单相全波整流电路的设计电力电子精编版
- 格式:docx
- 大小:44.77 KB
- 文档页数:12
目录一设计目的 1二设计任务 1三设计内容与要求 1四设计资料及有关规定五设计成果要求5.2课程设计方案的选择5.2.1整流电路5.3主电路的设计5.3.1系统总设计框图5.3.4晶闸管基本参数5.3.4.1 动态特性5.3.4.2晶闸管的主要参数说明5.3.4.3晶闸管的选型5.3.5变压器的选取5.3.6 性能指标分析5.4触发电路和保护电路的设计5.4.1触发电路5.4.2保护电路的设计5.4.2.1 主电路的过电压保护电路设计5.4.2.2主电路的过电流保护电路设计5.4.2.3电流上升率、电压上升率的抑制保护5.6设计总结单相全控晶闸管整流电路课程设计一 设计目的(1)培养综合应用所学知识,并设计出具有电压可调功能的直流电源系统的能力;(2)较全面地巩固和应用本课程中所学的基本理论和基本方法,并初步掌整流电路设计的基本方法。
(3)培养独立思考、独立收集资料、独立设计的能力;(4)培养分析、总结及撰写技术报告的能力。
二 设计任务(1)进行设计方案的比较,并选定设计方案;(2)课程设计的主要内容是主电路的确定,主电路的分析说明主电路元器件的计算和选型,以及控制电路的设计;(3)完成主电路的原理分析,各主要元器件的选择;(4)完成驱动电路的设计,保护电路的设计;三 设计内容与要求负载为电阻电感性负载:L=700mH,R=500欧姆技术要求:电网供电电压为单相220V,50赫兹,输出电压为100V, 输出功率为1000W设计技术要求:(1)电源电压:交流100V/50Hz(2)输出功率:500W;(3)移相范围:0~90度。
四 设计资料及有关规定使用的元器件要求为:负载为220V、305A的直流电机,采用三相整流电路,交流测由三相电源供电, 续流二极管,电感,电容,二极管,金属模电阻,三极管,触发电路KJ004,平波电抗器,运算放大器,功率电阻,220V和380V变压器。
五、设计成果要求5.1 课程设计要求1、单相桥式相控整流的设计要求为:负载为感性负载,L=700mH,R=500欧姆.2、技术要求:1)、电源电压:交流100V/50Hz2)、输出功率:100W3)、移相范围0º~90º5.2课程设计方案的选择5.2.1整流电路单相相控整流电路可分为单相半波、单相全波和单相桥式相控流电路,它们所连接的负载性质不同就会有不同的特点。
单相全波整流电路的设计摘要电力电子技术是一门诞生和发展于20世纪的崭新技术,在21世纪仍将以迅猛的速度发展。
以计算机为核心的信息科学将是21世纪起主导作用的科学技术之一。
电力电子技术是建立在电子学、电工原理和自动控制三大学科上的新兴学科。
因它本身是大功率的电技术,又大多是为应用强电的工业服务的,故常将它归属于电工类。
电力电子技术的内容主要包括电力电子器件、电力电子电路和电力电子装置及其系统。
电力电子器件以半导体为基本材料,最常用的材料为单晶硅;它的理论基础为半导体物理学;它的工艺技术为半导体器件工艺。
近代新型电力电子器件中大量应用了微电子学的技术。
电力电子电路吸收了电子学的理论基础,根据器件的特点和电能转换的要求,又开发出许多电能转换电路。
这些电路中还包括各种控制、触发、保护、显示、信息处理、继电接触等二次回路及外围电路。
利用这些电路,根据应用对象的不同,组成了各种用途的整机,称为电力电子装置。
这些装置常与负载、配套设备等组成一个系统。
电子学、电工学、自动控制、信号检测处理等技术常在这些装置及其系统中大量应用。
整流电路(Rectifier)是电力电子技术中最为重要的电路,应用十分广泛,对单相全波可控整流电路的相关参数和不同性质负载的子电路理论学习的重要一环,在对单相全波可控整流电路工作原理理解的基础上,设计单相全波可控整流电路带负载时的电路原理图,并建立基于PSIM的仿真模型,对工程实践中的实际应用具有预测和指导作用。
关键词:电力电子单相全波可控整流电路目录摘要 (1)1.设计任务书 (1)1.1 设计目的: (1)1.2 设计要求: (1)1.3 设计内容: (1)1.4 设计题目: (1)1.4.1 设计要求: (1)1.4.2 方案的选择 (2)2.设计内容 (3)2.1 触发电路的设计 (3)2.1.1晶闸管的介绍 (3)2.2.2 晶闸管的基本特性 (4)2.2.3 晶闸管的主要参数 (5)2.2.4 晶闸管的触发条件 (6)2.2.5 晶闸管的分类 (6)3.电路总设计 (7)3.1 单相全波可控整流电路: (7)3.2 参数计算 (7)4. 设计总结 (13)参考文献 (14)1.设计任务书1.1 设计目的:《电力电子技术》课程设计是配合交流电路理论教学,为自动化和电气工程及自动化专业开设的专业基础技术技能设计,是自动化和电气工程及自动化专业学生在整个学习过程中一项综合性实践环节,是走向工作岗位、从事专业技术之前的一项综合性技能训练,对学生的职业能力培养和实践技能训练具有相当重要的意义。
单相全波整流电路的设计摘要随着科学技术的日益发展,人们对电路的要求也越来越高,由于在生产实际中需要大小可调的直流电源,而相控整流电路结构简单、控制方便、性能稳定,利用它可以方便地得到大中、小各种容量的直流电能,是目前获得直流电能的主要方法,得到了广泛应用。
但是晶杂管相控整流电路中随着触发角α的增大,电流中谐波分量相应增大,因此功率因素很低。
把逆变电路中的SPWM控制技术用于整流电路,就构成了PWM整流电路。
通过对PWM整流电路的适当控制,可以使其输入电流非常接近正弦波,且和输入电压同相位,功率因素近似为1。
这种整流电路称为高功率因素整流器,它具有广泛的应用前景。
电力电子器件是电力电子技术发展的基础。
正是大功率晶闸管的发明,使得半导体变流技术从电子学中分离出来,发展成为电力电子技术这一专门的学科。
而二十世纪九十年代各种全控型大功率半导体器件的发明,进一步拓展了电力电子技术应用和覆盖的领域和X围。
电力电子技术的应用领域已经深入到国民经济的各个部门,包括钢铁、冶金、化工、电力、石油、汽车、运输以及人们的日常生活。
功率X围大到几千兆瓦的高压直流输电,小到一瓦的手机充电器,电力电子技术随处可见。
关键词:电力电子,整流电路目录1设计任务31.1设计目的31.2设计内容31.3 设计要求32 设计内容42.1 基本原理介绍42.2电路设计的经济性论证52.3主电路设计52.3.1 触发电路52.3.2 形成与脉冲放大环节72.3.2 锯齿波形成与脉冲移相环节72.3.3驱动电路82.3.4保护电路83参数设定103.1180°调压103.2 移相调压134 参数计算错误!未定义书签。
4.1 计算公式154.2 参数选择:164.3计算:T=1/f=1/50=0.02s165仿真175.1触发角为30度175.2触发角为90度185.3触发角为120度196波形分析20心得体会21参考文献221设计任务1.1设计目的电力电子技术课程设计是在教学及实验基础上,对课程所学理论知识的深化和提高。
电力电子技术实验报告实验名称:单相桥式全控整流电路的仿真与分析班级:自动化091组别: 08 成员:金华职业技术学院信息工程学院年月日一. 单相桥式全控整流电路(电阻性负载) .............................................. 错误!未定义书签。
1. 电路的结构与工作原理 (1)2. 单相桥式全波整流电路建模 (2)3. 仿真结果与分析 (4)4. 小结 (6)二. 单相桥式全控整流电路(阻-感性负载) ............................................. 错误!未定义书签。
1. 电路的结构与工作原理................................................................. 错误!未定义书签。
2. 建模................................................................................................. 错误!未定义书签。
3. 仿真结果与分析............................................................................. 错误!未定义书签。
4. 小结................................................................................................. 错误!未定义书签。
三. 单相桥式全控整流电路(反电势负载)......................................... 错误!未定义书签。
1. 电路的结构与工作原理................................................................. 错误!未定义书签。
实验二 单相全波可控整流电路一.实验目的1.了解可控硅整流电路的组成、特性和计算方法。
2.了解不同负载类型的特性。
二.实验原理1.可控硅(又名晶闸管)不同于整流二极管,可控硅的导通是可控的。
可控整流电路的 作用是把交流电变换为电压值可以调节的直流电。
图2-1所示为单相半波可控整流实验电路。
可控硅的特点是以弱控强,它只需功率很小的信号(几十到几百mA 的电流,2~3V 的电压)就可控制大电流、大电压的通断。
因而它是一个电力半导体器件,被应用于强电系统。
(a )主回路(b )控制回路图2-1 单相全波可控整流电路2. 如图2-1,设变压器次级电压为U=Usin ωt 则负载电压与电流的平均值以及有效值:在 控制角为α时,负载上直流电压的平均值U dA V =⎰παωωπ)(sin 1t td U =)cos 1.(απ+U直流电流平均值I dA V =d d R U =dR Uπ )cos 1(α+ 直流电压有效值:U dRMS =⎪⎭⎫ ⎝⎛+-22sin 22ααππU 直流电流有效值:I dRMS =⎪⎭⎫ ⎝⎛+-22sin 22ααππdR U三.实验器材名称 数量 型号 1.变压器45V/90V 3N 1 MC0101 2.保险丝 1 MC0401 3.可控硅 1 MC0309D 4.负载板 各1 MC0603 MC0604 5.2脉冲控制单元 1 MC0501 6.稳压电源(±15V ) 1 MC0201 7.电压/电流表 2 MC0701 8.输入单元 1 MC0202 10.隔离器 1 11.示波器 1 12.导线和短接桥 若干四.带电阻性负载的可控整流实验步骤1. 根据图2-1连接线路,注意:主回路和控制回路交流供电电源必须同步。
将各实验模块连接好,采用电阻负载,取U 1=U 2=45V 档的交流电为输入电压,负载R=50Ω(采用2只100Ω电阻并联)。
2. 用电压电流表实测输入电压U 2有效值= ______________V 。
中南大学电力电子技术课程设计报告班级: 电气1203班学号: ************: *******: ***前言电力电子学,又称功率电子学(Power Electronics)。
它主要研究各种电力电子器件,以及由这些电力电子器件所构成的各式各样的电路或装置,以完成对电能的变换和控制。
它既是电子学在强电(高电压、大电流)或电工领域的一个分支,又是电工学在弱电(低电压、小电流)或电子领域的一个分支,或者说是强弱电相结合的新科学。
电力电子学是横跨“电子”、“电力”和“控制”三个领域的一个新兴工程技术学科。
随着科学技术的日益发展人们对电路的要求也越来越高,由于在生产实际中需要大小可调的直流电源,而相控整流电路结构简单、控制方便、性能稳定,利用它可以方便地得到大中、小各种容量的直流电能,是目前获得直流电能的主要方法,得到了广泛应用。
在电能的生产和传输上,目前是以交流电为主。
电力网供给用户的是交流电,而在许多场合,例如电解、蓄电池的充电、直流电动机等,需要用直流电。
要得到直流电,除了直流发电机外,最普遍应用的是利用各种半导体元件产生直流电。
这个方法中,整流是最基础的一步。
整流,即利用具有单向导电特性的器件,把方向和大小交变的电流变换为直流电。
整流的基础是整流电路。
由于电力电子技术是将电子技术和控制技术引入传统的电力技术领域,利用半导体电力开关器件组成各种电力变换电路实现电能和变换和控制,而构成的一门完整的学科。
本次课程设计主要是对单相全控桥式晶闸管整流电路的研究。
首先是对单相全控桥式晶闸管整流电路的整体设计,包括主电路,触发电路,保护电路。
主电路中包括电路参数的计算,器件的选型;触发电路中包括器件选择,参数设计;保护电路包括过电压保护,过电流保护,电压上升率抑制,电流上升率抑制。
之后就对整体电路进行Matlab仿真,最后对仿真结果进行分析与总结。
目录前言 (2)一、设计题目与要求 (4)二、主电路设计 (4)2.1 主电路原理图 (4)2.2 工作原理 (5)2.3 元器件介绍——晶闸管(SCR) (5)2.4 整流电路参数计算 (6)2.5 晶闸管元件选取 (7)2.6 晶闸管电路对电网及系统功率因数的影响 (8)2.6.1 对电网的影响 (8)2.6.2 系统功率因数分析 (9)三、驱动电路设计 (10)3.1触发电路简介 (10)3.2触发电路设计要求 (11)3.3集成触发电路TCA785 (12)3.3.1 TCA785芯片介绍 (12)3.3.2 TCA785锯齿波移相触发电路 (15)四、保护电路设计 (16)4.1过电压保护 (16)4.2 过电流保护 (18)4.3电流上升率的抑制 (19)4.4电压上升率的抑制 (19)五、系统MATLAB仿真 (20)5.1 MATLAB软件介绍 (20)5.2系统建模与参数设置 (20)5.3 系统仿真结果及分析 (23)设计心得........................................................................................ 错误!未定义书签。
单相全波整流电路原理
单相全波整流电路是一种常用的电路配置,用于将交流电转换为直流电。
该电路可以实现对正弦信号的全波整流,即将正半周部分和负半周部分均变换为正向电压输出。
该电路主要由四个元件组成:变压器、二极管桥、负载电阻和滤波电容。
其原理如下:
1. 变压器:交流电首先经过变压器,将输入电压调整为所需的工作电压。
变压器一般具有降压或升压的功能,可以将输入电压变换到合适的范围。
2. 二极管桥:经过变压器的交流电进入二极管桥,二极管桥由四个二极管组成,排列成桥形。
它的作用是将交流电的负半周部分进行反向连接,实现对负半周信号的整流,使其转换为正向电压。
3. 负载电阻:正向输出的信号通过负载电阻连接到电路的输出端,实现对电流的限制。
负载电阻可以保护其他电路元件免受过大电流的损害,并将电流转换为有效的输出功率。
4. 滤波电容:在负载电阻之前设置一个滤波电容,用于对输出电压进行滤波。
滤波电容的作用是去除电压中的纹波成分,从而获得稳定的直流输出。
通过上述连接方式,单相全波整流电路可以将交流电转换为直
流电,并实现对负半周的整流。
它在实际应用中广泛用于电源供应、充电器等场合,具有较高的转换效率和稳定性。
专业资料精心整理重庆大学电气工程学院电力电子技术课程设计设计题目:单相桥式可控整流电路设计年级专业:****级电气工程与自动化学生姓名:*****学号: ****成绩评定:完成日期:2013年6月 23 日指导教师签名:年月日重庆大学本科学生电力电子课程设计任务书单相桥式可控整流电路设计摘要:本文主要研究单相桥式PWM整流电路的原理,并运用IGBT去实现电路的设计。
概括地讲述了单相电压型PWM整流电路的工作原理,用双极性调制方式去控制IGBT的通断。
在元器件选型上,较为详细地介绍了IGBT的选型,分析了交流侧电感和直流侧电容的作用,以及它们的选型。
最后根据实际充电机的需求,选择元器件具体的参数,并用simulink进行仿真,以验证所设计的单相电压型PWM整流器的性能。
实现了单相电压型PWM整流器的高功率因数,低纹波输出等功能。
关键词:PWM整流simulink 双极性调制IGBT目录1.引言 ......................................................... - 5 -1.1 PWM整流器产生的背景.................................... - 5 -1.2 PWM整流器的发展状况.................................... - 5 -1.3 本文所研究的主要内容.................................... - 6 -2.单相电压型PWM整流电路的工作原理 ............................. - 7 -2.1电路工作状态分析......................................... - 7 -2.2 PWM控制信号分析......................................... - 8 -2.3 交流测电压电流的矢量关系............................... - 9 -3.单相电压型PWM整流电路的设计 ................................ - 10 -3.1 主电路系统设计......................................... - 10 -3.2 IGBT和二极管的选型设计................................. - 11 -3.3 交流侧电感的选型设计................................... - 11 -3.4 直流侧电容的选型设计................................... - 12 -3.5 直流侧LC滤波电路的设计................................ - 13 -4.单相PWM整流电路的仿真及分析 ................................ - 13 -4.1 整流电路的simulink仿真............................... - 13 -4.2 对simulink仿真结果的分析............................. - 16 - 5.工作展望 ................................................... - 16 - 参考文献 ...................................................... - 17 -1.引言1.1 PWM整流器产生的背景电力电子技术是现代电工技术中最活跃的领域,并且在电力系统中得到日益广泛的应用,它是使用电力电子器件对电能进行变换和控制的技术。
第三讲单相全波整流^路教学内容:1.单相半波整流电路的工作原理2.单相半波整流电路的特点3.桥式单相全波整流电路的工作原理4.桥式单相全波整流电路的特点教学方式:讲授与演示分析教具:二极管示波器电阻电源变压器导线目的和要求:1. 了解变压器中心抽头式全波整流电路的原理2.掌握变压器中心抽头式全波整流电路的特点3.掌握桥式全波整流电路的原理4.掌握桥式全波整流电路的特点5.学会分析比较上述两种电路的相同与不同之处重点和难点:1.掌握变压器中心抽头式全波整流电路的特点2.掌握桥式全波整流电路的原理3.掌握桥式全波整流电路的特点4. 分析比较上述两种电路的相同与不同之处预习要求:了解全波整流的原理及特征课程回顾:(提问)1、二极管的简单测试2、单相半波整流电路的原理和特点教学过程:^电路一,变压器中心抽头式单相全波^电路下图为电路图,图中电源变压器T的次级绕组有中心向头,可得到两个大小相等而相位相反的交流电压u和u ,图中V和V是两个整流二极管,2a 2bR L是负载电阻。
1 .工作原理VRL设u为正半周时,图中A端为正,B端为负,则A端电位高于中心抽头C处电位,B端要低于C处。
二极管V1导通,V2截止,电流i i自A 端经二极管Vj流过负载R L到C点;当u为负半周时,正好相反,工导通,V截止,电流i之自B端经二极管V2流过负载R L到C处,电流i和i 2叠加形成全波脉动直流电流[,在负载上得到全波脉动直流电压Uj如下图所示:Au2n 3n 4n2、负载和整流二极管上的电压和电流由于全波整电路的负载斗上得到的是全波脉动直流电压,所以它的输出电压比半波时增加一倍,即V =0.9V说明:上式中V L为负载上得到的全波脉动直流电压的平均值,V2为变压器次级绕组两个部分各自交流电压的有效值,即负载上的电流的有效值:为I= V/ R =0.9V/ RL L L 2 L分析:3)由于两个二极管是轮流导通的,所以每个筒子的平均电流只是负载的一半,即1V=0.5 I L助由电路图可知,一个筒子导通时,另一个是截止的,则这个筒子所承受的反向电压的最大值为总电压的最大值,即V =2V 2 V RM 2c)变压器中心抽头式全波整电路,每个二极管受的反向峰值电压比半波时高一倍,而目变压器的次级绕组必须有中心抽头,这些是它的缺点。
第1章设计任务书1.1 设计任务和要求(1)设计任务:1、进行设计方案的比较,并选定设计方案;2、完成单元电路的设计和主要元器件的选择;3、完成主电路的原理分析,各主要元器件的选择;4、单相整流电路的主电路、触发电路的设计;5、保护电路的设计;6、撰写设计说明书;7、利用MATLAB对自己所设计的单相整流电路进行仿真。
(选做)(2)设计要求单相桥式全控整流电路的设计要求为:①接电阻性负载②输出电压在0~100V连续可调③输出电流在20A以上④采用220V变压器降压供电。
1.2 方案的选择单相相控整流电路可分为单相半波、单相全波和单相桥式相控流电路,它们所连接的负载性质不同就会有不同的特点。
下面分析各种单相相控整流电路在带电阻性负载、电感性负载和反电动势负载时的工作情况。
单相半控整流电路的优点是:线路简单、调整方便。
弱点是:输出电压脉动冲大,负载电流脉冲大(电阻性负载时),且整流变压器二次绕组中存在直流分量,使铁心磁化,变压器不能充分利用。
而单相全控式整流电路具有输出电流脉动小,功率因数高,表压气二次电流为两个等大反向的半波,没有直流磁化问题,变压器利用率高的优点。
单相全控式整流电路其输出平均电压是半波整流电路2倍,在相同的负载下流过晶闸管的平均电流减小一半;且功率因数提高了一半。
第2章 系统原理方框图及主电路设计2.1系统原理方框图系统原理方框图如下图所示:单相电源输出触发电路保护电路整流主电路负载电路整流电路主要由触发电路、保护电路和整流主电路组成。
根据设计任务,在此设计中采用单相桥式全控整流电路接电阻性负载。
2.2主电路设计2.2.1主电路原理图及其工作波形图1 主电路原理图及工作波形图单相全控桥式整流电路带负载的电路如图1(a )所示。
其中Tr 为整流变压器,T 1、T 4、T 3、T 2组成a 、b 两个桥臂,变压器二次电压u 2接在a 、b 两点,u 2 =t U t U m ωωsin 2sin 22= ,四只晶闸管组成整流桥。
单相全波整流电路的设计电力电子精编版MQS system office room 【MQS16H-TTMS2A-MQSS8Q8-MQSH16898】单相全波整流电路的设计摘要随着科学技术的日益发展,人们对电路的要求也越来越高,由于在生产实际中需要大小可调的直流电源,而相控整流电路结构简单、控制方便、性能稳定,利用它可以方便地得到大中、小各种容量的直流电能,是目前获得直流电能的主要方法,得到了广泛应用。
但是晶杂管相控整流电路中随着触发角α的增大,电流中谐波分量相应增大,因此功率因素很低。
把逆变电路中的SPWM控制技术用于整流电路,就构成了PWM整流电路。
通过对PWM整流电路的适当控制,可以使其输入电流非常接近正弦波,且和输入电压同相位,功率因素近似为1。
这种整流电路称为高功率因素整流器,它具有广泛的应用前景。
电力电子器件是电力电子技术发展的基础。
正是大功率晶闸管的发明,使得半导体变流技术从电子学中分离出来,发展成为电力电子技术这一专门的学科。
而二十世纪九十年代各种全控型大功率半导体器件的发明,进一步拓展了电力电子技术应用和覆盖的领域和范围。
电力电子技术的应用领域已经深入到国民经济的各个部门,包括钢铁、冶金、化工、电力、石油、汽车、运输以及人们的日常生活。
功率范围大到几千兆瓦的高压直流输电,小到一瓦的手机充电器,电力电子技术随处可见。
关键词:电力电子,整流电路目录1设计任务设计目的电力电子技术课程设计是在教学及实验基础上,对课程所学理论知识的深化和提高。
因此,要求同学能综合应用所学知识,设计出具有电压可调功能的直流电源系统,能够较全面的巩固和应用本课程中所学的基本理论和基本方法,并初步掌控整流电路分析的基本方法。
培养学生独立思考、独立收集资料、独立设计的能力;培养分析、总结及撰写技术报告的能力。
设计内容在充分理解单相全波整流电路工作原理的基础上,设计出单相全波整流电路带电阻负载、阻感负载时的电路原理图,使用PSIM软件对所设计的电路带不同负载的情况下晶闸管取三个不同的触发角(要求α>90°,=90°和<90°各取一个角度)进行仿真,分别获得Ud、Id、UVT、IVT、I2波形,并对所给出的角度计算上述数值。
设计要求1)设计出合理的整流电路图。
2)选择不同触发角度,仿真出波形并作计算。
3)给出详细的仿真过程描述和详细的计算步骤和过程。
2设计内容基本原理介绍单相全波整流电路如图2-1所示,图中Tr为电源变压器,它的作用是将交流电网电压V1变成整流电路要求的交流电压,Rl是要求的直流供电的负载电阻。
图2-1原理图单相全波整流电路的工作原理可分析如下。
为简单起见,晶闸管用理想模型来处理,即正向导通电阻为零,反向电阻为无穷大。
在v2的正半周,电流从电压器副边线圈的上端流出,只能经过VT1流向Rl,在负载上产生一个极性为上正下负的输出电压。
在v1的负半周,其极性与图示相反,电流从变压器副边线圈的下端流出,只能经过VT2流向Rl,电流流过Rl时产生的电压极性仍是上正下负,与正半周时相同。
图2-2工作波形根据上述分析,可得单相全波整流电路的工作波形如图2-2所示。
由图可见,通过负载Rl的电流il以及电压vl的波形都是单方向的全波脉动波形。
电路设计的经济性论证1)单相全波整流电路中的变压器的二次绕组带中心抽头,结构较复杂。
绕组及铁心对铜、铁等材料的消耗比单项全控桥多,在有色金属资源有限的情况下,这是不利的。
2)单相全波整流电路中只用两个晶闸管,比单项全控桥式可控整流电路少两个,相应的,晶闸管的门极驱动电路也少两个,但是在单相全波整流电路中,晶闸管承受的最大电压使单相全控桥式整流电路的两倍。
3)单相全波整流电路中,导电回路只含一个晶闸管,比单项桥式少一个,因而也少了一次管压降。
从上述2)、3)考虑,同时其纹波电压较小,因电源变压器在正负半周内都有电流供给负载,电源变压器得到了充分的利用,效率较高,所以单相全波整流电路适宜于在地输出电压的场合。
主电路设计主电路如图2-3所示:图2-3主电路图触发电路晶闸管最重要的特性是可控的正向导通特性.当晶闸管的阳极加上正向电压后,还必须在门极与阴极之间加上一个具有一定功率的正向触发电压才能打通,这一正向触发电压的导通是由触发电路提供的,根据具体情况这个电压可以是交流、直流或脉冲电压。
由于晶闸管被触发导通以后,门极的触发电压即失去控制作用,所以为了减少门极的触发功率,常常用脉冲触发。
触发脉冲的宽度要能维持到晶闸管彻底导通后才能撤掉,晶闸管对触发脉冲的幅值要求是:在门极上施加的触发电压或触发电流应大于产品提出的数据,但也不能太大,以防止损坏其控制极,在有晶闸管串并联的场合,触发脉冲的前沿越陡越有利于晶闸管的同时触发导通。
为了保证晶闸管电路能正常,可靠的工作,触发电路必须满足以下要求:触发脉冲应有足够的功率,触发脉冲的电压和电流应大于晶闸管要求的数值,并留有一定的裕量。
由闸管的门极伏安特性曲线可知,同一型号的晶闸管的门极伏安特性的分散性很大,所以规定晶闸管元件的门极阻值在某高阻和低阻之间,才可能算是合格的产品。
晶闸管器件出厂时,所标注的门极触发电流Igt、门极触发电压U是指该型号的所有合格器件都能被触发导通的最小门极电流、电压值,所以在接近坐标原点处以触发脉冲应一定的宽度且脉冲前沿应尽可能陡。
由于晶闸管的触发是有一个过程的,也就是晶闸管的导通需要一定的时间。
只有当晶闸管的阳极电流即主回路电流上升到晶闸管的掣住电流以上时,晶闸管才能导通,所以触发信号应有足够的宽度才能保证被触发的晶闸管可靠的导通,对于电感性负载,脉冲的宽度要宽些,一般为~1MS,相当于50HZ、18度电度角。
为了可靠地、快速地触发大功率晶闸管,常常在触发脉冲的前沿叠加上一个触发脉冲。
触发脉冲的相位应能在规定范围内移动。
例如单相全控桥式整流电路带电阻性负载时,要求触发脉冲的移项范围是0度~180度,带大电感负载时,要求移项范围是0度~90度;三相半波可控整流电路电阻性负载时,要求移项范围是0度~90度。
同步电压:来自同步电源(同步电源变压器),经锯齿波形成电路,得到与电源同步的锯齿波电压。
缺少同步电压则不能形成锯齿波电压,将无触发脉冲;锯齿波电压:锯齿波电压与控制电压,偏移电压叠加,在其交叉点形成触发脉冲;没有锯齿波电压,也将无触发脉冲;控制电压:工作时,控制其大小,实现在需要的范围内移相;偏移电压:与控制电压叠加,以确定控制电压为零时,触发脉冲的初始位相位。
如果缺少偏移电压,或偏移电压不当,将不能在需要的范围内移相。
触发脉冲与主电路电源必须同步。
为了使晶闸管在每一个周期都以相同的控制角a被触发导通,触发脉冲必须与电源同步,两者的频率应该相同,而且要有固定的相位关系,以使每一周期都能在同样的相位上触发。
触发电路同时受控于电压uc与同步电压us控制。
晶闸管的触发条件:(1)晶闸管承受反向电压时,不论门极是否有触发电流,晶闸管都不会导通;(2)晶闸管承受正向电压时,仅在门极有触发电流的情况下晶闸管都才能导通;(3)晶闸管一旦导通门极旧失去控制作用;(4)要使晶闸管关断,只能使其电流小到零一下晶闸管的分类:晶闸管分为快速晶闸管,逆导晶闸管,双向晶闸管,光控晶闸管,门极可关断晶闸管(GTO),电力晶闸管(GTR),功率场效应晶闸管(MOSFET),绝缘珊双极晶闸管(IGBT),MOS控制晶闸管,集成门极换向晶闸管.静电感应晶体管。
形成与脉冲放大环节脉冲的形成环节由晶闸管V4、V5组成,V7、V8组成脉冲功率放大环节。
控制、电压uct和负偏移相电压up分别经过电阻R6、R7、R8并联接入V4基极。
在分析该环节时,暂不考虑锯齿波电压ue3和负偏电压up对电路的影响。
对控制电压uct=0时,V4截止,+15V电源通过电阻R11供给V5一个足够大的基极电流,使V5饱和导通,V5的集电极电压接近-15V,所以V7、V8截止,无脉冲输出,同时,+15V电源经R9和饱和晶体管V5及-15V电源对电容C3进行充电,充电结束后,电容两端电压为30V,其左端为+15V右端为-15V。
调节电压uct,当时,V4由截止变为饱和导通,其集电极A端ua由+15V迅速下降至1V左右,由于电容C3上的电压不能突变,C3右端的电压也开始的-15V下降至-30V,V5的基射结由于受到反偏而立即截止,其集电极电压uc5由开始的-15V左右迅速上升,当uc5>时,V7、V8导通,脉冲变压器一次侧流过电流,其二次侧有触发脉冲输出。
同时,电容C3反向充电使V5的基极电压ub5由-30V开始上升,当ub5>-15V,V5又重新导通,uc5又变成-15V,使V7、V8又截止,输出脉冲结束。
可见,V4导通的瞬间决定了脉冲发出的时刻,到V5截止时间即是脉冲的宽度,而V5截止时间的长短反向充电时间常数R11C3决定的。
锯齿波形成与脉冲移相环节该环节主要由V1、V2、V3、C2、VS等元器件组成,锯齿波是由恒流源电流对C2充电形成的。
在图中,VS、RP2、R3、V1组成了一个恒流源电路,恒流源电流Ic1对电容C2进行充电,电容C2两端的电压uc2为uc2=可见,uc2是随时间现性变化的,其充电斜率为。
当V2导通时,由于电阻R4的阻值很少,所以,电容C2经R4及V2迅速放电,当V2周期性的关断与导通时,电容C2两端就得到了线性很好的锯齿波电压,要想改变锯齿波的斜率,只要改变充电电流的大小,即只要改变RP2的阻值即可。
该锯齿波电压经过由V3管组成射极跟随器后,ue3是一个与远波形相同的锯齿波电压。
Ue3、up、uct三个信号通过电阻R6、R7、R8的综合作用成为ub4,它控制V4的导通与关断。
这里采用电工学课程中的叠加原理,在考虑一个信号在b4点的作用时,可以将另外两个信号接地,而三个信号在b4点作用综合电压ub4才是控制V4的真正信号。
当uct=0时,V4的基极电压的ub4的波形有ue3+up决定,控制偏移电压up的大小。
使锯齿波向下移动。
当uct从0增加时,V4的基极电位ub4的波形就由ue3+uct+up决定,即当ub4>时的时刻,即V4由截止转为导通的时刻,也就是该时刻电路输出脉冲。
如果把偏移电压up调整到某特定值而固定时,调节控制电压uct就能改变ub4波形上升到的时间,也就是说,改变控制电压uct就可以改变移动脉冲电压的相位,从而达到脉冲移相的目的。
电路中设置负偏移电压up的目的是为了确定初始脉冲相位。
通过三相桥式整流及逆变电路的分析可知:当负载大电感连续时,三相桥式整流电路的脉冲初始相位在控制角a=90o的位置,对于可逆系统,电路需要在整流与逆变两种工作状态,这时需要脉冲的移相范围约为180o,考虑锯齿波电压波形两端的非线性,因此要求锯齿波底宽为240o,此时使脉冲初始位置调整到锯齿波的中点位置,对应主电路a=90o位置。