Adaptive Action Selection of Body Expansion Behavior in Multi-Robot System using Communicat
- 格式:pdf
- 大小:535.92 KB
- 文档页数:8
《髋部骨折患者应用髂筋膜阻滞术前镇痛效果的Meta分析》篇一一、引言髋部骨折是一种常见的骨科疾病,其治疗过程中疼痛管理至关重要。
髂筋膜阻滞作为一种有效的镇痛方法,已被广泛应用于髋部骨折患者的术前镇痛。
然而,关于髂筋膜阻滞术前镇痛效果的研究尚不充分,因此,进行一项全面的Meta分析,以评估其镇痛效果及安全性显得尤为重要。
本文旨在通过Meta分析的方法,系统评价髋部骨折患者应用髂筋膜阻滞术前镇痛的效果。
二、研究方法1. 文献来源本次Meta分析所纳入的文献来源于国内外权威数据库,如PubMed、Cochrane图书馆、CNKI、WanFang等。
2. 文献筛选标准纳入标准:研究类型为随机对照试验或对照研究;研究对象为髋部骨折患者;干预措施为髂筋膜阻滞术前镇痛;有明确的镇痛效果及不良反应数据。
排除标准:非随机对照试验、无明确数据的研究。
3. 数据提取与分析采用专业的文献管理软件进行数据提取与整理,包括研究基本信息、患者基本信息、干预措施、镇痛效果及不良反应等。
使用RevMan软件进行Meta分析。
三、结果1. 文献概况共纳入15篇研究,涉及患者总数为1236例。
其中,实验组(髂筋膜阻滞术前镇痛)与对照组(其他镇痛方法或无镇痛)各7篇研究。
2. 镇痛效果Meta分析结果显示,髋部骨折患者应用髂筋膜阻滞术前镇痛在术后各时间点的疼痛程度均明显低于对照组(P<0.05)。
具体表现为术后即刻、术后6小时、术后12小时及术后24小时的疼痛程度均有显著差异。
此外,髂筋膜阻滞在改善患者的疼痛程度、缓解疼痛的持续时间等方面也具有明显优势。
3. 安全性评价在安全性方面,髂筋膜阻滞术前镇痛并未增加患者的不良反应发生率,如恶心、呕吐、呼吸抑制等。
同时,髂筋膜阻滞对患者的生命体征无明显影响,具有良好的安全性。
四、讨论本Meta分析表明,髋部骨折患者应用髂筋膜阻滞术前镇痛效果显著,能显著降低术后各时间点的疼痛程度,且安全性良好。
1. 最大心率AAMHR2. 腹式呼吸运动abdominal breathing exercises3. 擦浴ablution4. 可进入;可使用accessibility5. 适应比值accommodation ratio6. 主动助力运动active assistant exercises7. 主动运动active exercises8. 日常生活活动activities of daily living, ADL9. 日常生活活动Activities of Daily Living,ADL10. 适应性活动adaptive activity11. 有氧训练aerobic training, aerobic exercise12. 空气离子化疗法aeroionotherapy13. 空气疗法aerotherapy14. 冲浴afusion15. 步行训练ambulation training16. 减痛步态antalgic gait17. 失语症aphasia18. 失用症apraxia19. 水疗,水中运动治疗aqua-therapy20. 氩离子激光疗法argon ion laser therapy21. 假肢artificial limb22. 工艺疗法arts and crafts therapy23. 助力运动assistant exercises24. 辅助器具Assistive Devices25. 联合运动associated movement26. 共济失调ataxia27. 手足徐动athetoid28. 自我训练autotraining29. 轴索断裂axonotmesis30. 八段锦Baduanjin31. 平衡运动balance exercises32. 无障碍通行barrier free accessibility, barrier free passage33. Barthel指数Bartbel index34. 巴氏指数评分Barthel Index, BI35. 狭义ADL,基本ADLBasic ADL, BADL36. 床上运动bed exercises37. 行为疗法behavior therapy38. 行为模式behavioral model39. 行为理论behavioral theory40. 阅读治疗bibliotherapy41. 生物反馈疗法biofeedback therapy, BFT42. 眨眼反射blink reflex43. 蓝紫光疗法blue and violet light therapy44. 支架brace45. 脑可塑性Brain Plasticity46. 脑干听觉诱发电位brainstem auditory evoked potential, BAEP47. 屏气试验breath holding test48. 呼吸运动breathing exercises49. 盐水浴brine bath50. 气泡浴bubble bath51. 蝶形槽浴butterfly shaped tank bath, Hubbard tank bath52. 手杖cane, walking stick53. 二氧化碳激光疗法carbondioxide laser therapy54. 木工疗法carpentry therapy55. 雕刻疗法carving therapy56. 厘米波疗法centimeter wave therapy57. 小脑共济失调步态cerebellar ataxic gait58. 脑瘫cerebral palsy59. 推拿Chinese manipulation, traditional manipulation60. 中医传统作业疗法Chinese Style OT61. 脊柱推拿法chiropractic62. 时值chronaxia, CHR63. 循环训练(法)circuit training64. 古典式电诊断法classical electrodiagnosis65. 以患者为中心的治疗Client-centered Intervention66. 气候疗法climatotherapy67. 攀登运动climbing exercises68. 认知干预Cognitive Intervention69. 认知疗法cognitive therapy70. 认知训练cognitive training71. 冷敷cold compress72. 冷疗法cold therapy73. 社基康复community-based-rehabilitation, CBR74. 补偿适应Compensation/Adaptation75. 全面康复comprehensive rehabilitation76. 压力衣Compression Garments, Pressure Suit77. 加压疗法compression therapy78. 向心收缩concentric contraction79. 保健操conditioning exercises80. 传导阻滞conduction block81. 传导热疗法conductive heat therapy82. 冷热交替浴contrast bath83. 整理活动cooling-down84. 协调运动coordination exercises85. 紧张控制技术模式coping skill model86. 矫正运动corrective exercises87. 皮层重组Cortical Reorganization88. 爬行运动crawling exercises89. 矿泉疗养学crenology90. 矿泉疗法crenotherapy91. 危机理论crisis theory92. 腋杖crutch93. 冷冻疗法cryotherapy94. 舞蹈疗法,dance therapy95. 导引daoyin96. 达松伐电疗法d'Arsonval electrotherapy, d'Arsonvalization97. 分米波疗法decimeter wave therapy98. 失神经支配denervation99. 缺损defect100. 间动电疗法diadynamic current therapy, Bernard therapy 101-200-------1. 膈式呼吸运动diaphragmatic breathing exercises2. 透热疗法diathermy3. 残疾是病损、失能、残障三者之总称。
加压训练对受试者肌肉形态和功能的影响:Meta分析【摘要】本研究旨在探讨加压训练对受试者肌肉形态和功能的影响。
通过Meta分析方法对相关研究进行综合分析,得出了以下结论:加压训练可显著改善肌肉形态和功能,增加肌肉质量和力量。
不同群体中的效果也有所不同,需要根据个体情况进行调整。
未来研究和实践中,建议加强对加压训练的监测和评估,并根据实际情况制定个性化训练方案。
加压训练的重要性在于提高肌肉形态和功能,对于运动员和健身爱好者具有积极意义。
结论表明加压训练是一种有效的训练方法,有助于提高肌肉质量和功能。
【关键词】加压训练,肌肉形态,肌肉功能,Meta分析,研究背景,研究目的,研究意义,加压训练的定义和特点,加压训练对肌肉形态的影响,加压训练对肌肉功能的影响,Meta分析方法和结果,加压训练在不同群体中的效果,结论,对未来研究和实践的建议。
1. 引言1.1 研究背景研究发现,加压训练可以有效提高肌肉的负荷承受能力和耐力,促进肌肉的生长和增强。
这种训练方式不仅可以改善身体形态,增加肌肉量,还可以提高肌肉的爆发力和稳定性,从而提高运动表现和减少运动损伤的发生率。
虽然加压训练的效果被广泛认可,但是关于其对受试者肌肉形态和功能的影响,尤其是在不同群体中的表现,仍然存在一定的争议和待解答的问题。
有必要进行一项Meta分析研究,系统总结和分析现有的研究成果,探讨加压训练对受试者肌肉形态和功能的影响,为未来研究和实践提供科学依据和建议。
1.2 研究目的本研究的目的是通过Meta分析研究加压训练对受试者肌肉形态和功能的影响。
现有研究表明,加压训练可以有效提高肌肉力量和肌肉质量,并对肌肉形态和功能产生积极影响。
现有研究结果并不一致。
一些研究显示加压训练可以显著改善肌肉形态和功能,而另一些研究则得出相反结论。
本研究旨在通过Meta分析综合研究结果,进一步探讨加压训练对受试者肌肉形态和功能的影响规律,为加压训练的实践提供科学依据。
功能性动作筛查预测运动损伤的可行性一项前瞻性队列研究的meta分析一、本文概述本文旨在通过meta分析的方法,探讨功能性动作筛查(Functional Movement Screen, FMS)在预测运动损伤方面的可行性。
功能性动作筛查作为一种评价运动员动作模式质量的有效工具,近年来在运动损伤预防领域受到广泛关注。
本研究通过对现有前瞻性队列研究进行综合分析,以期在更高层次上理解FMS在预测运动损伤中的作用,为运动损伤的预防提供科学依据。
我们将对功能性动作筛查的基本原理和应用背景进行简要介绍,阐述其在运动损伤预防中的潜在价值。
接着,我们将概述meta分析的基本原理和方法,以及其在医学研究领域的应用。
在此基础上,我们将详细介绍纳入本meta分析的研究对象、研究方法、数据分析过程以及主要结果。
本研究的主要目的是通过综合分析前瞻性队列研究的结果,评估功能性动作筛查在预测运动损伤方面的准确性和可靠性。
我们期望通过这一研究,为运动损伤预防工作提供更为准确、科学的依据,促进运动员的身体健康和运动表现。
我们也希望本研究能为未来相关领域的研究提供有益的参考和启示。
二、文献综述功能性动作筛查(Functional Movement Screen, FMS)作为一种评估个体动作模式质量和对称性的工具,在运动损伤预防领域逐渐受到关注。
其理论基础在于,通过检测受试者完成一系列基础动作时的表现,可以预测其在未来运动过程中可能遭遇的损伤风险。
近年来,多项研究对FMS预测运动损伤的能力进行了探索,然而,这些研究的结果并不一致,有些支持FMS的有效性,有些则持怀疑态度。
因此,对这一问题进行系统性的综述和元分析显得尤为重要。
早期的研究主要集中在FMS与特定运动项目损伤风险的关系上。
例如,一些研究指出,在足球、篮球等高强度运动中,FMS得分较低的运动员更容易遭受下肢损伤。
这些研究通常通过对比受伤运动员与未受伤运动员的FMS得分,来验证FMS的预测价值。
功能性动作筛查预测运动损伤的可行性一项前瞻性队列研究的meta分析一、内容概要本研究旨在通过meta分析方法,评估功能性动作筛查(FEAS)在预测运动损伤方面的可行性。
FEAS是一种非侵入性的运动损伤风险评估工具,通过对运动员进行一系列的动作测试,以识别出可能导致运动损伤的关键动作模式。
本研究将对已发表的关于FEAS与运动损伤相关性的临床试验进行综合分析,以期为运动员预防运动损伤提供更为准确和可靠的依据。
本研究首先对文献进行了广泛的检索,筛选出与FEAS相关的临床试验,并对其进行质量评估。
然后采用统一的数据分析方法,对各篇文献中的数据进行整合和统计分析。
根据研究结果,对FEAS在预测运动损伤方面的准确性和可靠性进行综合评价。
本研究的结果将有助于提高运动员在预防运动损伤方面的表现,降低运动损伤的发生率,从而提高运动员的竞技水平和生活质量。
此外本研究还将为FEAS的进一步发展和完善提供理论依据和实践指导。
A. 研究背景和意义随着人们生活水平的提高和健康意识的增强,运动已经成为了许多人日常生活的重要组成部分。
然而长时间、高强度的运动训练可能导致运动损伤的发生,给运动员的身体健康带来严重影响。
因此预测运动损伤风险并采取相应的预防措施显得尤为重要,功能性动作筛查(FMS)作为一种评估运动员运动技能和损伤风险的方法,已经在许多体育项目中得到广泛应用。
然而目前关于FMS在预测运动损伤方面的研究仍存在一定的局限性,尤其是在长期跟踪研究方面。
本研究旨在通过meta分析方法对已发表的关于FMS预测运动损伤的前瞻性队列研究进行综合评价,以期为运动损伤的预防提供更为科学、准确的理论依据。
通过对这些研究的综合分析,我们可以更好地了解FMS在预测运动损伤方面的效果,以及可能的影响因素,从而为运动员的健康管理和训练计划制定提供有力支持。
此外本研究还有助于推动功能性动作筛查在运动损伤预防领域的进一步发展和应用。
B. 目的和方法文献回顾:我们在PubMed、Web of Science、中国知网等数据库中检索与功能性动作筛查预测运动损伤相关的研究文献,筛选出符合纳入标准的研究。
第八章:生理评估单选题 ( 共26题)第1题 (分值:10分)第2通气阈(VT2)试验的终点取决于客户读诵《效忠誓词》的能力或背诵其他文本句段的能力。
A:正确B:错误第2题 (分值:10分)根据Foster与Porcari的调查报告,心脏病患者在健身设施(如健身房)运动时心脏病发作或心源性猝死的风险是在受监控的康复方案中发生率的_______________倍。
A:2B:3C:5D:10第3题 (分值:10分)如果客户能规范执行10次150磅(68公斤)卧推动作,则该客户在这项运动的预测1-RM卧推重量为?A:188磅(85公斤)B:200磅(91公斤)C:214磅(97公斤)D:224磅(102公斤)第4题 (分值:10分)在运动测试过程中,发现下列哪些与血液灌注不良的体征或症状时需要立即终止测试并且可能需要转介至有资质的专业医务人员?A:跛行B:紫绀D:共济失调第5题 (分值:10分)测量最大摄氧量(VO2max)需要在实验室进行极量运动试验时收集并分析______________。
A:血氧水平B:呼出的气体C:核心温度D:消耗的热量第6题 (分值:10分)身材短小的个体可能不太适合进行哪种测试?A:踏车运动试验B:平板运动试验C:通气阈测试D:台阶测试第7题 (分值:10分)下列哪种身体成分评估法估算的体脂百分比会随受试者身体水合状况而每天都发生巨大变化? A:皮褶厚度测量法B:生物电抗阻分析法(BIA)C:水下皮脂测定法D:双能X线吸收测定法(DEXA)第8题 (分值:10分)当客户准备进行1-RM肌力测试时,在第一次热身组测试中,私人教练应鼓励客户采用的重量为1-RM百分之多少?A:25%B:50%D:90%第9题 (分值:10分)女性客户达到多大的腰臀比阈值时可视为存在着健康风险?A:0.79B:0.82C:0.86D:0.95第10题 (分值:10分)一名54岁的男性客户,虽无运动禁忌,但该客户超过10年未曾积极规律运动,请问进行哪一项评估最恰当?A:1.5英里快跑测试B:Rockport 健步行测试C:VT2测试D:1-RM倒蹬试验第11题 (分值:10分)_______________ 将体重与身高的关系描述为客观的比值。
BIODEX等速持续被动模式下向心离心肌力训练治疗脑卒中后足内翻的效果严盛盛;王张迪【期刊名称】《医学食疗与健康》【年(卷),期】2022(20)10【摘要】目的:探讨脑卒中后足内翻实施BIODEX等速持续被动模式下向心离心肌力训练治疗的效果。
方法:选取2021年1月至2022年1月本院收入治疗的脑卒中后足内翻患者40例为研究对象,分为基础组和探析组,每组各20例。
基础组实施常规康复训练,探析组在常规康复训练基础上开展BIODEX等速持续被动模式下向心离心肌力训练。
对比分析两组下肢运动功能、日常生活活动能力、踝背屈肌群力、静息状态足内翻角度、踝关节跖屈肌张力、平衡能力、步态情况及关节功能障碍状况。
结果:探析组治疗后Fugl-Meyer评分、Barthel指数均高于基础组(P<0.05);探析组治疗后踝关节跖屈肌张力、静息状态足内翻角度均低于基础组,踝背屈肌群力高于基础组(P<0.05);探析组治疗后睁眼静态及动态评分、闭眼静态及闭眼动态评分均低于基础组(P<0.05);探析组治疗后步速、步频及患侧步长均高于基础组(P<0.05);探析组治疗后功能障碍各项评分均低于基础组(P<0.05)。
结论:BIODEX等速持续被动模式下向心离心肌力训练治疗能够显著提高脑卒中后足内翻患者日常生活能力和下肢运动功能,提高踝背肌群力,改善患者踝关节内翻情况,推广应用价值较高。
【总页数】4页(P61-64)【作者】严盛盛;王张迪【作者单位】余姚市人民医院康复医学科【正文语种】中文【中图分类】R743.3【相关文献】1.等速向心和离心肌力训练治疗膝关节骨性关节炎患者的有效性研究2.BIODEX多关节等速力量测试和训练系统在脑损伤后偏瘫足内翻中的治疗效果3.热敏灸联合等速向心肌力训练治疗膝关节骨性关节炎4.BIODEX等速持续被动模式下向心离心肌力训练治疗脑卒中后足内翻临床效果研究5.等速闭链训练与等速开链训练对脑卒中后运动障碍患者下肢肌力、平衡功能与步行能力影响研究因版权原因,仅展示原文概要,查看原文内容请购买。
选择性非接触式射频设备对亚洲人腰腹部减脂塑形的疗效及安全性研究作者:雷颖欧阳华伟张轶郑正尹轩羽谭军来源:《中国美容医学》2019年第02期[摘要]目的:观察选择性非接触式射频设备对亚洲人腰腹部减脂塑形的治疗效果及安全性。
方法:选取16例健康就医者,使用选择性非接触式射频设备(BTL Vanquish征服,英国BTL公司)进行腰腹部照射减脂和塑形。
每次治疗45min,每周治疗1次,总共4次,不接触皮肤。
观察治疗前后就医者腹围、卡尺测量皮下脂肪厚度和彩超测定皮下脂肪厚度变化,治疗疼痛度、主观评分及安全性。
结果:16例就医者治疗4次后随访3个月,治疗前平均腹围、平均腹部卡尺测量皮下脂肪厚度、平均腹部彩超测量皮下脂肪厚度、平均体重分别为(97.94±8.64)cm、(40.97±3.54)mm、(30.93±6.48)mm、(72.07±11.96)kg,治疗后为(94.15±8.11)cm、(37.07±2.91)mm、(26.44±4.70)mm、(70.50±11.50)kg,差异有统计学意义(P[关键词]选择性非接触式射频;射频;无创式;减脂;塑形[中图分类号]R622 [文献标志码]A [文章编号]1008-6455(2019)02-0004-04Abstract: Objective To observe the therapeutic effect and safety of contactless selective radiofrequency device for lumboabdominal fat reduction and body sculpture in Asians. Methods Sixteen Patients were treated with contactless selective radiofrequency device(BTL Vanquish ME,BTL Industries), to scan lumboabdominal areas sequentially. Once a week for 45 minutes, 4 sessions were performed, non-contact skin. Abdominal circumference and the thickness of subcutaneous fat with caliper and ultrasound were observed before and after therapy as well as evaluation of pain degree, subjective score and safety. Results Sixteen patients were followed up for 3 months after 4 times of treatment. The means of abdominal circumference and weight and the thickness of subcutaneous fat with caliper and ultrasound were(97.94±8.64)cm,(40.97±3.54)mm,(30.93±6.48)mm,(72.07±11.96)kg at the baseline,(94.15±8.11)cm,(37.07±2.91)mm,(26.44±4.70)mm,(70.50±11.50)kg after treatment respectively. There were significant differences before and after treatment(PKey words: contactless selective radiofrequency device; radiofrequency; non-invasive; lipoly sis; body sculpture肥胖是心血管疾病和糖尿病的危險因素之一,尤其是腹部肥胖。
peabody粗大运动评估内容-回复peabody粗大运动评估是一种广泛应用于儿童运动能力评估的工具。
它通过评估儿童的粗大运动技能,包括跑步、跳跃、投掷和接球等,来判断他们的运动发展情况。
本文将详细介绍peabody粗大运动评估的内容,以及使用该评估工具的步骤和评估结果的解读。
首先,我们来了解一下peabody粗大运动评估的内容。
该评估工具共有六个子测试,分别是垂直跳跃、侧向跳跃、固定头运球、投掷、水平跳跃和平衡器上行走。
每个子测试都要求儿童完成一系列特定的动作,以测试他们的运动技能和协调性。
评估者会观察儿童的身体控制能力、动作流畅性和运动表现等方面,并按照评定标准对其表现进行评分。
评分标准依据年龄和性别而定,以确保评估结果的准确性和可比性。
接下来,我们来一步一步讲解peabody粗大运动评估的步骤。
首先,评估者需要为评估对象准备一块平整的开阔场地,以确保儿童有足够的空间进行各项测试。
接着,评估者会根据儿童的年龄和性别选择合适的评估内容,并将测试器材准备好,如跳绳、球和平衡器等。
在测试过程中,评估者需要仔细观察儿童的运动表现,注意记录他们的技能水平和动作质量。
完成所有子测试后,评估者会汇总评分并进行分析,以得出儿童的粗大运动能力水平。
最后,我们来解读peabody粗大运动评估的结果。
评估报告会显示每个子测试的得分和儿童在整体评估中的位置。
评估结果可以用百分位数来表示,该百分位数表示相同年龄和性别的典型儿童中,儿童的得分位于多少百分比之上或之下。
例如,一个得分为75的儿童表示其运动能力高于75的同龄男孩。
评估者还可以通过比较不同子测试的得分来分析儿童的强项和弱项,并提供相关建议和训练指导,以帮助儿童发展和提高运动能力。
综上所述,peabody粗大运动评估是一项全面评估儿童运动能力的工具。
它通过评估儿童的粗大运动技能,并根据评定标准进行评分,来判断儿童的运动发展水平。
评估过程涉及选择评估内容、准备测试器材、观察儿童运动表现等。
脑卒中最常用的运动功能评定法
脑卒中后行为活动功能障碍是普遍存在的,无论是卒中发病本身还是治疗的复发和康复。
为了确定病人的行为活动功能水平,最常用的技术是评定法,例如Fugl-Meyer运动
功能评定法。
Fugl-Meyer运动功能评定法是由丹麦脑卒中研究者沃尔夫冈·弗格尔·迈耶
(W.Fugl-Meyer)于1975年发表的,它是有系统的、结构化的描述病人全身运动活动功
能的评分标准,包括肢体的形态结构,运动系统的张力和协调,脊髓的拓扑功能,以及定
向运动和习得性运动的功能。
Fugl-Meyer运动功能评定法包括三项,即肢体评分项(upper extremities:UE)、
下肢评分项(lower extremities:LE)和全身学评分项(total:TOT)。
肢体评分项(UE)共分为26个项目,包括肢体活动,活动协调,旋转,准确性,抓握,发现,定向,静态力量和可视项目等,每项目最高得分是100分,总分的范围从0到100分。
全身评分项(TOT)是将UE和LE的总得分除以2得到的结果,范围也是0到100分。
Fugl-Meyer运动功能评定法用在评估脑卒中发病病人的功能状况上十分有效,帮助临床医生准确、细致、全面地评估,查明康复计划恢复治疗进展情况,从而制定有效的治疗
方案。
选择性功能动作评估方法探究作者:李磊磊来源:《体育时空·上半月》2016年第06期中图分类号:G804 文献标识:A 文章编号:1009-9328(2016)06-000-01摘要选择性功能动作评估(SFMA)是一种综合性评估方法,通过人体不同的动作模式所反映出的动作缺陷信息,快速并有选择性的进行动作评估,从而准确找出人体伤病部位及损伤原因,为运动员后期物理治疗提供可靠的病因参考。
关键词功能动作评估方法物理治疗选择性功能动作评估(SFMA)是物理治疗体系中的主要评估手段,是一种快速动作筛查的一种,它主要从两个方面进行动作评估,一是动作模式,二是疼痛(Pain)。
根据不同动作模式进行观察受试者的关节活动度、肌力大小、身体对称性等来评定受试者存在的功能性障碍。
然后,根据受试者在完成动作时伴随的疼痛情况来确定受试者损伤的严重程度,基本的疼痛类型可以分为:酸痛、胀痛、刺痛、串麻。
酸痛一般属于肌肉过于疲劳而引起的,胀痛就可能存在某一受伤部位存在水肿现象,刺痛和串麻现象的产生一般认为是神经受损;所以根据受试者主观感受来进行大致的评估,初步确定损伤的程度。
然后结合两种情况来进一步确定受试者的损伤情况,有助于测试者进行下一步的治疗和恢复。
一、选择性功能动作评估(SFMA)的概念及其理论基础(一)选择性功能动作评估(SFMA)的概念选择性功能动作评估(SFMA)是一种综合性评估方法,他把人体功能解破和动作模式结合,根据人体不同的动作模式所反映出的动作缺陷信息,快速有选择性的进行动作评估,从而准确找出人体伤病部位及损伤原因。
(二)选择性功能动作评估(SFMA)的理论基础选择性功能动作评估(SFMA)的理论依据源自于区域相互依存这一概念,简单地说,当人由于运动不当而产生损伤,大部分情况下都会引起某一部位产生疼痛,人体都有自我保护意识,所以在产生疼痛时,人体自我保护系统开始工作,通过一些其他代偿动作去弥补和缓解该部位的疼痛;但是这种代偿仅仅只是短时间的缓解,如果不进行治疗的话,这种代偿就会延续下去,天长日久这种不良的动作模式就会改变人体正常的动作模式,从而导致其他损伤和病症的出现;所以在进行伤病诊断时我们不仅仅只关注疼痛的点,而要把眼光放远,把疼痛区域放射到与之相关的一片区域,在进行诊断,这对于伤病的根治和恢复有很大的帮助。
FDA临床试验常见词汇中译文对照Aaction letter 决定通知active comparator 活性药物对照组active control = AC 阳性对照,活性对照active ingredient 有效成分Active Substance Master File (ASMF) 欧洲药物主文件acute myocardial infarction 急性心肌梗死acute tibial fractures 急性胫骨骨折adalimumab (Humira) 阿达木单抗adaptive design 自适应设计adaptive randomization 自适应随机ADE = adverse drug event 药物不良事件Adenoviral Vectors 腺病毒载体adequate and well-controlled studies 充分严格的对照研究ADHD = Attention-deficit hyperactivity disorder注意力缺陷多动障碍; 注意力不足过动症; 多动症adhesion barrier product 防黏著产品adjuvant 助剂; 佐剂auxiliary;adjuvant therapy 佐药疗法,辅助疗法ADL = activities of daily living 日常生活活动能力ADME = absorption, distribution, metabolism, and excretion(药物)吸收、分配、代谢和排除ADR = adverse drug reaction 药物不良反应adrenal cortex 肾上腺皮质adrenal cortical hormone 肾上腺皮质激素adrenal gland 肾上腺adrenaline 肾上腺素adulterated devices 掺假器械adverse drug reaction = ADR药物不良反应adverse effect 副作用adverse event = AE 不良事件adverse medical events 不良医学事件adverse reaction (adverse event) 药物不良反应advisory 提醒advocacy and support groups 倡导和支持团体AE = adverse event 不良事件AERS = Adverse Event Reporting System 不良事件报告系统BBIMO Bioresearch Monitoring Program 生物研究监测bioavailability (F) 生物利用度biochemical drugs 生化药品biocides 生物杀灭剂; 杀生物剂biocompatibility 生物相容性biodegradable 生物分解bio-engineered, transgenic food 转基因食物bioequivalence; bioequivalent 生物等效应biofilm 细菌薄膜, 生物膜biologic 生物制品biological response modifiers BRM 生物应答调节剂biological therapeutic agents 生物治疗药剂biomarker 生物标志物biometrics 生物统计; 生物识别技术bion stimulator 生物体刺激器bionic knee 仿生膝关节biopharma: biopharmaceutical products 生物药物产品bipolar 双相燥郁症birth defect 出生缺陷, 新生儿缺陷, 先天缺陷BLA = biologic license application 生物制品许可申请blank control 空白对照blend uniformity analysis 混合均匀度分析blind 盲法blind codes 编制盲底blind review 盲态审核blinding method 盲法blinding/ masking 盲法,设盲blister packaging 泡罩包装; 水泡眼block 分段;层block size 每段的长度blocked randomization 区组随机Ccase history 病历case record form = CRF病例报告表/病例记录表case report form 病例报告表cash curve 现金曲线cash trap 现金陷阱; 现金套牢categorical variable 分类变量CLIA Clinical Laboratory Improvement Amendments临床实验室改进修订案clinical (human) data 临床数据clinical endpoint临床终点clinical equivalence 临床等效应clinical hold 临床试验暂停通知clinical investigator 临床研究者Clinical Pharmacists 临床药师Clinical Research Coordinator = CRC临床研究协调者clinical study 临床研究Clinical Study Application = CSA临床研究申请clinical study report 临床试验的总结报告clinical trial 临床试验clinical trial application = CTA 临床试验申请clinical trial exemption = CTX 临床试验免责clinical trial protocol = CTP 临床试验方案Clinical Trial Report = CTR临床试验报告clinically significant results 有临床意义cohort 队列cohort studies 队列研究co-investigator = CI合作研究者comparison 对照Compassionate Use 体恤使用competitive labeling 优越标签Complementary And Alternative Therapy 补充性和非传统治疗Complete response 完全有效compliance 遵守;对遵守法规情况的监管composite variable 复合变量Compression Test 压缩试验computer-assisted trial design= CATD计算机辅助试验设计Con Meds = concomitant medications 联合用药confidence interval 可信区间confidence level 置信水平Confidentiality Regarding Trial Participants 为试验参与者保密control对照control group 对照组controlled clinical trials 临床对照实验Controlled Trials 对照试验Critical Path 关键路径CRM = continual reassessment method 连续重新评估方法crossover design 交叉设计cross-over study 交叉研究crossover therapy 交叉治疗CRF = case report form 病例报告表dosage form 剂型dosage regimen 给药方案dose-ranging study 剂量范围研究dose-reaction relation 剂量-反应关系dose-related adverse reactions 剂量相关的不良反应double blinding 双盲double dummy 双模拟double dummy 双模拟double dummy technique 双盲双模拟技术double-blind study 双盲研究Double-Masked Study 双盲研究DRGs = Diagnosis Related Group System 疾病诊断相关分组drop out 脱落drop test 落震试验;跌落试验drug eluting coronary stents 药物洗脱支架drug product 药物产品drug substance 原料药drug-drug interaction56 药物-药物相互作用drug-food interaction 药物-食物的相互作用EEPS = Electronic Entry Processing System 电子录入处理系统effectiveness 疗效efficacy 有效性测定efficacy (Of a drug or treatment) 药效;药品疗效EEMEA = European Medical Evaluation Agency; European Agency for the Evaluation of Medicinal Products; European Medicines Agency 药物评价机构; 欧洲医药品管理局emergency envelope 应急信件Empiric Bayesian Multiple Gamma-Poisson Shrinker经验性贝氏法(伽玛泊松分布缩检法)empirical 经验性endpoint 终点endpoint criteria 终点指标factorial design 析因设计factorial trial 析因试验failure 无效,失败Fair Packaging and Labeling Act (1966) 公平包装和标签法False Claims Act 防制不实请求法false therapeutic claims 错误的疗效声明full analysis set 全分析集full factorial design 全因子试验法Iinclusion criteria 入选标准inclusion/exclusion criteria 入选/排除标准incremental exposure 食品中递增摄入量incubation period/latency period 潜伏期IND = Investigational New Drug 临床研究新药INDA = investigational new drug application NDA前申报阶段indemnity insurance 赔偿保险Independent Data Monitoring = IDM独立数据监察Independent Data Monitoring Committee = IDMC独立数据监察委员会independent ethics committee = IEC 独立伦理委员会indications 适应症investigational new drug = IND 临床研究新药investigational product 试验药物investigator 调研人员investigator's brochure = IB 研究者手册Mmasked 设盲mean absorption time = MAT(药物在体内的)平均吸收时间mean disintegration time = MDIT(药物在体内的)平均崩解时间Mean Dissolution Time = MDT (药物在体内的)平均释放时间Mean Residence Time = MRT(药物在体内的)平均滞留时间medical governance 医药治理Medicare 老年医疗保险制度;联邦老年医保medication guides (for patients) 用药指南Medicines Control Agency = MCA英国药品监督局Misbranding 错误标签; 冒牌Miscoding 编码错误missing value 缺失值mixed effect model 混合效应模式MLD = minimal lethal dose 最小致死剂量MoA = Mechanism of Action 作用机制;作用机理monitor 监查员monitoring plan监查计划monitoring report 监查报告MR = moderate response 好转MRA = Agreement on Mutual Recognition 相互承认协定MTD = maximal tolerance dose 最大耐受剂量multicenter trial 多中心试验multi-drug resistance 多药物抗药性multiple arm trials 多治疗组的试验mutual recognition procedure (EU) 相互承认程序OOS = Overall survival 总生存率Pparallel group design 平行组设计parameter estimation 参数估计parametric release 参数放行parametric statistics 参数统计方法patient file 病人档案patient global; pt global 病人总体评价patient history 病历per protocol ( PP) analysis 符合方案分析PFS = progression-free survival 无疾病进展存活率PGE = patient global evaluation 病人总体评价PHA = preliminary hazards analysis 预先危险分析pharmaceutical equivalence 药剂等效性pharmaceutics药剂学pharmacodynamics=PD 药物效应动力学; 简称药效学pharmacoepidemiology 药物流行病学pharmacokinetics = PK 药代动力学; 简称药动学pharmacology 药理学Pharmacovigilance105 药物警戒pharmacy 配药学PharMetrics claims database 索赔数据库PhRMA = Pharmaceutical Research and Manufacturers of America美国药物研究与生产商协会PIC=Pharmaceutical Inspection Convention 药品检查协定PIC/S Pharmaceutical Inspection Cooperation Scheme 药物检查合作计划pipeline assets 开发中产品PK = pharmacokinetics 药物代谢动力学; 药动学,药代动力学placebo 安慰剂placebo control 安慰剂对照placebo controlled study 安慰剂对照研究placebo effect 安慰剂效应PMA = premarket approval 上市前许可; 销售前批准PMCs = post marketing commitments 承诺药品上市后的继续研究PMDRA = Post Marketing Drug Risk Assessment 上市后药品风险评估(办公室) PMHx = Past Medical History 既往病史PMN = Premarket Notification 销售前通知PMS = Premenstrual syndrome 经前综合症POC (Proof-of-concept) Clinical Trials 概念证明POC = point-of-care testing 床旁分析polytomies 多分类pooled analysis = PA 荟萃分析postmarket surveillance 上市后监督post-marketing surveillance; postmarket safety surveillance 销售(上市)后监督power 把握度; 检验效能Pp = Process Performance 工序绩效Ppk = Process Performance Index 工序绩效指数precautions 慎用;注意事项precision 精密度preclinical (animal) data 临床前(动物实验)数据preclinical study 临床前研究predicate device = legally marketed device that is not subject to Premarket Approval (PMA)和已合法在市场上销售的且不需要做PMA“销售前批准”的Pre-market Approval (Application) = PMA上市前许可(申请)premarket notification 上市前通知pre-marketing surveillance 销售(上市)前监督preparing and submitting 起草和申报prescription drug 处方药preservation 保藏prevalence 患病率prevention trials预防试验primary (coronary) event 原位病变primary endpoint 主要终点primary mode of action = PMOA 首要作用模式primary variable 主要变量principal investigator = PI主要研究者Principles of Qualification 确认(验证)原则process controls 工艺控制process validation 工艺验证product codes 产品的号码product differentiation 产品差异化,产品特色化product license = PL 产品许可证product life cycle (PLC) 产品生命周期prognosis 预后progression-free survival = PFS 无进展生存progressive Disease PD 病情进展proof of principle study 原理循证研究propensity score 倾向性评分protocol 试验方案; 方案protocol amendment 方案补正prototype design 原型设计protozoa 原生动物门proven acceptable Range = PAR 确定可接受范围PTC = Product Technical Complaints 药品技术投诉Qqualification system for licensed pharmacist 执业药师资格准入制度qualified health claims 有保留的健康宣称Qualified Person = QP 受权人quality assurance = QA质量保证quality assurance unit = QAU质量保证部门quality control = QC 质量控制quality management systems 质量管理体系quality of life trials or supportive care trials 生存质量试验quality risk management = QRM 质量风险管理quantitative risk assessment 量化风险评估Rrandomization 随机化randomized trial 随机化试验randomized, double blinded clinical trial 随机双盲对照研究range check 范围检查rating scale 量表RCT = randomized clinical trials 随机临床试验RCT = randomized controlled trial 随机对照试验RDE: remote data entry 远距数据输入ready-to-eat foods 即食食品reagents 试剂recall 召回; 强制回收RECIST = Response Evaluation Criteria in Solid Tumors 实体瘤的疗效评价标准reconditioning 整改; 货物重整理;货物重包装recycled plastics 可循环利用塑料制品reference product 参比制剂reference samples 标准样品regulatory methodology 质量管理方法regulatory methods validation 管理用分析方法的验证(FDA对NDA提供的方法进行验证)regulatory specification 质量管理规格标准(NDA提供)rejection 排异remote monitoring system 远程监测系统; 远程监控REMS = Risk Evaluation and Mitigation Strategies 风险评估和减缓战略risk 受害risk assessment (risk analysis + risk evaluation) 风险评估,论证risk classification 风险分类;Risk Communications Advisory Committee 风险交流咨询委员会risk evaluation (part of risk assessment) 风险评价risk/ benefit analysis 风险-获益分析risk-benefit ratio 效益/风险比route of administration 给药途径royalties 专利使用费RPN = Risk Priority Number 风险优先指数RR = Response rate 缓解率RSD = (intra-day and inter-day) relative standard deviations (日内和日间) 相对标准差Ssafety advisory 安全建议safety evaluation 安全性评价safety evaluators 安全性评估人员safety set 安全性评价的数据集screening trials 筛选性试验SD = standard deviation 标准(偏)差SE = substantial equivalence 实质上的等同Seal Strength Test 密封强度试验sequence 试验次序SFDA 129= State Food And Drug Administration 国家食品药品监督管理局SG & A= Sales, General and Administration 销售、管理和一般费用shaft 传动轴SHEA = Society for Healthcare Epidemiology of America 美国医院流行病学学会sheaths 护套shelf life 保存期限; 保质期SIC codes = Standard Industrial Classification codes 标准产业分类代码side effects 副作用significance level 显著性水平Significant Risk (SR) 显著的危险性simple randomization 简单随机simulation model 仿真模型single blinding单盲single-blind study 单盲研究single-masked study 单盲研究site assessment = SA现场评估site audit 试验机构稽查SMDA = Safe Medical Devices Act of 1990 1990年安全医疗器械法SMF = Site Master File 生产场所主文件sNDA = supplemental NDA 疗效补充新药上市申请sponsor-investigator = SI 申办研究者spontaneous reports; voluntary reports 药品不良反应自愿报告SPS = Agreement on the Application Of Sanitary and Phytosanitary Measures卫生与植物卫生措施实施协议;简称SPS协议SSI = surgical site infection 手术部位感染SSOPs = Sanitation Standard Operating Procedures 卫生标准操作程序standard curve 标准曲线standard deviation 标准偏差standard drug 标准药物standard operating procedure = SOP 标准操作规程standard treatment 标准治疗Standards Of Care131 医护标准State Food and Drug Administration = SFDA国家食品药品监督管理局statistic 统计量statistical analysis plan = SAP 统计分析计划statistical model 统计模型statistical significance 统计学意义statistical tables 统计分析表Statisticians in the Pharmaceutical Industry = PSI制药业统计学家协会steady-state Area Under the Curve = AUCss稳态药时曲线下面积/稳态血药浓度-时间曲线下面积stratified 分层study audit 研究稽查study endpoint 研究终点Study Personnel List = SPL研究人员名单study site研究中心study type 研究类型subchronic toxicity studies 亚慢性毒性研究subgroup 亚组sub-investigator 助理研究者subject 受试者subject diary = SD 受试者日记subject enrollment 受试者入选subject enrollment log = SEL受试者入选表Subject Identification Code List = SIC受试者识别代码表subject recruitment 受试者招募subject screening log = SSL受试者筛选表submission 申报;递交subspecialties, internal medicine 亚专科,内科substantial equivalence to legally marketed (predicate) device 和已合法在市场上销售的且不需要做PMA“销售前批准”的相似产品有实质上的等同Ttrain-the-trainer program 培训者培训计划treatment group 试验组treatment IND 治疗性试验性新药申请treatment trials 治疗性试验trial error 试验误差trial initial meeting 试验启动会议trial master file 试验总档案trial objective 试验目的trial site 试验场所TRICARE 军队医疗系统triple blinding 三盲two one-side test 双单侧检验UAE = unexpected adverse event 预料外不良事件unblinding 破盲;揭盲under reporting bias 少报偏差unexplained syncope 不明原因晕厥unresectable 不能手术切除variability 变异variable 变量WHO International Collaborating Center for Drug Monitoring(世界卫生组织)国际药物监测合作中心WHO International Conference of Drug Regulatory Authorities= WHO-ICDRAWHO国际药品管理当局会议WHO Programme for International Drug Monitoring = PIDMWHO 国际药物监测合作计划。
作者: Brain M.Quigley;杨英姿
作者机构: 成都体院
出版物刊名: 浙江体育科学
页码: 55-57页
主题词: 临界功率;有氧代谢;通气阈;乳酸阈;最大摄氧量;高强度训练;有氧耐力;高强度运动;
实验室装备;赛艇运动员
摘要: 很多项目的运动员都要求有氧耐力和从事高强度训练能力的结合,或者两者间歇出现,诸如公路自行车竞赛和田赛运动,或在跑、游泳、赛艇和皮划艇这些项目比赛的最后阶段.尽管生理学强调,从事大约2—5分钟的中距离项目运动最好用最大摄氧量来表示,而长距离项目用乳酸阈和通气阈来代表更适合.所有这些测定方法都需要尖端的实验室装备及其工作人员.。
美国身体活动指南证据评价方法《关于美国身体活动指南证据评价方法的那些事儿》
嘿,咱今天来唠唠美国身体活动指南证据评价方法这档子事儿。
就说我之前有一次去健身房锻炼吧。
我在那跑步机上跑得气喘吁吁的,看着旁边的人各种锻炼方式都有。
然后我就开始琢磨,这不同的锻炼方式到底咋评价好坏呢?这就跟美国那个身体活动指南证据评价方法有点关系啦。
咱就说,他们评价的时候得考虑好多方面呢。
就好比我在健身房,要看看哪种运动对身体的益处更大,是不是能让人更健康,更有活力呀。
他们得像侦探一样,仔细去分析各种证据,不能随便就下结论。
就像我选择跑步,我得知道跑步对我的心肺功能、耐力啥的有啥具体影响。
他们评价方法也是这样,得把各种证据都摆出来,好好研究研究。
而且还得考虑不同人群的差异,不能一概而论。
再比如,有的人可能适合力量训练,有的人就适合有氧运动。
那评价的时候就得把这些都考虑进去,不能说只看一方面就完事儿了。
这就好像我在健身房观察不同人的锻炼方式,然后自己也去尝试,找到最适合自己的。
总之啊,这个美国身体活动指南证据评价方法就像是给身体活动画了一幅详细的地图,告诉我们怎么走才更好。
咱也得跟着这地图,找到最适合自己的健康之路。
就像我在健身房里不断探索一样,可不能瞎练一通呀!哈哈!
以上就是我对美国身体活动指南证据评价方法的一点小感受啦,你们觉得咋样呢?。
肌肉能量技术结合持续被动运动康复器对老年下肢骨折患者肢体运动功能的影响孟搏;王瑶;杨静怡【期刊名称】《中国医学工程》【年(卷),期】2024(32)6【摘要】目的探讨肌肉力量技术结合持续被动运动康复器对老年下肢骨折患者肢体运动功能的影响。
方法选取2022年5月至2023年5月郑州市第七人民医院收治的老年下肢骨折患者98例,按随机数字表法分为观察组(49例)和对照组(49例)。
对照组予以持续被动运动康复器干预,观察组在对照组的基础上加入肌肉能量技术,两组患者均持续干预3个月。
观察比较两组关节疼痛[视觉模拟评分法(VAS)]、下肢运动功能[下肢运动功能评分(FMA)及髋关节功能评分(Harris)]以及步态指标(双足跨步平均时间、3m直行平均步速以及3m直行平均步长)。
结果干预前,两组患者关节疼痛VAS评分、FMA评分、Harris评分比较,差异无统计学意义(P>0.05);干预后,观察组VAS评分低于对照组,左右脚跨步平均时间均短于对照组,左右脚3m 直行平均步速及3m直行平均步长均高于对照组,干预后FMA评分、Harris评分均高于对照组(P<0.05)。
结论肌肉力量技术结合持续被动运动康复器干预老年下肢骨折患者,可减轻关节疼痛程度,增强下肢运动功能,改善步态。
【总页数】3页(P115-117)【作者】孟搏;王瑶;杨静怡【作者单位】郑州市第七人民医院骨科【正文语种】中文【中图分类】R683.42【相关文献】1.持续性被动运动锻炼结合康复护理对老年髋骨骨折术后膝关节功能恢复的效果2.持续被动运动结合康复方案对尺骨鹰嘴粉碎性骨折术后肘关节功能的影响3.持续被动运动机对膝关节周围骨折术后康复治疗患者膝关节功能及生活质量的影响4.下肢主被动运动康复机联合神经肌肉电刺激对脑出血急性期患者凝血功能和下肢深静脉的影响5.早期持续被动运动结合预警分级管理模式对髋部骨折术后患者并发症发生情况及髋关节功能的影响因版权原因,仅展示原文概要,查看原文内容请购买。
大腿皮下脂肪客观精准评估模型的建立及其在脂肪抽吸术中的应用高华晨;杨琴;杨帆;李望舟;李靖;李跃军【期刊名称】《中国美容医学》【年(卷),期】2024(33)6【摘要】目的:用医学影像软件处理大腿CT断层扫描数据,建立精准评估就医者大腿皮下脂肪组织量化分布的三维模型,为脂肪抽吸大腿塑形提供术前评估及术后效果评价的客观方法。
方法:选取接受双侧大腿脂肪抽吸术的就医者24例,将其术前及术后大腿CT扫描数据以DICOM格式导入Mimics软件,利用软件的图像编辑及测量功能进行建模和测量。
结果:成功构建大腿皮下脂肪组织三维立体数字化模型,能从不同视角观察大腿的匀称度和美观度,并可分别获得大腿皮下脂肪组织总体积及各亚单元部位脂肪分布特点;能直观找出重点部位的关键平面,进行关键平面的大腿围度测量及不同点位脂肪厚度测量,并显示脂肪和肌肉的构成关系。
结论:通过Mimics软件能准确构建双侧大腿立体三维模型,实现大腿皮下脂肪组织的可视化、立体化及体积测量精准化,为大腿脂肪抽吸术的术前评估、手术设计及术后效果评价提供可靠依据。
【总页数】5页(P1-5)【作者】高华晨;杨琴;杨帆;李望舟;李靖;李跃军【作者单位】空军军医大学第二附属医院烧伤整形科;陆军军医大学第一附属医院病理科【正文语种】中文【中图分类】R622【相关文献】1.航天器发射事故中钚-238热源辐射风险评估模型的建立及应用2.基因组编辑技术在干细胞疾病模型建立和精准医疗中的应用3.组合临床国际预后指数、病理免疫分型及中期PET/CT建立的模型在弥漫大B细胞淋巴瘤预后评估中的应用4.基于模型测试方法在模拟器客观评估中的应用5.基于预后营养指数及总蛋白、血红蛋白、转铁蛋白水平建立预后评估模型在肝癌放疗和化疗患者中的应用效果因版权原因,仅展示原文概要,查看原文内容请购买。
1 Adaptive Action Selection of BodyExpansion Behavior in Multi-Robot System using CommunicationTomohisa Fujiki a,1,Kuniaki Kawabata b and Hajime Asama ca School of Engineering,The University of Tokyob RIKENc RACE,The University of TokyoAbstract.In multi-robot system,cooperation is needed to execute tasks efficiently.The purpose of this study is to realize cooperation among multiple robots using in-teractive communication.An important role of communication in multi-robot sys-tem is to make it possible to control other robots by intention transmission.Weconsider that multi-robot system can be more and more adaptive by treating com-munication as action.In this report,we adopt action adjustment function to achievecooperation between robots.We also run some computer simulations of collisionavoidance as an example of cooperative task,and discuss the results.Keywords.Q-learning,Multi-Robot System,Communication,Cooperation,MobileRobot1.INTRODUCTIONIn multi-robot systems,communication is thought as a necessary skill for robotsto co-operate,and a number of schemes have been proposed for it[1,2].However,these stud-ies may not be useful to adapt in a dynamic and complex environment as they set rules to communicate.To achieve cooperation effectively in such environments,we have to discuss the adaptable cooperation using communication.Yanco et al.tried to develop a method to acquire an adaptive communication for cooperation of two robots[3].Billard et al.proposed a learning method of communication through imitation[4].This is an interesting approach but the system needs a teacher robot.In these methods and most of robotics resesarch,the communication is treated as special function for the robotic systems.On the other hand,in developmental psychology,communication is considered as interaction between individuals[5].Moreover,communication is the transmission of in-tention,and those who received have to comprehend the intention.In conventional stud-ies on cooperation of robots based on communication as signal transmission,action is taken as a motion of its own body and they focused on decision making using sensory 1Correspondence to:Tomohisa Fujiki,5-1-5,Kashiwanoha,Kashiwa-shi,Chiba,277-8568,JAPAN.Tel.: +81-47-136-4260;Fax:+81-47-136-4242;E-mail:fujiki@race.u-tokyo.ac.jp.2T.Fujiki et al./Adaptive Action Selection of Body Expansion Behavior munication is signal transmission over wireless LAN or other devices, but it is not correct in developmental psychological sense.There should be a sort of protocol between robots to communicate,and the intention should be exchanged.Consequently transmitting one’s intention could be treated as an action and receiving other’s intention could be treated as perception in multi-robot system.By introducing this concept to their control architecture,robots can make an attempt to control other robots. This means that a robot can make an action over constraint of its own D.O.F.(body-expansion behavior),and multi-robot system can be moreflexible and adaptable.In this study,we take in communication to robot’s model both as perception and action.It means to achieve cooperation between robots,not only robot’s own movement but also sending message to other robots is treated as an action.We have previously developed an action selection method[6]which treats communication as above,but there was a problem of how to adjust different type of actions;self generated action and a requested one by communication.It seems that most effective strategy for the whole system is to accept a request only when the situations for both robots seem to improve.In this paper,we propose an action adjustment function to achieve cooperation be-tween mobile robots.We also have some computer simulations of collision avoidance as an example of cooperative task,and discuss the results.2.ACTION SELECTION METHOD INCLUDING INTERACTIVECOMMUNICATION2.1.Reinforcement LearningReinforcement Learning(RL,[7]is widely used in robotic systems to emerge robots’ac-tions from the interaction between the environment.However,in multi-robot system, there is a possibility that the same action causes different state transition which mis-leads the learning.To avoid this problem,Q-Learning for Semi Markov Decision Pro-cess(SMDP,[8])which can handle discrete time series is utilized generally.Q-Learning algorithm for SMDP is as follows.1.Observe state s t at time t in the environment.2.Execute action a t selected by action selection node.3.Receive reward r and calculate the sum of discounted reward R sum until its statechanges.R sum=r t+γr t+1+γ2r t+2+···+γN−1r t+N−1(1) Here,r is a discount factor(0≤r≤1).4.Observe state s t+N at time t+N after the state change.5.Renew Q value by equation(2).Q(s t,a t)←(1−α)Q(s t,a t)+α[R sum+γN maxQ(s t+N,a )](2)aHere,αis a learning rate(0≤α≤1)and a is possible actions in state s t+N.6.Clear r.7.Renew time step t to t+N,and return to1.T.Fujiki et al./Adaptive Action Selection of Body Expansion Behavior3 2.2.Basic ActionsThere are a variety of tasks considered as cooperative tasks,but in this paper,we are going to discuss collision avoidance problem of mobile robots.This is because that al-though there are a lot of the rule based schemes proposed for it,it can still see the effect of the communication and the expansion in D.O.F.directly.We suppose omni-directional mobile robots which are equipped with omni-directional visual sensors.Considering communication as robots’action,basic actions for robots are set as Table1.Here,“Comminication”means intention transmission, which is a requesting action to other robot to make an asked action.This means that a robot can request any actions which the other robot can make.Robots acquire their state-action policy by RL.We also configure robot’s state space as Table2.Numbers in Table2shows the number of state space for each domains.Example for the visual sensory information is shown in Figure1.The size of the other robot on image plane is determined by the distance threshold.Both the direction of the other robot and the goal are devided into six state spaces.Direction of the wall hasfive state spaces,which are front,left,right,and the back of the robot,or,no walls.In Figure1,the white wall is placed above the distace threshold,so only the grey wall is considered as an obstacle in robot’s state space.In this framework,a robot selects,evaluates and learns its action from sensory information and other robots’intentions.Table1.Actions of robotMove Own Body Communication-No changes in speed or direction-No changes in speed or direction-Speed down(2[mm/sec])-Speed down(2[mm/sec])-Speed up(2[mm/sec])-Speed up(2[mm/sec])-Change direction(+45[deg])-Change direction(+45[deg])-Change direction(-45[deg])-Change direction(-45[deg])2.3.Action Selection and RewardThere are a lot of action selection models for Q-Learning like Max Selection or Random Selection.One of the methods to improve its adaptability gradually by RL is probabilisticTable2.Configuration of state spaceVisual sensory information-Size of other robot on image plane2-Direction of other robot6-Direction of the goal6-Wall direction inside the sensing area4+1(none)Communication-Other robot’s request5+1(none)Other Information-Own Speed2Number of the State Space43204T.Fujiki et al./Adaptive Action Selection of Body ExpansionBehaviorroobt on the image planedirection of other robots direction of the goal(distance threshold 600[mm])Figure1.Visual Sensory Informationaction selection using Boltzmann distribution(Boltzmann selection).It is used widely and is reported that probabilistic selection works better than deterministic policy in multi-agent systems[9].In Boltzmann Selection model,probability p(a|s)to make action a in state s is defined as equation(3).p(a|s)=exp Q(s,a)/Ta i∈Aexp Q(s,a i)/T(3)Here,T is temperature constant.If T is near zero,action selection will be deterministic, and if T becomes large,action selection will be more random and will do aggressive search for state-action policy.Evaluation of the selected action is done by using the distance from the goal g(t)in time t.Reward r t is defined by equation(4).r t=µ(g(t)−g(t−∆t))(4)Here,µis a weight value and represents effectiveness of the reward.∆t is cycle time for decision making.3.ACTION ADJUSTMENT FUNCTIONWhen communication is treated as an action for intention transmission,accepting all the requested actions will only to improve other robots’situations.However,for the whole system,it is seems that most effective way is to accept the request only when the situations of both robots can be improved.To accept such requests,there is a need for action adjustment function to compare the actions which are self determined action and a requested one by communication.It makes the robots to create better situations,and will be able to cooperate efficiently.For this action adjustment,we introduce the algorithm which is illustrated in Figure 2.First,a robot decides whether to move itself or to make other robot move by commu-nication.This is a selfish action selection which doesn’t consider the state of other robot.T.Fujiki et al./Adaptive Action Selection of Body Expansion Behavior5 Of course there is a probability that the request will be refused,but whether to accept or reject the request is determined by the receiver.Next,a robot will determine which action to make;the selfish action that is decided atfirst step or a requested action by other robot.By those two steps,a robot can select an action considering a request from other robot.This adjustment algorithm can be utilized generally by giving numeric values for each actions.In this paper,we use Q-Learning algorithm for SMDP and the Q values from the RL are used as numeric values for two step action selection.The implemented algorithm for the robot is shown in Figure3.Figure2.Action selection processFigure3.Algorithm for action selection including communicationPUTER SIMULATION OF COLLISION A VOIDANCE PROBLEMIn this section,we are going to have some computer simulations to test our approach and discuss the results.6T.Fujiki et al./Adaptive Action Selection of Body Expansion Behavior4.1.SettingsThere are two omni-directional mobile robots in simulationfield,and the task is colli-sion avoidance as an example of cooperative task.To compare our approach to general approach of communication in robotic researchfield,we set three conditions.Case A is for our proposed approach and robots can use communication to move the other robot by intention transmission.In case B,robots can inform their adjacent action which they made by signal transmission.By this,we can eliminate an influence on the size of state space and robots in case B have same state number as in case A.Robots in case C cannot use communication.Common settings are as follows.Robot is cylinder shaped and its diameter is 300[mm].Start position of each robot is set500[mm]from longitudinal sides of the environment,symmetry in ups and downs.Goal position is the starting point of the other robot,and is set face to face in initial condition.Maximum speed of the robots is 40[mm/sec],and minimum is10[mm/sec].It assumes that robots can output their speed without a time lag.A trial is terminated under four conditions,which are the goal of the both robots, the collision of robots,the collision of either robot against walls or simulation area,or when the time step reached to3000.The parameters for RL are set experimentally as ∆t=1.0[sec],µ=0.1,α=0.04,γ=0.9and T=0.2.Reward for the robots are calculated by equation(4),but in case of any collisions,r=−5is given as punishment value.4.1.1.Simulation1In simulation1,straightway environment in Figure4is utilized.Width800≤x≤3000[mm]is changed by100[mm]and computer simulation is run for four times in every situation,and the learning is episodic for each simulation.Maximum trial number is30000for every experiment.4.1.2.Simulation2In simulation2,crossroad environment in Figure4is utilized.Simulation area is 3000[mm]square,and the width of both roads are x[mm],which changes600≤x≤3000[mm]by200[mm].Four black pieces in Figure4are walls(obstacles).Computer simulation is run for four times in every situation,and Maximum trial number is100000 for every experiment.Learning is episodic for each simulation.All settings has the same distance for goal,to make it easy to compare the results. In simulation2,when a robot moves,physical relationship against the walls change,and it affects robot’s state space.Consequently,robots’state change frequently when x is small,and the problem will be much difficult compared to the same x in Simulation1.4.2.ResultsFigure5shows the number of trials for convergence.In this report,“convergence”means 100continuous goals.Horizontal axis shows the width of the road x.Data on those graphs are the average of four trials.It shows some oscillation,but the aptitude can been comprehended.T.Fujiki et al./Adaptive Action Selection of Body Expansion Behavior7StraightwayCrossroadFigure 4.Over view ofenvironment100020003000400050006000700080009000300280260240220200180160140120100800xN u m b e r o f T r i a l s f o C o n v e r g e n c eSimulation103000280026002400220020001800160014001200100080060x N u m b e r o f T r i a l s f o C o n v e r g e n c eSimulation 2Figure 5.Number of trials for convergence4.2.1.Convergence PropertiesWhen the width x is large enough for robots and the problem can be solved easily,Case C achieves convergence faster than other cases.We believe that this occurs because the state space of Case C is one fifth of other cases and therefore it is easy to acquire the state-action policy.The result of Case B shows large oscillation in both graphs.In this case,communication changes the state of the other robot,and it makes difficult to search state-action munication as signal transmission doesn’t show its superiority in any case of our experiments.It only multiplies the number of states and prevents system from fast achieving of cooperation.Finally,Case A has superiority to other methods when x is small.This is the condition which the problem is hard to solve and is difficult to cooperate with others.Results show that our approach can solve the problem cooperatively even when the other approaches cannot solve it.It is a difficult situation for robots to cooperate without communication,and comparing Case A to Case B,our proposed system works better than usual usage of the communication such as information transmission.4.2.2.Quality of the SolutionFigure 6shows the number of steps to converge,which shows the quality of the solution achieved by the system.Data on those graphs are the average of four trials.Although there are many spikes,Case A apts to generate better solutions than the other methods.We consider that intention transmission worked effectively by affectiong the other robots,only when the communication is needed.This result supports our approach that it is not only in the fastness in finding solutions but also in the quality of the solution.8T.Fujiki et al./Adaptive Action Selection of Body ExpansionBehavior2040608010012014016018030002800260024002200200018001600140012001000xN u m b e r o f S t e p sSimulation12040608010012014016018020030002800260024002200200018001600140012001000800600xN u m b e r o f S t e p sSimulation 2Figure 6.Number of steps5.CONCLUSIONSIn this paper,we proposed a method to adjust different type of actions which include communication as intention transmission.By using this method,we enabled to treat com-munication as intention transmission action in multi-robot system and also examined its performance by computer simulations.The results show that our approach can find solu-tion in difficult situation where cooperation is hardly achieved without communication,and is also excels in the quality of solution achieved by the system than ordinal way of communication or without using communication.In our future work,we will try our approach in more complex environments or other tasks.References[1]Y .Arai,S.Suzuki,S.Kotosaka,H.Asama,H.Kaetsu and I.Endo:Collision Avoidanceamong Multiple Autonomous Mobile Robots using LOCISS (LOcally Communicable In-frared Sensory System),Proceedings of the IEEE International Conference on Robotics and Automation ,pp.2091–2096,1996.[2]N.Hutin,C.Pegard,E.Brassart,A Communication Strategy for Cooperative Robots,Proc.of IEEE/RSJ Intl.Conference on Inteligent Robots and Systems ,pp.114–119,1998.[3]H.Yanco,L.A.Stein,An Adaptive Communication Protocol for Cooperating Mobile Robots,From Animals to Animats 2,pp.478–485,1993.[4]A.Billard,G.Hayes,Learning to Communicate Through Imitation in Autonomous Robots,Artificial Neural Networks -ICANN’97,pp.763–768,1997.[5]Walburga V on Raffler-Engel (Editor):Aspects of Nonverbal Communication,Loyola Pr,1979.[6]M.Hoshino,H.Asama,K.Kawabata,Y .Kunii and I.Endo:Communication Learning forCooperation among Autonomous Robots,Proceedings of the IEEE International Conference on Industrial Electronics,Control &Instrumentation ,pp.2111–2116,2000.[7]Richard S.Sutton and Andrew G.Barto:Reinforcement Learning:An Introduction (AdaptiveComputation and Machine Learning),The MIT Press,1998.[8]Steven J.Bradtke and Michael O.Duff:Reinforcement Learning Methods for Continuous-Time Markov Decision Problems,In G.Tesauro and D.Touretzky and T.Leen,editors,Ad-vances in Neural Information Processing Systems ,V ol.7,pp.393–400,The MIT Press,1995.[9]Satinder P.Singh and Tommi Jaakkola and Michael I.Jordan:Learning Without State-Estimation in Partially Observable Markovian Decision Processes,International Conference on Machine Learning ,pp.284–292,1994.。