材料物理性能-第5章-介电性能
- 格式:pdf
- 大小:14.45 MB
- 文档页数:105
《材料物理性能》第一章材料的力学性能1-1一圆杆的直径为2.5 mm 、长度为25cm 并受到4500N 的轴向拉力,若直径拉细至2.4mm ,且拉伸变形后圆杆的体积不变,求在此拉力下的真应力、真应变、名义应力和名义应变,并比较讨论这些计算结果。
解:由计算结果可知:真应力大于名义应力,真应变小于名义应变。
1-5一陶瓷含体积百分比为95%的Al 2O 3 (E = 380 GPa)和5%的玻璃相(E = 84 GPa),试计算其上限和下限弹性模量。
若该陶瓷含有5 %的气孔,再估算其上限和下限弹性模量。
解:令E 1=380GPa,E 2=84GPa,V 1=0.95,V 2=0.05。
则有当该陶瓷含有5%的气孔时,将P=0.05代入经验计算公式E=E 0(1-1.9P+0.9P 2)可得,其上、下限弹性模量分别变为331.3 GPa 和293.1 GPa 。
1-11一圆柱形Al 2O 3晶体受轴向拉力F ,若其临界抗剪强度τf 为135 MPa,求沿图中所示之方向的滑移系统产生滑移时需要的最小拉力值,并求滑移面的法向应力。
解: 1-6试分别画出应力松弛和应变蠕变与时间的关系示意图,并算出t = 0,t = ∞ 和t = τ时的纵坐标表达式。
解:Maxwell 模型可以较好地模拟应力松弛过程: Voigt 模型可以较好地模拟应变蠕变过程: 以上两种模型所描述的是最简单的情况,事实上由于材料力学性能的复杂性,我们会用到用多个弹簧和多个黏壶通过串并联组合而成的复杂模型。
如采用四元件模型来表示线性高聚物的蠕变过程等。
第二章 脆性断裂和强度)(112)(1012.160cos /0015.060cos 1017.3)(1017.360cos 53cos 0015.060cos 0015.053cos 82332min 2MPa Pa N F F f =⨯=︒︒⨯⨯=⨯=︒⨯︒⨯=⇒︒⨯︒=πσπτπτ:此拉力下的法向应力为为:系统的剪切强度可表示由题意得图示方向滑移2-1 求融熔石英的结合强度,设估计的表面能力为1.75J/m 2; Si-O 的平衡原子间距为1.6*10-8cm;弹性模量从60到75Gpaa E th γσ==GPa 64.28~62.2510*6.175.1*10*)75~60(109=- 2-2 融熔石英玻璃的性能参数为:E=73 Gpa ;γ=1.56 J/m 2;理论强度σth=28 Gpa 。
《材料物理性能》第一章材料的力学性能1-1一圆杆的直径为2.5 mm 、长度为25cm 并受到4500N 的轴向拉力,若直径拉细至2.4mm ,且拉伸变形后圆杆的体积不变,求在此拉力下的真应力、真应变、名义应力和名义应变,并比较讨论这些计算结果。
解:由计算结果可知:真应力大于名义应力,真应变小于名义应变。
1-5一陶瓷含体积百分比为95%的Al 2O 3 (E = 380 GPa)和5%的玻璃相(E = 84 GPa),试计算其上限和下限弹性模量。
若该陶瓷含有5 %的气孔,再估算其上限和下限弹性模量。
解:令E 1=380GPa,E 2=84GPa,V 1=0.95,V 2=0.05。
则有当该陶瓷含有5%的气孔时,将P=0.05代入经验计算公式E=E 0(1-1.9P+0.9P 2)可得,其上、下限弹性模量分别变为331.3 GPa 和293.1 GPa 。
0816.04.25.2ln ln ln 22001====A A l l T ε真应变)(91710909.4450060MPa A F =⨯==-σ名义应力0851.0100=-=∆=AA l l ε名义应变)(99510524.445006MPa A F T =⨯==-σ真应力)(2.36505.08495.03802211GPa V E V E E H =⨯+⨯=+=上限弹性模量)(1.323)8405.038095.0()(112211GPa E V E V E L =+=+=--下限弹性模量1 / 101-6试分别画出应力松弛和应变蠕变与时间的关系示意图,并算出t = 0,t = ∞ 和t = τ时的纵坐标表达式。
解:Maxwell 模型可以较好地模拟应力松弛过程:V oigt 模型可以较好地模拟应变蠕变过程:以上两种模型所描述的是最简单的情况,事实上由于材料力学性能的复杂性,我们会用到用多个弹簧和多个黏壶通过串并联组合而成的复杂模型。
材料介电常数的测定一、目的意义介电特性是电介质材料极其重要的性质。
在实际应用中,电介质材料的介电系数和介电损耗是非常重要的参数。
例如,制造电容器的材料要求介电系数尽量大而介电损耗尽量小。
相反地,制造仪表绝缘机构和其他绝缘器件的材料则要求介电系数和介电损耗都尽量小。
而在某些特殊情况下,则要求材料的介质损耗较大。
所以,研究材料的介电性质具有重要的实际意义。
本实验的目的:①探讨介质极化与介电系数、介电损耗的关系; ②了解高频Q 表的工作原理;③掌握室温下用高频Q 表测定材料的介电系数和介电损耗角正切值。
二、基本原理2。
1材料的介电系数按照物质电结构的观点,任何物质都是由不同性的电荷构成,而在电介质中存在原子、分子和离子等。
当固体电介质置于电场中后,固有偶极子和感应偶极子会沿电场方向排列,结果使电介质表面产生等量异号的电荷,即整个介质显示出一定的极性,这个过程称为极化。
极化过程可分为位移极化、转向极化、空间电荷极化以及热离子极化.对于不同的材料、温度和频率,各种极化过程的影响不同。
(1)材料的相对介电系数ε 介电系数是电介质的一个重要性能指标。
在绝缘技术中,特别是选择绝缘材料或介质贮能材料时,都需要考虑电介质的介电系数。
此外,由于介电系数取决于极化,而极化又取决于电介质的分子结构和分子运动的形式.所以,通过介电常数随电场强度、频率和温度变化规律的研究还可以推断绝缘材料的分子结构。
介电系数的一般定义为:电容器两极板间充满均匀绝缘介质后的电容,与不存在介质时(即真空)的电容相比所增加的倍数。
其数学表达式为 0a x C C ε= (1) 式中 x C ——两极板充满介质时的电容; 0a C —-两极板为真空时的电容;ε——电容量增加的倍数,即相对介电常数.从电容等于极板间提高单位电压所需的电量这一概念出发,相对介电常数可理解为表征电容器储能能力程度的物理量。
从极化的观点来看,相对介电常数也是表征介质在外电场作用下极化程度的物理量。
第五章 材料的介电性能介电材料和绝缘材料是电子和电气工程中不可缺少的功能材料,它主要应用材料的介电性能。
这一类材料总称为电介质。
本章主要介绍电介质的介电性能,包括介电常数、介电损耗、介电强度及其随环境(温度、湿度、辐射等)的变化规律,并介绍铁电性、压电性及其应用等。
第一节 电介质及其极化一、平板电容器及其电介质在普通物理和电工学中已经了解到电容的意义,它是当两个临近导体加上电压后具有存储电荷能力的量度,即()()()Q C C F V V = (5.1)真空电容器的电容主要由二个导体的几何尺寸决定,已经证明真空平板电容器的电容000(/)/V d A Q C A d V Vεε=== (5.2) 00(/)Q qA EA V d A εε==±=(5.3) 式中:q 为单位面积电荷;d 为平板间距(m);A 为面积(m 2);V 为平板上电压(V)。
法拉第(M.Faraday)发现,当一种材料插入两平板之间后,平板电容器的电容增加。
现在已经掌握,增大的电容应为00/r r C C A d εεε== (5.4)式中:r ε为相对介电常数,反映了电介质极化的能力;0()r εεε为介电材料的电容率,或称介电常数(单位为C 2/m 2或F/m)放在平板电容器中增加电容的材料称为介电材料。
显然,它属于电介质。
所谓电介质就是指在电场作用下能建立极化的物质。
如上所述,在真空平板电容间嵌入一块电介质,当加上外电场时,则在正极板附近的介质表面上感应出负电荷,负极板附近的介质表面感应出正电荷。
这种感应出的表面电荷称为感应电荷,亦称束缚电荷(见图5.1)。
电介质在电场作用(a)真空平板电容器; (b)平板电容器中的介电材料图5.1 平板电容器中的电荷下产生束缚电荷的现象称为电介质的极化。
正是这种极化的结果,使电容器增加电荷的存储能力。
陶瓷、玻璃、聚合物都是常用的电介质,表5.1中列出了一些玻璃、陶瓷和聚合物在室温下的相对介电常数。
《材料物理性能》第一章材料的力学性能1-1一圆杆的直径为2.5 mm 、长度为25cm 并受到4500N 的轴向拉力,若直径拉细至2.4mm ,且拉伸变形后圆杆的体积不变,求在此拉力下的真应力、真应变、名义应力和名义应变,并比较讨论这些计算结果。
解:由计算结果可知:真应力大于名义应力,真应变小于名义应变。
1-5一陶瓷含体积百分比为95%的Al 2O 3 (E = 380 GPa)和5%的玻璃相(E = 84 GPa),试计算其上限和下限弹性模量。
若该陶瓷含有5 %的气孔,再估算其上限和下限弹性模量。
解:令E 1=380GPa,E 2=84GPa,V 1=0.95,V 2=0.05。
则有当该陶瓷含有5%的气孔时,将P=0.05代入经验计算公式E=E 0(1-1.9P+0.9P 2)可得,其上、下限弹性模量分别变为331.3 GPa 和293.1 GPa 。
0816.04.25.2ln ln ln 22001====A A l l T ε真应变)(91710909.4450060MPa A F =⨯==-σ名义应力0851.0100=-=∆=A A l l ε名义应变)(99510524.445006MPa A F T =⨯==-σ真应力)(2.36505.08495.03802211GPa V E V E E H =⨯+⨯=+=上限弹性模量)(1.323)8405.038095.0()(112211GPa E V E V E L =+=+=--下限弹性模量1-11一圆柱形Al 2O 3晶体受轴向拉力F ,若其临界抗剪强度τf 为135 MPa,求沿图中所示之方向的滑移系统产生滑移时需要的最小拉力值,并求滑移面的法向应力。
解:1-6试分别画出应力松弛和应变蠕变与时间的关系示意图,并算出t = 0,t = ∞ 和t = τ时的纵坐标表达式。
解:Maxwell 模型可以较好地模拟应力松弛过程:V oigt 模型可以较好地模拟应变蠕变过程:以上两种模型所描述的是最简单的情况,事实上由于材料力学性能的复杂性,我们会用到用多个弹簧和多个黏壶通过串并联组合而成的复杂模型。