2=2px的准线为x=﹣,∴=,∴p=2,故答案为:2.点评:本题考查抛物线和双曲线的简单性质,以及抛物线方程y2=2px中p的意义.15.(5分)(2015•陕西)设曲线y=e x在点(0,1)处的切线与曲线y=(x>0)上点P的切线垂直,则P的坐标为(1,1).考点:利用导数研究曲线上某点切线方程.专题:导数的概念及应用.分析:利用y=e x在某点处的切屑斜率与另一曲线的切线斜率垂直求得另一曲线的斜率,进而求得切点坐标.解答:解:∵f'(x)=e x,∴f'(0)=e0=1.∵y=e x在(0,1)处的切线与y=(x>0)上点P的切线垂直∴点P处的切线斜率为﹣1.又y'=﹣,设点P(x0,y0)∴∴x0=±1,∵x>0,∴x0=1∴y0=1∴点P(1,1)故答案为:(1,1)点评:本题考查导数在曲线切线中的应用,在高考中属基础题型,常出现在选择填空中.16.(5分)(2015•陕西)如图,一横截面为等腰梯形的水渠,因泥沙沉积,导致水渠截面边界呈抛物线型(图中虚线所示),则原始的最大流量与当前最大流量的比值为 1.2.考点:直线与圆锥曲线的关系.专题:创新题型;圆锥曲线的定义、性质与方程.分析:建立直角坐标系,求出抛物线方程,然后利用定积分求出泥沙沉积的横截面面积,求出梯形面积,即可推出结果.解答:解:如图:建立平面直角坐标系,设抛物线方程为:y=ax2,因为抛物线经过(5,2),可得a=,所以抛物线方程:y=,横截面为等腰梯形的水渠,泥沙沉积的横截面的面积为:2×=2()=,等腰梯形的面积为:=16,当前最大流量的横截面的面积16﹣,原始的最大流量与当前最大流量的比值为:=1.2.故答案为:1.2.点评:本题考查抛物线的求法,定积分的应用,考查分析问题解决问题的能力,合理建系是解题的关键.三、解答题,共5小题,共70分17.(12分)(2015•陕西)△ABC的内角A,B,C所对的边分别为a,b,c.向量=(a,b)与=(cosA,sinB)平行.(Ⅰ)求A;(Ⅱ)若a=,b=2,求△ABC的面积.考点:余弦定理的应用;平面向量共线(平行)的坐标表示.专题:解三角形.分析:(Ⅰ)利用向量的平行,列出方程,通过正弦定理求解A;(Ⅱ)利用A,以及a=,b=2,通过余弦定理求出c,然后求解△ABC的面积.解答:解:(Ⅰ)因为向量=(a,b)与=(cosA,sinB)平行,所以asinB﹣=0,由正弦定理可知:sinAsinB﹣sinBcosA=0,因为sinB≠0,所以tanA=,可得A=;(Ⅱ)a=,b=2,由余弦定理可得:a2=b2+c2﹣2bccosA,可得7=4+c2﹣2c,解得c=3,△ABC的面积为:=.点评:本题考查余弦定理以及宰相肚里的应用,三角形的面积的求法,考查计算能力.18.(12分)(2015•陕西)如图,在直角梯形ABCD中,AD∥BC,∠BAD=,AB=BC=1,AD=2,E是AD的中点,O是AC与BE的交点,将ABE沿BE折起到A1BE的位置,如图2.(Ⅰ)证明:CD⊥平面A1OC;(Ⅱ)若平面A1BE⊥平面BCDE,求平面A1BC与平面A1CD夹角的余弦值.考点:二面角的平面角及求法;直线与平面垂直的性质.专题:空间位置关系与距离;空间角.分析:(Ⅰ)根据线面垂直的判定定理即可证明:CD⊥平面A1OC;(Ⅱ)若平面A1BE⊥平面BCDE,建立空间坐标系,利用向量法即可求平面A1BC 与平面A1CD夹角的余弦值.解答:证明:(Ⅰ)在图1中,∵AB=BC=1,AD=2,E是AD的中点,∠BAD=,∴BE⊥AC,即在图2中,BE⊥OA1,BE⊥OC,则BE⊥平面A1OC;∵CD∥BE,∴CD⊥平面A1OC;(Ⅱ)若平面A1BE⊥平面BCDE,由(Ⅰ)知BE⊥OA1,BE⊥OC,∴∠A1OC为二面角A1﹣BE﹣C的平面角,∴∠A1OC=,如图,建立空间坐标系,∵A1B=A1E=BC=ED=1.BC∥ED∴B(,0,0),E(﹣,0,0),A1(0,0,),C(0,,0),=(﹣,,0),=(0,,﹣),设平面A1BC的法向量为=(x,y,z),平面A1CD的法向量为=(a,b,c),则得,令x=1,则y=1,z=1,即=(1,1,1),由得,取=(0,1,1),则cos<>===,∵平面A1BC与平面A1CD为钝二面角,∴平面A1BC与平面A1CD夹角的余弦值为﹣.点评:本题主要考查空间直线和平面垂直的判定以及二面角的求解,建立坐标系利用向量法是解决空间角的常用方法.19.(12分)(2015•陕西)某校新、老校区之间开车单程所需时间为T,T只与道路通畅状况有关,对其容量为100的样本进行统计,结果如下:T(分钟)25 30 35 40频数(次)20 30 40 10(Ⅰ)求T的分布列与数学期望ET;(Ⅱ)刘教授驾车从老校区出发,前往新校区做一个50分钟的讲座,结束后立即返回老校区,求刘教授从离开老校区到返回老校区共用时间不超过120分钟的概率.考点:离散型随机变量的期望与方差;离散型随机变量及其分布列.专题:概率与统计.分析:(Ⅰ)求T的分布列即求出相应时间的频率,频率=频数÷样本容量,数学期望ET=25×0.2+30×0.3+35×0.4+40×0.1=32(分钟);(Ⅱ)设T1,T2分别表示往、返所需时间,事件A对应于“刘教授在路途中的时间不超过70分钟”,先求出P()=P(T1=35,T2=40)+P(T1=40,T2=35)+P(T1=40,T2=40)=0.09,即P(A)=1﹣P()=0.91.解答:解(Ⅰ)由统计结果可得T的频率分布为T(分钟)25 30 35 40频率0.2 0.3 0.4 0.1以频率估计概率得T的分布列为T 25 30 35 40P 0.2 0.3 0.4 0.1从而数学期望ET=25×0.2+30×0.3+35×0.4+40×0.1=32(分钟)(Ⅱ)设T1,T2分别表示往、返所需时间,T1,T2的取值相互独立,且与T的分布列相同,设事件A表示“刘教授共用时间不超过120分钟”,由于讲座时间为50分钟,所以事件A对应于“刘教授在路途中的时间不超过70分钟”P()=P(T1+T2>70)=P(T1=35,T2=40)+P(T1=40,T2=35)+P(T1=40,T2=40)=0.4×0.1+0.1×0.4+0.1×0.1=0.09故P(A)=1﹣P()=0.91故答案为:(Ⅰ)分布列如上表,数学期望ET=32(分钟)(Ⅱ)0.91点评:本题考查了频率=频数÷样本容量,数学期望,对学生的理解事情的能力有一定的要求,属于中档题.20.(12分)(2015•陕西)已知椭圆E:+=1(a>b>0)的半焦距为c,原点O到经过两点(c,0),(0,b)的直线的距离为c.(Ⅰ)求椭圆E的离心率;(Ⅱ)如图,AB是圆M:(x+2)2+(y﹣1)2=的一条直径,若椭圆E经过A、B两点,求椭圆E的方程.考点:直线与圆锥曲线的综合问题;曲线与方程.专题:创新题型;直线与圆;圆锥曲线的定义、性质与方程.分析:(Ⅰ)求出经过点(0,b)和(c,0)的直线方程,运用点到直线的距离公式,结合离心率公式计算即可得到所求值;(Ⅱ)由(Ⅰ)知,椭圆E的方程为x2+4y2=4b2,①设出直线AB的方程,代入椭圆方程,运用韦达定理和弦长公式,结合圆的直径和中点坐标公式,解方程可得b2=3,即可得到椭圆方程.解答:解:(Ⅰ)经过点(0,b)和(c,0)的直线方程为bx+cy﹣bc=0,则原点到直线的距离为d==c,即为a=2b,e===;(Ⅱ)由(Ⅰ)知,椭圆E的方程为x2+4y2=4b2,①由题意可得圆心M(﹣2,1)是线段AB的中点,则|AB|=,易知AB与x轴不垂直,记其方程为y=k(x+2)+1,代入①可得(1+4k2)x2+8k(1+2k)x+4(1+2k)2﹣4b2=0,设A(x1,y1),B(x2,y2),则x1+x2=.x1x2=,由x1+x2=﹣4,得=﹣4,解得k=,从而x1x2=8﹣2b2,于是|AB|=•|x1﹣x2|=•==,解得b2=3,则有椭圆E的方程为+=1.点评:本题考查椭圆的方程和性质,主要考查椭圆的离心率的求法和椭圆方程的运用,联立直线方程和椭圆方程,运用韦达定理和弦长公式,同时考查直线和圆的位置关系,以及中点坐标公式和点到直线的距离公式的运用,属于中档题.21.(12分)(2015•陕西)设f n (x )是等比数列1,x ,x 2,…,x n 的各项和,其中x >0,n ∈N ,n ≥2.(Ⅰ)证明:函数F n (x )=f n (x )﹣2在(,1)内有且仅有一个零点(记为x n ),且x n =+x ;(Ⅱ)设有一个与上述等比数列的首项、末项、项数分别相同的等差数列,其各项和为g n (x ),比较f n (x )和g n (x )的大小,并加以证明.考点:数列的求和;等差数列与等比数列的综合. 专题: 综合题;创新题型;导数的综合应用;等差数列与等比数列. 分析:(Ⅰ)由F n (x )=f n (x )﹣2=1+x+x 2+…++x n ﹣2,求得F n (1)>0,F n ()<0.再由导数判断出函数F n (x )在(,1)内单调递增,得到F n (x )在(,1)内有且仅有一个零点x n ,由F n (x n )=0,得到;(Ⅱ)先求出,构造函数h (x )=f n (x )﹣g n (x )=1+x+x 2+…++x n ﹣,当x=1时,f n (x )=g n (x ).当x ≠1时,利用导数求得h (x )在(0,1)内递增,在(1,+∞)内递减,得到f n (x )<g n (x ). 解答: 证明:(Ⅰ)由F n (x )=f n (x )﹣2=1+x+x 2+…++x n ﹣2, 则F n (1)=n ﹣1>0,F n ()=1+.∴F n (x )在(,1)内至少存在一个零点, 又,∴F n (x )在(,1)内单调递增,∴F n (x )在(,1)内有且仅有一个零点x n , ∵x n 是F n (x )的一个零点,∴F n (x n )=0, 即,故;(Ⅱ)由题设,,设h (x )=f n (x )﹣g n (x )=1+x+x 2+…++x n ﹣,x >0.当x=1时,f n (x )=g n (x ). 当x ≠1时,.若0<x <1,h ′(x )>=.若x >1,h ′(x )<=.∴h (x )在(0,1)内递增,在(1,+∞)内递减, ∴h (x )<h (1)=0,即f n (x )<g n (x ). 综上,当x=1时,f n (x )=g n (x ); 当x ≠1时,f n (x )<g n (x ).点评: 本题考查了函数零点的判定方法,考查了等比数列的前n 项和,训练了利用导数研究函数的单调性,考查了数学转化与化归等思想方法,是中档题.四、选修题,请在22、23、24中任选一题作答,如果多做则按第一题计分.选修4-1:几何证明选讲 22.(10分)(2015•陕西)如图,AB 切⊙O 于点B ,直线AO 交⊙O 于D ,E 两点,BC ⊥DE ,垂足为C .(Ⅰ)证明:∠CBD=∠DBA ;(Ⅱ)若AD=3DC ,BC=,求⊙O 的直径.考点: 直线与圆的位置关系. 专题: 直线与圆. 分析:(Ⅰ)根据直径的性质即可证明:∠CBD=∠DBA ; (Ⅱ)结合割线定理进行求解即可求⊙O 的直径.解答:证明:(Ⅰ)∵DE是⊙O的直径,则∠BED+∠EDB=90°,∵BC⊥DE,∴∠CBD+∠EDB=90°,即∠CBD=∠BED,∵AB切⊙O于点B,∴∠DBA=∠BED,即∠CBD=∠DBA;(Ⅱ)由(Ⅰ)知BD平分∠CBA,则=3,∵BC=,∴AB=3,AC=,则AD=3,由切割线定理得AB2=AD•AE,即AE=,故DE=AE﹣AD=3,即可⊙O的直径为3.点评:本题主要考查直线和圆的位置关系的应用和证明,根据相应的定理是解决本题的关键.五、选修4-4:坐标系与参数方程23.(2015•陕西)在直角坐标系xOy中,直线l的参数方程为(t为参数),以原点为极点,x轴正半轴为极轴建立极坐标系,⊙C的极坐标方程为ρ=2sinθ.(Ⅰ)写出⊙C的直角坐标方程;(Ⅱ)P为直线l上一动点,当P到圆心C的距离最小时,求P的直角坐标.考点:点的极坐标和直角坐标的互化.专题:坐标系和参数方程.分析:(I)由⊙C的极坐标方程为ρ=2sinθ.化为ρ2=2,把代入即可得出;.(II)设P,又C.利用两点之间的距离公式可得|PC|=,再利用二次函数的性质即可得出.解答:解:(I)由⊙C的极坐标方程为ρ=2sinθ.∴ρ2=2,化为x2+y2=,配方为=3.(II)设P,又C.∴|PC|==≥2,因此当t=0时,|PC|取得最小值2.此时P(3,0).点评:本题考查了极坐标化为直角坐标方程、参数方程的应用、两点之间的距离公式、二次函数的性质,考查了推理能力与计算能力,属于中档题.六、选修4-5:不等式选讲24.(2015•陕西)已知关于x的不等式|x+a|<b的解集为{x|2<x<4}(Ⅰ)求实数a,b的值;(Ⅱ)求+的最大值.考点:不等关系与不等式.专题:不等式的解法及应用.分析:(Ⅰ)由不等式的解集可得ab的方程组,解方程组可得;(Ⅱ)原式=+=+,由柯西不等式可得最大值.解答:解:(Ⅰ)关于x的不等式|x+a|<b可化为﹣b﹣a<x<b﹣a,又∵原不等式的解集为{x|2<x<4},∴,解方程组可得;(Ⅱ)由(Ⅰ)可得+=+=+≤=2=4,当且仅当=即t=1时取等号,∴所求最大值为4点评:本题考查不等关系与不等式,涉及柯西不等式求最值,属基础题.。
WORD整理版分享绝密★启用前2018年一般高等学校招生全国一致考试理科数学注意事项:1.答卷前,考生务势必自己的姓名、准考据号填写在答题卡上。
2.作答时,将答案写在答题卡上。
写在本试卷及底稿纸上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:此题共12小题,每题 5分,共60分,在每题给出的四个选项中,只有一项为哪一项切合题目要求的。
1.12i12iA.43iB.43i C.34i D.34i55555555 2.已知会合A x,yx2y2≤3,x Z,y Z,则A中元素的个数为A.9B.8C.5D.4e xe x3.函数f x x2的图像大概为.已知向量a,b知足|a|1,ab1,则a(2ab)A.4B.3C.2D.0 x223,则其渐近线方程为.双曲线y21(a0,b0)的离心率为a bA.y2x B.y3x C.y 2D.y3 x x22.在△ABC中,cos C5,BC1,AC5,则AB25A.42B.30C.29D.25范文典范参照指导WORD整理版分享7.为计算S 11111开始1?,设计了右边的程序框图,23499100则在空白框中应填入N0,T0 A.i i1i1B.i i2是否100 C.i i31N SNTN D.i i4iT T1输出Si1结束8.我国数学家陈景润在哥德巴赫猜想的研究中获得了世界当先的成就.哥德巴赫猜想是“每个大于2的偶数能够表示为两个素数的和”,如30723.在不超出30的素数中,随机选用两个不一样的数,其和等于30的概率是A.1B.1C.1D.1121415189.在长方体ABCD A1B1C1D1中,ABBC1,AA13,则异面直线AD1与DB1所成角的余弦值为A.1B.5C.5D.25652 10.若f(x)cosx sinx在[a,a]是减函数,则a的最大值是A .πB.π3πD.πC.42411.已知f(x)是定义域为(,)的奇函数,知足f(1x)f(1x).若f(1)2,则f(1)f(2)f(3)?f(5 0)A.50B.0C.2D.50 12.已知F1,F2 是椭圆C:xa222y21(ab0)的左,右焦点,A是C的左极点,点P在过A且斜率b为3的直线上,△PF1F2为等腰三角形,F1F2P120,则C的离心率为6A.2B.1C.1D.13234二、填空题:此题共4小题,每题5分,共20分。
2017年陕西省高考数学试卷(理科)(全国新课标Ⅱ)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)=()A.1+2i B.1﹣2i C.2+i D.2﹣i2.(5分)设集合A={1,2,4},B={x|x2﹣4x+m=0}.若A∩B={1},则B=()A.{1,﹣3}B.{1,0}C.{1,3}D.{1,5}3.(5分)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A.1盏 B.3盏 C.5盏 D.9盏4.(5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为()A.90πB.63πC.42πD.36π5.(5分)设x,y满足约束条件,则z=2x+y的最小值是()A.﹣15 B.﹣9 C.1 D.96.(5分)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有()A.12种B.18种C.24种D.36种7.(5分)甲、乙、丙、丁四位同学一起去问老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则()A.乙可以知道四人的成绩B.丁可以知道四人的成绩C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩8.(5分)执行如图的程序框图,如果输入的a=﹣1,则输出的S=()A.2 B.3 C.4 D.59.(5分)若双曲线C:﹣=1(a>0,b>0)的一条渐近线被圆(x﹣2)2+y2=4所截得的弦长为2,则C的离心率为()A.2 B.C.D.10.(5分)已知直三棱柱ABC﹣A1B1C1中,∠ABC=120°,AB=2,BC=CC1=1,则异面直线AB1与BC1所成角的余弦值为()A.B.C.D.11.(5分)若x=﹣2是函数f(x)=(x2+ax﹣1)e x﹣1的极值点,则f(x)的极小值为()A.﹣1 B.﹣2e﹣3C.5e﹣3 D.112.(5分)已知△ABC是边长为2的等边三角形,P为平面ABC内一点,则•(+)的最小值是()A.﹣2 B.﹣ C.﹣ D.﹣1二、填空题:本题共4小题,每小题5分,共20分。
2021年普通高等招生全国统一考试数学理试题〔卷,解析版〕【老师简评】2021年是新课改全面施行后的第一次高考,今年高考数学试题从整体看,表达“总体稳定,深化才能〞的特点,在主体内容保持2021年特点的同时,力争创新与变化;试题不仅注意对根底知识的考察,更注重了对才能的考察.从考生角度来说,试卷总体有较好的梯度,注重认知才能和数学运用才能的考察,稳中求新.1. 忠实地遵循了?普通高中新课程HY 教学要求?和2021年?考试说明?.2. 题型稳定,突出对根本知识但考察,全卷没有一道偏题、怪题.全卷构造、题型包括难度根本稳定.填空题比拟平和.不需要太繁的计算,考生感觉顺手.许多试题源于课本,略高于课本.附加题局部,选做题对知识的考察单一,解决要求明确,学生容易入手. 3. 把关题一改正去最后一题或者者两题把关的习惯,多题把关,有很好的区分度.第19题的第三问,第20题的第二问和第21题第三问,更能有效区分不同才能层次的考生群体. 4. 深化才能立意.知识与才能并重.全卷在考察知识的同时,注重考察学生的数学根本才能.许多试题实际上并不难,知识点熟悉,但需要考生自主综合知识,才能解决问题.如第17题,表达理解斜三角形的根本思想,用正余弦定理直接可求解,假设能找到适宜的解题思路和方法如DBC ∆是直角三角形,那么解答会更容易些. 5. 关注联络,有效考察数学思想方法.6. 加大数学应用题考察力度,表达“学数学,用数学的根本思想.〞如第14题,17题.一、选择题1.集合A= {x ∣12x -≤≤},B={x ∣x<1},那么()R AB = 〔D 〕〔A 〕{x ∣x>1} (B) {x ∣x ≥ 1} (C) {x ∣12x <≤ } (D) {x ∣12x ≤≤}【答案】D【命题意图】本试题主要考察集合根本运算中的补集及交集的运算问题.【解析】∵ {}1≥=x x B C R ,∴由图可知(⋂C A R1iz i=+在复平面上对应的点位于 〔A 〕 〔A 〕第一象限 〔B 〕第二象限 〔C 〕第三象限 〔D 〕第四象限 【答案】A【命题意图】本试题主要考察复数的除法运算问题. 【解析】i i i i i i i i z 2121111)1)(1()1(1+=++=-+-=+=,∴对应点⎪⎭⎫ ⎝⎛21,21在第一象限. ()2sin cos f x x x =,以下选项里面正确的选项是 〔B 〕〔A 〕()f x f 〔x 〕在〔4π,2π〕上是递增的 〔B 〕()f x 的图像关于原点对称 〔C 〕()f x 的最小正周期为2π 〔D 〕()f x 的最大值为2 【答案】B【命题意图】本试题主要考察正弦函数的单调性,最值,周期性及对称性.【解析】∵()x x f 2sin =,∴π=T ,()1max =x f ,对称中心是()Z k k ∈,0,π.又当⎪⎭⎫ ⎝⎛∈2,4ππx 时,⎪⎭⎫ ⎝⎛∈ππ,22x ,所以()x f 在⎪⎭⎫⎝⎛∈2,4ππx 上单调递减.故A ,C ,D 错误,只有选B .4.5()a x x+〔x R ∈〕展开式中3x 的系数为10,那么实数a 等于 〔D 〕 〔A 〕-1 〔B 〕12(C) 1 (D) 2 【答案】A【命题意图】本试题主要考察二项展开式的通项公式.【解析】设rrr r x a xC T ⎪⎭⎫ ⎝⎛=-+551rr r x a C 255-=,由可得⎩⎨⎧==-103255r r a C r ,解得⎩⎨⎧==21a r . ()f x =,假设((0))f f =4a ,那么实数a= 〔C 〕〔A 〕12 〔B 〕45(C) 2 (D) 9 【答案】B【命题意图】本试题主要考察分段函数求函数值.【解析】由得()21200=+=f ,()()()a a f f f 422202=+==,解得2=a .x 1,x 2,…x 10平均数x 的程序框图,图中空白框中应填入的内容为【A 】(A) S =S +x n (B) S =S +nx n (C) S =S + n (D) S =S +1n7. 假设某空间几何体的三视图如下图,那么该几何体的体积是【C 】(A)13 (B) 23(C) 1 (D) 2y 2=2px 〔p >0〕的准线与圆x 2+y 2-6 x -7=0相切,那么p 的值是【C 】(A)1212(B) 1 (C) 2 (D) 4 【答案】C【命题意图】本试题主要考察抛物线的准线这条特殊直线与圆的位置关系的运用. 【解析】由可得2p x -=与圆()16322=+-y x 相切.圆心为()0,3,半径为4,圆心到直线的间隔 423=+=pd ,解得2=p . 9.对于数列{a n },“a n +1>∣a n ∣〔n=1,2…〕〞是“{a n }为递增数列〞的【B 】 (A) 必要不充分条件 (B) 充分不必要条件 (C) 必要条件 (D) 既不充分也不必要条件10.某要召开学生代表大会,规定各班每10人推选一名代表,当各班人数除以10的余数大于6时再增选一名代表。
2021年高考真题 - 数学理(陕西卷)解析版[1] 2021年陕西省高考理科数学试题 一、选择题:在每小题给出的四个选项中,只有一项符合题目要求的(本大题共10小题,每小题5分,共50分).
1. 集合M?{x|lgx?0},N?{x|x2?4},则M?N?( C ) (A) (1,2) (B) [1,2) (C) (1,2] (D) [1,2]
2. 下列函数中,既是奇函数又是增函数的为( D ) 3(A) y?x?1 (B) y??x (C) y?1 (D) y?x|x| x 3. 设a,b?R,i是虚数单位,则“ab?0”是“复数a?(A)充分不必要条件 (B) 必要不充分条件 (C)充分必要条件 (D) 既不充分也不必要条件
【解析】由概念知中位数是中间两数的平均数即(45+47)/2=46极差为68-12=56.所以选A. 【答案】A
【考点定位】此题主要考查样本数据特征的概念,要正确的理解样本数据特征的概念以及争取的用来估计总体。
4. 已知圆C:x2?y2?4x?0,l过点P(3,0)的直线,则( A ) (A)l与C相交 (B) l与C相切 (C)l与C相离 (D) 以上三个选项均有可能
b为纯虚数”的( B ) i 5. 如图,在空间直角坐标系中有直三棱柱ABC?A1B1C1,CA?CC1?2CB,则直线BC1与直线AB1夹角的余弦值为( A ) (A) 35525 (B) (C) (D)
5535
6. 从甲乙两个城市分别随机抽取16台自动售货机,对其销售额进行统计,统计数据用茎叶图表示(如图所示),设甲乙两组数据的平均数分别为x甲,x乙,中位数分别为m甲,m乙,则( B )
(A) x甲?x乙,m甲?m乙 (B) x甲?x乙,m甲?m乙 (C) x甲?x乙,m甲?m乙 (D) x甲?x乙,m甲?m乙
7. 设函数f(x)?xe,则( D ) x(A) x?1为f(x)的极大值点 (B)x?1为f(x)的极小值点 (C) x??1为f(x)的极大值点 (D)x??1为f(x)的极小值点
陕西省2023年高考数学试题及答案1. [选择题](1) 若函数$f(x)=x^2-3x+a$, 当$x=2$时,$f(x)$的值为0,则实数a的值为()A. $-4$B. $-2$C. 1D. 2(2) 已知等腰三角形ABC中,AB=AC,角BAC=80°,则角ABC的度数为()A. 20°B. 70°C. 80°D. 100°(3) 关于x轴的平移变换:把图像$y=f(x)$上的每个点在x轴上向左平移4个单位得到的图像是$y=f(x+4)$的图像,若$f(x)=-2x^2+3x+5$,则$f(2)$的值等于()A. -3B. -1C. 3D. 72. [填空题](1) 若a,b为正整数且满足$\frac{a}{b}=\frac{3}{4}$,则$\frac{a^2}{b^2}$的值为\_\_\_\_\_\_;(2) 已知集合A={2019,2020,2021,2022},则集合A中元素个数为\_\_\_\_\_\_;(3) 若甲乙两车同地同时起跑,甲车平均时速90 km/h,乙车平均时速100 km/h,下午5:00 两车相遇在距乙地35 km的某地,从上午10:00起甲乙两车分别行驶的时间分别为\_\_\_\_\_\_小时,\_\_\_\_\_\_小时。
3. [解答题](1) 已知函数$f(x)=2x^3+ax^2+3x-1$的图像经过点(1,4),求a的值。
(2) 设A、B、C、D四个顶点的坐标分别为A(-2,2)、B(4,2)、C(2,-1)、D(-2,-1),连接射线AD,以点C为起点和端点分别沿顺时针和逆时针方向旋转90度,分别得到射线CA‘和CD‘,求直线CA‘与CD‘的交点坐标。
4. [问答题](1) 解方程$\log_2(x-1)-\log_2(x-2)=1$,得到的根为\_\_\_\_\_\_;(2) 将一个完全平方数减去一个奇数得到一个奇数,这个完全平方数可能是多少?为什么?以上是2023年陕西省高考数学试题及答案。
2014年陕西省高考数学试卷(理科)答案与解析编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2014年陕西省高考数学试卷(理科)答案与解析)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2014年陕西省高考数学试卷(理科)答案与解析的全部内容。
2014年陕西省高考数学试卷(理科)参考答案与试题解析一、选择题,在每小题给出的四个选项中,只有一项符合题目要求(共10小题,每小题5分,满分50分)1.(5分)(2014•陕西)设集合M={x|x≥0,x∈R},N={x|x2<1,x∈R},则M∩N=()A.[0,1]B.[0,1)C.(0,1]D.(0,1)考点:交集及其运算.集合.专题:分析:先解出集合N,再求两集合的交即可得出正确选项.解答:解:∵M={x|x≥0,x∈R},N={x|x2<1,x∈R}={x|﹣1<x<1,x∈R},∴M∩N=[0,1).故选B.点评:本题考查交集的运算,理解好交集的定义是解答的关键.2.(5分)(2014•陕西)函数f(x)=cos(2x﹣)的最小正周期是()A.B.πC.2πD.4π考点:三角函数的周期性及其求法.三角函数的图像与性质.专题:分析:由题意得ω=2,再代入复合三角函数的周期公式求解.解答:解:根据复合三角函数的周期公式得,函数f(x)=cos(2x﹣)的最小正周期是π,故选B.点评:本题考查了三角函数的周期性,以及复合三角函数的周期公式应用,属于基础题.3.(5分)(2014•陕西)定积分(2x+e x)dx的值为()A.e+2B.e+1C.e D.e﹣1定积分.考点:导数的概念及应用.专题:根据微积分基本定理计算即可.分析:解答:解:(2x+e x)dx=(x2+e x)=(1+e)﹣(0+e0)=e.故选:C.点评:本题主要考查了微积分基本定理,关键是求出原函数.4.(5分)(2014•陕西)根据如图框图,对大于2的正数N,输出的数列的通项公式是()A.an=2n B.a n=2(n﹣1)C.a n=2n D.a n=2n﹣1考点:程序框图;等比数列的通项公式.专题:算法和程序框图.分析:根据框图的流程判断递推关系式,根据递推关系式与首项求出数列的通项公式.解答:解:由程序框图知:a i+1=2a i,a1=2,∴数列为公比为2的等比数列,∴a n=2n.故选:C.点评:本题考查了直到型循环结构的程序框图,根据框图的流程判断递推关系式是解答本题的关键.5.(5分)(2014•陕西)已知底面边长为1,侧棱长为的正四棱柱的各顶点均在同一球面上,则该球的体积为()A.B.4πC.2πD.考点:球的体积和表面积.专题:计算题;空间位置关系与距离.分析:由长方体的对角线公式,算出正四棱柱体对角线的长,从而得到球直径长,得球半径R=1,最后根据球的体积公式,可算出此球的体积.解答:解:∵正四棱柱的底面边长为1,侧棱长为,∴正四棱柱体对角线的长为=2又∵正四棱柱的顶点在同一球面上,∴正四棱柱体对角线恰好是球的一条直径,得球半径R=1根据球的体积公式,得此球的体积为V=πR3=π.故选:D.点评:本题给出球内接正四棱柱的底面边长和侧棱长,求该球的体积,考查了正四棱柱的性质、长方体对角线公式和球的体积公式等知识,属于基础题.6.(5分)(2014•陕西)从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为()A.B.C.D.考点:列举法计算基本事件数及事件发生的概率.专题:应用题;概率与统计;排列组合.分析:设正方形边长为1,则从正方形四个顶点及其中心这5个点中任取2个点,共有10条线段,4条长度为1,4条长度为,两条长度为,即可得出结论.解答:解:设正方形边长为1,则从正方形四个顶点及其中心这5个点中任取2个点,共有10条线段,4条长度为1,4条长度为,两条长度为,∴所求概率为=.故选:C.点评:本题考查概率的计算,列举基本事件是关键.7.(5分)(2014•陕西)下列函数中,满足“f(x+y)=f(x)f(y)"的单调递增函数是()A.f(x)=x B.f(x)=x3C.f(x)=()xD.f(x)=3x考点:抽象函数及其应用.专题:函数的性质及应用.分析:对选项一一加以判断,先判断是否满足f(x+y)=f(x)f(y),然后考虑函数的单调性,即可得到答案.解答:解:A.f(x)=,f(y)=,f(x+y)=,不满足f(x+y)=f(x)f(y),故A错;B.f(x)=x3,f(y)=y3,f(x+y)=(x+y)3,不满足f(x+y)=f(x)f(y),故B错;C.f(x)=,f(y)=,f(x+y)=,满足f(x+y)=f(x)f(y),但f(x)在R上是单调减函数,故C错.D.f(x)=3x,f(y)=3y,f(x+y)=3x+y,满足f(x+y)=f(x)f(y),且f(x)在R上是单调增函数,故D正确;故选D.点评:本题主要考查抽象函数的具体模型,同时考查幂函数和指数函数的单调性,是一道基础题.8.(5分)(2014•陕西)原命题为“若z1,z2互为共轭复数,则|z1|=|z2|”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是()A.真,假,真B.假,假,真C.真,真,假D.假,假,假考点:四种命题间的逆否关系.专题:简易逻辑.分析:根据共轭复数的定义判断命题的真假,根据逆命题的定义写出逆命题并判断真假,再利用四种命题的真假关系判断否命题与逆否命题的真假.解答:解:根据共轭复数的定义,原命题“若z1,z2互为共轭复数,则|z1|=|z2|"是真命题;其逆命题是:“若|z1|=|z2|,则z1,z2互为共轭复数”,例|1|=|﹣1|,而1与﹣1不是互为共轭复数,∴原命题的逆命题是假命题;根据原命题与其逆否命题同真同假,否命题与逆命题互为逆否命题,同真同假,∴命题的否命题是假命题,逆否命题是真命题.故选:B.点评:本题考查了四种命题的定义及真假关系,考查了共轭复数的定义,熟练掌握四种命题的真假关系是解题的关键.9.(5分)(2014•陕西)设样本数据x1,x2,…,x10的均值和方差分别为1和4,若y i=x i+a (a为非零常数,i=1,2,…,10),则y1,y2,…,y10的均值和方差分别为()A.1+a,4B.1+a,4+a C.1,4D.1,4+a考点:极差、方差与标准差;众数、中位数、平均数.专题:概率与统计.分析:方法1:根据变量之间均值和方差的关系直接代入即可得到结论.方法2:根据均值和方差的公式计算即可得到结论.解答:解:方法1:∵yi=x i+a,∴E(y i)=E(x i)+E(a)=1+a,方差D(y i)=D(x i)+E(a)=4.方法2:由题意知y i=x i+a,。
2021年一般高等学校招生全国统一考试(陕西卷)理一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设集合2{|}M x x x ==,{|lg 0}N x x =≤,则MN =( )A .[0,1]B .(0,1]C .[0,1)D .(,1]-∞ 【答案】A 【解析】试题分析:{}{}20,1x x x M ===,{}{}lg 001x x x x N =≤=<≤,所以[]0,1MN =,故选A .考点:1、一元二次方程;2、对数不等式;3、集合的并集运算.2.某中学学校部共有110名老师,高中部共有150名老师,其性别比例如图所示,则该校女老师 的人数为( )A .167B .137C .123D .93【答案】B考点:扇形图.3.如图,某港口一天6时到18时的水深变化曲线近似满足函数3sin()6y x k πϕ=++,据此函数可知,这段时间水深(单位:m )的最大值为( )A .5B .6C .8D .10【答案】C 【解析】试题分析:由图象知:min 2y =,由于min 3y k =-+,所以32k -+=,解得:5k =,所以这段时间水深的最大值是max 3358y k =+=+=,故选C . 考点:三角函数的图象与性质.4.二项式(1)()n x n N ++∈的开放式中2x 的系数为15,则n =( )A .4B .5C .6D .7 【答案】C考点:二项式定理.5.一个几何体的三视图如图所示,则该几何体的表面积为( )A .3πB .4πC .24π+D .34π+【答案】D 【解析】试题分析:由三视图知:该几何体是半个圆柱,其中底面圆的半径为1,母线长为2,所以该几何体的表面积是()1211222342ππ⨯⨯⨯++⨯=+,故选D . 考点:1、三视图;2、空间几何体的表面积.6.“sin cos αα=”是“cos20α=”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】A 【解析】试题分析:由于22cos 2cos sin 0ααα=-=,所以sin cos αα=或sin cos αα=-,由于“sin cos αα=”⇒“cos20α=”,但“sin cos αα=”⇐/“cos20α=”,所以“sin cos αα=”是“cos20α=”的充分不必要条件,故选A .考点:1、二倍角的余弦公式;2、充分条件与必要条件.7.对任意向量,a b ,下列关系式中不恒成立的是( )A .||||||a b a b ⋅≤B .||||||||a b a b -≤-C .22()||a b a b +=+ D .22()()a b a b a b +-=-【答案】 B考点:1、向量的模;2、向量的数量积.8.依据右边的图,当输入x 为2006时,输出的y =( )A .28B .10C .4D . 2【答案】B 【解析】试题分析:初始条件:2006x =;第1次运行:2004x =;第2次运行:2002x =;第3次运行:2000x =;⋅⋅⋅⋅⋅⋅;第1003次运行:0x =;第1004次运行:2x =-.不满足条件0?x ≥,停止运行,所以输出的23110y =+=,故选B .考点:程序框图.9.设()ln ,0f x x a b =<<,若()p f ab =,()2a b q f +=,1(()())2r f a f b =+,则下列关系 式中正确的是( )A .q r p =<B .q r p =>C .p r q =<D .p r q => 【答案】C考点:1、基本不等式;2、基本初等函数的单调性.10.某企业生产甲、乙两种产品均需用A ,B 两种原料.已知生产1吨每种产品需原料及每天原料的可用限额如表所示,假如生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得最 大利润为( )A .12万元B .16万元C .17万元D .18万元甲乙原料限额A(吨)3212B(吨)128【答案】D 【解析】试题分析:设该企业每天生产甲、乙两种产品分别为x 、y 吨,则利润34z x y =+由题意可列32122800x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩,其表示如图阴影部分区域:当直线340x y z +-=过点(2,3)A 时,z 取得最大值,所以max 324318z =⨯+⨯=,故选D . 考点:线性规划.11.设复数(1)z x yi =-+(,)x y R ∈,若||1z ≤,则y x ≥的概率为( ) A .3142π+ B .1142π- C .112π- D .112π+ 【答案】B【解析】试题分析:2222(1)||(1)1(1)1z x yi z x y x y =-+⇒=-+≤⇒-+≤如图可求得(1,1)A ,(1,0)B ,阴影面积等于21111114242ππ⨯-⨯⨯=- 若||1z ≤,则y x ≥的概率是211142142πππ-=-⨯,故选B . 考点:1、复数的模;2、几何概型.12.对二次函数2()f x ax bx c =++(a 为非零常数),四位同学分别给出下列结论,其中有且仅有 一个结论是错误的,则错误的结论是( )A .-1是()f x 的零点B .1是()f x 的极值点C .3是()f x 的极值D . 点(2,8)在曲线()y f x =上 【答案】A考点:1、函数的零点; 2、利用导数争辩函数的极值.二、填空题(本大题共4小题,每小题5分,共20分.)13.中位数1010的一组数构成等差数列,其末项为2021,则该数列的首项为 . 【答案】5 【解析】试题分析:设数列的首项为1a ,则12015210102020a +=⨯=,所以15a =,故该数列的首项为5,所以答案应填:5. 考点:等差中项.14.若抛物线22(0)y px p =>的准线经过双曲线221x y -=的一个焦点,则p= . 【答案】22考点:1、抛物线的简洁几何性质;2、双曲线的简洁几何性质. 15.设曲线xy e =在点(0,1)处的切线与曲线1(0)y x x=>上点p 处的切线垂直,则p 的坐标 为 . 【答案】()1,1 【解析】试题分析:由于x y e =,所以xy e '=,所以曲线x y e =在点()0,1处的切线的斜率0101x k y e ='===,设P 的坐标为()00,x y (00x >),则001y x =,由于1y x =,所以21y x '=-,所以曲线1y x=在点P 处的切线的斜率02201x x k y x ='==-,由于121k k ⋅=-,所以211x -=-,即201x =,解得01x =±,由于00x >,所以01x =,所以01y =,即P 的坐标是()1,1,所以答案应填:()1,1. 考点:1、导数的几何意义;2、两条直线的位置关系.16.如图,一横截面为等腰梯形的水渠,因泥沙沉积,导致水渠截面边界呈抛物线型(图中虚线表 示),则原始的最大流量与当前最大流量的比值为 .【答案】1.2【解析】试题分析:建立空间直角坐标系,如图所示:原始的最大流量是()11010222162⨯+-⨯⨯=,设抛物线的方程为22x py =(0p >),由于该抛物线过点()5,2,所以2225p ⨯=,解得254p =,所以2252x y =,即2225y x =,所以当前最大流量是()()5323535522224022255255257575753x dx x x --⎛⎫⎛⎫⎛⎫⎡⎤-=-=⨯-⨯-⨯--⨯-= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎰,故原始的最大流量与当前最大流量的比值是161.2403=,所以答案应填:1.2. 考点:1、定积分;2、抛物线的方程;3、定积分的几何意义.三、解答题(本大题共6小题,共70分.解答须写出文字说明、证明过程和演算步骤.)17.(本小题满分12分)C ∆AB 的内角A ,B ,C 所对的边分别为a ,b ,c .向量(),3m a b = 与()cos ,sin n =A B 平行. (I )求A ; (II )若7a =,2b =求C ∆AB 的面积.【答案】(I )3π;(II )332.试题解析:(I )由于//m n ,所以sin 3cos 0a B b A , 由正弦定理,得sinAsinB 3sinBcos A 0 又sin 0B ≠,从而tan 3A ,由于0A π<<,所以3A π=(II)解法一:由余弦定理,得2222cos ab c bc A而7b2,a 3πA =得2742c c ,即2230c c由于0c,所以3c .故∆ABC 的面积为133bcsinA 22.考点:1、平行向量的坐标运算;2、正弦定理;3、余弦定理;4、三角形的面积公式. 18.(本小题满分12分)如图1,在直角梯形CD AB 中,D//C A B ,D 2π∠BA =,C 1AB =B =, D 2A =,E 是D A 的中点,O 是C A 与BE 的交点.将∆ABE 沿BE 折起到1∆A BE 的位置,如图2.(I )证明:CD ⊥平面1C A O ;(II )若平面1A BE ⊥平面CD B E ,求平面1C A B 与平面1CD A 夹角的余弦值.【答案】(I )证明见解析;(II 6试题解析:(I )在图1中,由于AB=BC=1,AD=2,E 是AD 的中点,∠BAD=2π,所以BE ⊥AC即在图2中,BE ⊥ 1OA ,BE ⊥OC 从而BE ⊥平面1A OC又CD BE ,所以CD ⊥平面1A OC .(II)由已知,平面1A BE ⊥平面BCDE ,又由(1)知,BE ⊥ 1OA ,BE ⊥OC 所以1A OC ∠为二面角1--C A BE 的平面角,所以1OC 2A π∠=.如图,以O 为原点,建立空间直角坐标系, 由于11B=E=BC=ED=1A A , BC ED所以12222(E(,0,0),A (0,0,),C(0,,0),2222B 得22BC(,,0),22 122A C(0,,)22,CD BE (2,0,0).设平面1BC A 的法向量1111(,,)n x y z ,平面1CD A 的法向量2222(,,)n x y z ,平面1BC A 与平面1CD A 夹角为θ,则1110n BC n A C ⎧⋅=⎪⎨⋅=⎪⎩,得111100x y y z -+=⎧⎨-=⎩,取1(1,1,1)n ,2210n CD n A C ⎧⋅=⎪⎨⋅=⎪⎩,得22200x y z =⎧⎨-=⎩,取2(0,1,1)n =, 从而126cos |cos ,|332n n θ=〈〉==⨯, 即平面1BC A 与平面1CD A 夹角的余弦值为63. 考点:1、线面垂直;2、二面角;3、空间直角坐标系;4、空间向量在立体几何中的应用.19.(本小题满分12分)设某校新、老校区之间开车单程所需时间为T ,T 只与道路畅通状况有关,T (分钟)25 30 35 40 频数(次)20304010T ET (II )刘教授驾车从老校区动身,前往新校区做一个50分钟的讲座,结束后马上返回老校区,求刘教授从 离开老校区到返回老校区共用时间不超过120分钟的概率. 【答案】(I )分布列见解析,32;(II )0.91. 【解析】试题分析:(I )先算出T 的频率分布,进而可得T 的分布列,再利用数学期望公式可得数学期望ET ;(II )先设大事A 表示“刘教授从离开老校区到返回老校区共用时间不超过120分钟”,再算出A 的概率. 试题解析:(I )由统计结果可得T 的频率分步为T (分钟)25 30 35 40 频率0.2 0.3 0.4 0.1T25 30 35 40 P0.20.30.40.1从而 0.4400.132⨯+⨯=(分钟)(II)设12,T T 分别表示往、返所需时间,12,T T 的取值相互独立,且与T 的分布列相同.设大事A 表示“刘教授共用时间不超过120分钟”,由于讲座时间为50分钟,所以大事A 对应于“刘教授在途中的时间不超过70分钟”.解法一:121212(A)P(70)P(25,45)P(30,40)P T T T T T T =+≤==≤+=≤1212P(35,35)P(40,30)T T T T +=≤+=≤10.210.30.90.40.50.10.91=⨯+⨯+⨯+⨯=.解法二:121212(A)P(70)P(35,40)P(40,35)P T T T T T T 12P(40,40)T T0.40.10.10.40.10.10.09=⨯+⨯+⨯=故(A)1P(A)0.91P .考点:1、离散型随机变量的分布列与数学期望;2、独立大事的概率.20.(本小题满分12分)已知椭圆:E 22221x y a b +=(0a b >>)的半焦距为c ,原点O 到经过两点(),0c ,()0,b 的直线的距离为12c .(I )求椭圆E 的离心率;(II )如图,AB 是圆:M ()()225212x y ++-=的一条直径,若椭圆E 经过A ,B 两点,求椭圆E 的方程.【答案】(I 3II )221123x y +=. 【解析】试题分析:(I )先写过点(),0c ,()0,b 的直线方程,再计算原点O 到该直线的距离,进而可得椭圆E 的离心率;(II )先由(I )知椭圆E 的方程,设AB 的方程,联立()2222144y k x x y b⎧=++⎪⎨+=⎪⎩,消去y ,可得12x x +和12x x 的值,进而可得k ,再利用10AB =可得2b 的值,进而可得椭圆E 的方程. 试题解析:(I )过点(c,0),(0,b)的直线方程为0bx cy bc,则原点O 到直线的距离22bc d a b c ==+, 由12dc ,得2222a b a c ,解得离心率32c a . (II)解法一:由(I )知,椭圆E 的方程为22244xy b . (1) 依题意,圆心M(-2,1)是线段AB 的中点,且|AB |10.易知,AB 不与x 轴垂直,设其直线方程为(2)1yk x ,代入(1)得 2222(14)8(21)4(21)40k x k k x k b设1122(,y ),B(,y ),A x x 则221212228(21)4(21)4,.1414k k k b x x x x k k由124x x ,得28(21)4,14k k k 解得12k. 从而21282x x b .于是()22212121215|AB |1|410(2)22x x x x x x b ⎛⎫=+-=+-=- ⎪⎝⎭由|AB |10,得210(2)10b ,解得23b .故椭圆E 的方程为221123x y .解法二:由(I )知,椭圆E 的方程为22244xy b . (2)依题意,点A ,B 关于圆心M(-2,1)对称,且|AB |10.设1122(,y ),B(,y ),A x x 则2221144x y b ,2222244x y b ,两式相减并结合12124,y 2,x x y 得1212-4()80x x y y .易知,AB 不与x 轴垂直,则12x x ≠,所以AB 的斜率12121k .2AB y y x x 因此AB 直线方程为1(2)12y x ,代入(2)得224820.x x b所以124x x ,21282x x b .于是()22212121215|AB |1|410(2)22x x x x x x b ⎛⎫=+-=+-=- ⎪⎝⎭由|AB |10,得210(2)10b ,解得23b .故椭圆E 的方程为221123x y .考点:1、直线方程;2、点到直线的距离公式;3、椭圆的简洁几何性质;4、椭圆的方程;5、圆的方程;6、直线与圆的位置关系;7、直线与圆锥曲线的位置.21.(本小题满分12分)设()n f x 是等比数列1,x ,2x ,⋅⋅⋅,nx 的各项和,其中0x >,n ∈N ,2n ≥.(I )证明:函数()()F 2n n x f x =-在1,12⎛⎫⎪⎝⎭内有且仅有一个零点(记为n x ),且11122n n n x x +=+;(II )设有一个与上述等比数列的首项、末项、项数分别相同的等差数列,其各项和为()n g x ,比较()n f x与()n g x 的大小,并加以证明.【答案】(I )证明见解析;(II )当1x 时, ()()n n f x g x ,当1x ≠时,()()n n f x g x ,证明见解析.【解析】试题分析:(I )先利用零点定理可证()F n x 在1,12⎛⎫⎪⎝⎭内至少存在一个零点,再利用函数的单调性可证()F n x 在1,12⎛⎫⎪⎝⎭内有且仅有一个零点,进而利用n x 是()F n x 的零点可证11122n n n x x +=+;(II )先设()()()n n h x f x g x =-,再对x 的取值范围进行争辩来推断()h x 与0的大小,进而可得()n f x 和()n g x 的大小.试题解析:(I )2()()212,n n n F x f x x x x 则(1)10,n F n1211111112()1220,12222212n nn n F +⎛⎫- ⎪⎛⎫⎛⎫⎝⎭=+++-=-=-< ⎪ ⎪⎝⎭⎝⎭-所以()n F x 在1,12⎛⎫⎪⎝⎭内至少存在一个零点n x .又1()120n n F x x nx -'=++>,故在1,12⎛⎫⎪⎝⎭内单调递增,所以()n F x 在1,12⎛⎫⎪⎝⎭内有且仅有一个零点n x .由于n x 是()n F x 的零点,所以()=0n n F x ,即11201n n nx x ,故111=+22n n n x x .(II)解法一:由题设,11().2nn n x g x 设211()()()1,0.2nnn n n x h x f x g x x x x x当1x 时, ()()n n f x g x当1x ≠时, ()111()12.2n n n n x h x x nx --+'=++-若01x ,()11111()22n n n n n n h x x x nx x ----+'>++-11110.22nnn n n n x x若1x ,()11111()22n n n n n n h x x x nxx----+'<++-11110.22nnn n n n x x所以()h x 在(0,1)上递增,在(1,)+∞上递减, 所以()(1)0h x h ,即()()n n f x g x .综上所述,当1x 时, ()()n n f x g x ;当1x ≠时()()n n f x g x解法二 由题设,211()1,(),0.2nn n n n x f x x x x g x x当1x 时, ()()n n f x g x当1x ≠时, 用数学归纳法可以证明()()n n f x g x .当2n时, 2221()()(1)0,2f xg x x 所以22()()f x g x 成立.假设(2)n k k =≥时,不等式成立,即()()k k f x g x .那么,当+1nk 时,111k+1k 11()()()2kk k k k k x f x f x xg x xx12112kk x k x k .又11k+121111()22kk kk x k x k kx k x g x令1()11(x 0)kk k h x kx k x ,则()()11()(k 1)11(x 1)k k k k h x k x k k x k k x --'=+-+=+-所以当01x ,()0kh x '<,()k h x 在(0,1)上递减; 当1x ,()0kh x '>,()k h x 在(1,)+∞上递增. 所以()(1)0k k h x h ,从而1k+1211()2kk x k x k g x故11()()k k f x g x .即+1n k ,不等式也成立.所以,对于一切2n ≥的整数,都有()()n n f x g x .解法三:由已知,记等差数列为k a ,等比数列为k b ,k1,2,, 1.n 则111a b ,11n n n a b x ,所以()11+1(2n)n k x a k k n-=-⋅≤≤,1(2),k k b x k n -=≤≤ 令()()111(x)1,0(2).n k k k k k x m a b x x k n n---=-=+->≤≤当1x 时, =k k a b ,所以()()n n f x g x .当1x ≠时, ()()12211()(k 1)11n k k n k k k m x nx x k x x n----+-'=--=-- 而2k n ≤≤,所以10k ,11n k -+≥.若01x , 11nk x ,()0k m x '<,当1x ,11n k x,()0km x '>, 从而()k m x 在(0,1)上递减,()k m x 在(1,)+∞上递增.所以()(1)0k k m x m ,所以当01(2),k k x x a b k n >≠>≤≤且时,又11a b ,11n n a b ,故()()n n f x g x综上所述,当1x 时, ()()n n f x g x ;当1x ≠时()()n n f x g x考点:1、零点定理;2、利用导数争辩函数的单调性.请在22、23、24三题中任选一题作答,假如多做,则按所做的第一题计分.作答时用2B 铅笔在答题卡上把所选题目的题号后的方框涂黑. 22.(本小题满分10分)选修4-1:几何证明选讲如图,AB 切O 于点B ,直线D A 交O 于D ,E 两点,C D B ⊥E ,垂足为C . (I )证明:C D D ∠B =∠BA ;(II )若D 3DC A =,C 2B =,求O 的直径.【答案】(I )证明见解析;(II )3. 【解析】试题分析:(I )先证C D D ∠B =∠BE ,再证D D ∠BA =∠BE ,进而可证C D D ∠B =∠BA ;(II )先由(I )知D B 平分C ∠BA ,进而可得D A 的值,再利用切割线定理可得AE 的值,进而可得O 的直径.试题解析:(I )由于DE 为圆O 的直径,则BED EDB ∠+∠=90, 又BC ⊥DE ,所以∠CBD+∠EDB=90°,从而∠CBD=∠BED. 又AB 切圆O 于点B ,得∠DAB=∠BED ,所以∠CBD=∠DBA. (II )由(I )知BD 平分∠CBA ,则=3BA ADBC CD,又=2BC 32AB ,所以224ACAB BC ,所以D=3A .由切割线定理得2=AD AB AE ,即2=ADAB AE =6,故DE=AE-AD=3,即圆O 的直径为3.考点:1、直径所对的圆周角;2、弦切角定理;3、切割线定理. 23.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系x y O 中,直线l 的参数方程为13232x t y ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数).以原点为极点,x 轴正半轴为极轴建立极坐标系,C 的极坐标方程为3ρθ=.(I )写出C 的直角坐标方程;(II )P 为直线l 上一动点,当P 到圆心C 的距离最小时,求P 的直角坐标. 【答案】(I )(2233x y +=;(II )()3,0.【解析】试题分析:(I )先将3ρθ=两边同乘以ρ可得223sin ρρθ=,再利用222x y ρ=+,sin x ρθ=可得C 的直角坐标方程;(II )先设P 的坐标,则2C 12t P =+C P 的最小值,进而可得P 的直角坐标.试题解析:(I )由23,3sin ρθρρθ==得,从而有(2222+3,+33x y x y ==所以.(II)设13(3t,t),3)22P 又,则22213|PC |331222t t t ⎛⎫⎛⎫=++-=+ ⎪ ⎪ ⎪⎝⎭⎝⎭故当t=0时,|PC|取最小值,此时P 点的直角坐标为(3,0).考点:1、极坐标方程化为直角坐标方程;2、参数的几何意义;3、二次函数的性质. 24.(本小题满分10分)选修4-5:不等式选讲已知关于x 的不等式x a b +<的解集为{}24x x <<. (I )求实数a ,b 的值;(II 12at bt + 【答案】(I )3a =-,1b =;(II )4. 【解析】试题分析:(I )先由x a b +<可得b a x b a --<<-,再利用关于x 的不等式x a b +<的解集为{}24x x <<可得a ,b 的值;(II试题解析:(I )由||x a b ,得b ax b a则2,4,b a b a --=⎧⎨-=⎩解得3a,1b(II =≤244t t41tt,即1t 时等号成立, 故max3+12+4t t .考点:1、确定值不等式;2、柯西不等式.。
2021年陕西高考数学试题〔理〕一.选择题:本大题共10小题,每题5分,共50分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的.1.集合2{|0},{|1,}M x x N x x x R =≥=<∈,那么MN =〔 〕.[0,1]A .[0,1)B .(0,1]C .(0,1)D【答案】 B 【解析】B N M N M 选,).1,0[),11-(),,0[=∩∴=+∞=2.函数()cos(2)6f x x π=-的最小正周期是〔 〕.2A π.B π .2C π .4D π【答案】 B 【解析】B T 选∴,π2π2||π2===ω3.定积分1(2)xx edx +⎰的值为〔 〕.2Ae + .1B e + .C e .1D e -【答案】 C 【解析】C e e e e x dx e x x x 选∴,-0-1|)()2(1001102∫=+=+=+4.根据右边框图,对大于2的整数N ,输出数列的通项公式是〔 〕.2n A a n = .2(1)n B a n =- .2n n C a = 1.2n n D a -=【答案】 C 【解析】C q a a a a a n 选的等比数列是.2,2∴,8,4,21321=====5.底面边长为12为〔 〕32.3A π .4B π .2C π 4.3D π【答案】 D 【解析】D r r r r 选解得设球的半径为.π3434V ∴,1,4)2(11)2(,32222====++=π6.从正方形四个顶点及其中心这5个点中,任取2个点,那么这2个点的距离不小于该正方形边长的概率为〔 〕1.5A2.5B3.5C 4.5D 【答案】 C 【解析】C p 选反向解题.53C 4C 4-1.2525===7.以下函数中,满足“()()()f x y f x f y +=〞的单调递增函数是〔 〕〔A 〕()12f x x = 〔B 〕()3f x x = 〔C 〕()12xf x ⎛⎫= ⎪⎝⎭〔D 〕()3x f x =【答案】 D 【解析】D y f x f y x f D C y x y x y x 选而言,对不是递增函数只有.333)()(,3)(.++=•=•=+8.原命题为“假设12,z z 互为共轭复数,那么12z z =〞,关于逆命题,否命题,逆否命题真假性的判断依次如下,正确的选项是〔 〕〔A 〕真,假,真 〔B 〕假,假,真 〔C 〕真,真,假 〔D 〕假,假,假 【答案】 B 【解析】Bz z b a z b a z bi a z bi a z 选选择完成判断逆命题的真假即可逆否名称也为真,不需,原命题为真,则设,逆命题和否命题等价原命题和逆否名称等价.,||||∴,||||,-,.2122222111=+=+==+=9.设样本数据1210,,,x x x 的均值和方差分别为1和4,假设i i y x a =+〔a 为非零常数,1,2,,10i =〕,那么12,10,y y y 的均值和方差分别为〔 〕(A )1+,4a 〔B 〕1,4a a ++ 〔C 〕1,4 〔D 〕1,4+a【答案】 A 【解析】A 选变均值也加此数,方差不样本数据加同一个数,.10.如图,某飞行器在4千米高空水平飞行,从距着陆点A 的水平距离10千米处下降,下降飞行轨迹为某三次函数图像的一局部,那么函数的解析式为〔 〕(A )3131255y x x =- 〔B 〕3241255y x x =-〔C 〕33125y x x =- 〔D 〕3311255y x x =-+ 【答案】 A 【解析】AA f x f f x f A f x 选符合只有,,而言,对即为极值点且),三次奇函数过点..053-53)5(53-1253x )(2-3-1)5(∴x 53-x 1251)(.0)5(,5,2-5(),0,0(23==′=′====′= 第二局部〔共100分〕二、填空题:把答案填写在答题卡相应题号后的横线上〔本大题共5小题,每题5分,共25分〕.11.,lg ,24a x a==那么x =________. 【答案】 10 【解析】.1010,21lg 12a ∴,lg ,224212a a========x a x a x 所以,12.假设圆C 的半径为1,其圆心与点)0,1(关于直线x y =对称,那么圆C 的标准方程为_______.【答案】11-(22=+)y x 【解析】.11-(1),1,0(∴)1,0()0,1(22=+=)的标准方程为半径为圆心为,的对称点关于点y x x y13. 设20πθ<<,向量()()sin 2cos cos 1a b θθθ==,,,,假设b a //,那么=θtan _______.【答案】 21【解析】.21tan θθ,cos θcos θsin 2θcos θ2sin ∴//).1,θ(cos ),θcos ,θ2(sin 22=====解得即,b a b a14. 观察分析下表中的数据:多面体 面数〔F 〕 顶点数〔V ) 棱数〔E ) 三棱锥 5 6 9 五棱锥 6 6 10 立方体6812猜测一般凸多面体中,E V F ,,所满足的等式是_________. 【答案】 2+=+E V F 【解析】.2+=+E V F 经观察规律,可得15.〔考生注意:请在以下三题中任选一题作答,如果多做,那么按所做的第一题评分〕.A (不等式选做题)设,,,a b m n R ∈,且225,5a b ma nb +=+=,那么22m n +的最小值为.B 〔几何证明选做题〕如图,ABC ∆中,6BC =,以BC 为直径的半圆分别交,AB AC 于点,E F ,假设2AC AE =,那么EF =.C 〔坐标系与参数方程选做题〕在极坐标系中,点(2,)6π到直线sin()16πρθ-=的距离是【答案】 A 5 B 3 C 1 【解析】A5.≤5)φθsin(∴5)φθsin(5os θ5θsin 5,os θ5,θsin 5∴,52222222222的最小值为所以,,则设n m n m n m n m c n m nb ma c b a b a ++=++=++=+=+===+B.3,2,6∴Δ=∴===ΔEF AE AC BC CBEFAC AE ACB AEF ,且相似与 C1|1323-3|023-1,3(∴,2-3121os θρ-23θsin ρ)6π-θsin(ρ,1,3()6π,2(=++==+==••=d y x x y c 的距离)到直线点即对应直线)对应直角坐标点极坐标点三、解答题:解容许写出文字说明、证明过程或演算步骤〔本大题共6小题,共75分〕 16. 〔本小题总分值12分〕ABC ∆的内角C B A ,,所对的边分别为c b a ,,. 〔I 〕假设c b a ,,成等差数列,证明:()C A C A +=+sin 2sin sin ; 〔II 〕假设c b a ,,成等比数列,求B cos 的最小值. 【答案】 〔1〕 省略 〔2〕 21【解析】 〔1〕C)sin(A sinC sinA .∴C),sin(A sinB sinC.sinA 2sinB c,a b 2∴,,+=++=+=+= 即成等差,c b a〔2〕.,21cosB 212ac ac -2ac 2ac b -2ac ≥2ac b -c a cosB ac.b ∴,,22222这时三角形为正三角形取最小值时,仅当又成等比,b c a c b a ====+==17. 〔本小题总分值12分〕四面体ABCD 及其三视图如下图,过棱AB 的中点E 作平行于AD ,BC 的平面分 别交四面体的棱CA DC BD ,,于点H G F ,,.〔I 〕证明:四边形EFGH 是矩形;〔II 〕求直线AB 与平面EFGH 夹角θ的正弦值.【答案】 〔1〕 省略 〔2〕510【解析】 〔1〕.FG.⊥BCD ⊥,//∴,,AD//HG AD//EF,∴ADHG ADEF EFGH ⊂HG EF,EFGH,AD//HC AH EH//BC,∴EHBC EFGH,⊂EH EFGH,//B BCD⊥AD DC,⊥BD Δ,Δ为矩形所以,四边形,即面,且且共面和,面面同理且共面面面面且为等腰由题知,EHGF EF EF HG EF HG EF GC DG FB DF C RT BCD ====〔2〕510|,cos |sin 510252||||,cos ),0,1,1(0),,,()0,1-1(),2100(),1-20()0,0,1(),211,0(),0,1,0(),020(),100(,,DA ,DB ,DC (1)=><==<∴=======∴n AB n AB n AB n AB n FG n FE n z y x n EHGF FG FE AB G E F B A z y x θ所以,,解得一个则法向量,设面,,,,,,,,,,轴建系,则为知,分别以由18.〔本小题总分值12分〕在直角坐标系xOy 中,点)2,3(),3,2(),1,1(C B A ,点),(y x P 在ABC ∆三边围成的区域〔含边界〕上〔1〕假设0=++PC PB PA ,求OP ;〔2〕设),(R n m AC n AB m OP ∈+=,用y x ,表示n m -,并求n m -的最大值.【答案】 〔1〕 22〔2〕 m-n=y-x, 1【解析】 〔1〕22|OP |22|OP |,2,2,0-2-3-1,0-3-2-1(0,0))-2,-3()-3,-2()-1,-1(PC PB PA ∴),,(),2,3(),3,2(),11(22==+=∴===++=++∴=++=++所以,解得,y x y x y y y x x x y x y x y x y x P C B A 〔2〕1---.1-)3,2(.,,-.--.2,2),1,2()2,1(y)x ,(∴,AC AB OP 最大值为,所以,取最大值时,经计算在三个顶点求线性规划问题,可以代含边界内的最大值,属在三角形即求解得即n m x y n m x y B C B A ABC x y x y n m n m y n m x n m n m ==+=+=+=+=19.〔本小题总分值12分〕在一块耕地上种植一种作物,每季种植本钱为1000元,此作物的市场价格和这块地上 的产量具有随机性,且互不影响,其具体情况如下表:〔1〕设X 表示在这块地上种植1季此作物的利润,求X 的分布列;〔2〕假设在这块地上连续3季种植此作物,求这3季中至少有2季的利润不少于...2000元 的概率.【答案】 〔1〕〔800,0.2〕〔2000,0.5〕〔4000,0.3〕 〔2〕 0.896【解析】 〔1〕3.06.0*5.0)4000(,5.04.0*5.06.0*5.0)2000(,2.04.0*5.0)800(.4000,2000,80040001000-10*50020001000-6*50020001000-10*3008001000-6*300.-*====+==========X p X p X p X X 三个,即,,,可以取考虑产量和价格,利润成本价格产量利润X 的分布列如下表:X 800 2000 4000 P0.2 0.5 0.3〔2〕896.020*******.08.02.0*8.0*3)-1()-1(200023.8.03.05.02000)1(8001000-6*300.-*32333223的概率是季的利润不少于季中至少有所以,的概率季的利润不少于季中至少有则的概率知,一季利润不少于由,可以取考虑产量和价格,利润成本价格产量利润=+=+==+===p p C p p C P p X X20.〔本小题总分值13分〕如图,曲线C 由上半椭圆22122:1(0,0)y x C a b y a b+=>>≥和局部抛物线22:1(0)C y x y =-+≤连接而成,12,C C 的公共点为,A B ,其中1C 的离心率为32. (1)求,a b 的值;(2)过点B 的直线l 与12,C C 分别交于,P Q 〔均异于点,A B 〕,假设AP AQ ⊥,求直线l 的方程.【答案】 〔1〕 a=2,b=1 〔2〕 )1-(38-x y =【解析】〔1〕14,3,1,2∴,23.1∴)0,1(),0,1-(1-2222222=+===+===+=x yc b a c b a a c b x y 椭圆方程为联立解得又,交于点抛物线 〔2〕)1-(38-.38-,0)2(4-)2,1)(4-,(,0)2k -k - -k,()4k8- 1,44-(,0∴⊥),0,1-()2k --k ,1--k (,2k --k )1-(,1--k 0,1-k -:1-)4k8-,44-(,4k 8-)1-(,44-04-2-)4(,44)12x -(14),,(),,(),1-()0,1(222222222222222112212222222222211x y k k k k k k k k AQ AP AQ AP A Q x k y x kx x x y k k k P k x k y k k x k x k x k x x k x y y x Q y x P x k y B ===+=+=•+++=•====++=+++==+==++=++=+=所以,所求直线方程为解得即即即由韦达定理得联立得与即由韦达定理得,即联立得与的直线方程为设过21.〔本小题总分值14分〕 设函数()ln(1),()'(),0f x x g x xf x x =+=≥,其中'()f x 是()f x 的导函数.(1)11()(),()(()),n n g x g x g x g g x n N ++==∈,求()n g x 的表达式;(2)假设()()f x ag x ≥恒成立,求实数a 的取值范围;〔3〕设n N +∈,比拟(1)(2)()g g g n +++与()n f n -的大小,并加以证明.【答案】 〔1〕 nx x x g n +=1)(〔2〕 ,1](-∞ (3) 前式 > 后式【解析】 〔1〕+++++=++=+=++=+++=+==+=+++=+===+=+=′′=+=N n nx x x g xk x x g k n x k x kxx kx xx g kx x x g k n x x xx x xx g x x x g x g g x g x g x g xx x g x x f x x f x x g x x f n k k k n n ∈,1)(,.)1(1)(1∴)1(1111)(.1)(1≥21111)(1)(∴))(()()()(1)(,11)(∴,0≥),()(),1ln()(112111综上也成立时,当则时,假设当,,, 〔2〕,1](-a 1.a 0.≥-1),0[∈∃0≥(x)h ,0),,0[∈∃∴0≥0≥h(x),0h(0))1(-1)1()-1(-11(x)h ,0.≥,1-)1ln(h(x)0.≥,≥1-)1ln(∴1)(),(≥)(22∞∈≤+′>=++=+++=′++=+++=所以,解得,即使上恒成立在则令a x t x t t x x x a x x x x a x x x ax x x xax x x x x g x ag x f〔3〕+∈>++++>>++∴>∈++=+++++++++=+++++••••=++++=+++++=+=+=N n f(n)-n )()3()2()1(0)(,011-n 1n ln .0)()2(],1,0,1 -)1ln()((a) )11-n 1n (ln )311-34(ln )211-23(ln )111-12(ln 11--311-211-111-n 1n 342312ln 11--311-211-111-f(n)f(n)]-[n -)()3()2()1(∴11-11)(∴,1)(,所以,恒成立式恒成立恒成立知,则由(令)(n g g g g a nx h x xx x x h nnnn g g g g nn n n g x x x g。
2015年陕西省高考数学试卷(理科) 参考答案与试题解析 一、选择题,共12小题,每小题5分,共60分 1.(5分)(2015•陕西)设集合M={x|x2=x},N={x|lgx≤0},则M∪N=( ) A. [0,1] B. (0,1] C. [0,1) D. (﹣∞,1]
考点: 并集及其运算. 专题: 集合. 分析: 求解一元二次方程化简M,求解对数不等式化简N,然后利用并集运算得答案. 解答: 解:由M={x|x2=x}={0,1},
N={x|lgx≤0}=(0,1], 得M∪N={0,1}∪(0,1]=[0,1]. 故选:A. 点评: 本题考查了并集及其运算,考查了对数不等式的解法,是基础题.
2.(5分)(2015•陕西)某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为( )
A. 93 B. 123 C. 137 D. 167 考点: 收集数据的方法. 专题: 计算题;概率与统计. 分析: 利用百分比,可得该校女教师的人数. 解答: 解:初中部女教师的人数为110×70%=77;高中部女教师的人数为40×150%=60, ∴该校女教师的人数为77+60=137, 故选:C. 点评: 本题考查该校女教师的人数,考查收集数据的方法,考查学生的计算能力,比较基础.
3.(5分)(2015•陕西)如图,某港口一天6时到18时的水深变化曲线近似满足函数y=3sin(x+φ)+k.据此函数可知,这段时间水深(单位:m)的最大值为( ) A. 5 B. 6 C. 8 D. 10 考点: 由y=Asin(ωx+φ)的部分图象确定其解析式. 专题: 三角函数的图像与性质. 分析: 由题意和最小值易得k的值,进而可得最大值. 解答: 解:由题意可得当sin(x+φ)取最小值﹣1时,
函数取最小值ymin=﹣3+k=2,解得k=5, ∴y=3sin(x+φ)+5,
∴当当sin(x+φ)取最大值1时, 函数取最大值ymax=3+5=8, 故选:C. 点评: 本题考查三角函数的图象和性质,涉及三角函数的最值,属基础题.
4.(5分)(2015•陕西)二项式(x+1)n(n∈N+)的展开式中x2的系数为15,则n=( ) A. 7 B. 6 C. 5 D. 4
考点: 二项式定理的应用. 专题: 二项式定理. 分析: 由题意可得==15,解关于n的方程可得.
解答: 解:∵二项式(x+1)n(n∈N+)的展开式中x2的系数为15,
∴=15,即=15,解得n=6, 故选:B. 点评: 本题考查二项式定理,属基础题.
5.(5分)(2015•陕西)一个几何体的三视图如图所示,则该几何体的表面积为( ) A. 3π B. 4π C. 2π+4 D. 3π+4 考点: 由三视图求面积、体积. 专题: 计算题;空间位置关系与距离. 分析: 根据几何体的三视图,得出该几何体是圆柱体的一部分,利用图中数据求出它的表面积. 解答: 解:根据几何体的三视图,得; 该几何体是圆柱体的一半, ∴该几何体的表面积为 V几何体=π•12+π×1×2+2×2 =3π+4. 故选:D. 点评: 本题考查了利用空间几何体的三视图求表面积的应用问题,是基础题目.
6.(5分)(2015•陕西)“sinα=cosα”是“cos2α=0”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充分必要条件 D. 既不充分也不必要条件
考点: 必要条件、充分条件与充要条件的判断. 专题: 简易逻辑. 分析: 由cos2α=cos2α﹣sin2α,即可判断出.
解答: 解:由cos2α=cos2α﹣sin2α,
∴“sinα=cosα”是“cos2α=0”的充分不必要条件. 故选:A. 点评: 本题考查了倍角公式、简易逻辑的判定方法,考查了推理能力,属于基础题.
7.(5分)(2015•陕西)对任意向量、,下列关系式中不恒成立的是( ) A. ||≤|||| B. ||≤|||﹣|||
C. ()2=||2 D. ()•()=2﹣2
考点: 平面向量数量积的运算. 专题: 平面向量及应用. 分析: 由向量数量积的运算和性质逐个选项验证可得. 解答: 解:选项A正确,∵||=|||||cos<,>|,
又|cos<,>|≤1,∴||≤||||恒成立; 选项B错误,由三角形的三边关系和向量的几何意义可得||≥|||﹣|||; 选项C正确,由向量数量积的运算可得()2=||2; 选项D正确,由向量数量积的运算可得()•()=2﹣2. 故选:B 点评: 本题考查平面向量的数量积,属基础题.
8.(5分)(2015•陕西)根据如图框图,当输入x为2006时,输出的y=( )
A. 2 B. 4 C. 10 D. 28 考点: 程序框图. 专题: 图表型;算法和程序框图. 分析: 模拟执行程序框图,依次写出每次循环得到的x的值,当x=﹣2时不满足条件x≥0,计算并输出y的值为10. 解答: 解:模拟执行程序框图,可得 x=2006, x=2004 满足条件x≥0,x=2002 满足条件x≥0,x=2000 … 满足条件x≥0,x=0 满足条件x≥0,x=﹣2 不满足条件x≥0,y=10 输出y的值为10. 故选:C. 点评: 本题主要考查了循环结构的程序框图,属于基础题.
9.(5分)(2015•陕西)设f(x)=lnx,0<a<b,若p=f(),q=f(),r=(f(a)+f(b)),则下列关系式中正确的是( ) A. q=r<p B. p=r<q C. q=r>p D. p=r>q
考点: 不等关系与不等式. 专题: 不等式的解法及应用. 分析: 由题意可得p=(lna+lnb),q=ln()≥ln()=p,r=(lna+lnb),可得大小
关系. 解答: 解:由题意可得若p=f()=ln()=lnab=(lna+lnb),
q=f()=ln()≥ln()=p, r=(f(a)+f(b))=(lna+lnb), ∴p=r<q, 故选:B 点评: 本题考查不等式与不等关系,涉及基本不等式和对数的运算,属基础题.
10.(5分)(2015•陕西)某企业生产甲、乙两种产品均需用A、B两种原料.已知生产1吨每种产品所需原料及每天原料的可用限额如表所示.如果生产一吨甲、乙产品可获得利润分别为3万元、4万元,则该企业每天可获得最大利润为( ) 甲 乙 原料限额 A(吨) 3 2 12 B(吨) 1 2 8
A. 12万元 B. 16万元 C. 17万元 D. 18万元
考点: 简单线性规划的应用. 专题: 不等式的解法及应用. 分析: 设每天生产甲乙两种产品分别为x,y顿,利润为z元,然后根据题目条件建立约束条件,得到目标函数,画出约束条件所表示的区域,然后利用平移法求出z的最大值.
解答: 解:设每天生产甲乙两种产品分别为x,y顿,利润为z元, 则, 目标函数为 z=3x+4y. 作出二元一次不等式组所表示的平面区域(阴影部分)即可行域.
由z=3x+4y得y=﹣x+,
平移直线y=﹣x+由图象可知当直线y=﹣x+经过点B时,直线y=﹣x+的截距最大, 此时z最大,
解方程组,解得, 即B的坐标为x=2,y=3, ∴zmax=3x+4y=6+12=18. 即每天生产甲乙两种产品分别为2,3顿,能够产生最大的利润,最大的利润是18万元, 故选:D.
点评: 本题主要考查线性规划的应用,建立约束条件和目标函数,利用数形结合是解决本题的关键.
11.(5分)(2015•陕西)设复数z=(x﹣1)+yi(x,y∈R),若|z|≤1,则y≥x的概率为( ) A. + B. + C. ﹣ D. ﹣
考点: 几何概型. 专题: 概率与统计. 分析: 由题意易得所求概率为弓形的面积与圆的面积之比,分别求面积可得. 解答: 解:∵复数z=(x﹣1)+yi(x,y∈R)且|z|≤1, ∴|z|=≤1,即(x﹣1)2+y2≤1, ∴点(x,y)在(1,0)为圆心1为半径的圆及其内部, 而y≥x表示直线y=x左上方的部分,(图中阴影弓形) ∴所求概率为弓形的面积与圆的面积之比,
∴所求概率P== 故选:D.
点评: 本题考查几何概型,涉及复数以及圆的知识,属基础题. 12.(5分)(2015•陕西)对二次函数f(x)=ax2+bx+c(a为非零整数),四位同学分别给出下列结论,其中有且只有一个结论是错误的,则错误的结论是( ) A. ﹣1是f(x)的零点 B. 1是f(x)的极值点 C. 3是f(x)的极值 D. 点(2,8)在曲线y=f(x)上
考点: 二次函数的性质. 专题: 创新题型;函数的性质及应用;导数的综合应用. 分析: 可采取排除法.分别考虑A,B,C,D中有一个错误,通过解方程求得a,判断是否为非零整数,即可得到结论. 解答: 解:可采取排除法. 若A错,则B,C,D正确.即有f(x)=ax2+bx+c的导数为f′(x)=2ax+b, 即有f′(1)=0,即2a+b=0,①又f(1)=3,即a+b+c=3②, 又f(2)=8,即4a+2b+c=8,③由①②③解得,a=5,b=﹣10,c=8.符合a为非零整数.
若B错,则A,C,D正确,则有a﹣b+c=0,且4a+2b+c=8,且=3,解得a∈∅,不成立; 若C错,则A,B,D正确,则有a﹣b+c=0,且2a+b=0,且4a+2b+c=8,解得a=﹣不为非零整数,不成立;