高考第二轮物理复习动量专题训练
- 格式:doc
- 大小:309.00 KB
- 文档页数:9
专题十四 动量1.在实验室用两头带竖直挡板C 、D 的气垫导轨和有固定挡板的质量都是M 的滑块A 、B ,做“探讨碰撞中的不变量”的实验,实验步骤如下:①两滑块A 、B 紧贴在一路,在A 上放质量为m 的砝码, 置于导轨上;②用电动卡销卡住A 、B ,在与A 、B 的固定挡板间放入一弹簧,使弹簧处于水平方向上紧缩状态; ③按下电钮使电动卡销放开,同时启动两个记录两滑块运动时刻的电子计时器,当A 、B 与挡板C 、D 碰撞的同时,电子计时器自动停表,记下A 至C 运动时刻t 1,B 至D 运动时刻t 2; ④重复几回取t 1、t 2的平均值。
(1)在调整气垫导轨时应注意____________________________________________________。
(2)应测量的数据还有________________________________________________________。
(3)只要知足关系式___________________________________成立,即可证明两滑块碰撞进程中系统的动量守恒。
(弹簧作历时刻极短)2.某实验小组在进行“探讨碰撞中的不变量”的实验。
入射球与被碰球半径相同。
(1)实验装置如图所示。
先不放B 球,使A球斜槽上某一固定点C 由静止滚下,落 到位于水平地面的记录纸上留下痕迹。
再把B 球静置于水平槽前端边缘处,上A 球仍从C 处静止滚下,A 球和B 球碰撞后别离落在记录纸上留下各自落点的 痕迹。
记录纸上的O 点是垂锤所指的位置,M 、P 、N 别离为落点的痕迹。
未放B 球时,A 球落地址时记录纸上的_______点。
(2)释放多次后,取各落点位置的平均值,测得各落点痕迹到O 点的距离:OM =13.10cm ,OP =21.90cm ,ON =26.04cm 。
用天平称得入射小球A 的质量m 1=16.8g ,被碰小球B 的质量m 2=5.6g 。
拾躲市安息阳光实验学校高考物理二轮总复习专题过关检测 动 量(时间:90分钟 满分:100分)一、选择题(本题包括10小题,共40分.每小题给出的四个选项中,有的只有一个选项正确,有的有多个选项正确,全部选对的得4分,选对但不全的得2分,错选或不选的得0分)1.一质量为m 的物体沿倾角为θ的固定斜面匀速下滑,滑到底端历时为t ,则下滑过程中斜面对物体的冲量大小和方向为( ) A.大小为mg cos θ·t B.方向垂直斜面向上 C.大小为mg sin θ·t D.方向竖直向上解析:物体沿固定斜面匀速下滑,则斜面对物体的作用力与重力大小相等、方向相反,故斜面对物体的冲量大小为mgt ,方向竖直向上,选项D 正确. 答案:D2.如图6-1所示,一个轻质弹簧左端固定在墙上,一个质量为m 的木块以速度v 0从右边沿光滑水平面向左运动,与弹簧发生相互作用,设相互作用的过程中弹簧始终在弹性限度范围内,那么整个相互作用过程中弹簧对木块的冲量I 的大小和弹簧对木块做的功W 分别是( ) 图6-1A.I =0,2021mv W = B.I =mv 0,2021mv W = C.I =2mv 0,W =0 D.I =2mv 0,2021mv W =解析:木块与弹簧相互作用的过程,木块和弹簧组成的系统机械能守恒,所以弹簧恢复原长、木块刚要离开弹簧时,木块的速度大小仍为v 0,方向水平向右.取水平向右为正方向,由动量定理得I =mv 0-m (-v 0)=2mv 0;由动能定理得,021212020=-=mv mv w 选项C 对.答案:C3.物体受到合力F 的作用,由静止开始运动,力F 随时间变化的图象如图6-2所示,下列说法中正确的是( ) 图6-2A.该物体将始终向一个方向运动B.3 s 末该物体回到原出发点C.0~3 s 内,力F 的冲量等于零,功也等于零D.2~4 s 内,力F 的冲量不等于零,功却等于零解析:图线和横坐标所围的面积等于冲量,0~1 s 内的冲量为负,说明速度沿负方向,而1~2 s 内冲量为正,且大于0~1 s 内的冲量,即速度的方向发生变化,所以A 错误.0~3 s 内,力F 的冲量为零,即物体0 s 时的速度和3 s 时的速度一样,故0~3 s 内力F 的冲量等于零,功也等于零,C 、D 正确.分析运动过程可以得到3 s 末物体回到原出发点,B 正确. 答案:BCD4.如图6-3所示,两个质量不相等的小车中间夹一被压缩的轻弹簧,现用两手分别按住小车,使它们静止在光滑水平面上.在下列几种释放小车的方式中,说法正确的是( ) 图6-3A.若同时放开两车,则此后的各状态下,两小车的加速度大小一定相等B.若同时放开两车,则此后的各状态下,两小车的动量大小一定相等C.若先放开左车,然后放开右车,则此后的过程中,两小车和弹簧组成的系统总动量向左D.若先放开左车,然后放开右车,则此后的过程中,两小车和弹簧组成的系统总动量向右解析:由于两车质量不相等,两车的加速度大小不相等.由动量守恒,若同时放开两车,初总动量为零,此后任意时刻总动量为零,所以两小车的动量大小一定相等;若先放开左车,然后放开右车,则初总动量向左,此后的过程中,两小车和弹簧组成的系统总动量向左,所以B 、C 正确.答案:BC5.质量为m 的小球A 在光滑的水平面上以速度v 与静止在光滑水平面上的质量为2m 的小球B 发生正碰,碰撞后,A 球的动能变为原来的1/9,那么碰撞后B 球的速度大小可能是( )A.v 31B.v 32C.v 94D.v 98解析:A 球碰撞后的速度大小为v /3,若A 碰后与原速度方向相同,则,'23mv v m mv +=则.31'v v =若A反弹,则,'2)3(mv v m mv +-=则,32'v v =所以A 、B正确.答案:AB6.在高速公路上发生一起交通事故,一辆质量为1 500 kg 向南行驶的长途客车迎面撞上了一辆质量为3 000 kg 向北行驶的卡车,碰后两辆车接在一起,并向南滑行了一段距离后停止.根据测速仪的测定,长途客车在碰前以20 m/s 的速率行驶.由此可判断卡车碰前的行驶速率( )A.小于10 m/sB.大于10 m/s,小于20 m/sC.大于20 m/s,小于30 m/sD.大于30 m/s,小于40 m/s解析:设卡车与客车碰后的共同速度为v ′,且v ′与客车的运动方向相同,则有m 客·v 客-m 卡·v =(m 客+m 卡)·v ′ v ′>0,m 客v 客-m 卡v >010m/s,m/s 3000201500=⨯=<卡客客m v m v 选项A 正确.答案:A7.A 、B 两物体在光滑水平面上沿同一直线运动,图6-4表示发生碰撞前后的vt图线,由图线可以判断( )图6-4A.A 、B 的质量比为3∶2B.A 、B 作用前后总动量守恒C.A 、B 作用前后总动量不守恒D.A 、B 作用前后总动能不变解析:因水平面光滑,水平方向上不受外力作用,所以系统的总动量守恒,B 对,C 错.m A v A +m B v B =m A v A ′+m B v B ′,代入图中数据得m A ∶m B =3∶2,A 对.碰撞前总动能)(5.272121221J m v m v m E B B B A A k =+=,碰撞后总动能),J (5.27'21'21222B B B A A k m v m v m E =+=故碰撞前后总动能不变,D 对.答案:ABD8.如图6-5所示,一轻弹簧与质量为m 的物块组成弹簧振子.物体沿竖直方向在A 、B 两点间做简谐运动,O 点为平衡位置.某时刻,物体正经过C 点向上运动,已知OC =h ,振动周期为T ,则从这时刻开始的半个周期内,下列说法中正确的是( ) 图6-5A.重力做的功为2mghB.回复力做的功为零C.重力的冲量为mgT /2D.回复力的冲量为零解析:做简谐运动的物体,在相隔半周期的两个时刻,速度大小相等、方向相反.故回复力(合力)做功为零,回复力的冲量为C 处物体动量的2倍,B 对,D 错.重力的冲量为,2Tmg C 对.在相隔半周期的两个时刻,振子所在位置关于平衡位置对称,所以重力做功W =mg ×2h =2mgh .A 对. 答案:ABC9.如图6-6甲所示,一轻弹簧的两端与质量分别为m 1和m 2的两木块A 、B 相连,静止在光滑水平面上.现使A 瞬时获得水平向右的速度v =3 m/s,以此时刻为计时起点,两木块的速度随时间变化的规律如图乙所示,从图示信息可知( ) 图6-6A.t 1时刻弹簧最短,t 3时刻弹簧最长B.从t 1时刻到t 2时刻弹簧由伸长状态恢复到原长C.两物体的质量之比为m 1∶m 2=1∶2D.在t 2时刻两物体动能之比为E k 1∶E k 2=1∶4解析:通过对A 、B 运动分析知,t 1时刻,弹簧最长,t 2时刻弹簧为原长,t 3时刻弹簧最短,A 错误,B 正确.A 和B 组成的系统动量守恒,0~t 1时间内,m 1v =(m 1+m 2)×1,所以m 1∶m 2=1∶2,C 正确.t 2时刻,121121121m m E k =⨯=,22212222m m E k =⨯=所以E k 1∶E k 2=1∶8,D错误.答案:BC10.如图6-7,一轻弹簧左端固定在长木块M 的左端,右端与小物块m 连接,且m 、M 及M 与地面间接触光滑.开始时,m 和M 均静止,现同时对m 、M 施加等大反向的水平恒力F 1和F 2,从两物体开始运动以后的整个运动过程中,对m 、M 和弹簧组成的系统(整个过程中弹簧形变不超过其弹性限度),正确的说法是( ) 图6-7A.由于F 1、F 2等大反向,故系统机械能守恒B.F 1、F 2分别对m 、M 做正功,故系统动量不断增加C.F 1、F 2分别对m 、M 做正功,故系统机械能不断增加D.当弹簧弹力大小与F 1、F 2大小相等时,m 、M 的动能最大 解析:由于F 1、F 2等大反向,系统所受合外力为零,所以系统动量守恒,系统机械能先增加后减小,当弹簧弹力大小与F 1、F 2大小相等时,m 、M 加速终止,m 、M 速度最大,以后开始减速,所以D 正确.答案:D二、填空实验题(2小题,共20分)11.(6分)用半径相同的两小球A 、B 的碰撞验证动量守恒定律,实验装置示意图如图6-8,斜槽与水平槽圆滑连接.实验时先不放B 球,使A 球从斜槽上某一固定点C 由静止滚下,落到位于水平地面的记录纸上留下痕迹.再把B 球静置于水平槽前端边缘处,让A 球仍从C 处由静止滚下,A 球和B 球碰撞后分别落在记录纸上留下各自的痕迹.记录纸上的O 点是重垂线所指的位置,若测得各落点痕迹到O 点的距离:OM =2.68 cm,OP =8.62 cm,ON =11.50 cm,并知A 、B 两球的质量之比为2∶1,则未放B 球时A 球落地点是记录纸上的________点,系统碰撞前总动量p 与碰撞后总动量p ′的百分误差=-pp p |'|_________ %(结果保留一位有效数字).图6-8解析:由实验数据可知系统碰撞前的总动量为t OP m p A /= 碰后总动量为t ON m t OM m p B A //'+= 且m A ∶m B =2∶1,则百分误差为答案:P 212.(14分)碰撞的恢复系数的定义为,||||102012v v v v e --=其中v 10和v 20分别是碰撞前两物体的速度,v 1和v 2分别是碰撞后两物体的速度.弹性碰撞的恢复系数e =1,非弹性碰撞的e <1.某同学借用验证动量守恒定律的实验装置(如图6-9所示)验证弹性碰撞的恢复系数是否为1,实验中使用半径相等的钢质小球1和2(它们之间的碰撞可近似为弹性碰撞),且小球1的质量大于小球2的质量. 图6-9实验步骤如下:安装好实验装置,作好测量前的准备,并记下重垂线所指的位置O .第一步,不放小球2,让小球1从斜槽上A 点由静止滚下,并落在地面上.重复多次,用尽可能小的圆把小球的所有落点圈在里面,其圆心就是小球落点的平均位置.第二步,把小球2放在斜槽前端边缘处的C 点,让小球1从A 点由静止滚下,使它们碰撞.重复多次,并使用与第一步同样的方法分别标出碰撞后两小球落点的平均位置.第三步,用刻度尺分别测量三个落地点的平均位置离O 点的距离,即线段OM 、OP 、ON 的长度.在上述实验中,(1)P 点是__________的平均位置,M 点是__________的平均位置,N 点是__________的平均位置. (2)请写出本实验的原理_________________________________________________________________________________________________________________________________________写出用测量量表示的恢复系数的表达式__________.(3)三个落地点距O 点的距离OM 、OP 、ON 与实验所用的小球质量是否有关?_________________________________________________________________________________________解析:(1)P 点是在实验的第一步中小球1落点的平均位置.M 点是小球1与小球2碰后小球1落点的平均位置. N 点是小球2落点的平均位置.(2)由小球从槽口C 飞出后做平抛运动的时间相同,假设为t ,则有OP =v 10t OM =v 1t O N=v 2t小球2碰撞前静止,即v 20=0(3)OP 与小球的质量无关,OM 和ON 与小球的质量有关. 答案:见解析 三、计算题13.(8分)一个物体静置于光滑水平面上,外面扣一质量为M 的盒子,如图6-10所示.现给盒子一初速度v 0,此后,盒子运动的vt 图象呈周期性变化,如图6-11所示.请据此求盒内物体的质量. 图6-10 图6-11解析:设物体的质量为m ,t 0时刻受盒子碰撞获得速度v ,根据动量守恒定律Mv 0=mv ①3t 0时刻物体与盒子右壁碰撞使盒子速度又变为v 0,说明碰撞是弹性碰撞2202121mv Mv =② 联立①②解得m =M ③(也可通过图象分析得出v 0=v ,结合动量守恒,得出正确结果). 答案:m =M14.(10分)图6-12 中有一个竖直固定在地面的透气圆筒,筒中有一劲度系数为k 的轻弹簧,其下端固定,上端连接一质量为m 的薄滑块.圆筒内壁涂有一层新型智能材料——E R 流体,它对滑块的阻力可调.起初 ,滑块静止,E R 流体对其阻力为0,弹簧的长度为L .现有一质量也为m 的物体从距地面2L 处自由落下,与滑块碰撞后粘在一起向下运动.为保证滑块做匀减速运动,且下移距离为kmg2时速度减为0,E R 流体对滑块的阻力须随滑块下移而变.试求(忽略空气阻力): 图6-12(1)下落物体与滑块碰撞过程中系统损失的机械能; (2)滑块向下运动过程中加速度的大小;(3)滑块下移距离d 时E R 流体对滑块阻力的大小. 解析:(1)设物体下落末速度为v 0,由机械能守恒定律有2021mv mgL =得gL v 20=设碰后共同速度为v 1,由动量守恒定律 2mv 1=mv 0得gL v 2211=碰撞过程中系统损失的机械能为 (2)设加速度大小为a ,由运动学公式有 2a s=v 12得.8mkL a =(3)设弹簧弹力为F N ,E R 流体对滑块的阻力为F ER ,受力分析如图所示,由牛顿第二定律有F N +F ER -2mg =2ma F N =kx得.4ER kd kLmg F -+= 答案:(1)mgL 21 (2)mkL 8 (3)kd kLmg -+415.(10分)(2010湖北部分重点中学二联,24)如图6-13所示,A BC 为光滑轨道,其中AB 段水平放置,BC 段是半径为R 的圆弧,AB 与BC 相切于B 点.A 处有一竖直墙面,一轻弹簧的一端固定于墙上,另一端与一质量为M 的物块相连接,当弹簧处于原长状态时,物块恰能与固定在墙上的L 形挡板接触于B 处但无挤压.现使一质量为m 的小球从圆弧轨道上距水平轨道高h 处的D 点由静止开始下滑.小球与物块相碰后立即共速但不粘连,物块与L 形挡板相碰后速度立即减为零也不粘连.(整个过程中,弹簧没有超过弹性限度.不计空气阻力,重力加速度为g )图6-13(1)试求弹簧获得的最大弹性势能;(2)求小球与物块第一次碰后沿BC 上升的最大高度;(3)若R>>h ,每次从小球接触物块至物块撞击L 形挡板历时均为Δt ,则小球由D 点出发经多长时间第三次通过B 点?解析:(1)由小球运动至第一次碰前,据动能定理有:mgh =mv 02/2①(1分)对碰撞过程,据动量守恒:mv 0=(M +m )v 1②(1分)碰后压缩弹簧过程中,M 、m 及弹簧系统机械能守恒:E pm =(M +m )v 12/2③(1分)由①②③式联立解得:.2pmmM ghm E +=④(1分)(2)第一次碰后小球向BC 轨道运动的初速度即为v 1,由机械能守恒得:'2121mgh mv =⑤(1分)由①②⑤式联立解得:.)('22h m M mh +=⑥(1分)(3)小球在BC 段运动可等效为单摆,其周期为:gR T π2=⑦(1分)分析得小球第三次通过B 点历时为:t Tt ∆+=43⑧(1分)由⑦⑧式联立解得:.23t gRt ∆+=π⑨(2分)答案:(1)mM ghm +2(2)h m M m 22)(+ (3)t g R t ∆+=π23 16.(12分)(2010四川成都高三一检,24)如图6-14所示的装置中,两个光滑定滑轮的半径很小,表面粗糙的斜面固定在地面上,现用一根伸长量可以忽略的轻质细绳跨过定滑轮连接可视为质点的甲、乙两物体,其中甲放在斜面上且连线与斜面平行,乙悬在空中,放手后,甲、乙均处于静止状态.当一水平向右飞来的子弹击中乙(未穿出)后,子弹立即和乙一起在竖直平面内来回运动,若乙在摆动过程中,悬线偏离竖直方向的最大偏角为α=60°,整个过程中,甲均未动,且乙经过最高点(此时乙沿绳方向的合外力为零)和最低点时,甲在斜面上均即将滑动.已知乙的重心到悬点O 的距离为l =0.9 m,乙的质量为m 乙=0.99 kg,子弹的质量m =0.01 kg,重力加速度g 取10 m/s 2.求:图6-14(1)子弹射入乙前的速度大小; (2)斜面对甲的最大静摩擦力.解析:(1)设子弹射入乙物体前的速度大小为v 0,射入后共同速度的大小为v .子弹击中乙的过程中,据动量守恒有mv 0=(m +m 乙)v ①(2分)乙摆到最高点的过程中,由机械能守恒有2)(21)cos 1()(v m m gl m m 乙乙+=-+α②(2分)联立①②解得v 0=300 m/s.(2分)(2)设甲物体的质量为m 甲,所受的最大静摩擦力为f ,斜面的倾角为θ,当乙物体运动到最高点时,绳子上的弹力设为T 1T 1=(m +m 乙)g cosα③(1分)此时甲物体恰好不下滑,由平衡条件有m 甲g sin θ=f +T 1④(1分) 当乙物体运动到最低点时,绳子上的弹力设为T 2 由牛顿第二定律有lv m m g m m T 22)()(乙乙+=+-⑤(1分)此时甲物体恰好不上滑,由平衡条件有m 甲g sin θ+f =T 2⑥(1分) 联立解得f =7.5 N.(2分) 答案:(1)300 m/s (2)7.5 N。
高考物理二轮复习阶段训练2功和能动量阶段训练(二) 功和能动量(时间:45分钟满分:100分)一、选择题(本题共8小题,每小题7分,共56分。
在每小题给出的四个选项中,1~5题只有一个选项符合题目要求,6~8题有多个选项符合题目要求。
全部选对的得7分,选对但不全的得4分,有选错的得0分)1.游乐场有一“摩天轮”如图所示。
轮面与水平面成一定的角度。
一游客随“摩天轮”一起做匀速圆周运动,则( )A.游客的机械能守恒B.重力对游客始终做负功C.任意相等时间内,游客的重力势能变化量相等D.游客的重力功率最大时,游客与轮的轮心等高2.(2021・全国Ⅱ卷)小球P和Q用不可伸长的轻绳悬挂在天花板上,P球的质量大于Q球的质量,悬挂P球的绳比悬挂Q球的绳短。
将两球拉起,使两绳均被水平拉直,如图所示。
将两球由静止释放。
在各自轨迹的最低点,( )A.P球的速度一定大于Q球的速度B.P球的动能一定小于Q球的动能C.P球所受绳的拉力一定大于Q球所受绳的拉力D.P球的向心加速度一定小于Q球的向心加速度3.如图所示,水平传送带两端点A、B间的距离为l。
若传送带处于静止状态,把一个小物块放到右端的A点,某人用恒定的水平拉力F1使小物块以速度v1匀速滑到左端的B点。
若传送带的上表面以v2的速度匀速向左运动,此人用水平恒力F2拉物块,使物块以相对于传送带为v1的速度从A滑到B,下列说法正确的是( )A.F2大于F1B.F2做的功等于F1做的功C.F2的功率等于F1的功率D.两种情况下物块与皮带之间因摩擦而产生的热量相同4.如图所示,竖直平面内的轨道Ⅰ和Ⅱ都由两段细直杆连接而成,两轨道长度相等,用相同的水平恒力将穿在轨道最低点B的静止小球,分别沿Ⅰ和Ⅱ推至最高点A,所需时间分别为t1、t2,动能增量分别为ΔEk1、ΔEk2。
假定球在经过轨道转折点前后速度大小不变,且球与Ⅰ和Ⅱ轨道间的动摩擦因数相等,则( )感谢您的阅读,祝您生活愉快。
高考物理《动量》综合复习练习题(含答案)一、单选题1.上海光源通过电子-光子散射使光子能量增加,光子能量增加后()A.频率减小B.波长减小C.动量减小D.速度减小2.为估算池中睡莲叶面承受出滴撞击产生的平均压强,小明在雨天将一圆柱形水杯置于露台,测得1小时内杯中水上升了45mm.查询得知,当时雨滴竖直下落速度约为12m/s.据此估算该压强约为(设雨滴撞击睡莲后无反弹,不计雨滴重力,雨水的密度为1×103kg/m3)()A.0.15Pa B.0.54Pa C.1.5Pa D.5.4Pa3.下列关于动能、动量、冲量的说法中正确的是()A.若物体的动能发生了变化,则物体的加速度也发生了变化B.若物体的动能不变,则动量也不变C.若一个系统所受的合外力为零,则该系统内的物体受到的冲量也为零D.物体所受合力越大,它的动量变化就越快4.质量为1m和2m的两个物体在光滑水平面上正碰,其位置坐标x随时间t变化的图像如图所示。
下列说法正确的是()A.碰撞前2m的速率大于1m的速率B.碰撞后2m的速率大于1m的速率C.碰撞后2m的动量大于1m的动量D.碰撞后2m的动能小于1m的动能5.如图所示,A、B两物体质量之比m A:m B=3:2,原来静止在平板小车C上,A、B间有一根被压缩的弹簧,地面光滑,当弹簧突然释放后,则()A.若A、B与平板车上表面间的动摩擦因数相同,A、B组成系统的动量守恒B.若A、B与平板车上表面间的动摩擦因数不同,A、B、C组成系统的动量不守恒C .若A 、B 所受的摩擦力大小相等,A 、B 、C 组成系统的动量守恒D .若A 、B 所受的摩擦力大小不相等,A 、B 、C 组成系统的动量不守恒6.三块相同的木块A 、B 、C ,自同一高度由静止开始下落,其中B 在开始下落时被一个水平飞来的子弹击中并嵌人其中,木块C 在下落一半高度时被水平飞来的一子弹击中并嵌人其中,若三个木块下落到地面的时间分别为A B C t t t 、、,则( )A .ABC t t t == B .A B C t t t =<C .A B C t t t <<D .A B C t t t <=7.“雪如意”是我国首座国际标准跳台滑雪场地。
专题能力训练7 动量动量的综合应用(时间:45分钟满分:100分)一、选择题(本题共7小题,每小题6分,共42分。
在每小题给出的四个选项中,1~5题只有一个选项符合题目要求,6~7题有多个选项符合题目要求。
全部选对的得6分,选对但不全的得3分,有选错的得0分)1.(2022·广西五市联考二模)1966年人类曾在地球以外的太空完成了以牛顿运动定律为基础的测定物体质量的实验。
实验时,用质量为m1的双子星座号宇宙飞船去接触可视为静止的质量为m2的火箭组(发动机已熄火),接触以后,开动双子星座号飞船的推进器,使飞船和火箭组共同加速。
某一次实验推进器的平均推力F为895 N,推进器开动时间为8 s,测出飞船和火箭组的速度变化量是0.80 m/s。
双子星号宇宙飞船的质量是已知的,m1=3 400 kg,根据这次实验可知()A.火箭组的质量为m2=5 550 kgB.飞船和火箭组共同加速的加速度为0.80 m/s2C.双子星座号宇宙飞船对火箭组的推力大于火箭组对双子星座号宇宙飞船的推力D.火箭组在这次实验过程中所受合外力的冲量为零2.(2022·广东高考冲刺模拟)水刀切割具有精度高、无热变形、无毛刺、无需二次加工以及节约材料等特点,因而得到广泛应用。
如图所示,若横截面直径为d的圆柱形水流垂直射到要切割的钢板上,碰到钢板后水的速度减为零。
已知水的流量(单位时间流出水的体积)为Q,水的密度为ρ,则钢板受到水的平均冲力大小为()A.4QρB.QρC.16ρQπd2D.4ρQπd23.(2021·重庆一中高三一模)新型冠状病毒主要传播方式为飞沫传播。
有关专家研究得出打喷嚏时气流喷出的速度可达50 m/s,假设一次打喷嚏人受到的平均反冲力约为0.16 N,时间大约为0.03 s,估算打一次喷嚏喷出空气的质量约为()A.9.6×10-3 kgB.9.6×10-5 kgC.1.92×10-3 kgD.1.92×10-5 kg4.(2021·河北石家庄二模)一战斗机以速度v0水平向东飞行,到达目的地时,将总质量为m0的导弹自由释放瞬间,导弹向西喷出质量为m、对地速率为v1的燃气,则喷气后导弹的速率为()A.m0v0+mv1m0-m B.m0v0-mv1m0-mC.m0v0-mv1m0D.m0v0+mv1m05.(2021·北京北理工附中高三三模)根据量子理论:光子既有能量也有动量;光子的能量E和动量p 之间的关系是E=pc,其中c为光速。
2022届高考物理二轮复习专题07动量和能量的综合运用基础篇一、单选题,共10小题1.(2022·全国·高三专题练习)太空探测器常装配离子发动机,其基本原理是将被电离的原子从发动机尾部高速喷出,从而为探测器提供推力,若某探测器质量为490kg ,离子以30km/s 的速率(远大于探测器的飞行速率)向后喷出,流量为33.010g/s -⨯,则探测器获得的平均推力大小为( )A .1.47NB .0.147NC .0.09ND .0.009N 2.(2022·陕西汉中·一模)陕西面食种类繁多,其中“刀削面”堪称一绝,从同一位置依次削出三个小面条,分别落在水面上A 、B 、C 三点,运动轨迹如图所示,忽略空气阻力的影响,小面条被削离面团后均水平飞出,假设三个小面条质量相等,从面条削离到落在水面的过程中,下列说法正确的是( )A .三个小面条被削离时速度相等B .三个小面条动量的变化量相同C .落在A 点的小面条在空中运动时间最短D .落在C 点的小面条落在水面时重力的功率最大3.(2022·山东·泰安市基础教育教学研究室一模)冬奥会冰壶比赛中所用的冰壶除颜色外其他完全相同,如图(a )某队员将红壶推出,之后与静止在大本营中心的蓝壶发生对心碰撞,碰撞时间极短,碰后运动员用冰壶刷摩擦蓝壶前进方向的冰面,来减小阻力。
碰撞前后两壶运动的v -t 图线如图(b )中实线所示。
重力加速度g=10m/s 2。
则运动员由于用冰壶刷摩擦冰面使冰壶与冰面间的动摩擦因数减少了( )A.0.02B.0.012C.0.008D.0.006 4.(2022·北京·一模)城市进入高楼时代后,高空坠物已成为危害极大的社会安全问题。
图为一则安全警示广告,非常形象地描述了高空坠物对人伤害的严重性。
小明同学用下面的实例来检验广告词的科学性:设一个50 g鸡蛋从25楼的窗户自由落下,与地面的碰撞时间约为3⨯,已知相邻楼层的高度差约为3 m,则该鸡蛋对地210s-面产生的冲击力约为()A.10 N B.102N C.103N D.104 N 5.(2022·重庆·模拟预测)如题图所示,水上飞行表演中,运动员操控喷射式悬浮飞行器将水带缓慢竖直送上来的水向下喷出,可以完成悬停、上升等各种动作。
专题强化训练7 动量定理 动量守恒定律一、选择题(1~5题为单项选择题,6~7题为多项选择题)1.[2022·山东押题卷]如图所示,在光滑水平面上有一质量为M 的木块,木块与轻弹簧水平相连,弹簧的另一端连在竖直墙上,木块处于静止状态,一质量为m 的子弹以水平速度v 0击中木块,并嵌在其中,木块压缩弹簧后在水平面做往复运动.木块自被子弹击中前到第一次回到原来位置的过程中,木块受到的合外力的冲量大小为( )A .Mmv 0M +mB .2Mv 0C .2Mmv 0M +mD .2mv 02.[2022·湖南押题卷]如图所示,质量均为m 的木块A 和B ,并排放在光滑水平面上,A 上固定一竖直轻杆,轻杆上端的O 点系一长为L 的细线,细线另一端系一质量为m 0的球C ,现将C 球拉起使细线水平伸直,并由静止释放C 球,则下列说法错误的是( )A .A 、B 两木块分离时,A 、B 的速度大小均为m 0m mgL2m +m 0B .A 、B 两木块分离时,C 的速度大小为2mgL2m +m 0C .C 球由静止释放到最低点的过程中,A 对B 的弹力的冲量大小为2m 0mgL2m +m 0D .C 球由静止释放到最低点的过程中,木块A 移动的距离为m 0L2m +m 03.[2022·湖北卷]一质点做曲线运动,在前一段时间内速度大小由v 增大到2v ,在随后的一段时间内速度大小由2v 增大到5v .前后两段时间内,合外力对质点做功分别为W 1和W 2,合外力的冲量大小分别为I 1和I 2.下列关系式一定成立的是( )A .W 2=3W 1,I 2≤3I 1B .W 2=3W 1,I 2≥I 1C.W2=7W1,I2≤3I1D.W2=7W1,I2≥I14.[2022·山东押题卷]如图所示,在光滑水平面上有A、B两辆小车,水平面的左侧有一竖直墙,在小车B上坐着一个小孩,小孩与B车的总质量是A车质量的4 040倍.两车开始都处于静止状态,小孩把A车以相对于地面为v的速度推出,A车与墙壁碰后仍以原速率返回,小孩接到A车后,又把它以相对于地面为v的速度推出.往后小孩每次推出A车,A车相对于地面的速度都是v,方向向左,则小孩把A车推出几次后,A车返回时小孩不能再接到A车( )A.2 020 B.2 021 C.2 022 D.2 0235.[2022·重庆押题卷]如图所示,光滑的水平面上放有滑块A,其内侧是半径为R的光滑圆弧槽,槽底端离地高度为R,B为光滑小球,从圆弧槽左端静止释放,若滑块固定,小球B落地时离圆弧槽右端水平距离为x1;若滑块不固定,小球B落地时离圆弧槽右端水平距离为x2;已知x1∶x2=1∶3.由此可知,小球B和滑块A的质量比为( ) A.1∶2 B.2∶1C.1∶3D.2∶36.冰壶队备战2022年北京冬奥会,如图所示,在某次训练中,蓝壶静止在大本营Q 处,质量相等的红壶与蓝壶发生正碰,最终分别停在M点和N点,下列说法正确的是( )A.碰后两壶所受摩擦力的冲量相同B.碰后蓝壶速度约为红壶速度的2倍C.红壶碰前速度约为碰后速度的3倍D.碰撞过程两壶组成的系统机械能守恒7.[2022·湖南卷]神舟十三号返回舱进入大气层一段时间后,逐一打开引导伞、减速伞、主伞,最后启动反冲装置,实现软着陆.某兴趣小组研究了减速伞打开后返回舱的运动情况,将其运动简化为竖直方向的直线运动,其v t图像如图所示.设该过程中,重力加速度不变,返回舱质量不变,下列说法正确的是( )A.在0~t1时间内,返回舱重力的功率随时间减小B.在0~t1时间内,返回舱的加速度不变C.在t1~t2时间内,返回舱的动量随时间减小D.在t2~t3时间内,返回舱的机械能不变二、非选择题8.如图所示,质量m=1 kg的弹性小球A在长为l=0.9 m的细轻绳牵引下可以绕水平轴O在竖直平面内做圆周运动,圆周的最高点为P,P处有一个水平槽,水平地面距水平槽的高度恰好是1.8 m,槽内有许多质量均为M=3 kg的弹性钢球,小球A每次转动到P点恰好与P点处的小钢球发生弹性正碰(碰撞时间极短),钢球水平飞出做平抛运动.每次被小球A 碰撞后,槽内填充装置可将另一个相同的钢球自动填充运动到P点位置且静止.现将小球A 在顶点P以v0=32 m/s的初速度向左抛出(如图),小球均可视为质点,g取10 m/s2,求:(1)第一次碰撞后瞬间,小球A和第一个钢球获得的速度;(2)小球A能将钢球碰出去的钢球个数;(3)第一个钢球与最后一个钢球落地后的水平距离.9.[2022·广东卷]某同学受自动雨伞开伞过程的启发,设计了如图所示的物理模型.竖直放置在水平桌面上的滑杆上套有一个滑块,初始时它们处于静止状态.当滑块从A处以初速度v0为10 m/s向上滑动时,受到滑杆的摩擦力f为1 N.滑块滑到B处与滑杆发生完全非弹性碰撞,带动滑杆离开桌面一起竖直向上运动.已知滑块的质量m=0.2 kg,滑杆的质量M=0.6 kg,A、B间的距离l=1.2 m,重力加速度g取10 m/s2,不计空气阻力.求:(1)滑块在静止时和向上滑动的过程中,桌面对滑杆支持力的大小N1和N2;(2)滑块碰撞前瞬间的速度大小v;(3)滑杆向上运动的最大高度h.专题强化训练7 动量定理 动量守恒定律1.解析:由于子弹射入木块的时间极短,在瞬间动量守恒,根据动量守恒定律得:mv 0=(M +m )v ,解得v =mv 0M +m根据动量定理,合外力的冲量I =Mv =Mmv 0M +m,故A 正确,B 、C 、D 错误. 答案:A2.解析:小球C 下落到最低点时,AB 开始分离,此过程水平方向动量守恒.根据机械能守恒有:m 0gL =12m 0v 2C +12×2m ×v 2AB取水平向左为正方向,由水平方向动量守恒得:m 0v C =2m ×v AB联立解得v C =2mgL 2m +m 0 ,v AB =m 0m mgL2m +m 0,故A 、B 正确; C 球由静止释放到最低点的过程中,选B 为研究对象,由动量定理I AB =mv AB =m 0mgL2m +m 0,故C 错误; C 球由静止释放到最低点的过程中,系统水平方向动量守恒,设C 对地向左水平位移大小为x 1,AB 对地水平位移大小为x 2,则有m 0x 1=2mx 2,x 1+x 2=L可解得x 2=m 0L2m +m 0 ,故D 正确.答案:C3.解析:根据动能定理可知W 1=12 m (2v )2-12 mv 2=32 mv 2,W 2=12 m (5v )2-12m (2v )2=212mv 2,可得W 2=7W 1,由于速度是矢量,具有方向,当初、末速度方向相同时,动量变化量最小,方向相反时,动量变化量最大,因此冲量的大小范围是mv ≤I 1≤3mv ,3mv ≤I 2≤7mv ,比较可得I 2≥I 1,一定成立.D 正确.答案:D4.解析:取水平向右为正方向,小孩第一次推出A 车后,小孩和B 车获得速度为v 1,由动量守恒定律m B v 1-m A v =0解得v 1=m Am Bv小孩第n -1次推出A 车后小孩和B 车获得速度为v n -1,第n 次推出A 车后,小孩和B车获得速度为v n .第n 次推出A 车前后,由动量守恒定律m A v +m B v n -1=-m A v +m B v n得v n -v n -1=2m Am Bv由等差数列公式得v n =v 1+(n -1)2m A m B v =2n -14 040 v当v n ≥v 时,再也接不到小车,即2n -14 040 ≥1得n ≥2 020.5 取n =2 021,故选B. 答案:B5.解析:A 的质量为m A ,B 的质量为m B ;当滑块固定时,由动能定理m B gR =12 m B v 2B随后小球B 做平抛运动x 方向x 1=v B t y 方向R =12gt 2联立得x 1=2R若滑块不固定时,由水平方向上动量守恒0=m A v A +m B v B 由能量守恒得m B gR =12 m B v 2B +12m A v 2AB 随后做平抛运动,A 随后做匀速运动 x 方向x 2=v B t -v A t y 方向R =12gt 2因为x 1∶x 2=1∶3 联立得m A ∶m B =1∶2,故选B. 答案:B6.解析:碰后两壶运动距离不相同,所以碰后两球速度不相同,根据动量定理可判断出碰后两壶所受摩擦力的冲量不相同,A 错误;碰后红壶运动的距离为x 1=R 2-R 1=0.61 m 蓝壶运动的距离为x 2=2R 2=2.44 m二者质量相同,假设二者碰后的所受摩擦力相同,则二者做减速运动的加速度也相同,对红壶,有v 21 =2ax 1对蓝壶有v 22 =2ax 2联立可得v 1v 2 =12即碰后蓝壶速度约为红壶速度的2倍,B 正确;设红壶碰前速度为v 0,则有mv 0=mv 1+mv 2,故有v 0=3v 1,即红壶碰前速度约为碰后速度的3倍,C 正确;碰前的动能为E k0=12 mv 2碰后动能为E k1=12 mv 21 +12 mv 22则有E k0>E k1,机械能不守恒,D 错误. 答案:BC7.解析:由题知,返回舱的运动简化为竖直方向的直线运动,所以重力的功率P =mgv ,因此在0~t 1时间内,结合v t 图像可知返回舱重力的功率随时间减小,A 项正确;v t 图像的斜率表示返回舱的加速度,故0~t 1时间内,返回舱的加速度不断减小,B 项错误;返回舱的动量大小与其速度大小成正比,所以t 1~t 2时间内,返回舱的动量随时间减小,C 项正确;在t 2~t 3时间内,返回舱匀速下降,机械能不守恒,D 项错误.答案:AC8.解析:(1)小球A 在顶部与钢球碰撞,由动量守恒定律、机械能守恒定律得mv 0=mv 1+Mv ′1;12 mv 20 =12 mv 21 +12Mv ′21联立解得v 1=m -M M +m v 0=-12 v 0=-16 m/s ;v ′1=2m M +m v 0=12v 0=16 m/s. (2)利用上述方程还可得小球A 第一次碰后的速度v 1=m -M M +m v 0=-12 v 0同理可知碰撞n 次以后瞬间的速度为v n =⎝ ⎛⎭⎪⎫-12 n v 0,负号表示与碰前入射速度方向相反,小球要能与钢球碰撞则必须能完成完整的圆周运动,所以碰n 次后假定再次到达P 位置,其速度大小一定有v n ≥gl =3 m/s ,所以⎝ ⎛⎭⎪⎫12 nv 0≥gl ,解得3<n <4,n 为整数,所以取4,小球A 可以与4个钢球碰撞.(3)第4个钢球碰后速度v ′4=2mm +Mv 4=2 m/s ,由于两球是分别朝向左、右两边做平抛运动,水平距离是x =x 1+x 4,平抛时间是t = 4Lg=0.6 s ,得x =(16+2)×0.6m =10.8 m答案:(1)见解析 (2)4个 (3)10.8 m9.解析:(1)滑块静止时,滑块和滑杆均处于静止状态,以滑块和滑杆整体为研究对象,由平衡条件可知N 1=(m +M )g =8 N滑块向上滑动时,滑杆受重力、滑块对其向上的摩擦力以及桌面的支持力,则有N 2=Mg -f代入数据得N 2=5 N.(2)方法一 碰前,滑块向上做匀减速直线运动,由牛顿第二定律得mg +f =ma 1 解得a 1=15 m/s 2,方向向下 由运动学公式得v 2-v 20 =-2a 1l 代入数据得v =8 m/s.方法二 由动能定理得-(mg +f )l =12 mv 2-12 mv 20代入数据解得v =8 m/s.(3)滑块和滑杆发生的碰撞为完全非弹性碰撞,根据动量守恒定律有mv =(M +m )v共代入数据得v 共=2 m/s此后滑块与滑杆一起竖直向上运动,根据动能定理有 -(M +m )gh =0-12 (M +m )v 2共代入数据得h =0.2 m答案:(1)8 N 5 N (2)8 m/s (3)0.2 m。
第7讲动量定理及反冲模型题一:长1.8 m的细绳,一端悬挂着质量为2 kg的小球,另一端系在距地面3.6 m的天花板上,现将小球靠到天花板上,如图所示,小球自由下落时,细绳被绷断,然后小球落地。
小球下落的全部时间为1.0 s,若小球和绳相互作用的时间非常短,求小球受到的绳的冲量的大小。
(g取10 m/s2)题二:如图所示,一轻质弹簧上端悬挂于天花板,下端系一质量为2m的金属板A,金属板处于平衡状态,在A正上方高为h处有一质量为m的圆环B由静止下落,并与金属板A发生碰撞(碰撞时间极短),然后两者以相同的速度运动,不计空气阻力,两物体均可视为质点,重力加速度为g。
(1)求碰撞结束的瞬间两物体的速度大小。
(2)碰撞结束后两物体以相同的速度一起向下运动,当两者第一次到达最低点时,它们之间相互作用力的冲量大小为I,求该过程中相互作用力的平均值。
题三:飞船在飞行过程中有很多技术问题需要解决,其中之一就是当飞船进入宇宙微粒尘区时如何保持飞船速度不变的问题,我国科学家早已将这一问题解决。
假如有一宇宙飞船,它的正面面积S=0.98 m2,以v=2×103 m/s的速度进入宇宙微粒尘区,尘区每1 m3空间有一微粒,微粒的平均质量m=2×10-4 g,若要使飞船速度保持不变,飞船的牵引力应增加多少?(设微粒与飞船相碰后附着于飞船上)题四:超高压数控万能切割机又称水刀,它能切割40 mm厚的钢板、50 mm厚的大理石等材料。
水刀就是将普通的水加压,使其从口径为0.2 mm的喷嘴中以800~1 000 m/s的速度射出的水射流。
任何材料能承受橡胶5×107 Pa花岗岩 1.2×108~2.6×108 Pa铸铁8.8×108 Pa工具钢 6.7×108 Pav=800 m/s,水射流与材料接触后,速度为零,且不附着在材料上,水的密度ρ=1.0×103 kg/m3,求:(1)水刀产生的压强的表达式。
动量一、选择题(共15题)1.从同一高度落下的玻璃杯掉在水泥地上易碎,而掉在毛毯上就不易碎,这是因为玻璃杯掉在水泥地上时A.受到的冲量大B.受到地面的作用力大C.动量的变化量大D.动量大2.一静止的物体所受到的合外力随时间的变化关系如图所示,图中F1、F2未知.已知物体从t=0时刻出发,在3t0时刻恰又返回到出发点,则()A.0—t0物体做匀加速直线运动,t0—3t0物体做匀减速直线运动B.物体在F1作用下的位移与在F2作用下的位移相等C.t0时刻物体的速度与3t0时刻物体的速度大小之比为2 3D.F1与F2大小之比为5 63.下列说法正确的是()A.不受外力作用的系统,其动量和机械能必然同时守恒B.只要系统受到摩擦力,动量不可能守恒C.物体受到的冲量越大,它的动量变化一定越快D.某物体做直线运动,受到一个-6N˙s的冲量作用后其动量不一定减小4.下列关于动量和冲量的说法中正确的是()A.物体的动量改变,一定是速度的大小改变B.物体的动量改变,一定是速度的方向改变C.物体的运动状态改变,其动量一定改变D.以上说法均不对5.2020年7月23日,中国首个火星探测器“天问一号”在海南文昌卫星发射中心发射升空。
该探测器经过多次变轨,进入环火轨道,预计5月中旬,将择机开展着陆、巡视等任务,进行火星科学探测。
假设在火星表面完成下面的实验:在固定的竖直光滑圆轨道内部最低点静止放置一个质量为m的小球(可视为质点),如图所示,当给小球一水平向右的瞬时冲量Ⅰ时,小球恰好能在竖直平面内做完整的圆周运动。
若已知圆轨道半径为r ,火星的半径为R 、万有引力常量为G ,则火星的质量为( )A .222I r Gm RB .2225I r Gm RC .222I R GrmD .2225I R Grm 6.一人站在滑板上以速度0v 在冰面上滑行忽略滑板与冰面间的摩擦某时刻人沿水平方向向正前方距离滑板离开时人相对冰面的速度大小为02v 。
动量【满分:110分时间:90分钟】一、选择题(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,1~8题只有一项符合题目要求; 9~12题有多项符合题目要求。
全部选对的得5分,选对但不全的得3分,有选错的得0分。
)1.如图所示,在光滑水平地面上有两个完全相同的小球A 和B ,它们的质量都为m 。
现B 球静止,A 球以速度v 0与B 球发生正碰,针对碰撞后的动能下列说法中正确的是()错误!未指定书签。
A .B 球动能的最大值是212mv B .B 球动能的最大值是218mvC .系统动能的最小值是0D .系统动能的最小值218mv【答案】 A 错误!未指定书签。
2.质量为0.2 kg的小球竖直向下以6 m/s 的速度落至水平地面上,再以 4 m/s 的速度反向弹回。
取竖直向上为正方向,在小球与地面接触的时间内,关于球动量变化量Δp 和合外力对小球做的功W,下列说法正确的是()A .Δp =2 kg ·m/s,W =-2 JB .Δp =-2 kg ·m/s,W =2 JC .Δp =0.4 kg ·m/s,W =-2 JD .Δp =-0.4kg ·m/s,W =2 J【答案】 A 【解析】取竖直向上为正方向,则小球与地面碰撞过程中动量的变化为:△p=mv 2-mv 1=0.2×4-0.2×(-6)=2kg?m/s ,方向竖直向上.由动能定理可知,合外力做功:W=mv 22-mv 12=×0.2×42-×0.2×62=-2J ;故选A .点睛:此题中动量是矢量,要规定正方向,用带正负呈的数值表示动量.动量变化量也是矢量,同样要注意方向.应用动能定理可以求出合外力做的功.3.古时有“守株待兔”的寓言.设兔子的头部受到大小等于自身体重的打击力即可致死,并设兔子与树桩作用时间为0.2s,则被撞死的兔子其奔跑的速度可能为(g取)()A.1m/s B.1.5m/s C.2m/s D.2.5m/s【答案】 C错误!未指定书签。
高三物理二轮复习专题突破系列:整合测试--动量守恒原子物理本卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分100分,考试时间90分钟。
第Ⅰ卷(选择题共20分)一、选择题(共5小题,每小题4分,共20分,在每小题给出的四个选项中,有的小题只有一个选项符合题目要求,有的小题有多个选项符合题目要求,全部选对的得4分,选不全的得2分,有选错或不答的得0分)1.(2013·北京东城区一模)下列说法正确的是( )A.α射线是高速运动的氦原子核B.核聚变反应方程21H+31H→42He+10n中,10n表示质子C.从金属表面逸出的光电子的最大初动能与照射光的频率成正比D.氢原子的核外电子从低能级跃迁到高能级时,向外辐射光子[答案]A[解析]α射线是高速运动的氦核流,A正确;10n表示中子,B错误;当照射光的频率大于金属的极限频率,能发生光电效应时,从金属表面逸出的光电子的最大初动能E k=hν-W0,可见E k与ν不成正比,C错误;氢原子的核外电子从低能级跃迁到高能级时,吸收光子,D错误。
2.(2013·山东济南一模)在下列四个核反应方程中, x1、x2、x3和x4各代表某种粒子( )①31H+x1→42He+10n②14 7N+42He→17 8O+x2③94Be+42He→12 6C+x3④32He+21H→42He+x4以下判断中正确的是( )A.x1是电子B.x2是质子C.x3是中子D.x4是中子[答案]BC[解析]根据核反应中质量数守恒和电荷数守恒可知,x1是氘核,x2是质子,x3是中子,x4是质子,故B、C正确。
3.(2013·福建泉州质检)“爆竹声中一岁除,春风送暖人屠苏”,爆竹声响是辞旧迎新的标志,是喜庆心情的流露。
有一个质量为3m的爆竹斜向上抛出,到达最高点时速度大小为v0、方向水平向东,在最高点爆炸成质量不等的两块,其中一块质量为2m,速度大小为v,方向水平向东,则另一块的速度大小是( )A.3v0-v B.2v0-3vC.3v0-2v D.2v0+v[答案] C[解析] 设向东为正方向,在最高点由水平方向动量守恒得:3mv 0=2mv +mv′,则v′=3v 0-2v ,C 正确。
动量定理和动量守恒定律一、单项选择题1.(2019·海口质检)如图所示,两质量分别为m1和m2的弹性小球A、B叠放在一起,从高度为h处自由落下,h远大于两小球半径,落地瞬间,B先与地面碰撞,后与A碰撞,所有的碰撞都是弹性碰撞,且都发生在竖直方向.碰撞时间均可忽略不计.已知m2=3m1,则A反弹后能达到的高度为( )A.h B。
2hC.3h D。
4h解析:选 D.所有的碰撞都是弹性碰撞,所以不考虑能量损失.设竖直向上为正方向,根据机械能守恒定律和动量守恒定律可得,(m1+m2)gh=错误!(m1+m2)v2,m2v-m1v=m1v1+m2v2,错误!(m1+m2)v2=错误!m1v错误!+错误!m2v错误!,错误!m1v错误!=m1gh1,将m2=3m1代入,联立可得h1=4h,选项D正确.2.(2019·高三惠州模拟)质量为1 kg的物体从距地面5 m 高处自由下落,落在正以5 m/s的速度沿水平方向匀速前进的小车上,车上装有砂子,车与砂子的总质量为4 kg,地面光滑,则车后来的速度为(g=10 m/s2)() A.4 m/s B。
5 m/sC.6 m/s D.7 m/s解析:选 A.物体和车作用过程中,两者组成的系统水平方向不受外力,水平方向系统的动量守恒.已知两者作用前,车在水平方向的速度v0=5 m/s,物体水平方向的速度v=0;设当物体与小车相对静止后,小车的速度为v′,取原来小车速度方向为正方向,则根据水平方向系统的动量守恒得:mv+Mv0=(M+m)v′,解得:v′=错误!=错误! m/s=4 m/s,故选项A正确,B、C、D错误.3.某同学质量为60 kg,在军事训练中要求他从岸上以大小为2 m/s的速度跳到一条向他缓慢飘来的小船上,然后去执行任务,小船的质量是140 kg,原来的速度大小是0.5 m/s,该同学上船后又跑了几步,最终停在船上,则()A.人和小船最终静止在水面上B.该过程人的动量变化量的大小为105 kg·m/sC.船最终速度的大小为0.95 m/sD.船的动量变化量的大小为70 kg·m/s解析:选B。
第一部分 专题二 第2讲基础题——知识基础打牢1. (多选)(2022·广东汕头二模)科学家常在云室中加入铅板以降低运动粒子的速度.图示为物理学家安德森拍下的正电子在云室中运动的径迹,已知图示云室加垂直纸面方向的匀强磁场,由图可以判定( BC )A .匀强磁场方向向外B .正电子由上而下穿过铅板C .正电子在铅板上、下磁场中运动角速度相同D .正电子在铅板上、下磁场运动中动量大小相等【解析】 正电子在匀强磁场中,洛伦兹力提供向心力,则有qvB =m v 2r 解得r =mv qB,由于正电子经过铅板后速度会减小,可知正电子经过铅板后的轨迹半径减小,从图中可以看出正电子在铅板上方轨迹半径比下方轨迹半径大,故正电子由上而下穿过铅板,由左手定则判断匀强磁场方向向里,A 错误,B 正确;正电子经过铅板后速度会减小,则正电子经过铅板后动量减小,正电子在铅板上、下磁场运动中动量大小不相等,D 错误;正电子在磁场中做圆周运动的角速度为ω=v r =qBm可知正电子在铅板上、下磁场中运动角速度相同,C 正确.故选BC.2. (多选)(2022·重庆八中模拟)2022北京冬奥会期间,校园陆地冰壶也在积极的参与中.如图所示,某次投掷时,冰壶A 以速度v =3 m/s 与冰壶B 发生正碰,碰撞前后的速度均在同一直线上,若A 、B 的质量均为1 kg ,则下列说法正确的是( CD )A .碰撞后A 的速度可能为2 m/sB .碰撞后B 的速度可能为1 m/sC .碰撞后A 不可能反向运动D .碰撞后B 的速度可能为2.5 m/s【解析】 设A 、B 的质量为m ,若发生弹性碰撞,根据动量守恒得mv =mv A +mv B ,根据机械能守恒得12mv 2=12mv 2A +12mv 2B ,解得A 、B 的速度分别为v A =0,v B =v =3 m/s ,若发生完全非弹性碰撞,则mv =(m +m )v 共,解得A 、B 的共同速度为v 共=1.5 m/s ,所以碰撞后A 、B 球的速度范围分别为0~1.5 m/s,1.5 m/s ~3 m/s ,故选CD.3. (2022·广东汕头二模)汕头市属于台风频发地区,图示为风级(0~12)风速对照表.假设不同风级的风迎面垂直吹向某一广告牌,且吹到广告牌后速度立刻减小为零,则“12级”风对广告牌的最大作用力约为“4级”风对广告牌最小作用力的( A )C .27倍D .9倍【解析】 设空气的密度为ρ,广告牌的横截面积为S ,经过Δt 时间撞击在广告牌上的空气质量为Δm =ρΔV =ρSv Δt ,根据动量定理可得F Δt =Δmv ,解得F =ρSv 2,根据牛顿第三定律可知,风对广告牌作用力为F ′=F =ρSv 2∝v 2,则“12级”风对广告牌的最大作用力与“4级”风对广告牌最小作用力的比值为F 12′F 4′=36.925.52≈45,故选A.4. (2022·江苏连云港模拟)离子发动机是利用电场加速离子形成高速离子流而产生推力的航天发动机,这种发动机适用于航天器的姿态控制、位置保持等.某航天器质量M ,单个离子质量m ,带电量q ,加速电场的电压为U ,高速离子形成的等效电流强度为I ,根据以上信息计算该航天器发动机产生的推力为( B )A .I mU qB .I 2mUqC .I3mUqD .I5mUq【解析】 对离子,根据动能定理有qU =12mv 2,解得v =2qUm,根据电流的定义式则有I =Q Δt =Nq Δt ,对离子,根据动量定理有F ·Δt =Nmv ,解得F =Nmv Δt =mvIq=I 2Um q,根据牛顿第三定律,推进器获得的推力大小为F ′=I2Umq,故B 正确,A 、C 、D 错误.5. (多选)(2022·湖南长郡中学月考)如图所示,质量为m 的半圆轨道小车静止在光滑的水平地面上,其水平直径AB 长度为2R ,现将质量也为m 的小球从距A 点正上方h 0高处由静止释放,然后由A 点经过半圆轨道后从B 冲出,在空中能上升的最大高度为h 02(不计空气阻力).则下列说法错误的是( ACD )A .小球和小车组成的系统动量守恒B .小车向左运动的最大距离为RC .小球从B 点离开小车不会再落回轨道内D .小球从B 点离开小车后又会从B 点落回轨道,再次恰好到达A 点时速度为零不会从A 点冲出【解析】 小球与小车组成的系统在水平方向不受外力,所以只是系统水平方向动量守恒,故A 错误;系统水平方向动量守恒,以向右为正方向,在水平方向,由动量守恒定律得:mv -mv ′=0,m2R -x t =m xt解得x =R ,故B 正确;由于小球第二次在车中滚动时,对应位置的速度减小,因此小车给小球的弹力变小,摩擦力变小,克服摩擦力做的功小于12mgh 0,因此小球一定能从A 点冲出,故D 错误;小球与小车组成的系统水平方向上动量守恒,则知小球由B 点离开小车时水平方向动量为零,小球与小车水平方向速度均为零,小球离开小车后竖直上抛运动,最后又从B 点落回,故C 错误.故选ACD.6. (多选)(2022·湖南长沙二模)如图所示一平板车A 质量为2m ,静止于光滑水平面上,其右端与竖直固定挡板相距为L .小物块B 的质量为m ,以大小为v 0的初速度从平板车左端开始向右滑行,一段时间后车与挡板发生碰撞,已知车碰撞挡板时间极短,碰撞前后瞬间的速度大小不变但方向相反.A 、B 之间的动摩擦因数为μ,平板车A 表面足够长,物块B 总不能到平板车的右端,重力加速度大小为g .L 为何值,车与挡板能发生3次及以上的碰撞( CD )A .L =v20μgB .L =v2032μgC .L =v2065μgD .L =v2096μg【解析】 在车与挡板碰撞前,有mv 0=2mv A +mv B ,如果L 为某个值L 1,使A 与挡板能发生二次碰撞,从A 开始运动到与挡板第一次碰撞前瞬间,对A 由动能定理可得μmgL 1=12·2mv 2A ,设A 第二次与挡板碰撞前瞬间A 、B 的速度大小分别为v A ′、v B ′,从A 与挡板第一次碰撞后瞬间到第二次碰撞前瞬间,由动量守恒定律可得mv B -2mv A =2mv A ′+mv B ′且第二次碰撞前,A 、B 未达到共同速度,A 在这段时间内先向左后向右运动,加速度保持不变,根据匀变速直线运动的对称性可知v A ′=v A ,A 与挡板第二次碰撞后经一段时间后A 、B 同时停止运动,即mv B ′-2mv A ′=0,联立解得L 1=v2064μg ,车与挡板能发生3次及以上的碰撞的条件L <v 2064μg,故C 、D 可能,A 、B 不可能.7. (多选)(2022·江西贵溪二模)如图所示,在光滑水平面上放置一个质量为M 的滑块,滑块的一侧是一个14弧形凹槽OAB ,凹槽半径为R ,A 点切线水平,另有一个质量为m (m >M )的小球以速度v 0从A 点冲上凹槽,重力加速度大小为g ,不计摩擦.下列说法中正确的是( AB )A .当v 0=2gR 时,小球不可能到达B 点B .当v 0=2gR 时,小球在弧形凹槽上运动的过程中,滑块的动能一直增大C .如果小球的速度足够大,小球将从滑块的左侧离开滑块后落到水平面上D .当v 0=gR 时,小球返回A 点后可能做自由落体运动【解析】 当小球能够恰好到达B 点时,设小球和滑块达到共同速度v ,根据动量守恒定律有mv 0=(m +M )v ,根据机械能守恒定律有12mv 20=12(m +M )v 2+mgR ,联立以上两式解得v 0=2M +mMgR >2gR ,所以当v 0=2gR 时,小球不能到达B 点,A 正确;当v 0=2gR 时,小球未到达B 点,小球从进入凹槽至最高点的过程中,小球对滑块的作用力始终做正功,所以滑块的动能一直增大,B 正确;如果小球的初速度足够大,小球将从B 点冲出,由于B 点的切线方向竖直,小球离开滑块时,二者水平方向的速度相同,小球相对滑块做竖直上抛运动,最后将从B 再次进入凹槽,最后从滑块的右侧离开,C 错误;当v 0=gR 时,小球再次回到凹槽底部时的速度为v 1,凹槽的速度为v 2,根据系统机械能守恒和水平方向动量守恒可得12mv 20=12mv 21+12Mv 22,mv 0=mv 1+Mv 2,解得v 1=m -M m +M v 0,因为m >M ,则可知v 1=m -M m +M v 0>0,小球返回A 点后做平抛运动,而不是自由落体运动,D 错误.故选AB.应用题——强化学以致用8. (多选)(2022·重庆二诊)喷丸处理是一种表面强化工艺,即使用丸粒轰击工件表面,提升工件疲劳强度的冷加工工艺.用于提高零件机械强度以及耐磨性、抗疲劳性和耐腐蚀性等.某款喷丸发射器采用离心的方式发射喷丸,转轮直径为530 mm ,角速度为230 rad/s ,喷丸离开转轮时的速度与转轮上最大线速度相同.喷丸撞击到器件表面后发生反弹,碰撞后垂直器件方向的动能变为碰撞前动能的81%,沿器件表面方向的速度不变.一粒喷丸的质量为3.3×10-5kg ,若喷丸与器件的作用时间相同,且不计喷丸重力,则关于图甲、乙所示的两种喷射方式的说法正确的是( AD )A .喷丸发出过程喷丸发射器对一粒喷丸做的功约为0.06 JB .喷丸发出过程喷丸发射器对一粒喷丸做的功约为0.12 JC .图甲、乙所示一粒喷丸对器件表面的平均作用力之比为2∶1D .图甲、乙所示一粒喷丸对器件表面的平均作用力之比为2∶ 3【解析】 喷丸离开转轮时的速度与转轮上最大线速度相同,转轮上线速度的最大值为v =ωr =60.95 m/s ,则喷丸发出过程喷丸发射器对喷丸做的功约为W =12mv 2≈0.06 J,选项A 正确,B 错误;结合题述可知,喷丸碰撞后垂直器件表面的速度大小变为碰撞前的90%,设喷丸速度为v ,垂直喷射时有F 1=0.9mv --mvt,以60°角喷射时,有F 2=0.9×32mv -⎝ ⎛⎭⎪⎫-32mv t,解得F 1F 2=23,选项C 错误,D 正确.故选AD.9. (多选)(2022·河北衡水四调)质量为3m 足够长的木板静止在光滑的水平面上,木板上依次排放质量均为m 的木块1、2、3,木块与木板间的动摩擦因数均为μ.现同时给木块1、2、3水平向右的初速度v 0、2v 0、3v 0,已知重力加速度为g .则下列说法正确的是( BCD )A .木块1相对木板静止前,木板是静止不动的B .木块1的最小速度是12v 0C .木块2的最小速度是56v 0D .木块3从开始运动到相对木板静止时对地位移是4v 2μg【解析】 木块1在木板上向右减速运动,该过程木板向右做加速运动,当木块1与木板速度相等时相对木板静止,由此可知,木块1相对静止前木板向右做加速运动,故A 错误;木块与木板组成的系统所受合外力为零,当木块1与木板共速时木板的速度最小,设木块与木板间的摩擦力为f ,则木块1的加速度a 1=f m 做匀减速运动,而木板a =3f 3m =fm做匀加速运动,则v 1=v 0-a 1t =at ,v 1=12v 0,故B 正确;设木块2的最小速度为v 2,此时木块2与木板刚刚共速,木块2此时速度的变量为2v 0-v 2,则木块3此时速度为3v 0-(2v 0-v 2)=v 0+v 2,由动量守恒定律得:m (v 0+2v 0+3v 0)=5mv 2+m (v 0+v 2),解得v 2=56v 0,故C 正确;木块与木板组成的系统动量守恒,以向右为正方向,木块3相对木板静止过程,由动量守恒定律得m (v 0+2v 0+3v 0)=(3m +3m )v 3,解得v 3=v 0,对木块3,由动能定理得-μmgx =12mv 23-12m (3v 0)2,解得x =4v20μg,故D 正确.故选BCD.10. (2022·辽宁沈阳二模)如图(a),质量分别为m A 、m B 的A 、B 两物体用轻弹簧连接构成一个系统,外力F 作用在A 上,系统静止在光滑水平面上(B 靠墙面),此时弹簧形变量为x .撤去外力并开始计时,A 、B 两物体运动的a t 图像如图(b)所示,S 1表示0到t 1时间内A的a t 图线与坐标轴所围面积大小,S 2、S 3分别表示t 1到t 2时间内A 、B 的a t 图线与坐标轴所围面积大小.A 在t 1时刻的速度为v 0.下列说法正确的是( C )A .m A <mB B .S 1+S 2=S 3C .0到t 1时间内,墙对B 的冲量大小等于m A v 0D .B 运动后,弹簧的最大形变量等于x【解析】 a t 图线与坐标轴所围图形的面积大小等于物体速度的变化量,因t =0时刻A 的速度为零,t 1时刻A 的速度大小v 0=S 1,t 2时刻A 的速度大小v A =S 1-S 2,B 的速度大小v B=S3,由图(b)所示图像可知,t1时刻A的加速度为零,此时弹簧恢复原长,B开始离开墙壁,到t2时刻两者加速度均达到最大,弹簧伸长量达到最大,此时两者速度相同,即v A=v B,则S1-S2=S3,t1到t2时间内,A与B组成的系统动量守恒,取向右为正方向,由动量守恒定律得m A v0=(m A+m B)v A,联立解得m A∶m B=S3∶S2,由图知S3>S2,所以m A>m B,故A、B错误;撤去外力后A受到的合力等于弹簧的弹力,0到t1时间内,对A,由动量定理可知,合力即弹簧弹力对A的冲量大小I=m A v0,弹簧对A与对B的弹力大小相等、方向相反、作用时间相等,因此弹簧对B的冲量大小与对A的冲量大小相等、方向相反,即弹簧对B的冲量大小I弹簧=m A v0,对B,以向右为正方向,由动量定理得I墙壁-I弹簧=0,解得,墙对B的冲量大小I墙壁=m A v0,方向水平向右,故C正确;B运动后,当A、B速度相等时弹簧形变量(伸长量或压缩量)最大,此时A、B的速度不为零,A、B的动能不为零,由能量守恒定律可知,B运动后弹簧形变量最大时A、B的动能与弹簧的弹性势能之和与撤去外力时弹簧的弹性势能相等,则B 运动后弹簧形变量最大时弹簧弹性势能小于撤去外力时弹簧的弹性势能,即B运动后弹簧形变量最大时弹簧的形变量小于撤去外力时弹簧的形变量x,故D错误.11. (2022·山东押题练)2022年北京冬奥会自由式滑雪女子大跳台决赛中,中国选手谷爱凌以188.25分的成绩获得金牌.北京冬奥会报道中利用“Al+8K”技术,把全新的“时间切片”特技效果首次运用在8K直播中,更精准清晰地抓拍运动员比赛精彩瞬间,给观众带来全新的视觉体验.将谷爱凌视为质点,其轨迹视为一段抛物线图.图(a)是“时间切片”特技的图片,图(b)是谷爱凌从3 m高跳台斜向上冲出的运动示意图,图(c)是谷爱凌在空中运动时离跳台底部所在水平面的高度y随时间t变化的图线.已知t=1 s时,图线所对应的切线斜率为4(单位:m/s),重力加速度g取10 m/s2,忽略空气阻力.(1)求谷爱凌冲出跳台时竖直速度的大小;(2)求谷爱凌离跳台底部所在水平面的最大高度;(3)若谷爱凌从空中落到跳台底部所在水平地面时与地面的碰撞时间Δt=0.4 s,经缓冲没有脱离地面,水平速度不受影响,求碰撞过程中谷爱凌受到地面的平均作用力大小与自身重力大小的比值.【答案】(1)14 m/s (2)12.8 m (3)5【解析】(1)运动员竖直方向做匀减速直线运动,有v y=v y0-gty t 图线斜率表示竖直分速度,t =1 s 时v y =4 m/s解得谷爱凌冲出跳台时的竖直分速度v y 0=14 m/s 谷爱凌冲出跳台时竖直速度的大小为14 m/s.(2)最高点竖直分速度为0,竖直方向做匀减速直线运动,设离开跳台可以上升h 高度,则0-v 2y 0=-2gh代入数据解得h =9.8 m 跳台离地面高度y 0=3 m解得离跳台底部所在水平面的最大高度为y =h +y 0=12.8 m.(3)谷爱凌落到跳台底部所在水平面的竖直分速度大小v yt =2gy =16 m/s落在水平地面时,在竖直方向上,运动员受重力和水平地面的作用力,水平方向速度不变,以竖直向上为正方向,由动量定理得(F -mg )Δt =0-(-mv yt )代入数据解得Fmg=5.12. (2021·浙江6月选考)如图所示,水平地面上有一高H =0.4 m 的水平台面,台面上竖直放置倾角θ=37°的粗糙直轨道AB 、水平光滑直轨道BC 、四分之一圆周光滑细圆管道CD 和半圆形光滑轨道DEF ,它们平滑连接,其中管道CD 的半径r =0.1 m 、圆心在O 1点,轨道DEF 的半径R =0.2 m 、圆心在O 2点,O 1、D 、O 2和F 点均处在同一水平线上.小滑块从轨道AB 上距台面高为h 的P 点由静止下滑,与静止在轨道BC 上等质量的小球发生弹性碰撞,碰后小球经管道CD 、轨道DEF 从F 点竖直向下运动,与正下方固定在直杆上的三棱柱G 碰撞,碰后速度方向水平向右,大小与碰前相同,最终落在地面上Q 点.已知小滑块与轨道AB 间的动摩擦因数μ=112,sin 37°=0.6,cos 37°=0.8,g 取10 m/s 2.(1)若小滑块的初始高度h =0.9 m ,求小滑块到达B 点时速度v 0的大小; (2)若小球能完成整个运动过程,求h 的最小值h min ;(3)若小球恰好能过最高点E ,且三棱柱G 的位置上下可调,求落地点Q 与F 点的水平距离x 的最大值x max .【答案】 (1)4 m/s (2)0.45 m (3)0.8 m【解析】 (1)小滑块在AB 轨道上运动,根据动能定理得mgh -μmg cos θ·hsin θ=12mv 20,解得v 0=4 m/s.(2)小滑块与小球碰撞后动量守恒,机械能守恒,因此有mv 0min =mv 块+mv 球min ,12mv 20min =12mv 2块+12mv 2球min , 解得v 块=0,v 球min =v 0min ,小球沿CDEF 轨道运动,在最高点可得mg =m v 2E minR,从C 点到E 点由机械能守恒可得 12mv 2E min +mg (R +r )=12mv 2球min , 由(1)问可知,小滑块提供给小球的初速度v 0min =43gh min ,解得h min =0.45 m.(3)设F 点到G 点的距离为y ,小球从E 点到G 点的运动,由动能定理得mg (R +y )=12mv2G -12mv 2E min , 由平抛运动可得x =v G t ,H +r -y =12gt 2,联立可得水平距离为x =20.5-y0.3+y ,由数学知识可得当0.5-y =0.3+y ,x 取最大值,最大值为x max =0.8 m.。
1.一粒钢珠从静止状态开始自由下落,然后陷人泥潭中。
若把在空中下落的过程称为过程Ⅰ,进人泥潭直到停止的过程称为过程Ⅱ,则A、过程I中钢珠的动量的改变量等于重力的冲量B、过程Ⅱ中阻力的冲量的大小等于过程I中重力的冲量的大小C、I、Ⅱ两个过程中合外力的总冲量等于零D、过程Ⅱ中钢珠的动量的改变量等于零2.如图5-7所示将一光滑的半圆槽置于光滑水平面上,槽的左侧有一固定在水平面上的物块。
今让一小球自左侧槽口A的正上方从静止开始落下,与圆弧槽相切自A点进入槽内,则以下结论中正确的是A.小球在半圆槽内运动的全过程中,只有重力对它做功B.小球在半圆槽内运动的全过程中,小球与半圆槽在水平方向动量守恒C.小球自半圆槽的最低点B向C点运动的过程中,小球与半圆槽在水平方向动量守恒D.小球离开C点以后,将做竖直上抛运动。
3.在质量为M的小车中挂着一个单摆,摆球的质量为m0,小车(和单摆)以恒定的速度u沿光滑的水平面运动,与位于正对面的质量为m的静止木块发生碰撞,碰撞时间极短,在此碰撞过程中,下列哪些说法是可能发生的A.小车、木块、摆球的速度都发生变化,分别变为v1、v2、v3,满足:(M+m0)u=Mv1+mv2+m o v3 B.摆球的速度不变,小车和木块的速度变为v1和v2,满足:Mu=Mv1+mv2C.摆球的速度不变,小车和木块的速度都变为v,满足:Mu=(M+m)vD.小车和摆球的速度都变为v1,木块的速度为v2,满足:(M+m0)u=(M+m0)v1+mv24.向空中发射一物体.不计空气阻力,当物体的速度恰好沿水平方向时,物体炸裂为a,b两块.若质量较大的a块的速度方向仍沿原来的方向则A.b的速度方向一定与原速度方向相反B.从炸裂到落地这段时间里,a飞行的水平距离一定比b的大C.a,b一定同时到达地面D.炸裂的过程中,a、b中受到的爆炸力的冲量大小一定相等5.从同样高度落下的玻璃杯,掉在水泥地上容易打碎,而掉在草地上不容易打碎,其原因是A .掉在水泥地上的玻璃杯动量大,而掉在草地上的玻璃杯动量小B .掉在水泥地上的玻璃杯动量改变大,掉在草地上的玻璃杯动量改变小C .掉在水泥地上的玻璃杯动量改变快,掉在草地上的玻璃杯动量改变慢D .掉在水泥地上的玻璃杯与地面接触时,相互作用时间短,而掉在草地上的玻璃杯与地面接触时间长。
厚积薄发高考必胜2023年高考物理二轮复习讲练专题动量动量守恒2姓名:___________班级:___________1 2 3一、单选题1.我国多次成功使用“冷发射”技术发射长征十一号系列运载火箭。
如图所示,发射仓内的高压气体先将火箭竖直向上推出,火箭速度接近零时再点火飞向太空。
从火箭开始运动到点火的过程中()A.火箭的加速度为零时,动能最大B.高压气体释放的能量全部转化为火箭的动能C.高压气体对火箭推力的冲量等于火箭动量的增加量D.高压气体的推力和空气阻力对火箭做功之和等于火箭动能的增加量2.研究人员让外层覆盖锌的纳米机器人携带药物进入老鼠体内,机器人到达胃部后,外层的锌与消化液反应,产生氢气气泡,从而推动机器人前进,速度可达60m/s若机器人所受重力和浮力忽略不计,当纳米机器人在胃液中加速前进时,下列判断正确的是A.机器人由原电池提供的电能直接驱动B.机器人对胃液的作用力比胃液对机器人的作用力大C.氢气气泡对机器人做的功比机器人克服胃液作用力做的功多D.氢气气泡对机器人作用力的冲量比胃液对机器人作用力的冲量小.3.2021年10月16日,搭载3名宇航员的神舟十三号载人飞船在酒泉卫星发射中心成功发射,三位宇航员将在太空生活6个月。
若某位连同装备共100kg的宇航员出仓执行任务,在离飞船30m的位置与飞船处于相对静止状态,为返回飞船,宇航服中的高压气源一次性喷出一定质量的速度为40m/s的气体,5分钟后宇航员返回飞船,则喷出气体的质量为()A.0.15kg B.0.25kg C.0.35kg D.0.5kg二、解答题4.算盘是我国古老的计算工具,中心带孔的相同算珠可在算盘的固定导杆上滑动,使用前算珠需要归零;如图所示,水平放置的算盘中有甲、乙两颗算珠未在归零位置,甲靠边框b,甲乙相隔s1=3.5cm,乙与边框a相隔s2=2cm,算珠与导杆间的动摩擦因数为μ=0.1;现用手指将甲以0.4m/s的初速度拨出,甲乙碰撞后甲的速度为0.1m/s,方向不变,碰后乙得到的速度为甲碰前速度的23倍,碰撞时间极短且不计,重力加速度取10m/s2;(1)通过计算判断乙算珠能否滑动到边框a;(2)求甲算珠从拨出到停下所需的时间。
专题能力训练7动量动量的综合应用(时间:45分钟满分:100分)一、选择题(本题共7小题,每小题6分,共42分。
在每小题给出的四个选项中,1~4题只有一个选项符合题目要求,5~7题有多个选项符合题目要求。
全部选对的得6分,选对但不全的得3分,有选错的得0分)1.(2017·全国卷Ⅰ)将质量为1.00 kg的模型火箭点火升空,50 g燃烧的燃气以大小为600 m/s 的速度从火箭喷口在很短时间内喷出。
在燃气喷出后的瞬间,火箭的动量大小为(喷出过程中重力和空气阻力可忽略)()A.30 kg·m/s.7×102kg·m/s.0×102kg·m/s.3×102kg·m/s答案:A解析:根据动量守恒定律得:0=Mv1-mv2,故火箭的动量与燃气的动量等大反向,故p=Mv1=mv2=0.05kg×600m/s=30kg·m/s。
2.一颗子弹水平射入静止在光滑水平地面上的木块后不再穿出,木块的动能增加了8 J,木块的质量大于子弹的质量。
则此过程中产生的内能可能是()A.18 JB.16 JC.10 JD.6 J答案:A解析:设子弹的初速度为v0,射入木块后子弹与木块共同的速度为v,木块的质量为m0,子弹的质量为m。
根据动量守恒定律得mv0=(m0+m)v,得v=mm0m+m0,木块获得的动能为ΔE k=12m0v2=m0m2m022(m0+m)2=m0mm02 2(m0+m)·mm0+m,系统产生的内能为Q=12mm02−12(m0+m)v2=m0mm022(m0+m);可得Q=m0+mmΔE k=(m0m+1)ΔE k,因m0>m,则Q>2ΔE k=16J,故A正确,B、C、D错误。
3.如图所示,两质量分别为m1和m2的弹性小球叠放在一起,从高度为h处自由落下,且h远大于两小球半径,所有的碰撞都是完全弹性碰撞,且都发生在竖直方向。
高考第二轮物理复习动量专题训练1.下列运动过程中,在任意相等时间内,物体动量变化相等的是(BCD ) A .匀速圆周运动 B .自由落体运动C .平抛运动D .匀减速直线运动 2.从同一高度落下的玻璃杯掉在水泥地上易碎,掉在沙地上不易碎,这是因为玻璃杯落到水泥地上时(B )A .受到的冲量大B .动量变化率大C .动量改变量大D .动量大3.如图所示,某人身系弹性绳自高空p 点自由下落,图中a 点是弹性绳的原长位置,c 点是人所到达的最低点,b 点是人静止时悬吊着的平衡位置.不计空气阻力,下列说法中正确的是(AD )A .从p 至b 的过程中重力的冲量值大于弹性绳弹力的冲量值B .从p 至b 的过程中重力的冲量值与弹性绳弹力的冲量值相等C .从p 至c 的过程中重力的冲量值大于弹性绳弹力的冲量值D .从p 至c 的过程中重力的冲量值等于弹性绳弹力的冲量值4.如图所示,铁块压着一纸条放在水平桌面上,当以速度V 抽出纸条后,铁块掉在地上地P 点,若以2V 的速度抽出纸条,则铁块落地点为(B )A .仍在P 点B .P 点左边C .P 点右边不远处D .P 点右边原水平位移的两倍处5.有一种硬气功表演,表演者平卧地面,将一大石板置于他的身体上,另一人将重锤举到高处并砸向石板,石板被砸碎,而表演者却安然无恙.假设重锤与石板撞击后二者具有相同的速度,表演者在表演时尽量挑选质量较大的石板.对这一现象,下面的说法中正确的是(D )A .重锤在与石板撞击的过程中,重锤与石板的总机械能守恒B .石板的质量越大,石板获得的动量就越小C .石板的质量越大,石板所受到的打击力就越小D .石板的质量越大,石板获得的速度就越小6.在光滑水平地面上有两个相同的弹性小球A 、B ,质量都为m .现B 球静止,A 球向B 球运动,发生正碰.已知碰撞过程中总机械能守恒,两球压缩最紧时的弹性势能为E P ,则碰前A 球的速度等于(C )A .mE p B .mE p 2 C . 2mE p D . 2mE p 27.一辆小车正在沿光滑水平面匀速运动,突然下起了大雨,雨水竖直下落,使小车内积下了一定深度的水.雨停后,由于小车底部出现一个小孔,雨水渐渐从小孔中漏出.关于小车的运动速度,下列说法中正确的是(B )A .积水过程中小车的速度逐渐减小,漏水过程中小车的速度逐渐增大B .积水过程中小车的速度逐渐减小,漏水过程中小车的速度保持不变C .积水过程中小车的速度保持不变,漏水过程中小车的速度逐渐增大D .积水过程中和漏水过程中小车的速度都逐渐减小8.在高速公路上发生一起交通事故,一辆质量为1500kg 向南行驶的长途客车迎面撞上了一质量为3000kg 向北行驶的卡车,碰后两辆车接在一起,并向南滑行了一小段距离停止.根据测速仪的测定,长途客车碰前以20m/s 的速度行驶,由此可判断卡车碰前的行驶速率(A )PA.小于10m/sB.大于10m/s,小于20m/sC.大于20m/s,小于30m/sD.大于30m/s,小于40m/s9.在光滑水平面上,两球沿球心连线以相等速率相向而行,下列现象可能的是(AD)A.若两球质量相等,碰后以某一相等速率互相分开B.若两球质量相等,碰后以某一相等速率同向而行C.若两球质量不同,碰后以某一相等速率互相分开D.若两球质量不同,碰后以某一相等速率同向而行10.如图所示,甲、乙两小车能在光滑水平面上自由运动,两根磁铁分别固定在两车上,甲车与磁铁的总质量为1kg,乙车和磁铁的总质量为2kg,两磁铁的同名磁极相对时,推一下两车使它们相向运动,t时刻甲的速度为3m/s,乙的速度为2m/s,它们还没接触就分开了,则(BD)A.乙车开始反向时,甲车速度为0.5m/s,方向与原速度方向相反B.甲车开始反向时,乙的速度减为0.5m/s,方向不变C.两车距离最近时,速率相等,方向相反D.两车距离最近时,速率都为1/3m/s,方向都与t时刻乙车的运动方向相同11.在光滑水平面上,动能为E0,动量大小为p0的小钢球1与静止小钢球2发生碰撞,碰撞前后球1的运动方向相反.将碰撞后球1的动能和动量的大小分别计为E1、p1,球2的动能和动量的大小分别计为E2、p2,则必有(ACD)A.E1< E0B.E2> E0C.p1< p0D.p2> p012.光滑水平面上有大小相同的A、B两球在同一直线上运动.两球质量关系为mB =2mA,规定向右为正方向,A、B两球的动量均为6kg•m/s,运动中两球发生碰撞,碰撞后A球的动量增量为-4kg•m/s,则(A)A.左方是A球,碰撞后A、B两球速度大小之比为2∶5B.左方是A球,碰撞后A、B两球速度大小之比为1∶10C.右方是A球,碰撞后A、B两球速度大小之比为2∶5D.右方是A球,碰撞后A、B两球速度大小之比为1∶10解析:由mB =2mA知碰前vB<vA,由题意知,p A′=m v A′=2kg•m/s,p B′=m v B′=10kg•m/s,由上得v A′∶v B′=2∶5,故正确选项为A.若右为A球,由于此前动量都为6kg•m/s,即都向右运动,两球不可能相碰.13.古时有“守株待兔”的寓言,设兔子的头部受到大小等于自身体重的打击力时即可致死,并设兔子与树桩作用时间为0.2s,则被撞死的兔子其奔跑速度可能为(g取10m/s2)(CD)A.1m/sB.1.5m/sC.2m/sD.2.5m/s14.一个篮球竖直向上抛出后回到抛出点,假设篮球在运动过程中受到的阻力大小不变,比较篮球由抛出点上升到最高点和从最高点下降到抛出点的过程,有(C)A.上升过程中篮球受到的重力的冲量的大小大于下降过程中篮球受到的重力的冲量B.上升过程中篮球受到的重力的冲量的大小等于下降过程中篮球受到的重力的冲量C.上升过程中篮球受到的重力的冲量的大小小于下降过程中篮球受到的重力的冲量D.上升过程中篮球的动量变化的方向与下降过程中篮球动量变化的方向相反15.如图所示,在甲、乙两种情况中,人用相同大小的恒定拉力拉绳子,使人和船A均向右运动,经过相同的时间t,图甲中船A没有到岸,图乙中船A没有与船B相碰.则经过时间t(C)A.图甲中人对绳子拉力的冲量比图乙中人对绳子拉力的冲量小B .图甲中人对绳子拉力的冲量比图乙中人对绳子拉力的冲量大C .图甲中人对绳子拉力的冲量比图乙中人对绳子拉力的冲量一样大D .以上三种情况都有可能16.人做“蹦极”运动,用原长为15m 的橡皮绳拴住身体往下跃.若此人的质量为50kg ,从50m 高处由静止下落到运动停止瞬间所用时间为4s ,求橡皮绳对人的平均作用力.(g 取10m /s 2,保留两位有效数字)解:人首先做自由落体运动,绳张紧后由于绳的张力随绳的伸长量而发生变化,题目求绳对人的平均作用力,可用动量定理求解.由2121gt h =得,自由下落的时间s s gh t 73.11015221=⨯==绳的拉力作用时间为:t =t 2-t 1=4s-1.73s =2.27s 全程应用动量定理有:Ft 2-mgt =0 得平均作用力为N N t mgt F 22108.827.241050⨯=⨯⨯==17.篮球运动是一项同学们喜欢的体育运动,为了检测篮球的性能,某同学多次让一篮球从h 1=1.8m 处自由下落,测出篮球从开始下落至第一次反弹到最高点所用时间为t =1.3s ,该篮球第一次反弹从离开地面至最高点所用时间为0.5s ,篮球的质量为m =0.6kg ,g 取10m /s 2.求篮球对地面的平均作用力(不计空气阻力).解:篮球从h 1处下落的时间为t 1,触地时速度大小为v 1,弹起时速度大小为v 2. 则s s gh t 6.0108.12211=⨯==①s m s m gh v /6/8.1102211=⨯⨯== ②球弹起的速度大小s m s m gt v /5/5.01022=⨯== ③ 球与地面作用时间s t t t t 2.021=--=∆ ④ 球触地过程中取向上为正方向,根据动量定理有:)()(12mv mv t mg F --=∆- ⑤即 tv v m mg F ∆++=)(21,代入数据得N F 39=.根据牛顿第三定律,球对地面的平均作用力方向竖直向下,大小为39N .图甲18.蹦床是运动员在一张绷紧的弹性网上蹦跳、翻滚并做各种空中动作的运动项目。
一个质量为60kg 的运动员,从离水平网面3.2m 高处自由下落,着网后沿竖直方向蹦回到离水平网面5.0m 高处.已知运动员与网接触的时间为1.2s .若把在这段时间内网对运动员的作用力当作恒力处理,求此力的大小.(g=10m /s 2)解:方法一:将运动员看作质量为m 的质点,从h 1高处下落,刚接触网时速度的大小v 1=12gh (向下) 弹跳后到达的高度为h 2,刚离网时速度的大小 v 2=22gh (向上) 速度的改变量Δv =v 1+v 2(向上) 以a 表示加速度,Δt 表示接触时间,则Δv =a Δt接触过程中运动员受到向上的弹力F 和向下的重力mg 。
由牛顿第二定律,F – mg =ma 由以上五式解得,F = mg +mtgh gh ∆+1222代入数据得:F =1.5×103N方法二: 将运动员看作质量为m 的质点,从h 1高处下落,刚接触网时速度的大小v 1=12gh (向下) 弹跳后到达的高度为h 2,刚离网时速度的大小v 2=22gh (向上)取向上方向为正,由动量定理得:(F -mg )t =mv 2-(-mv 1) 由以上三式解得,F =mg + mtgh gh ∆+1222代入数据得:F =1.5×103N19.如图所示,质量为3.0kg 的小车在光滑水平轨道上以2.0m/s 速度向右运动.一股水流以2.4m/s 的水平速度自右向左射向小车后壁,已知水流流量为5100.5-⨯m 3/s ,射到车壁的水全部流入车厢内.那么,经多长时间可使小车开始反向运动?(水的密度为3100.1⨯kg/m 3)解:由题意知,小车质量m =3.0kg ,速度v 1=2.0m/s ;水流速度v 2=2.4m/s ,水流流量Q =5100.5-⨯m 3/s , 水的密度ρ=3100.1⨯kg/m 3.设经t 时间,流人车内的水的质量为M ,此时车开始反向运动,车和水流在水平方向没有外力,动量守恒,所以有mv 1- Mv 2=0 ①又因为 M =ρV ②V =Qt ③由以上各式带入数据解得 t =50s ④20.如图所示,质量为1kg 的小物块以5m /s 的初速度滑上一块原来静止在水平面上的木板,木板质量为4kg ,木板与水平面间的动摩擦因数为0.02,经时间2s 后,小物块从木板另一端以1m /s 相对于地的速度滑出,g =10m /s 2,求这一过程中木板的位移和系统在此过程中因摩擦增加的内能.解:对小木块由动量定理得: μ1mgt = mv 0 - mv 1 ①对木板由动量定理得: μ1mgt –μ2(M+m )gt = Mv ② 由以上两式得: μ2(M +m )gt = mv 0 - mv 1 - Mv ③ 解得v =0.5m/s ④ 此过程中木板做匀加速运动,所以有m t v s 5.02== ⑤由能量守恒得:Q =22120212121Mv mv mv --=11.5J ⑥21.如图所示,在小车的一端高h 的支架上固定着一个半径为R 的1/4圆弧光滑导轨,一质量为m =0.2kg 的物体从圆弧的顶端无摩擦地滑下,离开圆弧后刚好从车的另一端擦过落到水平地面,车的质量M =2kg ,车身长L =0.22m ,车与水平地面间摩擦不计,图中h =0.20m ,重力加速度g =10m /s 2,求R .解:物体从圆弧的顶端无摩擦地滑到圆弧的底端过程中,水平方向没有外力.设物体滑到圆弧的底端时车速度为v 1,物体速度为v 2对物体与车,由动量及机械能守恒得0=Mv 1-mv 2 mgR=21Mv 21+21m v 22物体滑到圆弧底端后车向右做匀速直线运动,物体向左做平抛运动,所以有h=21gt 2L=(v 1+v 2)t由以上各式带入数据解得 R =0.055m22.如图所示,一块足够长的木板,放在光滑水平面上,在木板上自左向右放有序号是1、2、3、…、n 的木块,所有木块的质量均为m ,与木板间的动摩擦因数均为μ,木板的质量与所有木块的总质量相等。