推荐学习 精品-清华大学《大学物理》专项练习及解析 质点力学综合练习1
- 格式:doc
- 大小:810.71 KB
- 文档页数:10
一 计算题 (共299分)1. (本题 8分)(3231) 将三个偏振片叠放在一起,第二个与第三个的偏振化方向分别与第一个的偏振化方向成45°和90°角.(1) 强度为I 0的自然光垂直入射到这一堆偏振片上,试求经每一偏振片后的光强和偏振状态.(2) 如果将第二个偏振片抽走,情况又如何?2. (本题 5分)(3645) 两个偏振片叠在一起,在它们的偏振化方向成α1=30°时,观测一束单色自然光.又在α2=45°时,观测另一束单色自然光.若两次所测得的透射光强度相等,求两次入射自然光的强度之比.3. (本题 8分)(3764) 有三个偏振片叠在一起.已知第一个偏振片与第三个偏振片的偏振化方向相互垂直.一束光强为I 0的自然光垂直入射在偏振片上,已知通过三个偏振片后的光强为I 0 / 16.求第二个偏振片与第一个偏振片的偏振化方向之间的夹角.4. (本题 8分)(3766) 将两个偏振片叠放在一起,此两偏振片的偏振化方向之间的夹角为o 60,一束光强为I 0的线偏振光垂直入射到偏振片上,该光束的光矢量振动方向与二偏振片的偏振化方向皆成30°角.(1) 求透过每个偏振片后的光束强度;(2) 若将原入射光束换为强度相同的自然光,求透过每个偏振片后的光束强度.5. (本题10分)(3767) 一束光强为I 0的自然光垂直入射在三个叠在一起的偏振片P 1、P 2、P 3上,已知P 1与P 3的偏振化方相互垂直.(1) 求P 2与P 3的偏振化方向之间夹角为多大时,穿过第三个偏振片的透射光强为I 0 / 8;(2) 若以入射光方向为轴转动P 2,当P 2转过多大角度时,穿过第三个偏振片的透射光强由原来的I 0 / 8单调减小到I 0 /16?此时P 2、P 1的偏振化方向之间的夹角多大?6. (本题 5分)(3768) 强度为I 0的一束光,垂直入射到两个叠在一起的偏振片上,这两个偏振片的偏振化方向之间的夹角为60°.若这束入射光是强度相等的线偏振光和自然光混合而成的,且线偏振光的光矢量振动方向与此二偏振片的偏振化方向皆成30°角,求透过每个偏振片后的光束强度.7. (本题10分)(3770) 两个偏振片P 1,P 2叠在一起,一束强度为I 0的光垂直入射到偏振片上.已知该入射光由强度相同的自然光和线偏振光混合而成,且入射光穿过第一个偏振片P 1后的光强为0.716 I 0;当将P 1抽出去后,入射光穿过P 2后的光强为0.375I 0.求P 1、P 2的偏振化方向之间的夹角.有三个偏振片叠在一起,已知第一个与第三个的偏振化方向相互垂直.一束光强为I 0的自然光垂直入射在偏振片上,求第二个偏振片与第一个偏振片的偏振化方向之间的夹角为多大时,该入射光连续通过三个偏振片之后的光强为最大.9. (本题 8分)(3772) 有两个偏振片叠在一起,其偏振化方向之间的夹角为45°.一束强度为I 0的光垂直入射到偏振片上,该入射光由强度相同的自然光和线偏振光混合而成.此入射光中线偏振光矢量沿什么方向才能使连续透过两个偏振片后的光束强度最大?在此情况下,透过第一个偏振片的和透过两个偏振片后的光束强度各是多大?10. (本题 8分)(3773) 两个偏振片P 1、P 2叠在一起,其偏振化方向之间的夹角为30°.一束强度为I 0的光垂直入射到偏振片上,已知该入射光由强度相同的自然光和线偏振光混合而成,现测得连续透过两个偏振片后的出射光强与I 0之比为9 /16,试求入射光中线偏振光的光矢量方向.11. (本题10分)(3774) 一光束由强度相同的自然光和线偏振光混合而成.此光束垂直入射到几个叠在一起的偏振片上.(1) 欲使最后出射光振动方向垂直于原来入射光中线偏振光的振动方向,并且入射光中两种成分的光的出射光强相等,至少需要几个偏振片?它们的偏振化方向应如何放置?(2) 这种情况下最后出射光强与入射光强的比值是多少?12. (本题 5分)(3775) 由强度为I a 的自然光和强度为I b 的线偏振光混合而成的一束入射光,垂直入射在一偏振片上,当以入射光方向为转轴旋转偏振片时,出射光将出现最大值和最小值.其比值为n .试求出I a / I b 与n 的关系.13. (本题 8分)(3776) 由两个偏振片(其偏振化方向分别为P 1和P 2)叠在一起,P 1与P 2的夹角为α.一束线偏振光垂直入射在偏振片上.已知入射光的光矢量振动方向与P 2的夹角为A (取锐角),A 角保持不变,如图.现转动P 1,但保持P 1与E K 、P 2的夹角都不超过A (即P 1夹在E K 和P 2之间,见图).求α等于何值时出射光强为极值;此极值是极大还是极小?P 1P 2A αE K 14. (本题 8分)(3778) 两个偏振片叠在一起,欲使一束垂直入射的线偏振光经过这两个偏振片之后振动方向转过了90°,且使出射光强尽可能大,那么入射光振动方向和两偏振片的偏振化方向之间的夹角应如何选择?这种情况下的最大出射光强与入射光强的比值是多少?垂直入射在偏振片上.测得穿过P1后的透射光强为入射光强的1 / 2;相继穿过P1、P2之后透射光强为入射光强的1 / 4.若忽略P1、P2对各自可透过的分量的反射和吸收,将它们看作理想的偏振片.试问:(1) 入射光中线偏振光的光矢量振动方向与P1的偏振化方向间夹角θ为多大?(2) P1、P2的偏振化方向之间的夹角a为多大?(3) 测量结果仍如前,但考虑到每个偏振片实际上对可透分量的光有10%的吸收率,试再求夹角θ、α.16. (本题12分)(3780)两个偏振片P1、P2堆叠在一起,由自然光和线偏振光混合而成的光束垂直入射在偏振片上.进行了两次观测,P1、P2的偏振化方向夹角两次分别为30°和45°;入射光中线偏振光的光矢量振动方向与P1的偏振化方向夹角两次分别为45°和60°.若测得这两种安排下连续穿透P1、P2后的透射光强之比为9/5 (忽略偏振片对透射光的反射和可透分量的吸收),求:(1) 入射光中线偏振光强度与自然光强度之比;(2) 每次穿过P1后的透射光强与入射光强之比;(3) 每次连续穿过P1、P2后的透射光强与入射光强之比.17. (本题 5分)(3781)两个偏振片P1、P2叠在一起,一束单色线偏振光垂直入射到P1上,其光矢量振动方向与P1的偏振化方向之间的夹角固定为30°.当连续穿过P1、P2后的出射光强为最大出射光强的1 / 4时,P1、P2的偏振化方向夹角α是多大?18. (本题 5分)(3782)两个偏振片P1、P2叠在一起,其偏振化方向之间的夹角为30°.由强度相同的自然光和线偏振光混合而成的光束垂直入射在偏振片上.已知穿过P1后的透射光强为入射光强的2 / 3,求(1) 入射光中线偏振光的光矢量振动方向与P1的偏振化方向的夹角θ为多大?(2) 连续穿过P1、P2后的透射光强与入射光强之比.19. (本题 5分)(3783)三个偏振片P1、P2、P3顺序叠在一起,P1、P3的偏振化方向保持相互垂直,P 1与P2的偏振化方向的夹角为α,P2可以入射光线为轴转动.今以强度为I的单色自然光垂直入射在偏振片上.不考虑偏振片对可透射分量的反射和吸收.(1) 求穿过三个偏振片后的透射光强度I与α角的函数关系式;(2) 试定性画出在P2转动一周的过程中透射光强I随α角变化的函数曲线.光束垂直入射在偏振片上,进行了两次测量.第一次和第二次P1和P2偏振化方向的夹角分别为30°和未知的θ,且入射光中线偏振光的光矢量振动方向与P1的偏振化方向夹角分别为45°和30°.不考虑偏振片对可透射分量的反射和吸收.已知第一次透射光强为第二次的3 / 4,求(1) θ角的数值;(2) 每次穿过P1的透射光强与入射光强之比;(3) 每次连续穿过P1,P2的透射光强与入射光强之比.21. (本题10分)(3797)两偏振片叠在一起,其偏振化方向夹角为45°.由强度相同的自然光和线偏振光混合而成的光束垂直入射在偏振片上,入射光中线偏振光的光矢量振动方向与第一个偏振片的偏振化方向间的夹角为30°.(1) 若忽略偏振片对可透射分量的反射和吸收,求穿过每个偏振片后的光强与入射光强之比;(2) 若考虑每个偏振片对透射光的吸收率为10%,穿过每个偏振片后的透射光强与入射光强之比又是多少?22. (本题10分)(3798)两块偏振片叠在一起,其偏振化方向成30°.由强度相同的自然光和线偏振光混合而成的光束垂直入射在偏振片上.已知两种成分的入射光透射后强度相等.(1) 若不计偏振片对可透射分量的反射和吸收,求入射光中线偏振光的光矢量振动方向与第一个偏振片偏振化方向之间的夹角;(2) 仍如上一问,求透射光与入射光的强度之比;(3) 若每个偏振片对透射光的吸收率为5%,再求透射光与入射光的强度之比.23. (本题10分)(3799)两偏振片P1、P2叠在一起,P1和P2的偏振化方向间的夹角为α,由强度相同的自然光和线偏振光混合而成的光束垂直入射在偏振片上.入射光中线偏振光的光矢量振动方向与P1的偏振化方向间的夹角为45°.已知穿过P1、P2后的透射光强为最大透射光强(对应着α=0)的2 / 3.(1) 若不考虑偏振片对可透射分量的反射和吸收,P1、P2的偏振化方向间的夹角α为多大?(2) 若考虑每个偏振片对透射光的吸收率为10%,且使穿过两个偏振片后的透射光强与(1)中吸收率为零时相同,此时α 应为多大?光束垂直入射在偏振片上.已知穿过P 1后的透射光强为入射光强的1 / 2;连续穿过P 1、P 2后的透射光强为入射光强的1 / 4.求(1) 若不考虑P 1、P 2对可透射分量的反射和吸收,入射光中线偏振光的光矢量振动方向与P 1的偏振化方向夹角θ 为多大?P 1、P 2的偏振化方向间的夹角α为多大?(2) 若考虑每个偏振光对透射光的吸收率为 5%,且透射光强与入射光强之比仍不变,此时θ 和α 应为多大?25. (本题10分)(3801) 两个偏振片P 1、P 2叠在一起,由自然光和线偏振光混合而成的光束垂直入射在偏振片上.进行了两次测量:P 1、P 2偏振化方向分别为60°和45°;入射光中线偏振光的光矢量振动方向与P 1偏振化方向夹角分别为60°和θ.忽略偏振片对可透射分量的反射和吸收.若两次测量中连续穿过P 1、P 2后的透射光强之比为1 / 2;第二次测量中穿过P 1的透射光强与入射光强之比为5 / 12. 求:(1) 入射光中线偏振光与自然光的强度之比;(2) 角度θ.26. (本题10分)(3802) 两个偏振片P 1、P 2叠在一起,其偏振化方向之间的夹角记为α.由强度相同的自然光和线偏振光混合而成的光束垂直入射在偏振片上.线偏振光的光矢量振动方向与P 1偏振化方向之间的夹角记为θ.(1) 若不计偏振片对可透射分量的反射和吸收.且α=30°, θ=60°,求穿过P 1后的透射光强与入射光强之比;再求连续穿过P 1、P 2后的透射光强与入射光强之比.(2) 若每个偏振片使可透射分量的强度减弱10%,并且要使穿过P 1后的透射光强及连续穿过P 1、P 2后的透射光强与入射光强之比都和(1)中算出的相同.这时θ 和α 各应是多大?27. (本题 8分)(3809) 两个偏振片叠在一起,一束单色自然光垂直入射.(1) 若认为偏振片是理想的(对透射部分没有反射和吸收),当连续穿过两个偏振片后的透射光强为最大透射光强的31时,两偏振片偏振化方向间的夹角α为多大?(2)若考虑到每个偏振片因吸收和反射而使透射光部分的光强减弱5% ,要使透射光强仍如(1)中得到的透射光强,则此时α应为多大?28. (本题 5分)(3810) 两个偏振片P 1,P 2叠在一起,由强度相同的自然光和线偏振光混合而成的光束垂直入射在偏振片上.进行了两次测量,第一次和第二次测量时P 1,P 2的偏振化方向夹角分别为30°和未知的θ,且入射光中线偏振光的光矢量振动方向与P 1的偏振化方向夹角分别为45°和30°.若连续穿过P 1、P 2后的透射光强的两次测量值相等,求θ.如图,P 1、P 2为偏振化方向相互平行的两个偏振片.光强为I 0的平行自然光垂直入射在P 1上. (1) 求通过P 2后的光强I . (2) 如果在P 1、P 2之间插入第三个偏振片P 3,(如图中虚线所示)并测得最后光强I =I 0 / 32,求:P 3的偏振化方向与P 1的偏振化方向之间的夹角α (设α为锐角).30. (本题10分)(3241) 有一平面玻璃板放在水中,板面与水面夹角为θ (见图).设水和玻璃的折射率分别为1.333和1.517.已知图中水面的反射光是完全偏振光,欲使玻璃板面的反射光也是完全偏振光,θ 角应是多大?31. (本题 5分)(3784) 一束自然光自空气入射到水面上,若水相对空气的折射率为1.33,求布儒斯特角.32. (本题 5分)(3785) 一束自然光自水中入射到空气界面上,若水的折射率为1.33,空气的折射率为1.00,求布儒斯特角.33. (本题 5分)(3786) 一束自然光自水(折射率为1.33)中入射到玻璃表面上(如图).当入射角为49.5°时,反射光为线偏振光,求玻璃的折射率.水玻璃34. (本题 5分)(3787) 一束自然光自空气入射到水(折射率为1.33)表面上,若反射光是线偏振光,(1) 此入射光的入射角为多大?(2) 折射角为多大?35. (本题 5分)(3788) 一束自然光以起偏角i 0=48.09°自某透明液体入射到玻璃表面上,若玻璃的折射率为1.56 ,求:(1) 该液体的折射率.(2) 折射角.36. (本题 5分)(3789) 一束自然光由空气入射到某种不透明介质的表面上.今测得此不透明介质的起偏角为56°,求这种介质的折射率.若把此种介质片放入水(折射率为1.33)中,使自然光束自水中入射到该介质片表面上,求此时的起偏角.在水(折射率n 1=1.33)和一种玻璃(折射率n 2=1.56的交界面上,自然光从水中射向玻璃,求起偏角i 0.若自然光从玻璃中射向水,再求此时的起偏角0i ′.38. (本题10分)(3793) 如图安排的三种透光媒质Ⅰ、Ⅱ、Ⅲ,其折射率分别为n 1=1.33,n 2=1.50,n 3=1.两个交界面相互平行.一束自然光自媒质Ⅰ中入射 到Ⅰ与Ⅱ的交界面上,若反射光为线偏振光,(1) 求入射角i .(2) 媒质Ⅱ、Ⅲ界面上的反射光是不是线偏振光?为什么?Ⅲn 3 39. (本题 5分)(3794) 如图所示,媒质Ⅰ为空气(n 1=1.00),Ⅱ为玻璃(n 2=1.60),两个交界面相互平行.一束自然光由媒质Ⅰ中以i角入射.若使Ⅰ、Ⅱ交界面上的反射光为线偏振光,(1) 入射角i 是多大? (2) 图中玻璃上表面处折射角是多大?(3)在图中玻璃板下表面处的反射光是否也是线偏振光?40. (本题 5分)(3795) 如图安排的三种透明介质Ⅰ、Ⅱ、Ⅲ,其折射率分别为n 1=1.00 、n 2=1.43和n 3,Ⅰ、Ⅱ和Ⅱ、Ⅲ的界面相互平行.一束自然光由介质Ⅰ中入射,若在两个交界面上的反射光都是线偏振光,则(1) 入射角i 是多大?(2) 折射率n 3是多大?Ⅲn 3 二 理论推导与证明题 (共23分)41. (本题 5分)(3232) 有三个偏振片堆叠在一起,第一块与第三块的偏振化方向相互垂直,第二块和第一块的偏振化方向相互平行,然后第二块偏振片以恒定角速度ω绕光传播的方向旋转,如图所示.设入射自然光的光强为I 0.试证明:此自然光通过这一系统后,出射光的光强为I =I 0 (1-cos4ω t ) / 16.123如图所示,一束自然光入射在平板玻璃上,已知其上表面的反射光线1为完全偏振光.设玻璃板两侧都是空气,试证明其下表面的反射光线2也是完全偏振光.43. (本题 8分)(3811)透明介质Ⅰ、Ⅱ、Ⅲ和Ⅰ如图安排,三个交界面相互平行.一束自然光由Ⅰ中入射.试证明:若Ⅰ、Ⅱ交界面和Ⅲ、Ⅰ交界面上的反射光都是线偏振光,则必有n2=n3.44. (本题 5分)(3812)透光介质Ⅰ、Ⅱ、Ⅰ如图安排,两个交界面相互平行.一束自然光由Ⅰ中入射.试证明:若i为起偏角,则Ⅱ、Ⅰ下界面上的反射光为线偏振光.三回答问题 (共38分)45. (本题 5分)(3644)试写出马吕斯定律的数学表示式,并说明式中各符号代表什么.46. (本题 5分)(5225)让入射的平面偏振光依次通过偏振片P1和P2.P1和P2的偏振化方向与原入射光光矢量振动方向的夹角分别是α和β.欲使最后透射光振动方向与原入射光振动方向互相垂直,并且透射光有最大的光强,问α和β各应满足什么条件?47. (本题 5分)(3228)试述关于光的偏振的布儒斯特定律.48. (本题 5分)(3647)试写出布儒斯特定律的数学表达式,并指出式中诸量的名称.49. (本题 8分)(3790)请指出一种测量不透明介质折射率的方法,并简明叙述测量原理和步骤.50. (本题 5分)(3792)如图所示,三种透明介质Ⅰ、Ⅱ、Ⅲ的折射率分别为n1、n2、n3它们之间的两个交界面互相平行.一束自然光以起偏角i由介质Ⅰ射向介质Ⅱ,欲使在介质Ⅱ和介质Ⅲ的交界面上的反射光也是线偏振光,三个折射率n1、n2和n3之间应满足什么关系?Ⅲn3如图所示,A是一块有小圆孔S的金属挡板,Array B是一块方解石,其光轴方向在纸面内,P是一块偏振片,C是屏幕.一束平行的自然光穿过小孔S后,垂直入射到方解石的端面上.当以入射光线为轴,转动方解石时,在屏幕C上能看到什么现象?。
清华大学《大学物理》习题库试题及答案一、选择题1.3165:在相同的时间内,一束波长为?的单色光在空气中和在玻璃中(A) 传播的路程相等,走过的光程相等(B) 传播的路程相等,走过的光程不相等(C) 传播的路程不相等,走过的光程相等(D) 传播的路程不相等,走过的光程不相等2.3611:如图,S1、S2是两个相干光源,它们到P点的距离分别为r1和r2。
路径S1P垂直穿过一块厚度为t1,折射率为n1的介质板,路径S2P垂直穿过厚度为t2,折射率为n2的另一介质板,其余部分可看作真空,这两条路径的光程差等于t1 r1 (r?nt)?(r?nt)22111 (A) 2P S1 t2 n1 r2 (B) [r2?(n2?1)t2]?[r1?(n1?1)t2] (C) (r2?n2t2)?(r1?n1t1)S2 n2(D) n2t2?n1t13.3664:如图所示,平行单色光垂直照射到薄膜上,经上下两表面反射的两束光发生干涉,若薄膜的厚度为e,并且n1<n2>n3,?1为入射光在折射率为n1 n1 ???的媒质中的波长,则两束反射光在相遇点的相位差为(A) 2?n2e / ( n1 ?1) (B)[4?n1e / ( n2 ?1)] + ?? e n2 (C) [4?n2e / ( n1 ?1) ]+???(D) 4?n2e / ( n1 ?1)n3 4.3169:用白光光源进行双缝实验,若用一个纯红色的滤光片遮盖一条缝,用一个纯蓝色的滤光片遮盖另一条缝,则:(A) 干涉条纹的宽度将发生改变(B) 产生红光和蓝光的两套彩色干涉条纹(C) 干涉条纹的亮度将发生改变(D) 不产生干涉条纹5.3171:在双缝干涉实验中,两条缝的宽度原来是相等的。
若其中一缝的宽度略变窄(缝中心位置不变),则(A) 干涉条纹的间距变宽(B) 干涉条纹的间距变窄(C) 干涉条纹的间距不变,但原极小处的强度不再为零(D) 不再发生干涉现象6.3172:在双缝干涉实验中,为使屏上的干涉条纹间距变大,可以采取的办法是(A) 使屏靠近双缝(B) 使两缝的间距变小(C) 把两个缝的宽度稍微调窄(D) 改用波长较小的单色光源7.3498:在双缝干涉实验中,入射光的波长为?,用玻璃纸遮住双缝中的一个缝,若玻璃纸中光程比相同厚度的空气的光程大?,则屏上原来的明纹处(A) 仍为明条纹(B) 变为暗条纹(C) 既非明纹也非暗纹;S1 (D) 无法确定是明纹,还是暗纹O 8.3612:在双缝干涉实验中,若单色光源S到两缝S1、S2距离S 相等,则观察屏上中央明条纹位于图中O处。
《大学物理学》质点运动学练习题一、选择题1.质点沿轨道AB 作曲线运动,速率逐渐减小,图中哪一种情况正确地表示了质点在C 处的加速度? ( )(A ) (B ) (C ) (D )【提示:由于质点作曲线运动,所以,加速度的方向指向曲线的内侧,又速率逐渐减小,所以加速度的切向分量与运动方向相反】2. 一质点沿x 轴运动的规律是542+-=t t x (SI 制)。
则前三秒内它的 ( ) (A )位移和路程都是3m ;(B )位移和路程都是-3m ; (C )位移是-3m ,路程是3m ; (D )位移是-3m ,路程是5m 。
【提示:将t =3代入公式,得到的是t=3时的位置,位移为t =3时的位置减去t =0时的位置;显然运动规律是一个抛物线方程,可利用求导找出极值点:24d xt dt=-,当t =2时,速度0d xv dt==,所以前两秒退了4米,后一秒进了1米,路程为5米】 3.一质点的运动方程是cos sin r R t i R t j ωω=+,R 、ω为正常数。
从t =ωπ/到t =ωπ/2时间内(1)该质点的位移是 ( ) (A ) -2R i ; (B ) 2R i ; (C ) -2j; (D ) 0。
(2)该质点经过的路程是 ( ) (A ) 2R ; (B ) R π; (C ) 0; (D ) R πω。
【提示:轨道方程是一个圆周方程(由运动方程平方相加可得圆方程),t =π/ω到t =2π/ω时间内质点沿圆周跑了半圈,位移为直径,路程半周长】4. 一细直杆AB ,竖直靠在墙壁上,B 端沿水平方向以速度v滑离墙壁,则当细杆运动到图示位置时,细杆中点C 的速度( )(A )大小为2v,方向与B 端运动方向相同; (B )大小为2v,方向与A 端运动方向相同;(C )大小为2v, 方向沿杆身方向; (D )大小为θcos 2v,方向与水平方向成 θ 角。
【提示:C 点的坐标为sin 2cos 2C C l x l y θθ⎧=⎪⎪⎨⎪=⎪⎩,则cos 2sin 2cx cy l d v dt l d v dt θθθθ⎧=⋅⎪⎪⎨⎪=⋅⎪⎩,有中点C 的速度大小:2C l d v dt θ=⋅。
牛顿力学1、(0030A10)在升降机天花板上拴有轻绳,其下端系一重物,当升降机以加速度a 1上升时,绳中的张力正好等于绳子所能承受的最大张力的一半,问升降机以多大加速度上升时,绳子刚好被拉断?(A) 2a 1. (B) 2(a 1+g ).(C) 2a 1+g . (D) a 1+g . [ ]2、(0038B25)质量为m 的小球,放在光滑的木板和光滑的墙壁之间,并保持平衡,如图所示.设木板和墙壁之间的夹角为α,当α逐渐增大时,小球对木板的压力将(A) 增加.(B) 减少.(C) 不变.(D) 先是增加,后又减小.压力增减的分界角为α=45°.[ ]3、(0042B40) 两个质量相等的小球由一轻弹簧相连接,再用一细绳悬挂于天花板上,处于静止状态,如图所示.将绳子剪断的瞬间,球1和球2的加速度分别为(A) a 1=g ,a 2=g . (B) a 1=0,a 2=g .(C) a 1=g ,a 2=0. (D) a 1=2g ,a 2=0.[ ]4、(0048B25)水平地面上放一物体A ,它与地面间的滑动摩擦系数为μ.现加一恒力F ϖ如图所示.欲使物体A 有最大加速度,则恒力F ϖ与水平方向夹角θ 应满足 (A) sin θ =μ. (B) cos θ =μ.(C) tg θ =μ. (D) ctg θ =μ. [ ]5、(0051A20) 一只质量为m 的猴,原来抓住一根用绳吊在天花板上的质量为M 的直杆,悬线突然断开,小猴则沿杆子竖直向上爬以保持它离地面的高度不变,此时直杆下落的加速度为(A) g . (B) g Mm . (C) g M m M +. (D) g mM m M -+ . (E) g M m M -. [ ] 6、(0326A15) 如图所示,质量为m 的物体A 用平行于斜面的细线连结置于光滑的斜面上,若斜面向左方作加速运动,当物体开始脱离斜面时,它的加速度的大小为(A) g sin θ. (B) g cos θ.(C) g ctg θ. (D) g tg θ. [ ] a 17、(0331A15)如图所示,一轻绳跨过一个定滑轮,两端各系一质量分别为m 1和m 2的重物,且m 1>m 2.滑轮质量及轴上摩擦均不计,此时重物的加速度的大小为a .今用一竖直向下的恒力g m F 1=代替质量为m 1的物体,可得质量为m 2的重物的加速度为的大小a ′,则(A) a ′= a (B) a ′> a (C) a ′< a (D) 不能确定.[ ]8、(0335B25) 质量分别为m 1和m 2的两滑块A 和B 通过一轻弹簧水平连结后置于水平桌面上,滑块与桌面间的摩擦系数均为μ,系统在水平拉力F 作用下匀速运动,如图所示.如突然撤消拉力,则刚撤消后瞬间,二者的加速度a A 和a B 分别为(A) a A =0 , a B =0. (B) a A >0 , a B <0.(C) a A <0 , a B >0. (D) a A <0 , a B =0. [ ]9、(0338B30)质量为m 的物体自空中落下,它除受重力外,还受到一个与速度平方成正比的阻力的作用,比例系数为k ,k 为正值常量.该下落物体的收尾速度(即最后物体作匀速运动时的速度)将是(A)k mg . (B) kg 2 . (C) gk . (D) gk . [ ] 10、(0341B30)质量分别为m 和M 的滑块A 和B ,叠放在光滑水平桌面上,如图所示.A 、B 间静摩擦系数为μs ,滑动摩擦系数为μk ,系统原处于静止.今有一水平力作用于A 上,要使A 、B 不发生相对滑动,则应有(A) F ≤μs mg . (B) F ≤μs (1+m /M )mg . (C) F ≤μs (m +M )mg . (D) F ≤Mm M mg k +μ. [ ] 11、(0342B30)质量分别为m 和M 的滑块A 和B ,叠放在光滑水平面上,如图.A 、B 间的静摩擦系数为μ s ,滑动摩擦系数为μk ,系统原先处于静止状态.今将水平力F 作用于B 上,要使A 、B 间不发生相对滑动,应有 (A) F ≤μs mg . (B) F ≤μs (1+m /M ) mg . (C) F ≤μs (m +M ) g .(D) F ≤Mm M mg k +μ. [ ]12、(0343C45)如图所示,用一斜向上的力F ϖ(与水平成30°角),将一重为G 的木块压靠在竖直壁面上,如果不论用怎样大的力F ,都不能使木块向上滑动,则说明木块与壁面间的静摩擦系数μ的大小为 (A) .21≥μ (B) 31≥μ. (C) 3≥μ. (D) 32≥μ. [ ] 13、(0607A15)一辆汽车从静止出发,在平直公路上加速前进的过程中,如果发动机的功率一定,阻力大小不变,那么,下面哪一个说法是正确的?(A) 汽车的加速度是不变的.(B) 汽车的加速度不断减小.ϖ ϖ(C) 汽车的加速度与它的速度成正比.(D) 汽车的加速度与它的速度成反比. [ ]14、(0610B30)升降机内地板上放有物体A ,其上再放另一物体B ,二者的质量分别为M A 、M B .当升降机以加速度a 向下加速运动时(a <g ),物体A 对升降机地板的压力在数值上等于(A) M A g. (B) (M A +M B )g.(C) (M A +M B )(g +a ). (D) (M A +M B )(g -a ). [ ]15、(0617A15)如图,物体A 、B 质量相同,B 在光滑水平桌面上.滑轮与绳的质量以及空气阻力均不计,滑轮与其轴之间的摩擦也不计.系统无初速地释放,则物体A 下落的加速度是(A) g. (B) 4g /5 .(C) g /2 .(D) g /3 . [ ] 16、(0617A15)如图,滑轮、绳子质量及运动中的摩擦阻力都忽略不计,物体A 的质量m 1大于物体B 的质量m 2.在A 、B 运动过程中弹簧秤S 的读数是(A) .)(21g mm + (B) .)(21g m m -(C).22121g m m m m + (D) .42121g m m m m + [ ] 17、(5255A10) 如图所示,质量为m 的物体用细绳水平拉住,静止在倾角为θ的固定的光滑斜面上,则斜面给物体的支持力为 (A) θcos mg . (B) θsin mg .(C) θcos mg . (D) θsin mg . [ ] 18、(5387A15) 光滑的水平桌面上放有两块相互接触的滑块,质量分别为m 1和m 2,且m 1<m 2.今对两滑块施加相同的水平作用力,如图所示.设在运动过程中,两滑块不离开,则两滑块之间的相互作用力N 应有 (A) N =0. (B) 0 < N < F .(C) F < N <2F . (D) N > 2F . [ ]19、(5388A15) 用水平压力F ϖ把一个物体压着靠在粗糙的竖直墙面上保持静止.当F ϖ逐渐增大时,物体所受的静摩擦力f(A) 恒为零.(B) 不为零,但保持不变.(C) 随F 成正比地增大.(D) 开始随F 增大,达到某一最大值后,就保持不变 [ ]20、(0024B25)一光滑的内表面半径为10 cm 的半球形碗,以匀角速度ω绕其对称OC 旋转.已知放在碗内表面上的一个小球P 相对于碗静止,其位置高于碗底4 cm ,则由此可推知碗旋转的角速度约为 (A) 10 rad/s . (B) 13 rad/s . (C) 17 rad/s (D) 18 rad/s . [ ] 21、(0029A10) 竖立的圆筒形转笼,半径为R ,绕中心轴OO '转动,物块A 紧靠在圆筒的内壁上,物块与圆筒间的摩擦系数为μ,要使物块A 不下落,圆筒转动的角速度ω至少应为ϖ(A) R g μ (B)g μ (C) Rg μ (D)R g [ ] 22、(0054A10)已知水星的半径是地球半径的 0.4倍,质量为地球的0.04倍.设在地球上的重力加速度为g ,则水星表面上的重力加速度为:(A) 0.1 g (B) 0.25 g(C) 2.5 g (D) 4 g [ ]23、(0094B25) 如图所示,假设物体沿着竖直面上圆弧形轨道下滑,轨道是光滑的,在从A 至C 的下滑过程中,下面哪个说法是正确的?(A) 它的加速度大小不变,方向永远指向圆心.(B) 它的速率均匀增加.(C) 它的合外力大小变化,方向永远指向圆心. (D) 它的合外力大小不变.(E) 轨道支持力的大小不断增加. [ ]24、(0334A10) 一个圆锥摆的摆线长为l ,摆线与竖直方向的夹角恒为θ,如图所示.则摆锤转动的周期为 (A) g l . (B) g l θcos . (C) g l π2. (D) g l θπcos 2 . [ ] 25、(0609A20)一公路的水平弯道半径为R ,路面的外侧高出内侧,并与水平面夹角为θ.要使汽车通过该段路面时不引起侧向摩擦力,则汽车的速率为(A)Rg . (B) θtg Rg . (C) θθ2sin cos Rg . (D) θctg Rg [ ]26、(0612A15)一段路面水平的公路,转弯处轨道半径为R ,汽车轮胎与路面间的摩擦系数为μ,要使汽车不致于发生侧向打滑,汽车在该处的行驶速率(A) 不得小于gR μ. (B) 不得大于gR μ.(C) 必须等于gR 2. (D) 还应由汽车的质量M 决定. [ ]27、(0616C50)一小珠可在半径为R 竖直的圆环上无摩擦地滑动,且圆环能以其竖直直径为轴转动.当圆环以一适当的恒定角速度ω 转动,小珠偏离圆环转轴而且相对圆环静止时,小珠所在处圆环半径偏离竖直方向的角度为(A) π21=θ. (B) ).arccos(2ωθR g = (C) )arctg(2g R ωθ=. (D) 需由小珠的质量m 决定. [ ] 28、(5010A10)在作匀速转动的水平转台上,与转轴相距R 处有一体积很小的工件A ,如图所示.设工件与转台间静摩擦系数为μs ,若使工件在转台上无滑动,则转台的角速度ω应满足A R(A) R gs μω≤.(B) R g s 23μω≤. (C) R g s μω3≤. (D) R g s μω2≤. [ ]二、填空题:1、(0039B40)质量相等的两物体A 和B ,分别固定在弹簧的两端,竖直放在光滑水平面C 上,如图所示.弹簧的质量与物体A 、B 的质量相比,可以忽略不计.若把支持面C 迅速移走,则在移开的一瞬间,A 的加速度大小a A =_______,B 的加速度的大小a B =_______. 2、(0043A10)沿水平方向的外力F 将物体A 压在竖直墙上,由于物体与墙之间有摩擦力,此时物体保持静止,并设其所受静摩擦力为f 0,若外力增至2F ,则此时物体所受静摩擦力为_____________. 3、(0046B30) 分别画出下面二种情况下,物体A 的受力图.(1) 物体A 放在木板B 上,被一起抛出作斜上抛运动,A 始终位于B 的上面,不计空气阻力; (2) 物体A 的形状是一楔形棱柱体,横截面为直角三角形,放在桌面C 上.把物体B 轻轻地放在A 的斜面上,设A 、B 间和A 与桌面C 间的摩擦系数皆不为零,A 、B 系统静止. 4、(0050B40)质量分别为m 1、m 2、m 3的三个物体A 、B 、C ,用一根细绳和两根轻弹簧连接并悬于固定点O ,如图.取向下为x 轴正向,开始时系统处于平衡状态,后将细绳剪断,则在刚剪断瞬时,物 体B 的加速度B a ϖ=_______________;物体A 的加速度A a ϖ=______________.5、(0282A10)如果一个箱子与货车底板之间的静摩擦系数为μ,当这货车爬一与水平方向成θ角的平缓山坡时,要不使箱子在车底板上滑动,车的最大加速度a max =_____________. 6、(0352B25)质量m =40 kg 的箱子放在卡车的车厢底板上,已知箱子与底板之间的静摩擦系数为μs =0.40,滑动摩擦系数为μk =0.25,试分别写出在下列情况下,作用在箱子上的摩擦力的大小和方向.(1)卡车以a = 2 m/s 2的加速度行驶,f =____________,方向__________.(2)卡车以a = -5 m/s 2的加速度急刹车,f =____________,方向__________. 7、(0355B25)假如地球半径缩短 1%,而它的质量保持不变,则地球表面的重力加速度g 增大的百分比是______________.8、(0523A15)在如图所示的装置中,两个定滑轮与绳的质量以及滑轮与其轴之间的摩擦都可忽略不计,绳子不可伸长,m 1与平面之间的摩擦也可不计,在水平外力F 的作用下,物体m 1与m 2的加速度a =______________,绳中的张力T =_________________. 9、(0524A15) B 2在如图所示装置中,若两个滑轮与绳子的质量以及滑轮与其轴之间的摩擦都忽略不计,绳子不可伸长,则在外力F 的作用下,物体m 1和m 2的加速度为 a =______________________,m 1与m 2间绳子的张力T =________________________.10、(0526B25)倾角为30的物体沿斜面下滑,下滑的加速度为 3.0 m/s 2桌面上不动,则斜面体与桌面间的静摩擦力f =11、(0619A10) 一物体质量为M ,置于光滑水平地板上.今用一水平力F ϖ通过一质量为m 的绳拉动物体前进,则物体的加速度a =______________,绳作用于物体上的力T =_________________.12、(0623A10) 如图,在光滑水平桌面上,有两个物体A 和B 紧靠在一起.它们的质量分别为m A =2 kg ,m B =1 kg .今用一水平力F=3 N 推物体B ,则B 推A 的力等于______________.如用同样大小的水平力 从右边推A ,则A 推B 的力等于___________________. 13、(0624B25)分别画出物体A 、B 、C 、D 的受力图:(1) 被水平力F 压在墙上保持静止的两个木块A 和B ;(2) 被水平力F 拉着在水平桌面上一起做匀速运动的木块C 和D . (各接触面均粗糙) 14、(0626B30)在粗糙的水平桌面上放着质量为M 的物体A ,在A 上放有一表面粗糙的小物体B ,其质量为m .试分别画出:当用水平恒力F ϖ推A 使它作加速运动时,B 和A 的受力图. 15、(5011A10)在粗糙的水平面上,放有一质量为M 的物体,其前表面是一竖直平面.当用水平恒力推它时,可使另一质量为m 的物体刚好附在它的前表面上不落下,如图.试分别画出两物体的受力图. 16、(5256A10)有两个弹簧,质量忽略不计,原长都是10 cm ,第一个弹簧上端固定,下挂一个质量为m 的物体后,长11 cm ,而第二个弹簧上端固定,下挂一质量为m 的物体后,长13 cm ,现将两弹簧串联,上端固定,下面仍挂一质量为m 的物体,则两弹簧的总长为____________. 17、(5390A20) 如图所示,一个小物体A 靠在一辆小车的竖直前壁上,A 和车壁间静摩擦系数是μs ,若要使物体A 不致掉下来,小车的加速度的最小值应为a =_______________. 18、(0031B30) 质量为m 的小球,用轻绳AB 、BC 连接,如图,其中AB 断绳AB 前后的瞬间,绳BC 中的张力比T : T ′=19、(0351A10) 一圆锥摆摆长为l 、摆锤质量为m 线与铅直线夹角θ,则(1) 摆线的张力T =_____________________; (2) 摆锤的速率v =_____________________.20、(0527C50)一小珠可以在半径为R 的竖直圆环上作无摩擦滑动.今使 (1) ϖ m圆环以角速度ω绕圆环竖直直径转动.要使小珠离开环的底部而停在环上某一点,则角速度ω最小应大于_____________.21、(0622A20)一块水平木板上放一砝码,砝码的质量m =0.2 kg ,手扶木板保持水平,托着砝码使之在竖直平面内做半径R =0.5 m 的匀速率圆周运动,速率v =1 m/s .当砝码与木板一起运动到图示位置时,砝码受到木板的摩擦力为_____________,砝码受到木板的支持力为________________.22、(0625B25) 画出物体A 、B 的受力图:(1) 在水平圆桌面上与桌面一起做匀速转动的物体A ;(2) 和物体C 叠放在一起自由下落的物体B .三、计算题:1、(0032B35)一人在平地上拉一个质量为M 的木箱匀速前进,如图. 木箱与地面间的摩擦系数μ=0.6.设此人前进时,肩上绳的支撑点距地面高度为h =1.5 m ,不计箱高,问绳长l 为多长时最省力? 2、(0035B25) 质量m =2.0 kg 的均匀绳,长L =1.0 m ,两端分别连接重物A和B ,m A =8.0 kg ,m B =5.0 kg ,今在B 端施以大小为F =180 N 的竖直拉力,使绳和物体向上运动,求距离绳的下端为x 处绳中的张力T (x )3、(0037D75) 质量为m 的子弹以速度v 0水平射入沙土中,反向,大小与速度成正比,比例系数为K,忽略子弹的重力,求: (1) 子弹射入沙土后,速度随时间变化的函数式;(2) 子弹进入沙土的最大深度.4、(0041D75) 竖直而立的细U 形管里面装有密度均匀的某种液体.U 形管的横截面粗细均匀,两根竖直细管相距为l ,底下的连通管水平.当U 形管在如图所示的水平的方向上以加速度a 运动时,两竖直管内的液面将产生高度差h .若假定竖直管内各自的液面仍然可以认为是水平的,试求两液面的高度差h .5、(0049C60) 水平面上有一质量M =51 kg 的小车D ,其上有一定滑轮C. 通过绳在滑轮两侧分别连有质量为m 1=5 kg 和m 2=4 kg 的物体A 和B, 其中物体A 在小车的水平台面上,物体B 被绳悬挂.各接触面和滑轮轴均光滑.系统处于静止时,各物体关系如图所示.现在让系统运动,求以多大的水平力F ϖ作用于小车上,才能使物体A 与小车D 之间无相对滑动.(滑轮和绳的质量均不计,绳与滑轮间无相对滑动)6、(0284B25)一名宇航员将去月球.他带有一个弹簧秤和一个质量为1.0 kg 的物体A .到达月球上某处时,他拾起一块石头B ,挂在弹簧秤上,其读数与地面上挂A 时相同.然后,他把A 和B 分别挂在跨过轻滑轮的轻绳的两端,如图所示.若月球表面的重力加速度为1.67 m/s 2,问石块B 将如何运动? B (2)如图所示,质量为m 的摆球A 悬挂在车架上.求在下述各种情况下,摆线与竖直方向的夹角α和线中的张力T.(1)小车沿水平方向作匀速运动;(2)小车沿水平方向作加速度为a 的运动.8、(0354B30)质量为m 的雨滴下降时,因受空气阻力,在落地前已是匀速运动,其速率为v = 5.0 m/s .设空气阻力大小与雨滴速率的平方成正比,问:当雨滴下降速率为v = 4.0 m/s 时,其加速度a 多大?9、(0356B25)有一物体放在地面上,重量为P ,它与地面间的摩擦系数为μ.今用力使物体在地面上匀速前进,问此力F ϖ与水平面夹角θ为多大时最省力.10、(0358B30)一质量为M ,角度为θ 的劈形斜面A ,放在粗糙的水平面上,斜面上有一质量为m 的物体B 沿斜面下滑,如图.若A ,B 之间的滑动摩擦系数为μ,且B 下滑时A 保持不动,求斜面A 对地面的压力和摩擦力各多大? (画受力图,列出方程,文字运算)11、(0359A20) 如图所示,质量为m =2 kg 的物体A 放在倾角α =30°的固定斜面上,斜面与物体A 之间的摩擦系数μ = 0.2.今以水平力F =19.6 N 的力作用在A 上,求物体A 的加速度的大小. 12、(0528B25)两个人分别在水平地面上推、拉相同的木箱,木箱与地面间的摩擦系数为μ,一个人以力F 1向前下方斜推,作用力方向与水平面的夹角为θ,另一人以力F 2向前上方斜拉,作用力方向与水平面的夹角也是θ,若使木箱获得相同的加速度,则两力的比值F 2/ F 1是多大?13、(0530B30)一质量为60 kg 的人,站在质量为30 kg 的底板上,用绳和滑轮连接如图.设滑轮、绳的质量及轴处的摩擦可以忽略不计,绳子不可伸长.欲使人和底板能以1 m/s 2的加速度上升,人对绳子的拉力T 2多大?人对底板的压力多大? (取g =10 m/s 2) 14、(0531B30) 一条轻绳跨过一轻滑轮(滑轮与轴间摩擦可忽略),在绳的一端挂一质量为m 1的物体,在另一侧有一质量为m 2的环,求当环相对于绳以恒定的加速度a 2沿绳向下滑动时,物体和环相对地面的加速度各是多少?环与绳间的摩擦力多大? 15、(0533B40)已知一质量为m 的质点在x 轴上运动,质点只受到指向原点的引力的作用,引力大小与质点离原点的距离x 的平方成反比,即2/x k f -=,k 是比例常数.设质点在 x =A 时的速度为零,求质点在x =A /4处的速度的大小.16、(0534D80)飞机降落时的着地速度大小v =90 km/h ,方向与地面平行,飞机与地面间的摩擦系数μ =0.10,迎面空气阻力为C x v 2,升力为C y v 2(v 是飞机在跑道上的滑行速度,C x 和C y 为某两常量).已知飞机的升阻比K =C y /C x =5,求飞机从着地到停止这段时间所滑行的距离.(设飞机刚着地时对地面无压力)17、(0627A15) 在水平桌面上有两个物体A 和B ,它们的质量分别为m 1=1.0 kg ,m 2=2.0 kg ,它们与桌面间的滑动摩擦系数μ=0.5,现在A 上施加一个与水平成36.9°角的指向斜下方的力F ϖ,恰好使A 和B 作匀速直线运动,求所施力的大小和物体A 与B 间的相互作用力的大小. ( cos 36.9°=0.8 )α m A F ϖϖ如图,绳CO 与竖直方向成30°角,O 为一定滑轮,物体A 与B 用跨过定滑轮的细绳相连,处于平衡状态.已知B 的质量为10 kg ,地面对B 的支持力为80 N .若不考虑滑轮的大小求:(1) 物体A 的质量. (2) 物体B 与地面的摩擦力.(3) 绳CO的拉力.(取g =10 m/s 2)19、(0027B25)水平转台上放置一质量M =2 kg的小物块,物块与转台间的静摩擦系数μs =0.2,一条光滑的绳子一端系在物块上,另一端则由转台中心处的小孔穿下并悬一质量m =0.8 kg 的物块.转台以角速度ω=4π rad/s 绕竖直中心轴转动,求:转台上面的物块与转台相对静止时,物块转动半径的最大值r max 和最小值r min .20、(0028B30)一水平放置的飞轮可绕通过中心的竖直轴转动,飞轮的辐条上装有一个小滑块,它可在辐条上无摩擦地滑动.一轻弹簧一端固定在飞轮转轴上,另一端与滑块联接.当飞轮以角速度ω旋转时,弹簧的长度为原长的f 倍,已知ω=ω0时,f =f 0,求ω与f 的函数关系.21、(0036D75) 一条质量分布均匀的绳子,质量为M 、长度为L ,一端拴在竖直转轴OO ′上,并以恒定角速度ω在水平面上旋转.设转动过程中绳子始终伸直不打弯,且忽略重力,求距转轴为r 处绳中的张力T ( r ).22、(0044B25) 质量为m 的物体系于长度为R 的绳子的一个端点上,在竖直平面内绕绳子另一端点(固定)作圆周运动.设t时刻物体瞬时速度的大小为v ,绳子与竖直向上的方向成θ角,如图所示. (1) 求t时刻绳中的张力T 和物体的切向加速度a t ;(2) 说明在物体运动过程中a t 的大小和方向如何变化? 23、(0283B30)公路的转弯处是一半径为 200 m 的圆形弧线,其内外坡度是按车速60 km/h 设计的,此时轮胎不受路面左右方向的力.雪后公路上结冰,若汽车以40 km/h 的速度行驶,问车胎与路面间的摩擦系数至少多大,才能保证汽车在转弯时不至滑出公路?24、(0285B40)(1) 试求赤道正上方的地球同步卫星距地面的高度.(2) 若10年内允许这个卫星从初位置向东或向西漂移10°,求它的轨道半径的误差限度是多少?已知地球半径R =6.37×106 m ,地面上重力加速度g =9.8 m/s 2.25、(0628B30) 表面光滑的直圆锥体,顶角为2θ,底面固定在水平面上,如图所示.质量为m 的小球系在绳的一端,绳的另一端系在圆锥的顶点.绳长为l ,且不能伸长,质量不计.今使小球在圆锥面上以角速度ω 绕OH 轴匀速转动,求 (1) 锥面对小球的支持力N 和细绳的张力T ; (2) 当ω增大到某一值ωc 时小球将离开锥面,这时ωc 及T 又各是多少?26、(0696A10)月球质量是地球质量的1/81,直径为地球直径的3/11,计算一个质量为65 kg 的人在月球上所受的月球引力大小.27、(0697A30) 如图,质量分别为m 1和m 2的两只球,用弹簧连在一起,且以长为L 1的线拴在轴O 上,m 1与m 2均以角速度ω绕轴在光滑水平面上作匀速圆周运动.当两球之间的距离为L 2时,将线烧断.试求线被烧断的瞬间两球的加速度a 1和a 2.(弹簧和线O ω的质量忽略不计)28、(5012C45)在倾角为θ 的圆锥体的侧面放一质量为m 的小物体,圆锥体以角速度ω绕竖直轴匀速转动,轴与物体间的距离为R ,为了使物体能在锥体该处保持静止不动,物体与锥面间的静摩擦系数至少为多少?简单讨论所得到的结果. 29、(5391A20) 如图所示,质量为m 的钢球A 沿着中心在O 、半径为R 的光滑半圆形槽下滑.当A 滑到图示的位置时,其速率为v ,钢球中心与O 的连线OA 和竖直方向成θ角,求这时钢球对槽的压力和钢球的切向加速度.四、证明题:1、(0364C45)质量为m 的小球,在水中受的浮力为常力F ,当它从静止开始沉降时,受到水的粘滞阻力大小为f =k v (k 为常数).证明小球在水中竖直沉降的速度v 与时间t 的关系为 ),e 1(/m kt kF mg ---=v 式中t 为从沉降开始计算的时间.2、(0535B25)两个圆锥摆,悬挂点在同一高度,具有不同的悬线长度,若使它们运动时两个摆球离开地板的高度相同,试证这两个摆的周期相等.。
质点力学综合练习1一、单选题:1、(0020B30)一质点在力F = 5m (5 - 2t ) (SI)的作用下,t =0时从静止开始作直线运动,式中m 为质点的质量,t 为时间,则当t = 5 s 时,质点的速率为(A) 50 m ·s -1.. (B) 25 m ·s -1.(C) 0. (D) -50 m ·s -1. [ ]2、(0099B30)如图所示,在光滑平面上有一个运动物体P ,在P 的正前方有一个连有弹簧和挡板M 的静止物体Q ,弹簧和挡板M 的质量均不计,P 与Q 的质量相同.物体P 与Q碰撞后P 停止,Q 以碰前P 的速度运动.在此碰撞过程中,弹簧压缩量最大的时刻是(A) P 的速度正好变为零时.(B) P 与Q 速度相等时. (C) Q 正好开始运动时. (D) Q 正好达到原来P 的速度时. [ ]3、(0344A20)站在电梯内的一个人,看到用细线连结的质量不同的两个物体跨过电梯内的一个无摩擦的定滑轮而处于“平衡”状态.由此,他断定电梯作加速运动,其加速度为(A) 大小为g ,方向向上. (B) 大小为g ,方向向下.(C) 大小为g 21,方向向上. (D) 大小为g 21,方向向下. [ ] 4、(0654B40)图示系统置于以g a 21=的加速度上升的升降机内,A 、B 两物体质量相同均为m ,A 所在的桌面是水平的,绳子和定滑轮质量均不计,若忽略滑轮 轴上和桌面上的摩擦并不计空气阻力,则绳中张力为(A) mg . (B) m g 21. (C) 2mg . (D) 3mg / 4.[ ] 5、(0655C60) 一根细绳跨过一光滑的定滑轮,一端挂一质量为M 的物体,另一端被人用双手拉着,人的质量M m 21=.若人相对于绳以加速度a 0向上爬,则人相对于地面的加速度(以竖直向上为正)是(A) 3/)2(0g a +. (B) )3(0a g --.(C) 3/)2(0g a +-. (D) 0a [ ]6、(0664B25)设物体沿固定圆弧形光滑轨道由静止下滑,在下滑过程中,(A) 它的加速度方向永远指向圆心.(B) 它受到的轨道的作用力的大小不断增加.(C) 它受到的合外力大小变化,方向永远指向圆心.(D) 它受到的合外力大小不变. [ ]a7、(0754A20)质量相等的两个物体甲和乙,并排静止在光滑水平面上(如图所示).现用一水平恒力F 作用在物体甲上,同时给物体乙一个与F 同方向的瞬时冲量量I ,使两物体沿同一方向运动,则两物体再次达到并排的位置所经过的时间为: (A) I / F . (B) 2I / F . (C) 2 F/ I . (D) F/ I . [ ]8、(5407B30)竖直上抛一小球.若空气阻力的大小不变,则球上升到最高点所需用的时间,与从最高点下降到原位置所需用的时间相比(A) 前者长. (B) 前者短.(C) 两者相等. (D) 无法判断其长短. [ ]9、(0225B25)质点的质量为m ,置于光滑球面的顶点A 处(球面固定不动),如图所示.当它由静止开始下滑到球面上B 点时,它的加速度的大小为(A) )cos 1(2θ-=g a . (B) θsin g a =. (C) g a =.(D) θθ2222sin )cos 1(4g g a +-=. [ ] 10、(0480B35)一质量为m 的质点,自半径为R 的光滑半球形碗口由静止下滑,质点在碗内某处的速率为v ,则质点对该处的压力数值为(A) R m 2v . (B) Rm 232v . (C) R m 22v . (D) Rm 252v . [ ] 11、(0481B25)如图示.一质量为m 的小球.由高H处沿光滑轨道由静止开始滑入环形轨道.若H 足够高,则小球在环最低点时环对它的作用力与小球在环最高点时环对它的作用力之差,恰为小球重量的(A) 2倍. (B) 4倍.(C) 6倍. (D) 8倍. [ ]12、(0670C45)在以加速度a 向上运动的电梯内,挂着一根劲度系数为k 、质量不计的弹簧.弹簧下面挂着一质量为M 的物体,物体相对于电梯的速度为零.当电梯的加速度突然变为零后,电梯内的观测者看到物体的最大速度为(A) k M a /. (B) M k a /.(C) k M a /2. (D) k M a /21. [ ] 13、(0179B25)空中有一气球,下连一绳梯,它们的质量共为M .在梯上站一质量为m 的人,起始时气球与人均相对于地面静止.当人相对于绳梯以速度v 向上爬时,气球的速度为(以向上为正)俯视图F I(A) M m m +-v . (B) Mm M +-v . (C) M m v -. (D) m M m v )(+-. (E) MM m v )(+-. [ ] 14、(0190B30)两条船质量都为M ,首尾相靠且都静止在平静的湖面上,如图所示.A 、B 两船上各有一质量均为m 的人,A 船上的人以相对于A 船的速率u 跳到B 船上,B 船上的人再以相对于B船的相同速率u 跳到A 船上. 取如图所示x 坐标,设A 、B 船所获得的速度分别为v A 、v B ,下述结论中哪一个是正确的?(A) v A = 0,v B = 0. (B) v A = 0,v B > 0.(C) v A < 0,v B > 0. (D) v A < 0,v B = 0.(E) v A > 0,v B > 0. [ ]15、(0390B25)一质量为60 kg 的人起初站在一条质量为300 kg ,且正以2 m/s 的速率向湖岸驶近的小木船上,湖水是静止的,其阻力不计.现在人相对于船以一水平速率v 沿船的前进方向向河岸跳去,该人起跳后,船速减为原来的一半,v 应为(A) 2 m/s . (B) 3 m/s .(C) 5 m/s . (D) 6 m/s . [ ]16、(0454B30)一质量为60 kg 的人起初站在一条质量为300 kg ,且正以2 m/s 的速率向湖岸驶近的小木船上,湖水是静止的,其阻力不计.现在人相对于船以一水平速率v 沿船的前进方向向河岸跳去,该人起跳后,船速减为原来的一半,v 应为(A) 2 m/s . (B) 3 m/s .(C) 5 m/s . (D) 6 m/s . [ ]17、(5014B30)一烟火总质量为M + 2m ,从离地面高h 处自由下落到h 21时炸开成为三块, 一块质量为M ,两块质量均为m .两块m 相对于M 的速度大小相等,方向为一上一下.爆炸后M 从h 21处落到地面的时间为t 1,若烟火体在自由下落到h 21处不爆炸,它从h 21处落到地面的时间为t 2,则(A) t 1 > t 2. (B) t 1 < t 2.(C) t 1 = t 2. (D) 无法确定t 1与t 2间关系. [ ]18、(0176B30)质量分别为m 1、m 2的两个物体用一劲度系数为k 的轻弹簧相联,放在水平光滑桌面上,如图所示.当两物体相距x 时,系统由静止释放.已知弹簧的自然长度为x 0,则当物体相距x 0时,m 1的速度大小为 (A) 120)(m x x k -. (B) 220)(m x x k -.x(C)2120)(m m x x k +-. (D) )()(211202m m m x x km +-. (E) )()(212201m m m x x km +-. [ ] 19、(0178B30)一质量为m 的滑块,由静止开始沿着1/4圆弧形光滑的木槽滑下.设木槽的质量也是m .槽的圆半径为R ,放在光滑水平地面上,如图所示.则滑块离开槽时的速度是(A)Rg 2. (B) Rg 2.(C) Rg .(D) Rg 21. (E) Rg 221. [ ] 20、(0198A20)一轻弹簧竖直固定于水平桌面上.如图所示,小球从距离桌面高为h 处以初速度v 0落下,撞击弹簧后跳回到高为h 处时速度仍为v 0,以小球为系统,则在这一整个过程中小球的(A) 动能不守恒,动量不守恒. (B) 动能守恒,动量不守恒. (C) 机械能不守恒,动量守恒. (D) 机械能守恒,动量守恒. [ ]21、(0206B25)两质量分别为m 1、m 2的小球,用一劲度系数为k 的轻弹簧相连,放在水平光滑桌面上,如图所示.今以等值反向的力分别作用于两小球,则两小球和弹簧这系统的(A) 动量守恒,机械能守恒. (B) 动量守恒,机械能不守恒. (C) 动量不守恒,机械能守恒. (D) 动量不守恒,机械能不守恒. [ ]22、(0207B35)静止在光滑水平面上的一质量为M 的车上悬挂一单摆,摆球质量为m ,摆线长为l .开始时,摆线水平,摆球静止于A 点.突然放手,当摆球运动到摆线呈竖直位置的瞬间,摆球相对于地面的速度为(A) 0. (B) gl 2. (C) M m gl /12+. (D) mM gl /12+. [ ]23、(0221B25) 如图所示,质量分别为m 1和m 2的物体A 和B ,置于光滑桌面上,A 和B 之间连有一轻弹簧.另有质量为m 1和m 2的物体C 和D 分别置于物体A与B 之上,且物体A 和C 、B 和D 之间的摩擦系数均不为零.首先用外力沿水平方向相向推压A 和B ,使弹簧被压缩.然后撤掉外力,则在A 和B 弹开的过程中,对A 、B 、C 、D 弹簧组成的系统m m(A) 动量守恒,机械能守恒.(B) 动量不守恒,机械能守恒. (C) 动量不守恒,机械能不守恒. (D) 动量守恒,机械能不一定守恒. [ ]24、(0366B40)质量为m 的平板A ,用竖立的弹簧支持而处在水平位置,如图.从平台上投掷一个质量也是m 的球B ,球的初速为v ,沿水平方向.球由于重力作用下落,与平板发生完全弹性碰撞。
大学物理---力学部分练习题及答案解析一、选择题1、某质点作直线运动的运动学方程为x =3t -5t 3+ 6 (SI),则该质点作(A) 匀加速直线运动,加速度沿x 轴正方向.(B) 匀加速直线运动,加速度沿x 轴负方向.(C) 变加速直线运动,加速度沿x 轴正方向.(D) 变加速直线运动,加速度沿x 轴负方向. [ D ]2、一质点沿x 轴作直线运动,其v t 曲线如图所示,如t =0时,质点位于坐标原点,则t = 4.5 s 时,质点在x 轴上的位置为(A) 5m . (B) 2m .(C) 0. (D)2 m . (E) 5 m.[ B ]3、 一质点在平面上运动,已知质点位置矢量的表示式为 j bt i at r 22+=(其中a 、b 为常量), 则该质点作(A) 匀速直线运动. (B) 变速直线运动.(C) 抛物线运动. (D)一般曲线运动. [ B ]4、一质点在x 轴上运动,其坐标与时间的变化关系为x =4t-2t 2,式中x 、t 分别以m 、s为单位,则4秒末质点的速度和加速度为 ( B )(A )12m/s 、4m/s 2; (B )-12 m/s 、-4 m/s 2 ;(C )20 m/s 、4 m/s 2 ; (D )-20 m/s 、-4 m/s 2;5. 下列哪一种说法是正确的 ( C )(A )运动物体加速度越大,速度越快(B )作直线运动的物体,加速度越来越小,速度也越来越小(C )切向加速度为正值时,质点运动加快(D )法向加速度越大,质点运动的法向速度变化越快6、一运动质点在某瞬时位于矢径()y x r , 的端点处, 其速度大小为(A) t r d d (B) tr d d(C) t r d d (D) 22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x [ D ] 1 4.5432.52-112t v (m/s)7.用水平压力F 把一个物体压着靠在粗糙的竖直墙面上保持静止.当F逐渐增大时,物体所受的静摩擦力f ( B )(A) 恒为零.(B) 不为零,但保持不变.(C) 随F 成正比地增大.(D) 开始随F 增大,达到某一最大值后,就保持不变11、某物体的运动规律为t k t 2d /d v v -=,式中的k 为大于零的常量.当0=t 时,初速为v 0,则速度v 与时间t 的函数关系是 (A) 0221v v +=kt , (B) 0221v v +-=kt , (C) 02121v v +=kt , (D) 02121v v +-=kt [ C ] 12、质量为20 g 的子弹沿X 轴正向以 500 m/s 的速率射入一木块后,与木块一起仍沿X 轴正向以50 m/s 的速率前进,在此过程中木块所受冲量的大小为(A) 9 N·s . (B) -9 N·s .(C)10 N·s . (D) -10 N·s . [ A ]13、在水平冰面上以一定速度向东行驶的炮车,向东南(斜向上)方向发射一炮弹,对于炮车和炮弹这一系统,在此过程中(忽略冰面摩擦力及空气阻力)(A) 总动量守恒.(B) 总动量在炮身前进的方向上的分量守恒,其它方向动量不守恒.(C) 总动量在水平面上任意方向的分量守恒,竖直方向分量不守恒.(D) 总动量在任何方向的分量均不守恒. [ C ]14、质量为m 的小球,沿水平方向以速率v 与固定的竖直壁作弹性碰撞,设指向壁内的方向为正方向,则由于此碰撞,小球的动量增量为(A) mv . (B) 0.(C) 2mv . (D) –2mv . [ D ]15、对于一个物体系来说,在下列的哪种情况下系统的机械能守恒?(A) 合外力为0.(B) 合外力不作功.(C) 外力和非保守内力都不作功.(D) 外力和保守内力都不作功. [ C ]16、下列叙述中正确的是(A)物体的动量不变,动能也不变.(B)物体的动能不变,动量也不变.(C)物体的动量变化,动能也一定变化.(D)物体的动能变化,动量却不一定变化.[ A ]17.考虑下列四个实例.你认为哪一个实例中物体和地球构成的系统的机械能不守恒?(A)物体作圆锥摆运动.(B)抛出的铁饼作斜抛运动(不计空气阻力).(C)物体在拉力作用下沿光滑斜面匀速上升.(D)物体在光滑斜面上自由滑下.[ C ]18.一子弹以水平速度v0射入一静止于光滑水平面上的木块后,随木块一起运动.对于这一过程正确的分析是(A) 子弹、木块组成的系统机械能守恒.(B) 子弹、木块组成的系统水平方向的动量守恒.(C) 子弹所受的冲量等于木块所受的冲量.(D) 子弹动能的减少等于木块动能的增加.[ B ]19、一光滑的圆弧形槽M置于光滑水平面上,一滑块m自槽的顶部由静止释放后沿槽滑下,不计空气阻力.对于这一过程,以下哪种分析是对的?(A) 由m和M组成的系统动量守恒.(B) 由m和M组成的系统机械能守恒.(C) 由m、M和地球组成的系统机械能守恒.(D) M对m的正压力恒不作功.[ C ]20.关于刚体对轴的转动惯量,下列说法中正确的是(A)只取决于刚体的质量,与质量的空间分布和轴的位置无关.(B)取决于刚体的质量和质量的空间分布,与轴的位置无关.(C)取决于刚体的质量、质量的空间分布和轴的位置.(D)只取决于转轴的位置,与刚体的质量和质量的空间分布无关.[ C ]21.刚体角动量守恒的充分而必要的条件是(A) 刚体不受外力矩的作用.(B) 刚体所受合外力矩为零.(C) 刚体所受的合外力和合外力矩均为零.(D) 刚体的转动惯量和角速度均保持不变. [ B ]22. 对一个作简谐振动的物体,下面哪种说法是正确的?(A) 物体处在运动正方向的端点时,速度和加速度都达到最大值;(B) 物体位于平衡位置且向负方向运动时,速度和加速度都为零;(C) 物体位于平衡位置且向正方向运动时,速度最大,加速度为零;(D) 物体处在负方向的端点时,速度最大,加速度为零。
一 计算题 (共211分)1. (本题 5分)(3210) 解:(1) 由单缝衍射暗纹公式得111sin λθ=a 222sin λθ=a 由题意可知 21θθ= , 21sin sin θθ=代入上式可得 212λλ= 3分 (2) 211112sin λλθk k a == (k 1 = 1, 2, ……) ak /2sin 211λθ= 222sin λθk a = (k 2 = 1, 2, ……) ak /sin 222λθ=若k 2 = 2k 1,则θ1 = θ2,即λ1的任一k 1级极小都有λ2的2k 1级极小与之重合. 2分2. (本题 5分)(3359) 解:(1) 对于第一级暗纹,有a sin ϕ 1≈λ因ϕ 1很小,故 tg ϕ 1≈sin ϕ 1 = λ / a故中央明纹宽度 Δx 0 = 2f tg ϕ 1=2f λ / a = 1.2 cm 3分(2) 对于第二级暗纹,有 a sin ϕ 2≈2λx 2 = f tg ϕ 2≈f sin ϕ 2 =2f λ / a = 1.2 cm 2分3. (本题 5分)(3714) 解: a sin ϕ = λ 2分a f f f x /sin tg 1λφφ=≈== 0.825 mm 2分Δx =2x 1=1.65 mm 1分4. (本题 5分)(3724) 解: a sin ϕ = k λ , k =1. 2分 a = λ / sin ϕ =7.26×10-3 mm 3分5. (本题 5分)(3725) 解:设第三级暗纹在ϕ3方向上,则有a sin ϕ3 = 3λ此暗纹到中心的距离为 x 3 = f tg ϕ3 2分因为ϕ3很小,可认为tg ϕ3≈sin ϕ3,所以x 3≈3f λ / a .两侧第三级暗纹的距离是 2 x 3 = 6f λ / a = 8.0mm∴ λ = (2x 3) a / 6f 2分 = 500 nm 1分6. (本题 5分)(3726) 解:中央明纹宽度 Δx ≈2f λ / a =2×5.46×10-4×500/ 0.10mm 4分=5.46 mm 1分7. (本题 5分)(3727) 解:第二级与第三级暗纹之间的距离Δx = x 3 –x 2≈f λ / a . 2分∴ f ≈a Δx / λ=400 mm 3分解:(1) a =λ,sin ϕ =λ/ λ=1 , ϕ =90° 1分 (2) a =10λ,sin ϕ =λ/10 λ=0.1 ϕ =5°44′ 2分 (3) a =100λ,sin ϕ =λ/100 λ=0.01 ϕ =34′ 2分 这说明,比值λ /a 变小的时候,所求的衍射角变小,中央明纹变窄(其它明纹也相应地变为更靠近中心点),衍射效应越来越不明显. 2分 (λ /a )→0的极限情形即几何光学的情形: 光线沿直传播,无衍射效应. 1分9. (本题 5分)(3730) 解:中央明纹宽度 ˝x = 2 x ≈2 f λ/ a2分单缝的宽度 a = 2 f λ/˝x = 2×400×6328×10-9/ 3.4 m 2分 = 0.15 mm 1分10. (本题 5分)(3743) 解:1、2两光线的光程差,在如图情况下为ϕθδsin sin a a BD CA −=−= 2分由单缝衍射极小值条件a (sin θ-sin ϕ ) = ± k λ k = 1,2,…… 2分 (未排除k = 0 的扣1分)得 ϕ = sin —1( ± k λ / a+sin θ) k = 1,2,……(k ≠ 0) 1分11. (本题 5分)(5654) 解:单缝衍射第1个暗纹条件和位置坐标x 1为:a sin θ1 = λa f f f x /sin tg 111λθθ≈≈= (∵θ1很小) 2分 单缝衍射第2个暗纹条件和位置坐标x 2为:a sin θ2 = 2λa f f f x /2sin tg 222λθθ≈≈= (∵θ2很小) 2分 单缝衍射中央亮纹旁第一个亮纹的宽度 ()a a f x x x //2121λλ−≈−=Δ= f λ / a=1.00×5.00×10-7 / (1.00×10-4) m 2分 =5.00 mmx解: ∵ a +b = (1 / 300) mm = 3.33 μm 1分 (1)(a + b ) sin ψ =k λ ∴k λ= (a + b ) sin24.46°= 1.38 μm∵ λR =0.63─0.76 μm ;λB =0.43─0.49 μm对于红光,取k =2 , 则 λR =0.69 μm 2分对于蓝光,取k =3, 则 λB =0.46 μm 1分红光最大级次 k max = (a + b ) / λR =4.8, 1分取k max =4则红光的第4级与蓝光的第6级还会重合.设重合处的衍射角为ψ′ , 则()828.0/4sin =+=′b a R λψ ∴ ψ′=55.9° 2分 (2) 红光的第二、四级与蓝光重合,且最多只能看到四级,所以纯红光谱的第一、三级将出现.()207.0/sin 1=+=b a R λψ ψ1 = 11.9° 2分 ()621.0/3sin 3=+=b a R λψ ψ3 = 38.4° 1分13. (本题10分)(3211) 解:(1) 由单缝衍射明纹公式可知()111231221sin λλϕ=+=k a (取k =1 ) 1分()222231221sin λλϕ=+=k a 1分f x /tg 11=ϕ , f x /tg 22=ϕ 由于 11tg sin ϕϕ≈ , 22tg sin ϕϕ≈所以 a f x /2311λ= 1分a f x /2322λ= 1分则两个第一级明纹之间距为a f x x x /2312λΔ=−=Δ=0.27 cm 2分(2) 由光栅衍射主极大的公式1111sin λλϕ==k d2221sin λλϕ==k d 2分且有 f x /tg sin =≈ϕϕ 所以 d f x x x /12λΔ=−=Δ=1.8 cm 2分解:(1) 由光栅衍射主极大公式得a +b =ϕλsin k =2.4×10-4 cm 3分(2) 若第三级不缺级,则由光栅公式得()λϕ3sin =′+b a由于第三级缺级,则对应于最小可能的a ,ϕ′方向应是单缝衍射第一级暗纹:两式比较,得 λϕ=′sin aa = (a +b )/3=0.8×10-4 cm 3分(3)()λϕk b a =+sin ,(主极大) λϕk a ′=sin ,(单缝衍射极小) (k '=1,2,3,......) 因此 k =3,6,9,........缺级. 2分又因为k max =(a +b ) / λ=4, 所以实际呈现k=0,±1,±2级明纹.(k=±4 在π / 2处看不到.) 2分15. (本题10分)(3221) 解:由光栅衍射主极大公式得 111sin λϕk d = 222sin λϕk d =212122112132660440sin sin k k k k k k =××==λλϕϕ 4分当两谱线重合时有 ϕ1= ϕ21分即 69462321===k k ....... 1分两谱线第二次重合即是4621=k k , k 1=6, k 2=4 2分由光栅公式可知d sin60°=6λ1 D60sin 61λ=d =3.05×10-3mm 2分16. (本题 5分)(3222) 解:(1) 由光栅衍射主极大公式得 ()1330sin λ=+D b a cm 1036.330sin 341−×==+Dλb a 3分 (2) ()2430sin λ=+D b a ()4204/30sin 2=+=D b a λnm 2分解:(1) 由题意,λ1的k 级与λ2的(k +1)级谱线相重合所以d sin ϕ1=k λ1,d sin ϕ1= (k+1) λ2 ,或 k λ1 = (k +1) λ2 3分 2212=−=λλλk 1分(2) 因x / f 很小, tg ϕ1≈sin ϕ1≈x / f 2分∴ d = k λ1 f / x=1.2 ×10-3 cm 2分18. (本题 5分)(3365) 解:对于第一级谱线,有:x 1 = f tg ϕ 1, sin ϕ 1= λ / d 1分∵ sin ϕ ≈tg ϕ ∴ x 1 = f tg ϕ 1≈f λ / d 2分λ和λ'两种波长光的第一级谱线之间的距离 Δx = x 1 –x 1'= f (tg ϕ 1 – tg ϕ 1')= f (λ-λ') / d =1 cm 2分19. (本题 5分)(3529) 解:令第三级光谱中λ=400 nm 的光与第二级光谱中波长为λ′ 的光对应的衍射角都为θ, 则 d sin θ =3λ,d sin θ =2λ′λ′= (d sin θ / )2==λ23600nm 4分∴第二级光谱被重叠的波长范围是 600nm----760 nm 1分20. (本题 8分)(3530) 解:(1) a sin ϕ = k λ tg ϕ = x / f 2分当x << f 时,ϕϕϕ≈≈sin tg , a x / f = k λ , 取k = 1有x = f l / a = 0.03 m 1分∴中央明纹宽度为 Δx = 2x = 0.06 m 1分(2)( a + b ) sin ϕλk ′= =′k ( a +b ) x / (f λ)= 2.5 2分取k ′= 2,共有k ′= 0,±1,±2 等5个主极大 2分21. (本题 8分)(3736) 解:由光栅公式得sin ϕ= k 1 λ 1 / (a +b ) = k 2 λ 2 / (a +b )k 1 λ 1 = k 2 λ 2k 2 / k 1 = λ 1/ λ 2=0.668/ 0.447 3分将k 2 / k 1约化为整数比k 2 / k 1=3 / 2=6 / 4=12 / 8 ......取最小的k 1和k 2 , k 1=2,k 2 =3,3分则对应的光栅常数(a + b ) = k 1 λ 1 / sin ϕ =3.92 μm2分解:(a +b ) sin ϕ = k λ 在ϕ =41°处, k 1λ1= k 2λ2k 2 / k 1 =λ1 / λ2 =656.2 / 410.1=8 / 5=16 / 10=24 / 15= ........ 3分取k 1=5,k 2=8,即让λ1的第5级与λ2的第8级相重合 3分∴ a +b = k 1λ1/sin ϕ =5×10-4 cm 2分23. (本题10分)(3738) 解:(1)(a + b ) sin ϕ = 3λ a + b =3λ / sin ϕ , ϕ=60° 2分 a + b =2λ'/sin ϕ′ ϕ′=30° 1分 3λ / sin ϕ =2λ'/sin ϕ′ 1分 λ'=510.3 nm 1分 (2) (a + b ) =3λ / sin ϕ =2041.4 nm 2分2ϕ′=sin -1(2×400 / 2041.4) (λ=400nm) 1分 2ϕ′′=sin -1(2×760 / 2041.4) (λ=760nm) 1分白光第二级光谱的张角 Δϕ = 22ϕϕ′−′′= 25° 1分24. (本题 8分)(3754) 解:由光栅公式 (a +b )sin ϕ = k λ 1分sin ϕ = k λ/(a +b ) =0.2357k 2分k =0ϕ =0 1分k =±1 ϕ1 =±sin -10.2357=±13.6° 1分k =±2 ϕ2 =±sin -10.4714=±28.1° 1分k =±3 ϕ3 =±sin -10.7071=±45.0° 1分k =±4 ϕ4 =±sin -10.9428=±70.5° 1分25. (本题 5分)(3757) 解:由光栅公式 (a +b )sin ϕ =k λ k =1, φ =30°,sin ϕ1=1 / 2∴ λ=(a +b )sin ϕ1/ k =625 nm 3分若k =2, 则 sin ϕ2=2λ / (a + b ) = 1,ϕ2=90° 实际观察不到第二级谱线 2分26. (本题 5分)(5216) 解: d =1 / 500 mm ,λ=589.3 nm ,第一级衍射主极大: d sin θ = λ 2分∴ sin θ =λ / d =0.295 θ =sin -10.295=17.1°3分27. (本题 5分)(5217) 解:光栅公式, d sin θ =k λ.现 d=1 / 500 mm =2×10-3 mm ,λ1=589.6 nm ,λ2=589.0 nm ,k=2. ∴ sin θ1=k λ1 / d=0.5896, θ1=36.129° 2分sin θ2=k λ2 / d=0.5890, θ2=36.086° 2分 δθ=θ1-θ2=0.043° 1分解:光栅常数 d = 1m / (5×105) = 2 ×10−5m . 2分设 λ1 = 450nm , λ2 = 650nm, 则据光栅方程,λ1和λ2的第2级谱线有d sin θ 1 =2λ1; dsin θ 2=2λ2据上式得: θ 1 =sin −12λ1/d =26.74°θ 2 = sin −12λ2 /d =40.54° 3分第2级光谱的宽度 x 2 − x 1 = f (tg θ 2−tg θ 1) ∴ 透镜的焦距 f = (x 1 − x 2) / (tg θ 2 − tg θ 1) =100 cm . 3分29. (本题10分)(5536) 解:光栅常数d=2×10-6 m 1分 (1) 垂直入射时,设能看到的光谱线的最高级次为k m ,则据光栅方程有d sin θ = k m λ∵ sin θ ≤1 ∴ k m λ / d ≤1 , ∴ k m ≤d / λ=3.39∵ k m 为整数,有 k m =3 4分(2) 斜入射时,设能看到的光谱线的最高级次为mk ′,则据斜入射时的光栅方程有 ()λθmk d ′=′+sin 30sin D d k m/sin 21λθ′=′+ ∵ sin θ'≤1 ∴ 5.1/≤′d k mλ ∴ λ/5.1d k m ≤′=5.09∵ m k ′为整数,有 mk ′=5 5分30. (本题 5分)(5662) 解:光栅常数 d = (1/600) mm = (106/600) nm=1667 nm 1分据光栅公式,λ1 的第2级谱线d sin θ1 =2λ1sin θ1 =2λ1/d = 2×589/1667 = 0.70666 θ1 = 44.96° 1分λ2 的第2级谱线 d sin θ2 =λ2sin θ2 =2λ2 /d = 2×589.6 /1667 = 0.70738θ2 = 45.02° 1分两谱线间隔 Δ l = f (tg θ2 -tg θ1 )=1.00×103( tg 45.02°-tg 44.96°) = 2.04 mm 2分l λ解:双缝干涉条纹:(1) 第k 级亮纹条件: d sin θ =k λ第k 级亮条纹位置:x k = f tg θ ≈f sin θ ≈kf λ / d相邻两亮纹的间距:Δx = x k +1-x k =(k +1)f λ / d -kf λ / d =f λ / d=2.4×10-3 m=2.4 mm 5分 (2) 单缝衍射第一暗纹: a sin θ1 = λ单缝衍射中央亮纹半宽度: Δx 0 = f tg θ1≈f sin θ1 ≈f λ / a =12 mmΔx 0 / Δx =5 ∴ 双缝干涉第±5极主级大缺级. 3分∴ 在单缝衍射中央亮纹范围内,双缝干涉亮纹数目N = 9 1分分别为 k = 0,±1,±2,±3,±4级亮纹 1分或根据d / a = 5指出双缝干涉缺第±5级主大,同样得该结论的3分.二 理论推导与证明题 (共 5分)32. (本题 5分)(5329) 证:据光栅方程有λθk d =sin ①()()λλθθΔ+=Δ+k d sin ② 1分∵()()θθθθθθθθΔ⋅=Δ⋅≈−Δ+cos sin d dsin sin 2分②-①,得 λθθΔ≈Δ⋅⋅k d cos ∴ θλθcos /d k Δ≈Δ θλ2sin 1−Δ=d k θλθ222sin d d k −Δ≈Δ()22/λλ−Δ=k d 2分三 回答问题 (共45分)33. (本题 5分)(3745) 答:会聚在P 点的光线不只是1,2,3,4四条光线,而是从1到4之间的无数条衍射的光线,它们的相干叠加结果才决定P 点的光强.现用半波带法分析P 点的光强.由于缝被分成三个半波带,其中相邻两个半波带上对应点发的光线的光程差为λ / 2 ,在P 点均发生相消干涉,对总光强无贡献,但剩下的一个半波带上各点发出的衍射光线聚于P 点,叠加后结果是光矢量合振幅(差不多)为极大值(与P 点附近的点相比),使P 点光强为极大.5分34. (本题 5分)(3746) 答:主要是因为声波(空气中)波长数量级为0.1米到10米的范围,而可见光波长数量级为1微米,日常生活中遇到的孔或屏的线度接近或小于声波波长,又远大于光波波长,所以声波衍射现象很明显,而光波衍射现象不容易观察到. 5分答:远处光源发出的光射到狭缝上,可认为是平行光入射.2分同时,眼睛直接观察光源,就是调焦到远处,视网膜正好是在眼球(相当于凸透镜)的焦平面上,所以观察到的是平行光衍射.2分由以上两点,观察到的是夫琅禾费衍射图样.1分36. (本题 5分)(3749)答:由单缝衍射暗纹条件sinθ = kλ / a,(k =±1,±2...)可知,当λ / a很小的时候,k不太大的那些暗纹都密集在狭窄的中央明纹附近,以致不能分辨出条纹.4分而且k很大的暗纹之间的明纹本来就弱到看不见了,不必加以考虑.这样,就观察不到衍射条纹.1分37. (本题 5分)(3750)答:除中央明纹(零级)外,其他明纹的衍射方向对应着奇数个半波带(一级对应三个,二级对应五个,......),级数越大,则单缝处的波阵面可以分成的半波带数目越多.其中偶数个半波带的作用两两相消之后,剩下的光振动未相消的一个半波带的面积就越小,由它决定的该明条纹的亮度也就越小.5分38. (本题 5分)(3758)答:因k =±4的主极大出现在θ =±90°的方向上,实际观察不到.2分所以,可观察到的有k =0,±1,±2,±3共7条明条纹.3分39. (本题 5分)(3759)答:光栅常数(a+b)=2×10-4 cm, 按光栅公式1分(a + b)sinθ = kλθ 最大为90°,所以k max≤(a+b)sin90°/ λk max≤2×10-4 / 5000×10-8 =4 2分实际上θ =90°的第四级观察不到,所以可观察到最高级次是k =3 2分40. (本题 5分)(3762)答:在棱镜光谱中,各谱线间的距离决定于棱镜材料和顶角的大小,谱线分布规律比较复杂(不是按波长大小均匀排列的).在光栅光谱中,不同波长的谱线按公式(a+b)sinϕ=±kλ的简单规律排列(在小角度范围近似是均匀排列的).4分另外,棱镜光谱只有一级,而光栅光谱可能不止一级.1分41. (本题 5分)(3763)答:衍射光栅是因它对入射光的衍射而起分光作用的.由光栅公式(a+b)sinφ =kλ,k =0,±1,±2,.....可知,(a+b)和k给定后(k≠0时),波长λ较大的光,衍射角φ 也较大.因此,在除零级光谱以外的各级光谱中,不同波长的光衍射后,主极大(谱线)出现在不同方向上,这就是光栅的分光作用.5分。
一 选择题 (共75分)1. (本题 3分)(4181) 用频率为ν1的单色光照射某一种金属时,测得光电子的最大动能为E K 1;用频率为ν2的单色光照射另一种金属时,测得光电子的最大动能为E K 2.如果E K 1>E K 2,那么(A)ν1一定大于ν2. (B) ν1一定小于ν2. (C) ν1一定等于ν2. (D)ν1可能大于也可能小于ν2. [ ]2. (本题 3分)(4182) 用频率为ν1的单色光照射某种金属时,测得饱和电流为I 1,以频率为ν2的单色光照射该金属时,测得饱和电流为I 2,若I 1> I 2,则 (A) ν1 >ν2. (B) ν1 <ν2.(C) ν1 =ν2. (D) ν1与ν2的关系还不能确定. [ ]3. (本题 3分)(4183) 已知某单色光照射到一金属表面产生了光电效应,若此金属的逸出电势是U 0(使电子从金属逸出需作功eU 0),则此单色光的波长λ 必须满足: (A) λ ≤)/(0eU hc . (B) λ ≥)/(0eU hc .(C) λ ≤)/(0hc eU . (D) λ ≥)/(0hc eU . [ ]4. (本题 3分)(4181) 用频率为ν1的单色光照射某一种金属时,测得光电子的最大动能为E K 1;用频率为ν2的单色光照射另一种金属时,测得光电子的最大动能为E K 2.如果E K 1>E K 2,那么(A)ν1一定大于ν2. (B) ν1一定小于ν2. (C) ν1一定等于ν2. (D)ν1可能大于也可能小于ν2. [ ]5. (本题 3分)(4182) 用频率为ν1的单色光照射某种金属时,测得饱和电流为I 1,以频率为ν2的单色光照射该金属时,测得饱和电流为I 2,若I 1> I 2,则(A) ν1 >ν2. (B) ν1 <ν2.(C) ν1 =ν2. (D) ν1与ν2的关系还不能确定. [ ]6. (本题 3分)(4183) 已知某单色光照射到一金属表面产生了光电效应,若此金属的逸出电势是U 0(使电子从金属逸出需作功eU 0),则此单色光的波长λ 必须满足: (A) λ ≤)/(0eU hc . (B) λ ≥)/(0eU hc .(C) λ ≤)/(0hc eU . (D) λ ≥)/(0hc eU . [ ]7. (本题 3分)(4185) 已知一单色光照射在钠表面上,测得光电子的最大动能是 1.2 eV ,而钠的红限波长是5400 Å ,那么入射光的波长是 (A) 5350 Å. (B) 5000 Å. (C) 4350 Å. (D) 3550 Å. [ ]在均匀磁场B 内放置一极薄的金属片,其红限波长为λ0.今用单色光照射,发现有电子放出,有些放出的电子(质量为m ,电荷的绝对值为e )在垂直于磁场的平面内作半径为R 的圆周运动,那末此照射光光子的能量是:(A) 0λhc . (B) 0λhc m eRB 2)(2+. (C) 0λhc m eRB +. (D) 0λhceRB 2+. [ ]9. (本题 3分)(4382) 一定频率的单色光照射在某种金属上,测出其光电流的曲线如图中实线所示.然后在光强度不变的条件下增大照射光的频率,测出其光电流的曲线如图中虚线所示.满足题意的图是:[ ]10. (本题 3分)(4383) 用频率为ν 的单色光照射某种金属时,逸出光电子的最大动能为E K ;若改用频率为2ν 的单色光照射此种金属时,则逸出光电子的最大动能为: (A) 2 E K . . (B) 2h ν - E K .(C) h ν - E K . (D) h ν + E K . [ ]11. (本题 3分)(4384) 关于光电效应有下列说法:(1) 任何波长的可见光照射到任何金属表面都能产生光电效应;(2) 若入射光的频率均大于一给定金属的红限,则该金属分别受到不同频率的光照射时,释出的光电子的最大初动能也不同;(3) 若入射光的频率均大于一给定金属的红限,则该金属分别受到不同频率、强度相等的光照射时,单位时间释出的光电子数一定相等;(4) 若入射光的频率均大于一给定金属的红限,则当入射光频率不变而强度增大一倍时,该金属的饱和光电流也增大一倍. 其中正确的是(A) (1),(2),(3). (B) (2),(3),(4). (C) (2),(3).(D) (2),(4). [ ]设用频率为ν1和ν2的两种单色光,先后照射同一种金属均能产生光电效应.已知金属的红限频率为ν0,测得两次照射时的遏止电压|U a 2| = 2|U a 1|,则这两种单色光的频率有如下关系:(A) ν2 = ν1 - ν0. (B) ν2 = ν1 + ν0.(C) ν2 = 2ν1 - ν0. (D) ν2 = ν1 - 2ν0. [ ]13. (本题 3分)(4386) 以一定频率的单色光照射在某种金属上,测出其光电流曲线在图中用实线表示,然后保持光的频率不变,增大照射光的强度,测出其光电流曲线在图中用虚线表示.满足题意的图是 [ ]14. (本题 3分)(4387) 光电效应中发射的光电子最大初动能随入射光频率ν 的变化关系如图所示.由图中的(A) OQ (B) OP (C) OP /OQ (D) QS /OS 可以直接求出普朗克常量. [ ]15. (本题 3分)(4503) 在康普顿散射中,如果设反冲电子的速度为光速的60%,则因散射使电子获得的能量是其静止能量的(A) 2倍. (B) 1.5倍. (C) 0.5倍. (D) 0.25倍. [ ]16. (本题 3分)(4607) 当照射光的波长从4000 Å变到3000 Å时,对同一金属,在光电效应实验中测得的遏止电压将:(A) 减小0.56 V . (B) 减小0.34 V .(C) 增大0.165 V . (D) 增大1.035 V . [ ](普朗克常量h =6.63×10-34 J ·s ,基本电荷e =1.60×10-19C)17. (本题 3分)(4736) 保持光电管上电势差不变,若入射的单色光光强增大,则从阴极逸出的光电子的最大初动能E 0和飞到阳极的电子的最大动能E K 的变化分别是 (A) E 0增大,E K 增大. (B) E 0不变,E K 变小.(C) E 0增大,E K 不变. (D) E 0不变,E K 不变. [ ]在康普顿效应实验中,若散射光波长是入射光波长的 1.2倍,则散射光光子能量ε与反冲电子动能E K 之比ε / E K 为(A) 2. (B) 3. (C) 4. (D) 5. [ ]19. (本题 3分)(4739) 光子能量为 0.5 MeV 的X 射线,入射到某种物质上而发生康普顿散射.若反冲电子的能量为 0.1 MeV ,则散射光波长的改变量Δλ与入射光波长λ0之比值为 (A) 0.20. (B) 0.25. (C) 0.30. (D) 0.35. [ ]20. (本题 3分)(5232) 用强度为I ,波长为λ 的X 射线(伦琴射线)分别照射锂(Z = 3)和铁(Z = 26).若在同一散射角下测得康普顿散射的X 射线波长分别为λLi 和λFe (λLi ,λFe >λ),它们对应的强度分别为I Li 和I Fe ,则(A) λLi >λFe ,I Li < I Fe (B) λLi =λFe ,I Li = I Fe(C) λLi =λFe ,I Li .>I Fe (D) λLi <λFe ,I Li .>I Fe [ ]21. (本题 3分)(5363) 以下一些材料的逸出功为铍 3.9 eV 钯 5.0eV 铯 1.9 eV 钨 4.5 eV今要制造能在可见光(频率范围为3.9×1014 Hz —7.5×1014Hz)下工作的光电管,在这些材料中应选(A) 钨. (B) 钯. (C) 铯. (D) 铍. [ ]22. (本题 3分)(5364) 某金属产生光电效应的红限波长为λ0,今以波长为λ (λ <λ0)的单色光照射该金属,金属释放出的电子(质量为m e )的动量大小为(A) λ/h . (B) 0/λh . (C)λλλλ00)(2+hc m e (D)2λhcm e (E)λλλλ00)(2−hc m e [ ]23. (本题 3分)(5365) 康普顿效应的主要特点是(A) 散射光的波长均比入射光的波长短,且随散射角增大而减小,但与散射体的性质无关.(B) 散射光的波长均与入射光的波长相同,与散射角、散射体性质无关. (C) 散射光中既有与入射光波长相同的,也有比入射光波长长的和比入射光波长短的.这与散射体性质有关.(D) 散射光中有些波长比入射光的波长长,且随散射角增大而增大,有些散射光波长与入射光波长相同.这都与散射体的性质无关. [ ]光电效应和康普顿效应都包含有电子与光子的相互作用过程.对此,在以下几种理解中,正确的是(A) 两种效应中电子与光子两者组成的系统都服从动量守恒定律和能量守恒定律.(B) 两种效应都相当于电子与光子的弹性碰撞过程.(C) 两种效应都属于电子吸收光子的过程.(D) 光电效应是吸收光子的过程,而康普顿效应则相当于光子和电子的弹性碰撞过程.(E) 康普顿效应是吸收光子的过程,而光电效应则相当于光子和电子的弹性碰撞过程.[]25. (本题 3分)(5617)用X射线照射物质时,可以观察到康普顿效应,即在偏离入射光的各个方向上观察到散射光,这种散射光中(A) 只包含有与入射光波长相同的成分.(B) 既有与入射光波长相同的成分,也有波长变长的成分,波长的变化只与散射方向有关,与散射物质无关.(C) 既有与入射光相同的成分,也有波长变长的成分和波长变短的成分,波长的变化既与散射方向有关,也与散射物质有关.(D) 只包含着波长变长的成分,其波长的变化只与散射物质有关与散射方向无关.[]二填空题 (共76分)26. (本题 3分)(0475)某光电管阴极, 对于λ= 4910 Å的入射光,其发射光电子的遏止电压为0.71 V.当入射光的波长为__________________Å时,其遏止电压变为1.43 V.( e =1.60×10-19 C,h =6.63×10-34 J·s )27. (本题 5分)(4179)光子波长为λ,则其能量=____________;动量的大小 =_____________;质量=_________________ .28. (本题 4分)(4180)当波长为3000 Å的光照射在某金属表面时,光电子的能量范围从0到 4.0| =____________V;此金属的×10-19 J.在作上述光电效应实验时遏止电压为|Ua红限频率ν0 =__________________Hz.(普朗克常量h =6.63×10-34 J·s;基本电荷e =1.60×10-19 C)光子波长为λ,则其能量=____________;动量的大小 =_____________;质量=_________________ .30. (本题 4分)(4180)当波长为3000 Å的光照射在某金属表面时,光电子的能量范围从0到 4.0×10-19 J.在作上述光电效应实验时遏止电压为|Ua| =____________V;此金属的红限频率ν0 =__________________Hz.(普朗克常量h =6.63×10-34 J·s;基本电荷e =1.60×10-19 C)31. (本题 4分)(4184)已知钾的逸出功为 2.0 eV,如果用波长为3.60×10-7 m的光照射在钾上,则光电效应的遏止电压的绝对值|Ua| =___________________.从钾表面发射出电子的最大速度v max =_______________________.(h =6.63×10-34 J·s,1eV =1.60×10-19 J,me=9.11×10-31 kg)32. (本题 4分)(4187)康普顿散射中,当散射光子与入射光子方向成夹角φ = _____________时,散射光子的频率小得最多;当φ = ______________ 时,散射光子的频率与入射光子相同.33. (本题 3分)(4250)波长为λ =1 Å的X光光子的质量为_____________kg.(h =6.63×10-34 J·s)34. (本题 3分)(4388)以波长为λ= 0.207 μm的紫外光照射金属钯表面产生光电效应,已知钯的红限频率ν0=1.21×1015赫兹,则其遏止电压|Ua| =_______________________V.(普朗克常量h =6.63×10-34 J·s,基本电荷e =1.60×10-19 C)在光电效应实验中,测得某金属的遏止电压|Ua|与入射光频率ν的关系曲线如图所示,由此可知该金属的红限频率ν=___________Hz;逸出功A =____________eV.|1014 Hz) -36. (本题 4分)(4390)已知某金属的逸出功为A,用频率为ν1的光照射该金属能产生光电效应,则该金属的红限频率ν0 =_____________________________,ν1> ν,且遏止电势差|Ua| =______________________________.37. (本题 4分)(4391)当波长为300 nm (1 nm = 10-9 m)的光照射在某金属表面时,光电子的动能范围为0~ 4.0×10-19 J.此时遏止电压为|Ua| =__________________V;红限频率ν=_______________________ Hz.(普朗克常量h =6.63×10-34 J·s,基本电荷e =1.60×10-19 C)38. (本题 3分)(4546)若一无线电接收机接收到频率为108 Hz的电磁波的功率为1微瓦,则每秒接收到的光子数为__________________________.(普朗克常量h =6.63×10-34 J·s)39. (本题 3分)(4608)钨的红限波长是230 nm (1 nm = 10-9 m),用波长为180 nm的紫外光照射时,从表面逸出的电子的最大动能为___________________eV.(普朗克常量h =6.63×10-34 J·s,基本电荷e =1.60×10-19 C)40. (本题 4分)(4609)频率为 100 MHz的一个光子的能量是_______________________,动量的大小是______________________.(普朗克常量h =6.63×10-34 J·s)41. (本题 3分)(4611)某一波长的X光经物质散射后,其散射光中包含波长________和波长__________的两种成分,其中___________的散射成分称为康普顿散射.如图所示,一频率为ν 的入射光子与起始静止的自由电子发生碰撞和散射.如果散射光子的频率为ν′,反冲电子的动量为p,则在与入射光子平行的方向上的动量守恒定律的分量形式为___________________.43. (本题 3分)(4740)在X射线散射实验中,散射角为φ1= 45°和φ2=60°的散射光波长改变量之比Δλ1:Δλ2=_________________.44. (本题 4分)(4741)分别以频率为ν1和ν2的单色光照射某一光电管.若ν1 >ν2 (均大于红限频率ν0),则当两种频率的入射光的光强相同时,所产生的光电子的最大初动能E1____E2;所产生的饱和光电流I s1____ I s2.(用>或=或<填入)45. (本题 3分)(4742)某金属产生光电效应的红限为ν0,当用频率为ν (ν >ν)的单色光照射该金属时,从金属中逸出的光电子(质量为m)的德布罗意波长为________________.46. (本题 3分)(5618)在康普顿散射中,若入射光子与散射光子的波长分别为λ和λ′,则反冲电子获得的动能EK=______________________________.三计算题 (共114分)47. (本题10分)(0640)频率为ν的一束光以入射角i照射在平面镜上并完全反射,设光束单位体积中的光子数为n,求:(1) 每一光子的能量、动量和质量.(2) 光束对平面镜的光压(压强).48. (本题10分)(0640)频率为ν的一束光以入射角i照射在平面镜上并完全反射,设光束单位体积中的光子数为n,求:(1) 每一光子的能量、动量和质量.(2) 光束对平面镜的光压(压强).图中所示为在一次光电效应实验中得出的曲线(1) 求证:对不同材料的金属,AB 线的斜率相同. (2) 由图上数据求出普朗克恒量h . (基本电荷e =1.60×10-19 C) |14Hz)50. (本题 8分)(4246) 波长为λ的单色光照射某金属M 表面发生光电效应,发射的光电子(电荷绝对值为e ,质量为m )经狭缝S 后垂直进入磁感应强度为B K的均匀磁场(如图示),今已测出电子在该磁场中作圆运动的最大半径为R .求(1) 金属材料的逸出功A ; (2) 遏止电势差U a .B K× × × × ×51. (本题 5分)(4392) 用单色光照射某一金属产生光电效应,如果入射光的波长从λ1 = 400 nm 减到λ2 = 360 nm (1 nm = 10-9m),遏止电压改变多少?数值加大还是减小?(普朗克常量h =6.63×10-34 J ·s ,基本电荷e =1.60×10-19C)52. (本题 5分)(4393) 以波长λ = 410 nm (1 nm = 10-9m)的单色光照射某一金属,产生的光电子的最大动能E K = 1.0 eV ,求能使该金属产生光电效应的单色光的最大波长是多少?(普朗克常量h =6.63×10-34J ·s)53. (本题 5分)(4502) 功率为P 的点光源,发出波长为λ的单色光,在距光源为d 处,每秒钟落在垂直于光线的单位面积上的光子数为多少?若λ =6630 Å,则光子的质量为多少?(普朗克常量h =6.63×10-34J ·s)54. (本题 5分)(4502) 功率为P 的点光源,发出波长为λ的单色光,在距光源为d 处,每秒钟落在垂直于光线的单位面积上的光子数为多少?若λ =6630 Å,则光子的质量为多少? (普朗克常量h =6.63×10-34J ·s)55. (本题 5分)(4504) 已知X 射线光子的能量为0.60 MeV ,若在康普顿散射中散射光子的波长为入射光子的1.2倍,试求反冲电子的动能.56. (本题 8分)(4505) 用波长λ0 =1 Å的光子做康普顿实验.(1) 散射角φ=90°的康普顿散射波长是多少? (2) 反冲电子获得的动能有多大?(普朗克常量h =6.63×10-34 J ·s ,电子静止质量m e =9.11×10-31kg)红限波长为λ=0.15 Å的金属箔片置于B =30×10-4 T的均匀磁场中.今用单色γ射线照射而释放出电子,且电子在垂直于磁场的平面内作R = 0.1 m的圆周运动.求γ射线的波长.(普朗克常量h =6.63×10-34 J·s,基本电荷e =1.60×10-19 C,电子质量me=9.11×10-31 kg)58. (本题 5分)(4743)光电管的阴极用逸出功为A = 2.2 eV的金属制成,今用一单色光照射此光电管,阴极发射出光电子,测得遏止电势差为| Ua| = 5.0 V,试求:(1) 光电管阴极金属的光电效应红限波长;(2) 入射光波长.(普朗克常量h = 6.63×10-34 J·s,基本电荷e = 1.6×10-19 C)59. (本题 5分)(4744)以波长为λ = 0.200 μm的单色光照射一铜球,铜球能放出电子.现将此铜球充电,试求铜球的电势达到多高时不再放出电子?(铜的逸出功为A = 4.10 eV,普朗克常量h =6.63×10-34 J·s,1 eV =1.60×10-19 J)60. (本题 5分)(4745)波长为λ0 = 0.500 Å的X射线被静止的自由电子所散射,若散射线的波长变为λ = 0.522 Å,试求反冲电子的动能EK.(普朗克常量h =6.63×10-34 J·s)61. (本题10分)(5233)设康普顿效应中入射X射线(伦琴射线)的波长λ =0.700 Å,散射的X射线与入射的X射线垂直,求:(1) 反冲电子的动能EK.(2) 反冲电子运动的方向与入射的X射线之间的夹角θ.(普朗克常量h =6.63×10-34 J·s,电子静止质量me=9.11×10-31 kg)62. (本题 5分)(5366)假定在康普顿散射实验中,入射光的波长λ= 0.0030 nm,反冲电子的速度v = 0.6 c,求散射光的波长λ.(电子的静止质量me=9.11×10-31 kg ,普朗克常量h =6.63×10-34 J·s,1 nm = 10-9 m,c表示真空中的光速)63. (本题 8分)(5380)如图所示,某金属M的红限波长λ= 260 nm (1 nm =10-9 m)今用单色紫外线照射该金属,发现有光电子放出,其中速度最大的光电子可以匀速直线地穿过互相垂直的均匀电场(场强E = 5×103 V/m)和均匀磁场(磁感应强度为B = 0.005 T)区域,求:(1) 光电子的最大速度v.(2) 单色紫外线的波长λ.(电子静止质量me =9.11×10-31 kg,普朗克常量h =6.63×10-34 J·s)四 理论推导与证明题 (共49分)64. (本题 5分)(0486) 证明在康普顿散射实验中,反冲电子的动能K 和入射光子的能量E 之间的关系为: λλλ0−=E K .65. (本题12分)(0504) 证明在康普顿散射实验中,波长为λ0的一个光子与质量为m 0的静止电子碰撞后,电子的反冲角θ与光子散射角φ之间的关系为:100)]2tg()1[(tg −+=φλθc m h66. (本题 5分)(0486) 证明在康普顿散射实验中,反冲电子的动能K 和入射光子的能量E 之间的关系为: λλλ0−=E K .67. (本题12分)(0504) 证明在康普顿散射实验中,波长为λ0的一个光子与质量为m 0的静止电子碰撞后,电子的反冲角θ与光子散射角φ之间的关系为:100)]2tg()1[(tg −+=φλθc m h68. (本题 5分)(4394) 在光电效应实验中,测得光电子最大初动能E K 与入射光频率ν 的关系曲线如图所示.试证:普朗克常量)/(QS RS h =.(即直线的斜率)69. (本题10分)(4443) 如图示,能量为h ν0的光子流与静止质量为m e 的静止自由电子作弹性碰撞,若散射的光子的能量为h ν,试证明散射角φ 满足下式ννννφ00222)(2sin h c m e −=.五 回答问题 (共25分)70. (本题 5分)(4395) 已知从铝金属逸出一个电子至少需要A = 4.2 eV 的能量,若用可见光投射到铝的表面,能否产生光电效应?为什么?(普朗克常量h =6.63×10-34 J ·s ,基本电荷e =1.60×10-19 C)71. (本题 5分)(4396) 已知铂的逸出电势为8 V ,今用波长为 300 nm (1 nm = 10-9m)的紫外光照射,问能否产生光电效应?为什么?(普朗克常量h =6.63×10-34 J ·s ,基本电荷e =1.60×10-19 C)72. (本题 5分)(4398)红外线是否适宜于用来观察康普顿效应,为什么?=9.11×10-31 kg,(红外线波长的数量级为105 Å,电子静止质量me普朗克常量h =6.63×10-34 J·s)73. (本题10分)(4402)处于静止状态的自由电子是否能吸收光子,并把全部能量用来增加自己的动能?为什么?。
第1章 质点运动学 习题及答案1.||与 有无不同?和有无不同? 和有无不同?其不同在哪里?试举例说明.r ∆r ∆t d d r dr dt t d d v dv dt解: ||与 不同. ||表示质点运动位移的大小,而则表示质点运动时其径向长度的r ∆r ∆r ∆r ∆增量;和不同. 表示质点运动速度的大小,而则表示质点运动速度的径向分量;t d d r dr dt t d d r dr dtt d d v 和不同. 表示质点运动加速度的大小, 而则表示质点运动加速度的切向分量.dv dt t d d v dv dt2.质点沿直线运动,其位置矢量是否一定方向不变?质点位置矢量方向不变,质点是否一定做直线运动?解: 质点沿直线运动,其位置矢量方向可以改变;质点位置矢量方向不变,质点一定做直线运动.3.匀速圆周运动的速度和加速度是否都恒定不变?圆周运动的加速度是否总是指向圆心,为什么?解: 由于匀速圆周运动的速度和加速度的方向总是随时间发生变化的,因此,其速度和加速度不是恒定不变的;只有匀速圆周运动的加速度总是指向圆心,故一般来讲,圆周运动的加速度不一定指向圆心.4.一物体做直线运动,运动方程为,式中各量均采用国际单位制,求:(1)第二秒2362x t t =-内的平均速度(2)第三秒末的速度;(3)第一秒末的加速度;(4)物体运动的类型。
解: 由于: 232621261212x(t )t t dx v(t )t t dtdv a(t )t dt=-==-==-所以:(1)第二秒内的平均速度:1(2)(1)4()21x x v ms --==- (2)第三秒末的速度: 21(3)1236318()v ms -=⨯-⨯=- (3)第一秒末的加速度:2(1)121210()a ms -=-⨯= (4)物体运动的类型为变速直线运动。
5.一质点运动方程的表达式为,式中的分别以为单位,试求;(1)质点2105(t t t =+r i j ),t r m,s 的速度和加速度;(2)质点的轨迹方程。
1、分别以、S 、和表示质点运动的位矢、路程、速度和加速度,下列表述中正确的是 [ B ]A 、r r ∆=∆;B 、v dt ds dt r d == ;C 、a=dtdr; D 、dtdr=v 。
2、如图所示,质点作匀速率圆周运动,其半径为R , 从A 点出发,经半圆到达B 点,试问下列叙述中不正确的是哪个[ A ](A) 速度增量0v =∆; (B) 速率增量0v =∆;(C) 位移大小R r 2=∆; (D) 路程。
3、质点的运动方程j t t i t t r⎪⎪⎭⎫ ⎝⎛+-+⎪⎪⎭⎫ ⎝⎛-=335232 ( S I ), 当t=2s 时,其加速度= - i + 4j .4、一质点按x=5cos6πt y=8sin6πt (SI)规律运动。
第五秒末的速度是48πj ;第五秒末的加速度是-180π2 i , 轨迹方程是( x/5)2+(y/8)2=1 ,5、 一质点沿x 轴运动,坐标与时间的变化关系为x =4t -2t 4(SI 制),试计算 ⑴ 在最初2s 内的平均速度,2s 末的瞬时速度; ⑵ 1s 末到3s 末的位移和平均速度; (3) 3s 末的瞬时加速度。
解: (1) <v> = (x 2– x 0 ) / 2 =(-24-0)/2= -12 (m/s) v 2 = dx/dt=4-8t 3=-60 (m/s) (2) x 3– x 1 = -150 – 2 = -152(m) <v> = -152/(3-1) = -76(m/s) (3) a = d 2x / dt 2 = -24t 2 = -216(m/s 2) 6、质点以加速度a k t k 为常数,设初速度为v 0,求质点速度v 与时间t 的函数关系。
解: v-v 0 =20/2ttadt ktdt kt ==⎰⎰v = v 0 +kt 2/27、 某质点的初位矢i r20=(SI ),初速度j V 2=(SI ),加速度j t i t a 324+= (SI), 求(1)该质点任意时刻的速度;(2)该质点任意时刻的运动方程。
功和能1、(0089A15)一辆汽车从静止出发在平直公路上加速前进.如果发动机的功率一定,下面哪一种说法是正确的?(A) 汽车的加速度是不变的. (B) 汽车的加速度随时间减小. (C) 汽车的加速度与它的速度成正比. (D) 汽车的速度与它通过的路程成正比.(E) 汽车的动能与它通过的路程成正比. [ ] 2、(0350A15)一个质点同时在几个力作用下的位移为:k j i r654 (SI),其中一个力为恒力k j i F953 (SI),则此力在该位移过程中所作的功为(A) -67 J . (B) 17 J .(C) 67 J . (D) 91 J . [ ] 3、(0411B30)一质点在如图所示的坐标平面内作圆周运动,有一力)(0j y i x F F作用在质点上.在该质点从坐标原点运动到(0,2R )位置过程中,力F对它所作的功为(A) 20R F . (B) 202R F .(C) 203R F . (D) 204R F .[ ] 4、(0413B40)如图,在光滑水平地面上放着一辆小车,车上左端放着一只箱子,今用同样的水平恒力F拉箱子,使它由小车的左端达到右端,一次小车被固定在水平地面上,另一次小车没有固定.试以水平地面为参照系,判断下列结论中正确的是(A) 在两种情况下,F做的功相等.(B) 在两种情况下,摩擦力对箱子做的功相等. (C) 在两种情况下,箱子获得的动能相等.(D) 在两种情况下,由于摩擦而产生的热相等. [ ] 5、(0482A15)质量分别为m 和4m 的两个质点分别以动能E 和4E 沿一直线相向运动,它们的总动量大小为(A) 2mE 2 (B) mE 23.(C) mE 25. (D) mE 2)122( [ ] 6、(0731A15)如图所示,木块m 沿固定的光滑斜面下滑,当下降h 高度时,重力作功的瞬时功率是:(A)21)2(gh mg . (B)21)2(cos gh mg .(C)1)21(sin gh mg . (D)21)2(sin gh mg . [ ]7、(5019B40)对功的概念有以下几种说法:(1) 保守力作正功时,系统内相应的势能增加. (2) 质点运动经一闭合路径,保守力对质点作的功为零.(3) 作用力和反作用力大小相等、方向相反,所以两者所作功的代数和必为零. 在上述说法中:(A) (1)、(2)是正确的. (B) (2)、(3)是正确的.(C) 只有(2)是正确的. (D) 只有(3)是正确的. [ ] 8、(5020B30)有一劲度系数为k 的轻弹簧,原长为l 0,将它吊在天花板上.当它下端挂一托盘平衡时,其长度变为l 1.然后在托盘中放一重物,弹簧长度变为l 2,则由l 1伸长至l 2的过程中,弹性力所作的功为(A)21d l l x kx . (B)21d l l x kx .(C)0201d l l l l x kx . (D)0201d l l l l x kx . [ ]9、(0073A20)质量为m 的一艘宇宙飞船关闭发动机返回地球时,可认为该飞船只在地球的引力场中运动.已知地球质量为M ,万有引力恒量为G ,则当它从距地球中心R 1处下降到R 2处时,飞船增加的动能应等于(A)2R GMm(B) 22R GMm(C) 2121R R R R GMm(D) 2121R RR GMm(E) 222121R R R R GMm[ ]10、(0074B25)一个作直线运动的物体,其速度v 与时间t 的关系曲线如图所示.设时刻t 1至t 2间外力作功为W 1 ;时刻t 2至t 3间外力作功为W 2 ;时刻t 3至t 4间外力作功为W 3 ,则(A) W 1>0,W 2<0,W 3<0.(B) W 1>0,W 2<0,W 3>0.(C) W 1=0,W 2<0,W 3>0. (D) W 1=0,W 2<0,W 3<0 [ ] 11、(0077B25)质量为m =0.5 kg 的质点,在Oxy 坐标平面内运动,其运动方程为x =5t ,y =0.5t 2(SI),从t =2 s 到t =4 s 这段时间内,外力对质点作的功为(A) 1.5 J . (B) 3 J . (C) 4.5 J . (D) -1.5 J . [ ] 12、(0078B30)质量为m 的质点在外力作用下,其运动方程为j t B i t A rsin cos式中A 、B 、 都是正的常量.由此可知外力在t =0到t = /(2 )这段时间内所作的功为(A))(21222B A m (B) )(222B A m (C) )(21222B A m (D) )(21222A B m [ ]13、(0089A15)今有一劲度系数为k 的轻弹簧,竖直放置,下端悬一质量为m 的小球,开始时使弹簧为原长而小球恰好与地接触,今将弹簧上端缓慢地提起,直到小球刚能脱离地面为止,在此过程中外力作v t功为(A) k g m 422 (B) k g m 322(C) k g m 222 (D) k g m 222(E) kg m 224 [ ]14、(0097B30)如图,劲度系数为k 的轻弹簧在质量为m 的木块和外力(未画出)作用下,处于被压缩的状态,其压缩量为x .当撤去外力后弹簧被释放,木块沿光滑斜面弹出,最后落到地面上.(A) 在此过程中,木块的动能与弹性势能之和守恒.(B) 木块到达最高点时,高度h 满足mgh kx 221. (C) 木块落地时的速度v 满足222121v m mgH kx .(D) 木块落地点的水平距离随 的不同而异, 愈大,落地点愈远.[ ] 15、(0101B25)劲度系数为k 的轻弹簧,一端与倾角为 的斜面上的固定档板A 相接,另一端与质量为m 的物体B 相连.O 点为弹簧没有连物体、长度为原长时的端点位置,a 点为物体B 的平衡位置.现在将物体B 由a 点沿斜面向上移动到b 点(如图所示).设a 点与O 点,a 点与b 点之间距离分别为x 1和x 2,则在此过程中,由弹簧、物体B 和地球组成的系统势能的增加为(A) sin 21222mgx kx(B) sin )()(2112212x x mg x x k(C) sin 21)(21221212mgx kx x x k(D) cos )()(2112212x x mg x x k [ ]16、(0107B38)在如图所示系统中(滑轮质量不计,轴光滑),外力F通过不可伸长的绳子和一劲度系数k =200 N/m 的轻弹簧缓慢地拉地面上的物体.物体的质量M =2 kg ,初始时弹簧为自然长度,在把绳子拉下20 cm 的过程中,所做的功为(重力加速度g 取10 m/s 2)(A) 1 J . (B) 2 J .(C) 3 J . (D) 4 J . (E) 20 J . [ ] 17、(0216A15)已知两个物体A 和B 的质量以及它们的速率都不相同,若物体A 的动量在数值上比物体B 的大,则A 的动能E KA 与B 的动能E KB 之间(A) E KB 一定大于E KA . (B) E KB 一定小于E KA .(C) E KB =E KA . (D) 不能判定谁大谁小. [ ]18、(0339B30)一水平放置的轻弹簧,劲度系数为k ,其一端固定,另一端系一质量为m 的滑块A ,A 旁又有一质量相同的滑块B ,如图所示.设两滑块与桌面间无摩擦.若用外力将A 、B 一起推压使弹簧压缩量为d 而静止,然后撤消外力,则B 离开时的速度为(A) 0 (B) mkd 2 (C) m k d(D) mk d 2 [ ] 19、(0408A15)A 、B 二弹簧的劲度系数分别为k A 和k B ,其质量均忽略不计.今将二弹簧连接起来并竖直悬挂,如图所示.当系统静止时,二弹簧的弹性势能E P A 与E PB 之比为(A) BA PB PA k kE E(B) 22BAPB PA k k E E(C)A B PB PA k k E E (D) 22AB PB PA kkE E [ ]20、(0412B30) 如图,一质量为m 的物体,位于质量可以忽略的直立弹簧正上方高度为h 处,该物体从静止开始落向弹簧,若弹簧的劲度系数为k ,不考虑空气阻力,则物体下降过程中可能获得的最大动能是(A) mgh . (B) kg m mgh 222 .(C) k g m mgh 222 . (D) kg m mgh 22 . [ ]21、(0431B30)如图所示,子弹射入放在水平光滑地面上静止的木块而不穿出.以地面为参考系,下列说法中正确的说法是(A) 子弹的动能转变为木块的动能. (B) 子弹─木块系统的机械能守恒.(C) 子弹动能的减少等于子弹克服木块阻力所作的功.(D) 子弹克服木块阻力所作的功等于这一过程中产生的热. [ ] 22、(0440B25)如图所示两个小球用不能伸长的细软线连接,垂直地跨过固定在地面上、表面光滑的半径为R 的圆柱,小球B 着地,小球A 的质量为B 的两倍,且恰与圆柱的轴心一样高.由静止状态轻轻释放A ,当A 球到达地面后,B 球继续上升的最大高度是(A) R . (B)R 32. (C) R 21. (D) R 31. [ ]23、(0441B30)一特殊的轻弹簧,弹性力F =kx 3,k 为一常量系数,x 为伸长(或压缩)量.现将弹簧水平放置于光滑的水平面上,一端固定,一端与质量为m 的滑块相连而处于自然长度状态.今沿弹簧长度方向给滑块一个冲量,使其获得一速度v ,压缩弹簧,则弹簧被压缩的最大长度为(A)v k m. (B) v mk (C) 41)4(kmv . (D) 412)2(k mv [ ] 24、(0442A25)对于一个物体系来说,在下列的哪种情况下系统的机械能守恒?(A) 合外力为0. (B) 合外力不作功.(C) 外力和非保守内力都不作功.(D) 外力和保守内力都不作功. [ ] 25、(0479B30)一质点在几个外力同时作用下运动时,下述哪种说法正确?(A)质点的动量改变时,质点的动能一定改变. (B)质点的动能不变时,质点的动量也一定不变. (C)外力的冲量是零,外力的功一定为零.(D)外力的功为零,外力的冲量一定为零. [ ] 26、(0483A15)下列叙述中正确的是 (A)物体的动量不变,动能也不变. (B)物体的动能不变,动量也不变. (C)物体的动量变化,动能也一定变化.(D)物体的动能变化,动量却不一定变化. [ ] 27、(0637A15)作直线运动的甲、乙、丙三物体,质量之比是 1∶2∶3.若它们的动能相等,并且作用于每一个物体上的制动力的大小都相同,方向与各自的速度方向相反,则它们制动距离之比是 (A) 1∶2∶3. (B) 1∶4∶9. (C) 1∶1∶1. (D) 3∶2∶1.(E) 3∶2∶1. [ ] 28、(0638A15)速度为v 的子弹,打穿一块不动的木板后速度变为零,设木板对子弹的阻力是恒定的.那么,当子弹射入木板的深度等于其厚度的一半时,子弹的速度是(A)v 41. (B) v 31.(C) v 21. (D)v 21. [ ] 29、(0641A15)考虑下列四个实例.你认为哪一个实例中物体和地球构成的系统的机械能不守恒?(A) 物体作圆锥摆运动.(B) 抛出的铁饼作斜抛运动(不计空气阻力). (C) 物体在拉力作用下沿光滑斜面匀速上升.(D) 物体在光滑斜面上自由滑下. [ ] 30、(0642A20)一竖直悬挂的轻弹簧下系一小球,平衡时弹簧伸长量为d .现用手将小球托住,使弹簧不伸长,然后将其释放,不计一切摩擦,则弹簧的最大伸长量(A) 为d . (B) 为d 2.(C) 为2d . (D) 条件不足无法判定. [ ]31、(0669A15)A 、B 两物体的动量相等,而m A <m B ,则A 、B 两物体的动能 (A) E KA <E K B . (B) E KA >E KB .(C) E KA =E K B . (D) 孰大孰小无法确定. [ ] 32、(0748A20)一质点由原点从静止出发沿x 轴运动,它在运动过程中受到指向原点的力作用,此力的大小正比于它与原点的距离,比例系数为k .那么当质点离开原点为x 时,它相对原点的势能值是(A) 221kx. (B) 221kx . (C) 2kx . (D) 2kx . [ ]33、(5035A15)如图所示,一个小球先后两次从P 点由静止开始,分别沿着光滑的固定斜面l 1和圆弧面l 2下滑.则小球滑到两面的底端Q 时的(A) 动量相同,动能也相同. (B) 动量相同,动能不同. (C) 动量不同,动能也不同.(D) 动量不同,动能相同.[ ] 34、(5262A10)一物体挂在一弹簧下面,平衡位置在O 点,现用手向下拉物体,第一次把物体由O 点拉到M 点,第二次由O 点拉到N 点,再由N 点送回M 点.则在这两个过程中 (A) 弹性力作的功相等,重力作的功不相等. (B) 弹性力作的功相等,重力作的功也相等. (C) 弹性力作的功不相等,重力作的功相等.(D) 弹性力作的功不相等,重力作的功也不相等. [ ] 35、(5363A10)将一重物匀速地推上一个斜坡,因其动能不变,所以(A) 推力不做功. (B) 推力功与摩擦力的功等值反号. (C) 推力功与重力功等值反号. (D) 此重物所受的外力的功之和为零.[ ]36、(5397A10)当重物减速下降时,合外力对它做的功(A)为正值. (B)为负值.(C)为零. (D)先为正值,后为负值. [ ]二、填空题: 1、(0082A20)图中,沿着半径为R 圆周运动的质点,所受的几个力中有一个是恒力0F ,方向始终沿x 轴正向,即i F F 00 .当质点从A 点沿逆时针方向走过3/4圆周到达B 点时,力0F所作的功为W =__________.2、(0100A15)已知地球质量为M ,半径为R .一质量为m 的火箭从地面上升到距地面高 度为2R 处.在此过程中,地球引力对火箭作的功为3、(0417A15)如图所示,一物体放在水平传送带上,物体与传送带间无相对滑动,当传送带作匀速运动时,静摩擦力对物体作功为__________;当传送带作加速运动时,静摩擦力对物体作功为__________;当传送带作减速运动时,静摩擦力对物体作功为 __________.(仅填“正”,“负”或“零”) 4、(0635B30)如图所示,一斜面倾角为 ,用与斜面成 角的恒力F将一质量为m 的物体沿斜面拉升了高度h ,物体与斜面间的摩擦系数为.摩擦力在此过程中所作的功W f =________________________. 5、(0639A20)质量为100 kg 的货物,平放在卡车底板上.卡车以4 m /s 2的加速度启动.货物与卡车底板无相对滑动.则在开始的4秒钟内摩擦力对该货物作的功 W =___________________________. 6、(0732A15)某质点在力F =(4+5x )i(SI)的作用下沿x 轴作直线运动,在从x =0移动到x =10 m 的过程中,力F所做的功为__________.7、(0735A10)二质点的质量各为m 1,m 2.当它们之间的距离由a 缩短到b 时,它们之 间万有引力所做的功为____________. 8、(0741A10)质量为m 的物体,置于电梯内,电梯以21g 的加速度匀加速下降h ,在此过程中,电梯对物体的作用力所做的功为__________. 9、(0745A20)某人拉住在河水中的船,使船相对于岸不动,以地面为参考系,人对船所 做的功__________;以流水为参考系,人对船所做的功__________. (填>0,=0或<0) 10、(5021B25)有一劲度系数为k 的轻弹簧,竖直放置,下端悬一质量为m 的小球.先使弹簧为原长,而小球恰好与地接触.再将弹簧上端缓慢地提起,直到小球刚能脱离地面为止.在此过程中外力所作的功为______________________. 11、(0072B25)一人造地球卫星绕地球作椭圆运动,近地点为A ,远地点为B .A 、B 两点距地心分别为r 1 、r 2 .设卫星质量为m ,地球质量为M ,万有引力常量为G .则卫星在A 、B 两点处的万有引力势能之差E PB E P A =_______________________________;卫星在A 、B 两点的动能之 差E PB -E PA =______________________________________.12、(0079A20)如图所示,轻弹簧的一端固定在倾角为 的光滑斜面的底端E ,另一端与质量为m 的物体C 相连, O 点为弹簧原长处,A 点为物体C 的平衡位置, x 0为弹簧被压缩的长度.如果在一外力作用下,物体由A 点沿斜面向上缓慢移动了2x 0距离而到达B 点,则该外力所作 功为____________________. 13、(0093B30)如图所示,劲度系数为k 的弹簧,一端固定在墙壁上,另一端连一质量为m 的物体,物体在坐标原点O 时弹簧长度为原长.物体与桌面间的摩擦系数为 .若物体在不变的外力F 作用下向右移动,则物体到达最远位置时系统的弹性势能E P =___________________.14、(0105A20) 如图所示,质量为m 的小球系在劲度系数为k 的轻弹簧一端,弹簧的另一端固定在O 点.开始时弹簧在水平位置A ,处于自然状态,原长为l 0.小球由位置A 释放,下落到O 点正下方位置B 时,弹簧的长度为l ,则小球到达B 点时的速度大小为v B =________________________. 15、(0415A15) 质量m =1 kg 的物体,在坐标原点处从静止出发在水平面内沿x 轴运动,其所受合力方向与运动方向相同,合力大小为F =3+2x (SI),那么,物体在开 始运动的3 m 内,合力所作的功W =________________;且x =3 m 时,其速 率v =________________________. 16、(0418A20)有一人造地球卫星,质量为m ,在地球表面上空2倍于地球半径R 的高度沿圆轨道运行,用m 、R 、引力常数G 和地球的质量M 表示时 (1)卫星的动能为____________;(2)卫星的引力势能为_____________. 17、(0421A15)如图所示,质量m =2 kg 的物体从静止开始,沿1/4圆弧从A 滑到B ,在B 处速度的大小为v =6 m/s ,已知圆的半径R =4 m ,则物体从A 到B 的过程中摩擦力对它所作的功W =__________________. 18、(0433A10) 一颗速率为700 m/s 的子弹,打穿一块木板后,速率降到500 m /s .如果让它继续穿过厚度和阻力均与第一块完全相同的第二块木板,则子弹的速率将降到______________________________.(空气阻力忽略不计) 19、(0443A20)质量为m 的物体,从高出弹簧上端h 处由静止自由下落到竖直放置在地面上的轻弹簧上,弹簧的劲度系数为k ,则弹簧被压缩的最大距离 x ______________________. 20、(0484A15)下列物理量:质量、动量、冲量、动能、势能、功中与参考系的选取有关的物理量是________________________.(不考虑相对论效应) 21、(0644A20)一质量为m 的质点在指向圆心的平方反比力F =-k /r 2的作用下,作半径为r 的圆周运动.此质点的速度v =__________.若取距圆心无穷远处为势能零点,它的机械能E =________. 22、(0733A15)一质点在二恒力共同作用下,位移为j i r83 (SI);在此过程中,动能增量为24 J ,已知其中一恒力j i F3121 (SI),则另一恒力所作的功为__________. 23、(0736A20)光滑水平面上有一质量为m 的物体,在恒力F 作用下由静止开始运动,则在时间t 内,力F做的功为____________.设一观察者B 相对地面以恒定的速度0v 运动,0v的方向与F 方向相反,则他测出力F在同一时间t 内做的功为______________.24、(0737A20)有一质量为m =5 kg 的物体,在0到10秒内,受到如图所示的变力F 的作用.物体由静止开始沿x 轴正向运动,力的方向始终为x 轴的正方向.则10秒内变力F 所做的功为____________.A25、(0738A20) 一人站在质量(连人带船)为m 1=300 kg 的静止的船上,他用F =100 N 的恒力拉一水平轻绳,绳的另一端系在岸边的一棵树上,则船开始运动后第三秒末的速率为__________;在这段时间内拉力对船所做的功为____________.(水的阻力不计) 26、(0740A20)劲度系数为k 的弹簧,上端固定,下端悬挂重物.当弹簧伸长x 0,重物在O 处达到平衡,现取重物在O 处时各种势能均为零,则当弹簧长度为原长时,系统的重力势能为____________;系统的弹性势能为________;系统的总 势能为____________. (答案用k 和x 0表示) 27、(0742B25)一长为l ,质量均匀的链条,放在光滑的水平桌面上,若使其长度的21悬 于桌边下,然后由静止释放,任其滑动,则它全部离开桌面时的速率为_______. 28、(0743B25)对于受到外力作用的由n 个质点组成的系统,动能定理表达式可写成0d K K i i E E S F,式中d i S 表示第i 个质点的元位移,E K 和E K 0分别表示系统终态和初态的总动能,那么式中的i F表示的是______________________.29、(0744B25)一长为l ,质量为m 的匀质链条,放在光滑的桌面上,若其长度的1/5悬挂于桌边下,将其慢慢拉回桌面,需做功__________. 30、(0746A20)已知地球的半径为R ,质量为M .现有一质量为m 的物体,在离地面高度为2R 处.以地球和物体为系统,若取地面为势能零点,则系统的引力势能为________________________;若取无穷远处为势能零点,则系统的引力势能为 ________________.(G 为万有引力常量) 31、(0747A20)一人站在船上,人与船的总质量m 1=300 kg ,他用F =100 N 的水平力拉一轻绳,绳的另一端系在质量m 2=200 kg 的船上.开始时两船都静止,若不计水的阻力则在开始拉后的前3秒内,人作的功为______________. 32、(5022B25) 一弹簧原长l 0=0.1 m ,劲度系数k =50 N /m ,其一端固定在半径为R =0.1 m 的半圆环的端点A ,另一端与一套在半圆环上的小环相连.在把小环由半圆环中点B 移到另一端C 的过程中,弹簧的拉力对小环所作的功为_____________ J . 33、(5023B40) 光滑水平面上有一轻弹簧,劲度系数为k ,弹簧一端固定在O 点,另一端拴一个质量为m 的物体,弹簧初始时处于自由伸长状态,若此时给物体m 一个垂直于弹簧的初速度0v如图所示,则当物体速率为21v 0时弹簧对物体的拉力f =__________________. 34、(5024B40)保守力的特点是__________________________________________.保守力 的功与势能的关系式为______________________________________. 35、(5399A20)A21v一个质量为m 的质点,仅受到力3/r r k F 的作用,式中k 为常量, r 为从某一定点到质点的矢径.该质点在r = r 0处被释放,由静止开始运动,则当它到达无穷远时的速率 为______________.三、计算题: 1、(0416B40)一物体按规律x =ct 3 在流体媒质中作直线运动,式中c 为常量,t 为时间.设媒质对物体的阻力正比于速度的平方,阻力系数为k ,试求物体由x =0运动到x =l 时,阻力所作的功. 2、(0422B35)一质量为m 的质点在Oxy 平面上运动,其位置矢量为j t b i t a rsin cos (SI)式中a 、b 、 是正值常量,且a >b . (1)求质点在A 点(a ,0)时和B 点(0,b )时的动能;(2)求质点所受的合外力F 以及当质点从A 点运动到B 点的过程中F的分力x F 和y F 分别作的功.3、(0423B30)一人从10 m 深的井中提水.起始时桶中装有10 kg 的水,桶的质量为1 kg ,由于水桶漏水,每升高1 m 要漏去0.2 kg 的水.求水桶匀速地从井中提到井口,人所作的功. 4、(0750B30)质量m =2 kg 的质点在力i t F12 (SI)的作用下,从静止出发沿x 轴正向作直线运动,求前三秒内该力所作的功. 5、(0080B25)某弹簧不遵守胡克定律. 设施力F ,相应伸长为x ,力与伸长的关系为F =52.8x +38.4x 2(SI)求: (1)将弹簧从伸长x 1=0.50 m 拉伸到伸长x 2=1.00 m 时,外力所需做的功.(2)将弹簧横放在水平光滑桌面上,一端固定,另一端系一个质量为2.17 kg 的物体,然后将弹簧拉伸到一定伸长x 2=1.00 m ,再将物体由静止释放,求当弹簧回到x 1=0.50 m 时,物体的速率. (3)此弹簧的弹力是保守力吗? 6、(0102C70)劲度系数为k 的轻弹簧,一端固定,另一端与桌面上的质量为m 的小球B 相连接.用外力推动小球,将弹簧压缩一段距离L 后放开.假定小球所受的滑动摩擦力大小为F 且恒定不变,滑动摩擦系数与静摩擦系数可视为相等.试求L 必须满足什么条件时,才能使小球在放开后就开始运动,而且一旦停止下来就一直保持静止状态. 7、(0103A15) 如图所示,质量m 为 0.1 kg 的木块,在一个水平面上和一个劲度系数k 为20 N/m 的轻弹簧碰撞,木块将弹簧由原长压缩了x = 0.4 m .假设木块与水平面间的滑动摩擦系数 k 为0.25,问在将要发生碰撞时木块的速率v 为多少?8、(0106B35)如图所示,悬挂的轻弹簧下端挂着质量为m 1、m 2的两个物体,开始时处于静止状态.现在突然把m 1与m 2间的连线剪断,求m 1的最大速度为多少?设弹簧的劲度系数k =8.9×104 N /m ,m 1=0.5 kg ,m 2=0.3 kg . 9、(0202A20) 质量m =2 kg 的物体沿x 轴作直线运动,所受合外力F =10+6x 2(SI).如果在x =0处时速度v 0=0;试求该物体运动到x =4 m 处时速度的大小.10、(0420B30)一个轻质弹簧,竖直悬挂,原长为l ,今将一质量为m 的物体挂在弹簧下端,并用手托住物体使弹簧处于原长,然后缓慢地下放物体使到达平衡位置为止.试通过计算,比较在此过程中,系统的重力势能的减少量和弹性势能的增量的大小.11、(0424C50) 一链条总长为l ,质量为m ,放在桌面上,并使其部分下垂,下垂一段的长度为a .设链条与桌面之间的滑动摩擦系数为 .令链条由静止开始运动,则(1)到链条刚离开桌面的过程中,摩擦力对链条作了多少功? (2)链条刚离开桌面时的速率是多少? 12、(0425B30)如图所示陨石在距地面高h 处时速度为v 0.忽略空气阻力,求陨石落地的速度.令地球质量为M , 半径为R , 万 有引力常量为G . 13、(0432A20)长为1 m 的细线,上端固定,下端悬挂质量为2 kg 小球拉到悬线与竖直方向成45°角的位置,然后无初速地把小球释放.求悬线与竖直方向成10°角时,小球的速度v . 14、(0438C50)如图所示,劲度系数为k 的弹簧,一端固定于墙上,另一端与一质量为m 1的木块A 相接,A 又与质量为m 2的木块B 用不可伸长的轻绳相连,整个系统放在光滑水平面上.现在以不变的力F向右拉m 2,使m 2自平衡位置由静止开始运动,求木块A 、B 系统所受合外力为零时的速度,以及此过程中绳的拉力T 对m 1所作的功,恒力F对m 2所作的功.15、(0439B30) 如图所示,自动卸料车连同料重为G 1,它从静止开始沿着与水平面成30°的斜面滑下.滑到底端时与处于自然状态的轻弹簧相碰,当弹簧压缩到最大时,卸料车就自动翻斗卸料,此时料车下降高度为h .然后,依靠被压缩弹簧的弹性力作用又沿斜面回到原有高度.设空车重量为G 2,另外假定摩擦阻力为车重的0.2倍,求G 1与G 2的比值. 16、(0446B30)用劲度系数为k 的弹簧,悬挂一质量为m 的物体,若使此物体在平衡位置以初速v 突然向下运动,问物体可降低到何处? 17、(0447B30)如图所示,在与水平面成 角的光滑斜面上放一质量为m 的物体,此物体系于一劲度系数为k 的轻弹簧的一端,弹簧的另一端固定.设物体最初静止.今使物体获得一沿斜面向下的速度,设起始动能为E K 0,试求物体在弹簧的伸长达到x 时的动能.18、(0643B30) 如图所示,一劲度系数为k 的轻弹簧水平放置,左端固定,右端与桌面上一质量为m 的木块连接,水平力F向右拉木块.木块处于静止状态.若木块与桌面间的静摩擦系数为 且F > m g ,求弹簧的弹性势能E P 应满足的关系. 19、(0752B25)劲度系数为k 、原长为l 的弹簧,一端固定在圆周上的A 点,圆周的半径R =l ,弹簧的另一端点从距A 点2l 的B 点沿圆周移动1/4周长到C 点,如图所示.求弹性力在此过程中所作的功.20、(0753B25)设两个粒子之间相互作用力是排斥力,其大小与粒子间距离r 的函数关系为3r k f ,k 为正值常量,试求这两个粒子相距为r 时的势能.(设相互作用力为零的地方势能为零.) 21、(5264A20)a xA一物体与斜面间的摩擦系数 = 0.20,斜面固定,倾角 = 45°.现给予物体以初速率v 0 = 10 m/s ,使它沿斜面向上滑,如图所示.求: (1) 物体能够上升的最大高度h ;(2) 该物体达到最高点后,沿斜面返回到原出发点时的速率v . 22、(5639A15)把一质量为m =0.4 kg 的物体,以初速度v 0=20 m/s 竖直向上抛出,测得上升的最大高度H =16 m ,求空气对它的阻力f (设为恒力)等于多大? 23、(0434B25)一个弹簧下端挂质量为0.1 kg 的砝码时长度为0.07 m ,挂0.2 kg 的砝码时长度为0.09 m .现在把此弹簧平放在光滑桌面上,并要沿水平方向从长度l 1=0.10 m 缓慢拉长到l 2=0.14 m ,外力需作功多少?四、证明题: 3、(0091)假设在最好的刹车情况下,汽车轮子不在路面上滚动,而仅有滑动,试从功、能的观点出发,证明质量为m 的汽车以速率v 沿着水平道路运动时,刹车后,要它停下来所需要的最短距离为gμk 22v (μk为车轮与路面之间的滑动摩擦系数).1、(0223)质量为m 的汽车,在水平面上沿x 轴正方向运动,初始位置x 0=0,从静止开始加速.在其发动机的功率P 维持不变、且不计阻力的条件下,证明:在时刻t (1) 其速度表达式为m Pt /2v ;(2) 其位置表达式为23)9/(8tm P x .4、(0445)处于保守力场中的某一质点被限制在x 轴上运动,它的势能E P (x )是x 的函数,它的总机械能E 是一常数. 设t =0时,质点在坐标原点,求证这一质点从原点运动到坐标x 的时间是xP mx E E x t 0))((2d2、(5025)一固定质点,质量为M ,与质量为m 的质点之间存在万有引力.若质量为m 的质点由a 点沿任意曲线移到b 点.试证明:万有引力对该质点所作的功与路径无关. 5、(5026)试就质点受变力作用而且做一般曲线运动的情况推导质点的动能定理,并说明定理的物理意义.。
跨章综合题一、单选题: 1、(1305B40)图示为一固定的均匀带正电荷的圆环,通过环心O 并垂直于环面有一固定的绝缘体细棒,细棒上套着一个带负电的小球.假定起始时,小球在离O较远的P 点,初速度为零,不计小球与细棒间摩擦,则小球将: (A) 沿轴线向O 点运动,最后停止于O 点不动. (B) 沿轴线经O 点到达对称点P ′处停止不再运动.(C) 以O 点为平衡位置,沿轴线作振幅为A 的简谐振动.(D) 以O 点为平衡位置,沿轴线在PP ′两点的范围内作非简谐振动.[ ] 2、(1400B35)假设一电梯室正在自由下落,电梯室天花板下悬一单摆(摆球质量为m ,摆长为l ).若使单摆摆球带正电荷,电梯室地板上均匀分布负电荷,那么摆球受到方向向下的恒定电场力F .则此单摆在该电梯室内作小角度摆动的周期为: (A) Fm l π2 . (B) Flm π2 . (C) F ml π2 . (D) mlF π2 . [ ] 3、(2758B35)在水平均匀磁场中,一质量为m 的环形细导线自由悬挂在非弹性线上,沿着环流过的电流为I ,环相对铅直轴作微小的扭转振动的周期为T ,则磁场的磁感应强度的大小为(A) 22IT m π (B) 24IT mπ (C) 23IT m (D) 232ITmπ [ ] 4、(4247A20)设氢原子的动能等于氢原子处于温度为T 的热平衡状态时的平均动能,氢原子的质量为m ,那么此氢原子的德布罗意波长为 (A) mkTh 3=λ. (B) mkT h5=λ.(C) hmkT3=λ. (D) hmkT5=λ. [ ]二、填空题: 1、(1548B35)在场强为E ϖ(方向垂直向上)的均匀电场中,有一个质量为m 、带有正电荷q的小球,该球用长为L 的细线悬挂着.当小球作微小摆动时,其摆动周期T =_____________________ . 2、(1777A15) 一圆形平面载流线圈可绕过其直径的固定轴转动,将此装置放入均匀磁场中,并使磁场方向与固定轴垂直,若保持线圈中的电流不变,且初始时线圈平面法线与磁场方向有一夹角,那么此线圈将作______________________运动;若初始时刻线圈平面法线与磁场方向的夹角很小,则线圈的运动简化为________________. 3、(4248A20)已知中子的质量是m =1.67×10-27 kg ,当中子的动能等于温度为T = 300K的热平衡中子气体的平均动能时,其德布罗意波长为____________.(h =6.63×10-34 J ·s ,k =1.38×10-23 J ·K -1 ) 4、(4766B35)若用加热方法使处于基态的氢原子大量激发,那么最少要使氢原子气体的温度升高________________K .(假定氢原子在碰撞过程中可交出其热运动动能的一半;玻尔兹曼常量k =1.38×10-23 J ·K -1,1 eV =1.60×10-19 J)三、计算题: 1、(0319B35)在两块水平大平行金属板之间建立起场强E ϖ竖直向上的均匀静电场,在此电场中用一长为l的绳挂一个质量为m 、电荷为+q 的带电小球,求此小球作小幅度摆动的周期. 2、(1250B40)半径为R 的均匀带电圆环上,总电荷为+Q .沿圆环轴线放一条拉紧的细线,线上套一颗质量为m 、电荷为-q 的小珠.当移动小珠使其偏离环心O 点很小距离时释放,若忽略小珠与细线间的摩檫,试证小珠将在细线上O 点附近作简谐振动,并求其振动频率. 3、(1549C70)三个电荷均为q 的点电荷,分别放在边长为a 的正三角形的三个顶点上,如图所示.求:(1) 在三角形中心O 处放一个什么样的点电荷q ′可使这四个点电荷都达到受力平衡? (2) 设点电荷q ′的质量为m ,当它沿垂直于三角形平面的轴线作微小振动时的振动周期(重力可忽略不计). 4、(1868B35) 如图所示,在场强为E ϖ的均匀电场中,静止地放入一电矩为p ϖ、转动惯量为J 的电偶极子.若电矩p ϖ与场强E ϖ之间的夹角θ很小,试分析电偶极子将作什么运动,并计算电偶极子从静止出发运动到p ϖ与E ϖ方向一致时所经历的最短时间. 5、(1869B40)一均匀带电球体,电荷体密度为ρ.在球体中开一直径通道,设此通道极细,不影响球体中的电荷及电场的原有分布.今将一电子放入此通道中除球心以外的任意处,试分析电子将作什么运动,并计算电子从通道口的一端从静止出发运动到另一端需经历多长时间. 6、(1871B40) 如图所示,一半径为R 的均匀带正电荷的细圆环,总电荷为Q .沿圆环轴线(取为x 轴,原点在环心O )放一根拉紧的光滑细线,线上套着一颗质量为m 、带负电荷-q 的小珠.今将小珠放在偏离环心O 很小距离b 处由静止释放,试分析小珠的运动情况并写出其运动方程.7、(5683B40) 一质量为m 、电荷为-q 的粒子,在半径为R 、电荷为Q (>0)的均匀带电球体中沿径向运动.试证明粒子作简谐振动,并求其振动频率. 8、(0583B35)如图所示,一细长小磁针,支在一轴尖O 上,在地磁场的作用下,平衡时指向南北方向;若使磁针偏离平衡位置一个小的角度后释放,它将绕平衡位置往复摆动.经实验测定,小磁针的摆动周期T = 2 s ,小磁针绕O 轴的转动惯量J = 8×10-8 kg ·m 2,地磁场的磁感应强度的水平分量B =0.3×10-4 T .试求小磁针的等效磁矩.qpϖEϖθO S N Bϖ9、(2236B35)一半径为R 的圆形线圈,通有强度为I 的电流,平面线圈处在均匀磁场B ϖ中,B ϖ的方向垂直纸面向里,如图.线圈可绕通过它的直径的轴OO '自由转动,线圈对该轴的转动惯量为J .试求线圈在其平衡位置附近做微小振动的周期. 10、(2475B40)在水平匀强磁场中,质量m = 2g 的环形(半径为R )细导线,用一根细线悬挂起来,可以自由转动.当导线环流过强度I = 2A 的电流时,环相对于竖直轴作小幅度扭转振动,振动的周期T = 1.0s .求磁场的磁感应强度B . (细环以直径为轴转动时的转动惯量221mR J =) 11、(2633B40)如图所示,一个由10匝均匀细导线构成的正方形线圈,质量为5g ,被悬挂在一根轻细的棉线上,悬点在线框某边中点.线圈处在磁感应强度为B= 5×10-3 T 的均匀磁场中,磁场方向与线圈平面垂直.今在线圈中通以强度为I = 0.6 A 的电流,并使线圈作微小的扭转振动.求振动的周期T . 12、(2698B35)在磁感强度为B ϖ的均匀磁场中,一质量为m ,半径为R ,载有电流i的圆形平面线圈可绕垂直于磁场方向并过线圈直径的固定轴转动.设初始时刻线圈的磁矩沿磁场方向,使线圈转过一个很小的角度后,线圈可在磁场作用下摆动(忽略重力及轴处摩擦的影响),证明当线圈质量一定时, 线圈摆动的周期与线圈半径无关. 13、(2771C50) 一面积为A 、总电阻为R 的导线环用一根扭转刚度为K 的弹性细丝(被扭转α角时,其弹性恢复扭力矩M K = K α )挂在均匀磁场B ϖ中,如图.线圈在yz 平面处于平衡,设线圈绕z 轴的转动惯量为I .现将环从图中位置转过一个小角度θ 后释放之,忽略线圈自感, 试用已知参数写出此线圈的转角与时间的方程.14、(4545C60)如图,由一绝热材料包围的圆管,横截面积为S ,一端封闭,另一端敞开,中部有一质量为m比热容比为γ的理想气体.设塞子在平衡位置时,气体体积为V ,压强为p ,现在把塞子稍向左移,然后放开,则塞子将振动.若管内气体所进行的过程可看作绝热过程,求塞子振动的周期. 15、(0576C55) 一共轴系统的横截面如图所示,外面为石英圆筒,内壁敷上半透明的铝薄膜,内径r 2 =1 cm ,长为20 cm ,中间为一圆柱形钠棒,半径r 1 = 0.6 cm ,长亦为20 cm ,整个系统置于真空中.今用波长λ =3000 Å的单色光照射系统.忽略边缘效应,求平衡时钠棒所带的电荷.已知钠的红限波长为m λ=5400Å,铝的红限波长为m λ'=2960Å.(基本电荷e = 1.60×10-19 C ,普朗克常量 h = 6.63×10-34 J ·s ,真空电容率ε0=8.85×10-12 C 2·N-1·m -2) 16、(0577B30)波长为3500 Å的光子照射某种材料的表面,实验发现,从该表面发出的能量最大的光电子在B =1.5×10-5T 的磁场中偏转而成的圆轨道半径R =18 cm ,求该材料的逸出功A 是多少电子伏特?(基本电荷e =1.60×10-19 C ,电子质量m =9.11×10-31 kg ,普朗克常量h =6.63×10-34 J ·s ,1eV =1.60×10-19 J ) 17、(4249A20)氢原子气体在什么温度下的平均平动动能等于使氢原子从基态跃迁到第一激发态所需要的能量?(玻尔兹曼常量k =1.38×10-23 J ·K -1).×××××yzλ18、(4447A20)设某气体的分子的平均平动动能与一波长为λ = 4000 Å的光子的能量相等,求该气体的温度.(普朗克常量h =6.63×10-34 J ·s ,玻尔兹曼常量k =1.38×10-23 J ·K -1) 19、(4448B25)设在碰撞中,原子可交出其动能的一半,如果要用加热的方式使基态氢原子大量激发,试估算氢原子气体的温度至少应为多少?(玻尔兹曼常量k =1.38×10-23 J ·K -1)四、证明题: 1、(1550B35)一电矩为l q p ϖϖ=的电偶极子,置于场强为E ϖ的均匀电场中,如果将电偶极子的电矩方向偏离平衡位置一个微小角度后释放,则电偶极子将绕平衡位置作简谐振动(转动).已知电偶极子绕自身中心转动的转动惯量为I ,求证其振动频率为IpEπ=21ν 2、(2477C50)N 匝导线,密绕成内外半径为R 1和R 2的平面薄圆环,如图所示.通有电流I ,放在磁感强度为B ϖ的匀强磁场中.设此环绕圆环平面内通过中心的AA '轴的转动惯量为J .试证:当其偏离平衡位置一小角度θ 时,此系统的振动是一简谐振动. 写出关于θ 的振动方程. 3、(4238C60)如图所示,瓶内盛有一定质量的理想气体,一横截面为A 的活塞,质量为m ,设活塞在平衡位置时,瓶内气体的体积为V 塞作简谐振动,且准弹性力为y V pA F )/(2γ-=, 式中 C =γ为位移(向下为正).(假设瓶内气体进行的过程为绝热过程) 4、(5308C65)已知原子中电子的轨道磁矩大小p m 和轨道角动量大小L 的关系为:L m e p em 2= 试证明该原子中电子的轨道角动量在外磁场B ϖ中的进动角速度ωϖ的大小为:em eB2=ω。
牛顿力学一、选择题 1、(0030A10)C 2、(0038B25)B 3、(0042B40)D 4、(0048B25)C 5、(0051A20)C 6、(0326A15)C 7、(0331A15)B 8、(0335B25)D 9、(0338B30)A 10、(0341B30)B 11、(0342B30)C 12、(0343C45)B 13、(0607A15)B 14、(0610B30)D 15、(0617A15)C 16、(0617A15)D 17、(5255A10)C 18、(5387A15)B 19、(5388A15)B 20、(0024B25)B 21、(0029A10)C 22、(0054A10)B 23、(0094B25)E 24、(0334A10)D 25、(0609A20)B 26、(0612A15)B 27、(0616C50)B 28、(5010A10)A二、填空题 1、(0039B40)0;2g 2、(0043A10)f 0 3、(0046B30)见右4、(0050B40)i g m m23-;05、(0282A10)g )sin cos (θθμ-6、(0352B25)80 N ;与车行方向相同;98 N ;与车行方向相反7、(0355B25)2%8、(0523A15)212m m g m F +-;21221m m Fm g m m ++9、(0524A15)2121m m F g m g m ++-;212212m m Fm g m m ++10、(0526B25)5.2 N11、(0619A10))/(m M F +;)/(m M MF + 12、(0623A10)2 N ;1 N13、(0624B25)见右 14、(0626B30)见右 15、(5011A10)见右 16、(5256A10)24 cm 17、(5390A20)g /μs 18、(0031B30)1cos 2 θ(或sec 2 θ)19、(0351A10)θcos mg;θθcos sin gl20、(0527C50)R g /21、(0622A20)0.28 N ;1.68 N22、(0625B25)见右三、计算题 1、(0032B35)解:设绳子与水平方向的夹角为θ,则l h /sin =θ.木箱受力如图所示,匀g M P =θFNf速前进时, 拉力为F ,有F cos θ-f =0,F sin θ+N -Mg =0,f =μN ,得θμθμsin cos +=MgF ,令0)sin (cos )cos sin (d d 2=++--=θμθθμθμθMg F ,∴6.0tan ==μθ,637530'''︒=θ,且0d d 22>θF ,∴l =h / sin θ=2.92 m 时,最省力. 2、(0035B25)3、(0037D75)解:(1)子弹进入沙土后受力为-Kv ,由牛顿定律-Kv =m d v d t ,所以-K m d t =d vv ,对两边进行积分:-⎰tt mK0d =⎰vv vv 0d ,v =v 0e -Kt /m . (2)法一:v =d x d t ,d x =v 0e -Kt /m d t ,⎰x x 0d =⎰t m Kt t v 0/0d e -,x =m K v 0(1-e -Kt /m ),x max =mv 0K .法二:-Kv =m d v d t =m (d v d x )(d x d t )=mv d v d x ,d x =-mKd v ,⎰maxd x x =-⎰d v v Km,x max =mv 0K . 4、(0041D75)解:由于液体随U 形管一起作加速运动,所以左管底部的压力应大于右管底部的压力,其压力差应等于水平管中液体的质量和加速度之积,设水平管的截面积为S ,液体的密度为ρ.则有lSa hSg ρρ=,g la h /=.5、(0049C60)解:建立x 、y 坐标. 系统的运动中,物体A 、B 及小车D 的受力如图所示,设小车D 受力F时,连接物体B 的绳子与竖直方向成α角. 当A 、D 间无相对滑动时,应有如下方程:x a m T 1=①,x a m T 2sin =α②,0cos 2=-g m T α③,x Ma T T F =--αsin ④,联立①、②、③式解出:22212m m gm a x -=⑤,联立①、②、④式解出:x a M m m F )(21++=⑥,⑤代入⑥得:2221221)(m m gm M m m F -++=,代入数据得F =784 N .注:⑥式也可由A 、B 、D 作为一个整体系统而直接得到. 6、(0284B25)A T1g yxO B2N 2MgFTTαD7、(0349A10)8、(0354B30)解:匀速运动时,20v k mg =①,加速运动时,ma k mg =-2v ②,由②mk g m a /)(2v -=③,由①20/v mg k =④,将④代入③得53.3])/(1[20=-=v v g a m/s 2.9、(0356B25)10、(0358B30)11、(0359A20)解:对物体A 应用牛顿第二定律,平行斜面方向:ma f mg F r =--αθsin cos ,垂直斜面方向:0sin cos =--ααF mg N ,又N f r μ=,由上述解得91.0)sin cos (sin cos =+--=mF mg mg F a ααμααm/s 2.12、(0528B25)13、(0530B30)解:人受力如图(1),a m g m N T 112=-+,底板受力如图(2),a m g m N T T 2221=-'-+,212T T =,N N =',由以上四式可解得a m m g m g m T )(421212+=--,∴5.2474/))((212=++=a g m m T N ,5.412)(21=-+=='T a g m N N N .14、(0531B30)解:因绳子质量不计,所以环受到的摩擦力在数值上等于绳子张力T .设m 2相对地面的加速度为2a ',取向上为正;m 1相对地面的加速度为a 1(即绳子的加速度),取向下为正.111a m T g m =-,222a m g m T '=-,212a a a -=',解得2122211)(m m a m g m m a ++-=,21212)2(m m m m a g T +-=,2121212)(m m a m g m m a +--='.15、(0533B40)解:根据牛顿第二定律x vmvt x x v m t v m x k f d d d d d d d d 2=⋅==-=,∴⎰⎰-=-=4/22d d ,d d A Av x mxk v v mxxk v v ,k mA A A m k v 3)14(212=-=,∴)/(6mA k v =. 16、(0534D80)解:以飞机着地点为坐标原点,飞机滑行方向为x 轴正向.设飞机质量为m ,着地后地面对飞机的支持力为N .在竖直方向上02=-+mg v C N y ,∴2v C mg N y -=,飞机受到地面的摩擦力)(2v C mg N f y -==μμ,在水平方向上xvmvt v m v C )v C mg x y d d d d (22==---μ, 即x vC C mg vmv y x d )(d 2-=-+μμ,x =0时,m/s 25km/h 900===v v .x =S (滑行距离)时,v =0,⎰⎰-=-=-+02d )(d v Sy x S x v μC C μmg v mv ,S vC C mg v C C mg C C my x y x y x -=-+-+-⎰v 220)(])(d[21μμμμμ,解得mgv C C mg C C m S y x y x μμμμ20)(ln 21-+-=,∵飞机刚着地前瞬间,所受重力等于升力,即2v C mg y =,∴2v mgC y =,205v mg K C C y x ==,代入S 表达式中并化简,然后代入数据22151ln )51(2520=-=μμg v S m .17、(0627A15)18、(0699B25)19、(0027B25)解:质量为M 的物块作圆周运动的向心力,由它与平台间的摩擦力f ,和质量为m 的物块对它的拉力F 的合力提供.当M 物块有离心趋势时,f 和F 的方向相同,而当M 物块有向心运动趋势时,二者的方向相反.因M 物块相对于转台静止,故有2max max ωMr f F =+,2min min ωMr f F =-,m物块是静止的,因而mg F =又Mg f s μ=max ,故=+=2max ωμM Mgmg r s 37.2 mm ,=-=2min ωμM Mgmg r s 12.4 mm .20、(0028B30)解:设弹簧原长为l ,劲度系数为k ,由于是弹性力提供了质点作圆周运动的向心力,故有:ωmr 2=k (r -l ),其中r 为滑块作圆周运动的半径,m 为滑块的质量.由题设,有:r =fl ,因而有)1(2-=f kl mfl ω,又由已知条件,有:)1(0200-=f kl l mf ω,整理后得ω与f 的函数关系为:11022--=f f f f ωω. 21、(0036D75) 解:取距转轴为r 处,长为d r 的小段绳子,其质量为(M /L )d r .(画元的受力图),由于绳子作圆周运动,所以小段绳子有径向加速度,由牛顿定律得:T (r )-T (r +d r )=(M/L ) d r ·r ω2,令T (r )-T (r +d r )=-d T (r ),得d T =-(M ω2/L )r d r ,由于绳子的末端是自由端T (L )=0,有r r L M T Lrr T d )/(d 20)(⎰⎰-=ω,∴)2/()()(222L r L M r T -=ω.22、(0044B25)解:(1)由题可知t 时刻物体运动法向方向上满足θcos 2n mg T R v m F +==,得绳中的张力为θcos 2mg R v m T -=,切向方向上满足θsin t mg F =,故切向加速度θsin t g a =,方向沿速度v 的方向.(2)当 900≤≤θ时,a t 的大小越来越大,方向沿运动速度方向相同;当 18090≤≤θ时,a t 的大小越来越小,方向沿运动速度方向相同;当 270180≤≤θ时,a t 的大小越来越大,方向沿运动速度方向相反;当 360270≤≤θ时,a t 的大小越来越小,方向沿运动速度方向相反. 23、(0283B30)O24、(0285B40)解:(1)设同步卫星距地面的高度为h ,距地心的距离r =R +h .由G Mm r 2=mrω2①,又由G Mm R 2=mg ,得GM =gR 2,代入①式,得r =3gR 2ω2②,同步卫星的角速度ω=7.27×10-5 rad/s ,解得r =4.22×107 m ,h =r -R =3.58×104 km . (2)由题设可知卫星角速度ω的误差限度为△ω=5.5×10-10rad/s ,由②得,r 3=gR 2ω2,3ln r =ln (gR 2)-2ln ω,取微分并令d r =△r ,d ω=△ω,且取绝对值,3△r r =2△ωω,△r =2r △ω3ω=213 m .25、(0628B30)26、(0696A10)解:设人的质量为m ,地球的质量为M e ,半径为R e ,地球表面重力加速度为g e ,则人在月球上受月球引力为222)11/3()81/1()11/3()81/1(e e e e L R mM G R m M G F =⋅=,∵人在地球上所受的引力为2e e E R m M G F =,∴2)11/3()81/1(EL F F ==106 N .27、(0697A30)28、(5012C45)29、(5391A20)四、证明题1、(0364C45)2、(0535B25)。
清华大学《大学物理》习题库试题及答案一、选择题1.4351:宇宙飞船相对于地面以速度v 作匀速直线飞行,某一时刻飞船头部的宇航员向飞船尾部发出一个光讯号,经过∆t (飞船上的钟)时间后,被尾部的接收器收到,则由此可知飞船的固有长度为 (c 表示真空中光速)(A) c ·∆t (B) v ·∆t (C) (D)[ ]2.4352一火箭的固有长度为L ,相对于地面作匀速直线运动的速度为v 1,火箭上有一个人从火箭的后端向火箭前端上的一个靶子发射一颗相对于火箭的速度为v 2的子弹。
在火箭上测得子弹从射出到击中靶的时间间隔是:(c 表示真空中光速) (A) (B) (C) (D)[ ]3.8015:有下列几种说法:(1) 所有惯性系对物理基本规律都是等价的;(2) 在真空中,光的速度与光的频率、光源的运动状态无关;(3) 在任何惯性系中,光在真空中沿任何方向的传播速率都相同。
若问其中哪些说法是正确的,答案是(A) 只有(1)、(2)是正确的 (B) 只有(1)、(3)是正确的(C) 只有(2)、(3)是正确的 (D) 三种说法都是正确的 [ ]4.4164:在狭义相对论中,下列说法中哪些是正确的?(1) 一切运动物体相对于观察者的速度都不能大于真空中的光速(2) 质量、长度、时间的测量结果都是随物体与观察者的相对运动状态而改变的(3) 在一惯性系中发生于同一时刻,不同地点的两个事件在其他一切惯性系中也是同时发生的(4)惯性系中的观察者观察一个与他作匀速相对运动的时钟时,会看到这时钟比与他相对静止的相同的时钟走得慢些(A) (1),(3),(4) (B) (1),(2),(4) (C) (1),(2),(3) (D) (2),(3),(4) [ ]5.4169在某地发生两件事,静止位于该地的甲测得时间间隔为4 s ,若相对于甲作匀速直线运动的乙测得时间间隔为5 s ,则乙相对于甲的运动速度是(c 表示真空中光速)(A) (4/5) c (B) (3/5) c (C) (2/5) c (D) (1/5) c [ ]6.4356:一宇航员要到离地球为5光年的星球去旅行。
热学部分一、选择题1.4251:一定量的理想气体贮于某一容器中,温度为T ,气体分子的质量为m 。
根据理想气体的分子模型和统计假设,分子速度在x 方向的分量平方的平均值 (A) m kT x 32=v (B) m kT x 3312=v (C) m kT x /32=v (D) m kT x /2=v [ ]2.4252:一定量的理想气体贮于某一容器中,温度为T ,气体分子的质量为m 。
根据理想气体分子模型和统计假设,分子速度在x 方向的分量的平均值 (A) m kT π8=x v (B) m kT π831=x v (C) m kT π38=x v (D) =x v 0 [ ]3.4014:温度、压强相同的氦气和氧气,它们分子的平均动能ε和平均平动动能w 有如下关系:(A) ε和w 都相等 (B) ε相等,而w 不相等 (C) w 相等,而ε不相等 (D) ε和w 都不相等 [ ]4.4022:在标准状态下,若氧气(视为刚性双原子分子的理想气体)和氦气的体积比V 1 / V 2=1 / 2 ,则其内能之比E 1 / E 2为:(A) 3 / 10 (B) 1 / 2 (C) 5 / 6 (D) 5 / 3 [ ]5.4023:水蒸气分解成同温度的氢气和氧气,内能增加了百分之几(不计振动自由度和化学能)?(A) 66.7% (B) 50% (C) 25% (D) 0 [ ]6.4058:两瓶不同种类的理想气体,它们的温度和压强都相同,但体积不同,则单位体积内的气体分子数n ,单位体积内的气体分子的总平动动能(EK /V ),单位体积内的气体质量ρ,分别有如下关系:(A) n 不同,(EK /V )不同,ρ不同 (B) n 不同,(EK /V )不同,ρ相同(C) n 相同,(EK /V )相同,ρ不同 (D) n 相同,(EK /V )相同,ρ相同 [ ]7.4013:一瓶氦气和一瓶氮气密度相同,分子平均平动动能相同,而且它们都处于平衡状态,则它们 (A) 温度相同、压强相同 (B) 温度、压强都不相同(C) 温度相同,但氦气的压强大于氮气的压强(D) 温度相同,但氦气的压强小于氮气的压强 [ ]8.4012:关于温度的意义,有下列几种说法:(1) 气体的温度是分子平均平动动能的量度;(2) 气体的温度是大量气体分子热运动的集体表现,具有统计意义;(3) 温度的高低反映物质内部分子运动剧烈程度的不同;(4) 从微观上看,气体的温度表示每个气体分子的冷热程度。
光的衍射一、单选题: 1、(3353A10)在单缝夫琅禾费衍射实验中,波长为λ的单色光垂直入射在宽度为a =4 λ的单缝上,对应于衍射角为30°的方向,单缝处波阵面可分成的半波带数目为 (A) 2 个. (B) 4 个.(C) 6 个. (D) 8 个. [ ] 2、(3355A15)一束波长为λ的平行单色光垂直入射到一单缝AB 上,装置如图.在屏幕D 上形成衍射图样,如果P 是中央亮纹一侧第一个暗纹所在的位置,则BC 的长度为 (A) λ / 2. (B) λ.(C) 3λ / 2 . (D) 2λ . [ ]3、(3356B35) 在如图所示的单缝夫琅禾费衍射实验中,若将单缝沿透镜光轴方向向透镜平移,则屏幕上的衍射条纹(A) 间距变大. (B) 间距变小.(C) 不发生变化.(D) 间距不变,但明暗条纹的位置交替变化.[ ]4、(3520A15)根据惠更斯-菲涅耳原理,若已知光在某时刻的波阵面为S ,则S 的前方某点P 的光强度决定于波阵面S 上所有面积元发出的子波各自传到P 点的 (A) 振动振幅之和. (B) 光强之和.(C) 振动振幅之和的平方. (D) 振动的相干叠加. [ ] 5、(3523A15)波长为λ的单色平行光垂直入射到一狭缝上,若第一级暗纹的位置对应的衍射角为θ=±π / 6,则缝宽的大小为(A) λ / 2. (B) λ.(C) 2λ. (D) 3 λ . [ ] 6、(3631A10)在夫琅禾费单缝衍射实验中,对于给定的入射单色光,当缝宽度变小时,除中央亮纹的中心位置不变外,各级衍射条纹(A) 对应的衍射角变小. (B) 对应的衍射角变大.(C) 对应的衍射角也不变. (D) 光强也不变. [ ] 7、(3632A10)如果单缝夫琅禾费衍射的第一级暗纹发生在衍射角为ϕ=30°的方位上.所用单色光波长为λ=500 nm ,则单缝宽度为(A) 2.5×10-5 m . (B) 1.0×10-5 m .(C) 1.0×10-6 m . (D) 2.5×10-7 . [ ] 8、(3715A15)一单色平行光束垂直照射在宽度为1.0 mm 的单缝上,在缝后放一焦距为2.0 m 的会聚透镜.已知位于透镜焦平面处的屏幕上的中央明条纹宽度为2.0 mm ,则入射光波长约为 (1nm =10-9m) (A) 100 nm (B) 400 nm(C) 500 nm (D) 600 nm [ ] 9、(3718A15)在单缝夫琅禾费衍射实验中,若增大缝宽,其他条件不变,则中央明条纹 (A) 宽度变小. (B) 宽度变大.C屏f D L A B λ屏幕 fL单缝 λ(C) 宽度不变,且中心强度也不变.(D) 宽度不变,但中心强度增大. [ ] 10、(3719A15)在单缝夫琅禾费衍射实验中,若减小缝宽,其他条件不变,则中央明条纹 (A) 宽度变小; (B) 宽度变大;(C) 宽度不变,且中心强度也不变;(D) 宽度不变,但中心强度变小. [ ] 11、(3741A15)在单缝夫琅禾费衍射实验中波长为λ的单色光垂直入射到单缝上.对应于衍射角为30°的方向上,若单缝处波面可分成 3个半波带,则缝宽度a 等于(A) λ. (B) 1.5 λ.(C) 2 λ. (D) 3 λ. [ ] 12、(5215B30)在如图所示的单缝的夫琅禾费衍射实验中,将单缝K沿垂直于光的入射方向(沿图中的x 方向)稍微平移,则 (A) 衍射条纹移动,条纹宽度不变.(B) 衍射条纹移动,条纹宽度变动.(C) 衍射条纹中心不动,条纹变宽. (D) 衍射条纹不动,条纹宽度不变. (E) 衍射条纹中心不动,条纹变窄. [ ]13、(5327B30)波长λ=500nm(1nm =10-9m)的单色光垂直照射到宽度a =0.25 mm 的单缝上,单缝后面放置一凸透镜,在凸透镜的焦平面上放置一屏幕,用以观测衍射条纹.今测得屏幕上中央明条纹一侧第三个暗条纹和另一侧第三个暗条纹之间的距离为d =12 mm ,则凸透镜的焦距f 为 (A) 2 m . (B) 1 m . (C) 0.5 m . (D) 0.2 m .(E) 0.1 m . [ ] 14、(5648B30)在如图所示的单缝夫琅禾费衍射装置中,将单缝宽度a 稍梢变宽,同时使单缝沿y 轴正方向作微小平移(透镜屏幕位置不动),则屏幕C 上的中央衍射条纹将(A) 变窄,同时向上移; (B) 变窄,同时向下移; (C) 变窄,不移动; (D) 变宽,同时向上移;(E) 变宽,不移. [ ] 15、(5649B30)在如图所示的夫琅禾费衍射装置中,将单缝宽度a 稍稍变窄,同时使会聚透镜L 沿y 轴正方向作微小平移(单缝与屏幕位置不动),则屏幕C 上的中央衍射条纹将(A) 变宽,同时向上移动. (B) 变宽,同时向下移动. (C) 变宽,不移动. (D) 变窄,同时向上移动.(E) 变窄,不移动. [ ] 16、(5650A20)2 Sλλ在如图所示的单缝夫琅禾费衍射装置中,设中央明纹的衍射角范围很小.若使单缝宽度a 变为原来的23,同时使入射的单色光的波长λ变为原来的3 / 4,则屏幕C 上单缝衍射条纹中央明纹的宽度∆x 将变为原来的(A) 3 / 4倍. (B) 2 / 3倍.(C) 9 / 8倍. (D) 1 / 2倍.(E) 2倍. [ ] 17、(5533B30)在如图所示的单缝夫琅禾费衍射实验装置中,S 为单缝,L 为透镜,C 为放在L 的焦面处的屏幕,当把单缝S 垂直于透镜光轴稍微向上平移时,屏幕上的衍射图样(A)向上平移. (B)向下平移. (C)不动. (D)消失. [ ] 18、(3204A10)测量单色光的波长时,下列方法中哪一种方法最为准确? (A) 双缝干涉. (B) 牛顿环.(C) 单缝衍射. (D) 光栅衍射. [ ] 19、(3212A15)一束平行单色光垂直入射在光栅上,当光栅常数(a + b )为下列哪种情况时(a 代表每条缝的宽度),k =3、6、9 等级次的主极大均不出现?(A) a +b =2 a . (B) a +b =3 a .(C) a +b =4 a . (A) a +b =6 a . [ ] 20、(3213A10)一束白光垂直照射在一光栅上,在形成的同一级光栅光谱中,偏离中央明纹最远的是 (A) 紫光. (B) 绿光. (C) 黄光. (D) 红光. [ ] 21、(3214A10)对某一定波长的垂直入射光,衍射光栅的屏幕上只能出现零级和一级主极大,欲使屏幕上出现更高级次的主极大,应该(A) 换一个光栅常数较小的光栅. (B) 换一个光栅常数较大的光栅. (C) 将光栅向靠近屏幕的方向移动.(D) 将光栅向远离屏幕的方向移动. [ ] 22、(3215A15)若用衍射光栅准确测定一单色可见光的波长,在下列各种光栅常数的光栅中选用哪一种最好?(A) 5.0×10-1 mm . (B) 1.0×10-1mm .(C) 1.0×10-2 mm . (D) 1.0×10-3 mm . [ ] 23、(3361C50)某元素的特征光谱中含有波长分别为λ1=450 nm 和λ2=750 nm (1 nm =10-9 m)的光谱线.在光栅光谱中,这两种波长的谱线有重叠现象,重叠处λ2的谱线的级数将是 (A) 2 ,3 ,4 ,5 ...... (B) 2 ,5 ,8 ,11...... (C) 2 ,4 ,6 ,8 ...... (D) 3 ,6 ,9 ,12...... [ ] 24、(3525A05)波长为λ的单色光垂直入射于光栅常数为d 、缝宽为a 、总缝数为N 的光栅上.取k =0,±1,±2....,则决定出现主极大的衍射角θ 的公式可写成 (A) N a sin θ=k λ. (B) a sin θ=k λ.(C) N d sin θ=k λ. (D) d sin θ=k λ. [ ] 25、(3635A15)λ在光栅光谱中,假如所有偶数级次的主极大都恰好在单缝衍射的暗纹方向上,因而实际上不出现,那么此光栅每个透光缝宽度a 和相邻两缝间不透光部分宽度b 的关系为 (A) a =21b . (B) a =b . (C) a =2b . (D) a =3 b . [ ] 26、(3636A15)波长λ=550 nm(1nm =10-9m)的单色光垂直入射于光栅常数d =2×10-4 cm 的平面衍射光栅上,可能观察到的光谱线的最大级次为(A) 2. (B) 3. (C) 4. (D) 5. [ ] 27、(5328B35)在双缝衍射实验中,若保持双缝S 1和S 2的中心之间的距离d 不变,而把两条缝的宽度a 略微加宽,则(A) 单缝衍射的中央主极大变宽,其中所包含的干涉条纹数目变少. (B) 单缝衍射的中央主极大变宽,其中所包含的干涉条纹数目变多. (C) 单缝衍射的中央主极大变宽,其中所包含的干涉条纹数目不变. (D) 单缝衍射的中央主极大变窄,其中所包含的干涉条纹数目变少.(E) 单缝衍射的中央主极大变窄,其中所包含的干涉条纹数目变多.[ ] 28、(5534C50) 设光栅平面、透镜均与屏幕平行.则当入射的平行单色光从垂直于光栅平面入射变为斜入射时,能观察到的光谱线的最高级次k(A) 变小. (B) 变大.(C) 不变. (D) 的改变无法确定. [ ]二、填空题: 1、(0461A10)波长为 600 nm 的单色平行光,垂直入射到缝宽为a =0.60 mm 的单缝上,缝后有一焦距f '=60 cm 的透镜,在透镜焦平面上观察衍射图样.则:中央明纹的宽度为__________,两个第三级暗纹之间的距离为____________.(1 nm =10﹣9 m) 2、(0464A10)He -Ne 激光器发出λ=632.8 nm (1nm =10-9 m)的平行光束,垂直照射到一单缝上,在距单缝3 m 远的屏上观察夫琅禾费衍射图样,测得两个第二级暗纹间的距离是10 cm ,则单缝的宽度a =________. 3、(3207A20)在单缝的夫琅禾费衍射实验中,屏上第三级暗纹对应于单缝处波面可划分为_________________ 个半波带,若将缝宽缩小一半,原来第三级暗纹处将是 ______________________________纹. 4、(3208A20)平行单色光垂直入射于单缝上,观察夫琅禾费衍射.若屏上P 点处为第二级暗纹,则单缝处波面相应地可划分为___________ 个半波带.若将单缝宽度缩小一半,P 点处将是______________级__________________纹. 5、(3209A10)波长为λ的单色光垂直入射在缝宽a =4 λ的单缝上.对应于衍射角ϕ=30°,单缝处的波面可划分为______________个半波带. 6、(3357B30)在单缝夫琅禾费衍射实验中,设第一级暗纹的衍射角很小,若钠黄光(λ1≈589 nm) 中央明纹宽度为 4.0 mm ,则λ2=442 nm (1 nm =10-9m)的蓝紫色光的中央明纹宽度为____________________. 7、(3358B25)在单缝夫琅禾费衍射示意图中,所画出的各条正入射光线间距相等,那末光线1与2在幕上P 点上相遇时的相位差为_______________,P 点应为_______________ 点.8、(3521A10)惠更斯引入__________________的概念提出了惠更斯原理,菲涅耳再用______________的思想补充了惠更斯原理,发展成了惠更斯-菲涅耳原理. 9、(3522A10)惠更斯-菲涅耳原理的基本内容是:波阵面上各面积元所发出的子波在观察点P 的_________________,决定了P 点的合振动及光强. 10、(3524B30)平行单色光垂直入射在缝宽为a =0.15 mm 的单缝上.缝后有焦距为f =400mm 的凸透镜,在其焦平面上放置观察屏幕.现测得屏幕上中央明条纹两侧的两个第三级暗纹之间的距离为8 mm ,则入射光的波长为λ=_______________. 11、(3633A10)将波长为λ的平行单色光垂直投射于一狭缝上,若对应于衍射图样的第一级暗纹位置的衍射角的绝对值为θ,则缝的宽度等于________________. 12、(3720A15)若对应于衍射角ϕ=30°,单缝处的波面可划分为4个半波带,则单缝的宽度a =__________________________λ ( λ为入射光波长). 13、(3421A15)如果单缝夫琅禾费衍射的第一级暗纹发生在衍射角为30°的方位上,所用单色光波长λ=500 nm (1 nm = 10-9 m),则单缝宽度为_____________________m . 14、(3722A15)在单缝夫琅禾费衍射实验中,如果缝宽等于单色入射光波长的2倍,则中央明条纹边缘对应的衍射角ϕ=______________________. 15、(3739A15)在单缝夫琅禾费衍射实验中波长为λ的单色光垂直入射在宽度为a =2λ的单缝上,对应于衍射角为30︒方向,单缝处的波面可分成的半波带数目为________个. 16、(3740A15)如图所示在单缝的夫琅禾费衍射中波长为λ的单色光垂直入射在单缝上.若对应于会聚在P 点的衍射光线在缝宽a 处的波阵面恰好分成3个半波带,图中DB CD AC ==,则光线 1和2在P 点的相位差为__________.17、(3742A15) 在单缝夫琅禾费衍射实验中,波长为λ的单色光垂直入射在宽度a =5 λ的单缝上.对应于衍射角ϕ 的方向上若单缝处波面恰好可分成 5个半波带,则衍射角ϕ =______________________________. 18、(5219B35)波长为λ=480.0 nm 的平行光垂直照射到宽度为a =0.40 mm 的单缝上,单缝后透镜的焦距为f =60 cm ,当单缝两边缘点A 、B 射向P 点的两条光线在P 点的相位差为π时,P 点离透镜焦点O 的距离等于_______________________.19、(5653A15)测量未知单缝宽度a 的一种方法是:用已知波长λ的平行光垂直入射在单缝上,在距单缝的距离为D 处测出衍射花样的中央亮纹宽度为l (实验上应保证D ≈103a ,或D 为几米),则由单缝衍射的原理可标出a 与λ,D ,l 的关系为a =______________________.20、(5652A15)在如图所示的单缝夫琅禾费衍射装置示意图中,用波长为λ的单色光垂直入射在单缝上,若P 点是衍射条纹中的中央明纹旁第二个暗条纹的中心,则由单缝边缘的A 、B 两点分别到达P 点的衍射光线光程差是__________. 21、(5651A15) 用半波带法讨论单缝衍射暗条纹中心的条件时,与中央明条纹旁第二个暗条纹中心相对应的半波带的数目是__________. 22、(3217B30)一束单色光垂直入射在光栅上,衍射光谱中共出现5条明纹.若已知此光栅缝宽度与不透明部分宽度相等,那么在中央明纹一侧的两条明纹分别是第_____________级和第____________级谱线. 23、(3362A10)某单色光垂直入射到一个每毫米有800 条刻线的光栅上,如果第一级谱线的衍射角为30°,则入射光的波长应为_________________. 24、(3528B30)一束平行单色光垂直入射在一光栅上,若光栅的透明缝宽度a 与不透明部分宽度b 相等,则可能看到的衍射光谱的级次为___________________. 25、(3637A10)波长为λ的单色光垂直投射于缝宽为a ,总缝数为N ,光栅常数为d 的光栅上,光栅方程(表示出现主极大的衍射角ϕ应满足的条件)为__________________. 26、(3638A10)波长为500 nm(1nm =10-9m)的单色光垂直入射到光栅常数为1.0×10-4 cm 的平面衍射光栅上,第一级衍射主极大所对应的衍射角ϕ =____________. 27、(3731A15)波长为λ=550 nm (1nm =10-9m )的单色光垂直入射于光栅常数d =2×10-4 cm 的平面衍射光栅上,可能观察到光谱线的最高级次为第________________级. 28、(3734A15)若波长为625 nm(1nm =10-9m)的单色光垂直入射到一个每毫米有800条刻线的光栅上时,则第一级谱线的衍射角为______________________. 29、(3751B30)衍射光栅主极大公式(a +b ) sin ϕ=±k λ,k =0,1,2…….在k =2的方向上第一条缝与第六条缝对应点发出的两条衍射光的光程差δ=___________________. 30、(5655A20)若光栅的光栅常数d 、缝宽a 和入射光波长λ都保持不变,而使其缝数N 增加,则光栅光谱的同级光谱线将变得____________________________. 31、(5656B35)用波长为λ的单色平行光垂直入射在一块多缝光栅上,其光栅常数d =3 μm ,缝宽a =1 μm ,则在单缝衍射的中央明条纹中共有________条谱线(主极大). 32、(5657A15)用波长为546.1 nm(1 nm =10-9 m)的平行单色光垂直照射在一透射光栅上,在分光计上测得第一级光谱线的衍射角为θ =30°.则该光栅每一毫米上有_____条刻痕. 33、(5658B25)用平行的白光垂直入射在平面透射光栅上时,波长为λ1=440 nm 的第3级光谱线将与波长为λ2=________nm 的第2级光谱线重叠.(1 nm =10 -9 m) 34、(5659B25)可见光的波长范围是400 nm ~ 760 nm .用平行的白光垂直入射在平面透射光栅上时,它产生的不与另一级光谱重叠的完整的可见光光谱是第________级光谱.(1 nm =10-9 m) 35、(5663B30)用波长为λ的单色平行红光垂直照射在光栅常数d =2μm (1μm =10-6 m)的光栅上,用焦距f =λP0.500 m的透镜将光聚在屏上,测得第一级谱线与透镜主焦点的距离l=0.1667m.则可知该入射的红光波长λ=_________________nm.(1 nm =10-9 m)三、计算题:1、(3210B30)在某个单缝衍射实验中,光源发出的光含有两秏波长λ1和λ2,垂直入射于单缝上.假如λ1的第一级衍射极小与λ2的第二级衍射极小相重合,试问(1) 这两种波长之间有何关系?(2) 在这两种波长的光所形成的衍射图样中,是否还有其他极小相重合?2、(3359B30)波长为600 nm (1 nm=10-9 m)的单色光垂直入射到宽度为a=0.10 mm的单缝上,观察夫琅禾费衍射图样,透镜焦距f=1.0 m,屏在透镜的焦平面处.求:(1) 中央衍射明条纹的宽度∆x0;(2) 第二级暗纹离透镜焦点的距离x2.3、(3714A20)在用钠光(λ=589.3 nm)做光源进行的单缝夫琅禾费衍射实验中,单缝宽度a=0.5 mm,透镜焦距f=700 mm.求透镜焦平面上中央明条纹的宽度.(1nm=10-9m)4、(3724A15)用氦氖激光器发射的单色光(波长为λ=632.8 nm)垂直照射到单缝上,所得夫琅禾费衍射图样中第一级暗条纹的衍射角为5°,求缝宽度.(1nm=10-9m)5、(3725B25)某种单色平行光垂直入射在单缝上,单缝宽a=0.15 mm.缝后放一个焦距f =400 mm的凸透镜,在透镜的焦平面上,测得中央明条纹两侧的两个第三级暗条纹之间的距离为8.0 mm,求入射光的波长.6、(3726A15)单缝的宽度a=0.10 mm,在缝后放一焦距为50 cm的会聚透镜,用平行绿光(λ=546 nm)垂直照射到单缝上,试求位于透镜焦平面处的屏幕上中央明条纹宽度.(1nm=10-9m)7、(3727A20)用波长λ=632.8 nm(1nm=10-9m)的平行光垂直照射单缝,缝宽a=0.15 mm,缝后用凸透镜把衍射光会聚在焦平面上,测得第二级与第三级暗条纹之间的距离为1.7 mm,求此透镜的焦距.8、(3729B25)在夫琅禾费单缝衍射实验中,如果缝宽a与入射光波长λ的比值分别为(1) 1,(2) 10,(3) 100,试分别计算中央明条纹边缘的衍射角.再讨论计算结果说明什么问题.9、(3730C50)用波长λ=632.8nm(1nm=10-9m)的平行光垂直入射在单缝上,缝后用焦距f=40cm的凸透镜把衍射光会聚于焦平面上.测得中央明条纹的宽度为3.4mm,单缝的宽度是多少?10、(3743B30)入射,单缝AB的宽度为a,观察夫琅禾费衍射.试求出各极小值(即各暗条纹)的衍射角ϕ.11、(5654B25)在单缝的夫琅禾费衍射中,缝宽a=0.100 mm,平行光垂直入射在单缝上,波长λ=500 nm,会聚透镜的焦距f =1.00 m.求中央亮纹旁的第一个亮纹的宽度∆x.(1 nm =10-9 m)12、(0470C50)用每毫米300条刻痕的衍射光栅来检验仅含有属于红和蓝的两种单色成分的光谱.已知红谱线波长λR在0.63─0.76μm范围内,蓝谱线波长λB在0.43─0.49 μm范围内.当光垂直入射到光栅时,发现在衍射角为24.46°处,红蓝两谱线同时出现.(1) 在什么角度下红蓝两谱线还会同时出现? (2) 在什么角度下只有红谱线出现? 13、(3211B30)(1) 在单缝夫琅禾费衍射实验中,垂直入射的光有两种波长,λ1=400 nm ,λ2=760 nm (1 nm=10-9 m).已知单缝宽度a =1.0×10-2 cm ,透镜焦距f =50 cm .求两种光第一级衍射明纹中心之间的距离.(2) 若用光栅常数d =1.0×10-3 cm 的光栅替换单缝,其他条件和上一问相同,求两种光第一级主极大之间的距离. 14、(3220C45)波长λ=600nm(1nm =10﹣9m)的单色光垂直入射到一光栅上,测得第二级主极大的衍射角为30°,且第三级是缺级.(1) 光栅常数(a + b )等于多少?(2) 透光缝可能的最小宽度a 等于多少?(3) 在选定了上述(a + b )和a 之后,求在衍射角-π21<ϕ<π21范围内可能观察到的全部主极大的级次. 15、(3221B40)一束平行光垂直入射到某个光栅上,该光束有两种波长的光,λ1=440 nm ,λ2=660 nm (1 nm = 10-9m).实验发现,两种波长的谱线(不计中央明纹)第二次重合于衍射角ϕ=60°的方向上.求此光栅的光栅常数d . 16、(3222B25)一束具有两种波长λ1和λ2的平行光垂直照射到一衍射光栅上,测得波长λ1的第三级主极大衍射角和λ2的第四级主极大衍射角均为30°.已知λ1=560 nm (1 nm = 10-9 m),试求: (1) 光栅常数a +b ; (2) 波长λ2. 17、(3223C45)用一束具有两种波长的平行光垂直入射在光栅上,λ1=600 nm ,λ2=400 nm (1nm =10﹣9m),发现距中央明纹5 cm 处λ1光的第k 级主极大和λ2光的第(k +1)级主极大相重合,放置在光栅与屏之间的透镜的焦距f =50 cm ,试问: (1) 上述k = ?(2) 光栅常数d = ? 18、(3365B35)用含有两种波长λ=600 nm 和='λ500 nm (1 nm =10-9 m)的复色光垂直入射到每毫米有200 条刻痕的光栅上,光栅后面置一焦距为f =50 cm 的凸透镜,在透镜焦平面处置一屏幕,求以上两种波长光的第一级谱线的间距∆x . 19、(3529B35)以波长400 nm ─760 nm (1 nm =10-9 m)的白光垂直照射在光栅上,在它的衍射光谱中,第二级和第三级发生重叠,求第二级光谱被重叠的波长范围. 20、(3530C50)一衍射光栅,每厘米200条透光缝,每条透光缝宽为a =2×10-3 cm ,在光栅后放一焦距f =1 m的凸透镜,现以λ=600 nm (1 nm =10-9m)的单色平行光垂直照射光栅,求: (1) 透光缝a 的单缝衍射中央明条纹宽度为多少? (2) 在该宽度内,有几个光栅衍射主极大? 21、(3736B35)氦放电管发出的光垂直照射到某光栅上,测得波长λ1=0.668 μm 的谱线的衍射角为ϕ=20°.如果在同样ϕ角处出现波长λ2=0.447 μm 的更高级次的谱线,那么光栅常数最小是多少? 22、(3737B35)氢放电管发出的光垂直照射在某光栅上,在衍射角ϕ =41°的方向上看到λ1=656.2 nm 和λ2=410.1 nm(1nm =10-9μ)的谱线相重合,求光栅常数最小是多少? 23、(3738B40)用钠光(λ=589.3 nm)垂直照射到某光栅上,测得第三级光谱的衍射角为60°.(1) 若换用另一光源测得其第二级光谱的衍射角为30°,求后一光源发光的波长.(2) 若以白光(400 nm -760 nm) 照射在该光栅上,求其第二级光谱的张角.(1 nm = 10-9 m) 24、(3754A20)一平面衍射光栅宽2 cm ,共有8000条缝,用钠黄光(589.3 nm)垂直入射,试求出可能出现的各个主极大对应的衍射角.(1nm =10-9m) 25、(3757A20)某种单色光垂直入射到每厘米有8000条刻线的光栅上,如果第一级谱线的衍射角为30°那么入射光的波长是多少?能不能观察到第二级谱线? 26、(5216A15)用波长为589.3 nm (1 nm = 10-9 m)的钠黄光垂直入射在每毫米有500 条缝的光栅上,求第一级主极大的衍射角. 27、(5217B35)一块每毫米500条缝的光栅,用钠黄光正入射,观察衍射光谱.钠黄光包含两条谱线,其波长分别为589.6 nm 和589.0 nm .(1nm =10-9m)求在第二级光谱中这两条谱线互相分离的角度. 28、(5226C55)一双缝,缝距d =0.40 mm ,两缝宽度都是a =0.080 mm ,用波长为λ=480 nm (1 nm = 10-9 m) 的平行光垂直照射双缝,在双缝后放一焦距f =2.0 m 的透镜求: (1) 在透镜焦平面处的屏上,双缝干涉条纹的间距l ;(2) 在单缝衍射中央亮纹范围内的双缝干涉亮纹数目N 和相应的级数. 29、(5535B30)波长范围在450~650 nm 之间的复色平行光垂直照射在每厘米有5000条刻线的光栅上,屏幕放在透镜的焦面处,屏上第二级光谱各色光在屏上所占范围的宽度为35.1 cm .求透镜的焦距f . (1nm =10-9m) 30、(5536C50)设光栅平面和透镜都与屏幕平行,在平面透射光栅上每厘米有5000条刻线,用它来观察钠黄光(λ=589 nm )的光谱线.(1)当光线垂直入射到光栅上时,能看到的光谱线的最高级次k m 是多少?(2)当光线以30°的入射角(入射线与光栅平面的法线的夹角)斜入射到光栅上时,能看到的光谱线的最高级次mk ' 是多少? (1nm =10-9m) 31、(5662B30)钠黄光中包含两个相近的波长λ1=589.0 nm 和λ2=589.6 nm .用平行的钠黄光垂直入射在每毫米有 600条缝的光栅上,会聚透镜的焦距f =1.00 m .求在屏幕上形成的第2级光谱中上述两波长λ1和λ2的光谱之间的间隔∆l .(1 nm =10-9 m)四、证明题: 1、(5329C60)两光谱线波长分别为λ和λ+∆λ,其中∆λ<<λ.试证明:它们在同一级光栅光谱中的角距离()22//λλθ-∆≈∆k d其中d 是光栅常数,k 是光谱级次.。
热学部分一、选择题1.4251:一定量的理想气体贮于某一容器中,温度为T ,气体分子的质量为m 。
根据理想气体的分子模型和统计假设,分子速度在x 方向的分量平方的平均值(A)(B) (C) (D) [ ]2.4252:一定量的理想气体贮于某一容器中,温度为T ,气体分子的质量为m 。
根据理想气体分子模型和统计假设,分子速度在x 方向的分量的平均值(A) (B) (C) (D) 0 [ ]3.4014:温度、压强相同的氦气和氧气,它们分子的平均动能和平均平动动能 有如下关系:(A) 和都相等 (B) 相等,而不相等(C) 相等,而不相等 (D) 和都不相等 [ ]4.4022:在标准状态下,若氧气(视为刚性双原子分子的理想气体)和氦气的体积比V 1 / V 2=1 / 2 ,则其内能之比E 1 / E 2为:(A) 3 / 10 (B) 1 / 2 (C) 5 / 6 (D) 5 / 3 [ ] 5.4023:水蒸气分解成同温度的氢气和氧气,内能增加了百分之几(不计振动自由度和化学能)? (A) 66.7% (B) 50% (C) 25% (D) 0 [ ] 6.4058:两瓶不同种类的理想气体,它们的温度和压强都相同,但体积不同,则单位体积内的气体分子数n ,单位体积内的气体分子的总平动动能(EK /V ),单位体积内的气体质量,分别有如下关系:(A) n 不同,(EK /V )不同,不同 (B) n 不同,(EK /V )不同,相同(C) n 相同,(EK /V )相同,不同 (D) n 相同,(EK /V )相同,相同 [ ] 7.4013:一瓶氦气和一瓶氮气密度相同,分子平均平动动能相同,而且它们都处于平衡状态,则它们 (A) 温度相同、压强相同 (B) 温度、压强都不相同(C) 温度相同,但氦气的压强大于氮气的压强 (D) 温度相同,但氦气的压强小于氮气的压强 [ ] 8.4012:关于温度的意义,有下列几种说法:(1) 气体的温度是分子平均平动动能的量度;(2) 气体的温度是大量气体分子热运动的集体表现,具有统计意义;(3) 温度的高低反映物质内部分子运动剧烈程度的不同;(4) 从微观上看,气体的温度表示每个气体分子的冷热程度。
清华大学《大学物理》习题库试题及答案一、选择题1.0148:几个力同时作用在一个具有光滑固定转轴的刚体上,如果这几个力的矢量和为零,则此刚体(A) 必然不会转动 (B) 转速必然不变(C) 转速必然改变 (D) 转速可能不变,也可能改变 [ ]2.0153:一圆盘绕过盘心且与盘面垂直的光滑固定轴O 以角速度按图示方向转动。
若如图所示的情况那样,将两个大小相等方向相反但不在同一条直线的力F 沿盘面同时作用到圆盘上,则圆盘的角速度ω (A) 必然增大 (B) 必然减少(C) 不会改变(D) 如何变化,不能确定 [ ]3.0165:均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示。
今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的?(A) 角速度从小到大,角加速度从大到小 (B) 角速度从小到大,角加速度从小到大(C) 角速度从大到小,角加速度从大到小(D) 角速度从大到小,角加速度从小到大 [ ]4.0289:关于刚体对轴的转动惯量,下列说法中正确的是(A )只取决于刚体的质量,与质量的空间分布和轴的位置无关(B )取决于刚体的质量和质量的空间分布,与轴的位置无关(C )取决于刚体的质量、质量的空间分布和轴的位置(D )只取决于转轴的位置,与刚体的质量和质量的空间分布无关 [ ]5.0292:一轻绳绕在有水平轴的定滑轮上,滑轮的转动惯量为J ,绳下端挂一物体。
物体所受重力为P ,滑轮的角加速度为。
若将物体去掉而以与P 相等的力直接向下拉绳子,滑轮的角加速度将(A) 不变 (B) 变小 (C) 变大 (D) 如何变化无法判断 [ ]6.0126:花样滑冰运动员绕通过自身的竖直轴转动,开始时两臂伸开,转动惯量为J 0,角速度为。
然后她将两臂收回,使转动惯量减少为J 0。
这时她转动的角速度变为:(A) (B) (C) (D) [ ]7.0132:光滑的水平桌面上,有一长为2L 、质量为m 的匀质细杆,可绕过其中点且垂直于杆的竖直光滑固定轴O 自由转动,其转动惯量为mL 2,起初杆静止。
质点力学综合练习1一、单选题:1、(0020B30)一质点在力F = 5m (5 - 2t ) (SI)的作用下,t =0时从静止开始作直线运动,式中m 为质点的质量,t 为时间,则当t = 5 s 时,质点的速率为(A) 50 m ·s -1. . (B) 25 m ·s -1.(C) 0. (D) -50 m ·s -1. [ ]2、(0099B30)如图所示,在光滑平面上有一个运动物体P ,在P 的正前方有一个连有弹簧和挡板M 的静止物体Q ,弹簧和挡板M 的质量均不计,P 与Q 的质量相同.物体P 与Q 碰撞后P 停止,Q 以碰前P 的速度运动.在此碰撞过程中,弹簧压缩量最大的时刻是(A) P 的速度正好变为零时.(B) P 与Q 速度相等时.(C) Q 正好开始运动时. (D) Q 正好达到原来P 的速度时. [ ]3、(0344A20)站在电梯内的一个人,看到用细线连结的质量不同的两个物体跨过电梯内的一个无摩擦的定滑轮而处于“平衡”状态.由此,他断定电梯作加速运动,其加速度为(A) 大小为g ,方向向上. (B) 大小为g ,方向向下.(C) 大小为g 21,方向向上. (D) 大小为g 21,方向向下. [ ] 4、(0654B40) 图示系统置于以g a 21=的加速度上升的升降机内,A 、B 两物体质量相同均为m ,A 所在的桌面是水平的,绳子和定滑轮质量均不计,若忽略滑轮 轴上和桌面上的摩擦并不计空气阻力,则绳中张力为(A) mg . (B) mg 21. (C) 2mg . (D) 3mg / 4. [ ] 5、(0655C60)一根细绳跨过一光滑的定滑轮,一端挂一质量为M 的物体,另一端被人用双手拉着,人的质量M m 21=.若人相对于绳以加速度a 0向上爬,则人相对于地面的加速度(以竖直向上为正)是(A) 3/)2(0g a +. (B) )3(0a g --.(C) 3/)2(0g a +-. (D) 0a [ ]6、(0664B25)设物体沿固定圆弧形光滑轨道由静止下滑,在下滑过程中,(A) 它的加速度方向永远指向圆心.(B) 它受到的轨道的作用力的大小不断增加.(C) 它受到的合外力大小变化,方向永远指向圆心.(D) 它受到的合外力大小不变. [ ]7、(0754A20)质量相等的两个物体甲和乙,并排静止在光滑水平面上(如图所示).现用一水平恒力F ϖ作用在物体甲上,同时给物体乙一个与F ϖ同方向的瞬时冲量量I ϖ,使两物体沿同一方向运动,则两物体再次达到并排的位置所经过的时间为: (A) I / F . (B) 2I / F .a俯视图F I(C) 2 F/ I . (D) F/ I . [ ]8、(5407B30)竖直上抛一小球.若空气阻力的大小不变,则球上升到最高点所需用的时间,与从最高点下降到原位置所需用的时间相比(A) 前者长. (B) 前者短.(C) 两者相等. (D) 无法判断其长短. [ ]9、(0225B25)质点的质量为m ,置于光滑球面的顶点A 处(球面固定不动),如图所示.当它由静止开始下滑到球面上B 点时,它的加速度的大小为(A) )cos 1(2θ-=g a .(B) θsin g a =.(C) g a =.(D) θθ2222sin )cos 1(4g g a +-=. [ ] 10、(0480B35)一质量为m 的质点,自半径为R 的光滑半球形碗口由静止下滑,质点在碗内某处的速率为v ,则质点对该处的压力数值为(A) Rm 2v . (B) R m 232v . (C) R m 22v . (D) Rm 252v . [ ] 11、(0481B25)如图示.一质量为m 的小球.由高H处沿光滑轨道由静止开始滑入环形轨道.若H 足够高,则小球在环最低点时环对它的作用力与小球在环最高点时环对它的作用力之差,恰为小球重量的 (A) 2倍. (B) 4倍.(C) 6倍. (D) 8倍. [ ]12、(0670C45)在以加速度a 向上运动的电梯内,挂着一根劲度系数为k 、质量不计的弹簧.弹簧下面挂着一质量为M 的物体,物体相对于电梯的速度为零.当电梯的加速度突然变为零后,电梯内的观测者看到物体的最大速度为(A) k M a /. (B) M k a /.(C) k M a /2. (D) k M a /21. [ ] 13、(0179B25)空中有一气球,下连一绳梯,它们的质量共为M .在梯上站一质量为m 的人,起始时气球与人均相对于地面静止.当人相对于绳梯以速度v(A) Mm m +-v . (B) Mm M +-v . (C) M m v -. (D) mM m v )(+-. (E) M M m v )(+-. [ ] 14、(0190B30)两条船质量都为M ,首尾相靠且都静止在平静的湖面上,如图所示.A 、B 两船上各有一质量均为m 的人,A 船上的人以相对于A 船的速率u 跳到B 船上,B 船上的人再以相对于B 船的相同速率u 跳到A 船上. 取如图所示x 坐标,设A 、B 船所获得的速度分别为v A 、v B ,下述结论中哪一个是正确的?(A) v A = 0,v B = 0. (B) v A = 0,v B > 0.x(C) v A < 0,v B > 0. (D) v A < 0,v B = 0.(E) v A > 0,v B > 0. [ ]15、(0390B25)一质量为60 kg 的人起初站在一条质量为300 kg ,且正以2 m/s 的速率向湖岸驶近的小木船上,湖水是静止的,其阻力不计.现在人相对于船以一水平速率v 沿船的前进方向向河岸跳去,该人起跳后,船速减为原来的一半,v 应为(A) 2 m/s . (B) 3 m/s .(C) 5 m/s . (D) 6 m/s . [ ]16、(0454B30)一质量为60 kg 的人起初站在一条质量为300 kg ,且正以2 m/s 的速率向湖岸驶近的小木船上,湖水是静止的,其阻力不计.现在人相对于船以一水平速率v 沿船的前进方向向河岸跳去,该人起跳后,船速减为原来的一半,v 应为(A) 2 m/s . (B) 3 m/s .(C) 5 m/s . (D) 6 m/s . [ ]17、(5014B30)一烟火总质量为M + 2m ,从离地面高h 处自由下落到h 21时炸开成为三块, 一块质量为M ,两块质量均为m .两块m 相对于M 的速度大小相等,方向为一上一下.爆炸后M 从h 21处落到地面的时间为t 1,若烟火体在自由下落到h 21处不爆炸,它从h 21处落到地面的时间为t 2,则 (A) t 1 > t 2. (B) t 1 < t 2.(C) t 1 = t 2. (D) 无法确定t 1与t 2间关系. [ ]18、(0176B30)质量分别为m 1、m 2的两个物体用一劲度系数为k 的轻弹簧相联,放在水平光滑桌面上,如图所示.当两物体相距x 时,系统由静止释放.已知弹簧的自然长度为x 0,则当物体相距x 0时,m 1的速度大小为(A) 120)(m x x k -. (B) 220)(m x x k -. (C)2120)(m m x x k +-. (D) )()(211202m m m x x km +-. (E) )()(212201m m m x x km +-. [ ] 19、(0178B30) 一质量为m 的滑块,由静止开始沿着1/4圆弧形光滑的木槽滑下.设木槽的质量也是m .槽的圆半径为R ,放在光滑水平地面上,如图所示.则滑块离开槽时的速度是(A) Rg 2. (B) Rg 2. (C) Rg . (D) Rg 21. (E) Rg 221. [ ]20、(0198A20)一轻弹簧竖直固定于水平桌面上.如图所示,小球从距离桌面高为h 处以初速度v 0落下,撞击弹簧后跳回到高为h 处时速度仍为v 0,以小球为系统,则在这一整个过程中小球的(A) 动能不守恒,动量不守恒.(B) 动能守恒,动量不守恒.(C) 机械能不守恒,动量守恒.(D) 机械能守恒,动量守恒. []21、(0206B25) 两质量分别为m 1、m 2的小球,用一劲度系数为k 的轻弹簧相连,放在水平光滑桌面上,如图所示.今以等值反向的力分别作用于两小球,则两小球和弹簧这系统的 (A) 动量守恒,机械能守恒.(B) 动量守恒,机械能不守恒.(C) 动量不守恒,机械能守恒. (D) 动量不守恒,机械能不守恒. [ ]22、(0207B35)静止在光滑水平面上的一质量为M 的车上悬挂一单摆,摆球质量为m ,摆线长为l .开始时,摆线水平,摆球静止于A 点.突然放手,当摆球运动到摆线呈竖直位置的瞬间,摆球相对于地面的速度为(A) 0. (B)gl 2. (C) Mm gl /12+. (D) m M gl /12+. [ ] 23、(0221B25)如图所示,质量分别为m 1和m 2的物体A 和B ,置于光滑桌面上,A 和B 之间连有一轻弹簧.另有质量为m 1和m 2的物体C 和D 分别置于物体A 与B 之上,且物体A 和C 、B 和D 之间的摩擦系数均不为零.首先用外力沿水平方向相向推压A 和B ,使弹簧被压缩.然后撤掉外力,则在A 和B 弹开的过程中,对A 、B 、C 、D 弹簧组成的系统(A) 动量守恒,机械能守恒. (B) 动量不守恒,机械能守恒. (C) 动量不守恒,机械能不守恒. (D) 动量守恒,机械能不一定守恒. [ ]24、(0366B40)质量为m 的平板A ,用竖立的弹簧支持而处在水平位置,如图.从平台上投掷一个质量也是m 的球B ,球的初速为v ,沿水平方向.球由于重力作用下落,与平板发生完全弹性碰撞。
假定平板是光滑的.则与平板碰撞后球的运动方向应为 (A) A 0方向. (B) A 1方向. (C) A 2方向. (D) A 3方向. [ ]25、(0380A10) 如图所示,置于水平光滑桌面上质量分别为m 1和m 2的物体A 和B 之间夹有一轻弹簧.首先用双手挤压A 和B 使弹簧处于压缩状态,然后撤掉外力,则在A 和B 被弹开的过程中 (A) 系统的动量守恒,机械能不守恒.(B) 系统的动量守恒,机械能守恒.(C) 系统的动量不守恒,机械能守恒.(D) 系统的动量与机械能都不守恒.26、(0382A10)在由两个物体组成的系统不受外力作用而发生非弹性碰撞的过程中,系统的1A 23(A) 动能和动量都守恒. (B) 动能和动量都不守恒.(C) 动能不守恒,动量守恒. (D) 动能守恒,动量不守恒. [ ]27、(0430B25)一质量为M 的弹簧振子,水平放置且静止在平衡位置,如图所示.一质量为m 的子弹以水平速度v ϖ射入振子中,并随之一起运动.如果水平面光滑,此后弹簧的最大势能为 (A) 221v m . (B) )(222m M m +v . (C) 2222)(v M m m M +. (D) 222v M m . [ ] 28、(0453A20)两木块A 、B 的质量分别为m 1和m 2,用一个质量不计、劲度系数为k 的弹簧连接起来.把弹簧压缩x 0并用线扎住,放在光滑水平面上,A 紧靠墙壁,如图所示,然后烧断扎线.判断下列说法哪个正确.(A) 弹簧由初态恢复为原长的过程中,以A 、B 、弹簧为系统,动量守恒.(B) 在上述过程中,系统机械能守恒.(C) 当A 离开墙后,整个系统动量守恒,机械能不守恒.(D) A 离开墙后,整个系统的总机械能为2021kx ,总动量为零. [ ] 29、(0458B30)如图,两木块质量为m 1和m 2,由一轻弹簧连接,放在光滑水平桌面上,先使两木块靠近而将弹簧压紧,然后由静止释放.若在弹簧伸长到原长时,m 1的速率为v 1,则弹簧原来在压缩状态时所具有的势能是(A) 21121v m . (B) 21121221v m m m m +. (C) 2121)(21v m m +. (D) 21221121v m m m m +. [ ] 30、(0477A20)一光滑的圆弧形槽M 置于光滑水平面上,一滑块m 自槽的顶部由静止释放后沿槽滑下,不计空气阻力.对于这一过程,以下哪种分析是对的?(A) 由m 和M 组成的系统动量守恒.(B) 由m 和M 组成的系统机械能守恒.(C) 由m 、M 和地球组成的系统机械能守恒. (D) M 对m 的正压力恒不作功. [ ]31、(0478A20)一子弹以水平速度v 0射入一静止于光滑水平面上的木块后,随木块一起运动.对于这一过程正确的分析是(A) 子弹、木块组成的系统机械能守恒.(B) 子弹、木块组成的系统水平方向的动量守恒.(C) 子弹所受的冲量等于木块所受的冲量.(D) 子弹动能的减少等于木块动能的增加. [ ]32、(0657A15)两个质量相等、速率也相等的粘土球相向碰撞后粘在一起而停止运动. 在此过程中,由这两个粘土球组成的系统,(A) 动量守恒,动能也守恒.(B) 动量守恒,动能不守恒.(C) 动量不守恒,动能守恒.(D) 动量不守恒,动能也不守恒. [ ]33、(0660A15)物体在恒力F 作用下作直线运动,在时间∆t 1内速度由0增加到v ,在时间∆t 2内速度由v 增加到2 v ,设F 在∆t 1内作的功是W 1,冲量是I 1,在∆t 2内作的功是W 2,冲量是I 2.那么,(A) W 1 = W 2,I 2 > I 1. (B) W 1 = W 2,I 2 < I 1.(C) W 1 < W 2,I 2 = I 1. (D) W 1 > W 2,I 2 = I 1. [ ]34、(0663B30)两个质量为m 1和m 2的小球,在一直线上作完全弹性碰撞,碰撞前两小球的速度分别为v 1和v 2(同向),在碰撞过程中两球的最大形变能是(A)22121)(21v v -m m . (B) )(21222121v v -m m . (C) )(2)(2122121m m m m +-v v . (D) )(2212121m m m m +v v . [ ] 35、(0665A20)一质子轰击一α 粒子时因未对准而发生轨迹偏转.假设附近没有其它带电粒子,则在这一过程中,由此质子和α 粒子组成的系统,(A) 动量守恒,能量不守恒. (B) 能量守恒,动量不守恒.(C) 动量和能量都不守恒. (D) 动量和能量都守恒. [ ]36、(0666B30)小球A 和B 的质量相同,B 球原来静止,A 以速度u 与B 作对心碰撞.这两球碰撞后的速度v 1和v 2的各种可能值中有(A) -u ,2 u . (B) u/4,3 u/4.(C) -u/4,5 u/4. (D) u 21,2/3u -. [ ] 37、(0668B25)有两个倾角不同、高度相同、质量一样的斜面放在光滑的水平面上,斜面是光滑的,有两个一样的小球分别从这两个斜面的顶点,由静止开始滑下,则(A) 小球到达斜面底端时的动量相等.(B) 小球到达斜面底端时动能相等.(C) 小球和斜面(以及地球)组成的系统,机械能不守恒.(D) 小球和斜面组成的系统水平方向上动量守恒. [ ]38、(5037B30)对质点组有以下几种说法:(1) 质点组总动量的改变与内力无关.(2) 质点组总动能的改变与内力无关.(3) 质点组机械能的改变与保守内力无关.在上述说法中:(A) 只有(1)是正确的. (B) (1)、(3)是正确的.(C) (1)、(2)是正确的. (D) (2)、(3)是正确的. [ ]39、(5408B35)关于机械能守恒条件和动量守恒条件有以下几种说法,其中正确的是(A) 不受外力作用的系统,其动量和机械能必然同时守恒.(B) 所受合外力为零,内力都是保守力的系统,其机械能必然守恒.(C) 不受外力,而内力都是保守力的系统,其动量和机械能必然同时守恒.(D) 外力对一个系统做的功为零,则该系统的机械能和动量必然同时守恒.[ ]40、(5409B35)在两个质点组成的系统中,若质点之间只有万有引力作用,且此系统所受外力的矢量和为零,则此系统(A) 动量与机械能一定都守恒.(B) 动量与机械能一定都不守恒.(C) 动量不一定守恒,机械能一定守恒.(D) 动量一定守恒,机械能不一定守恒. [ ]41、(0128B30)如图所示,一个小物体,位于光滑的水平桌面上,与一绳的一端相连结,绳的另一端穿过桌面中心的小孔O . 该物体原以角速度ω 在半径为R 的圆周上绕O 旋转,今将绳从小孔缓慢往下拉.则物体(A) 动能不变,动量改变. (B) 动量不变,动能改变.(C) 角动量不变,动量不变.(D) 角动量改变,动量改变.(E) 角动量不变,动能、动量都改变. [ ]42、(0193A20)一人造地球卫星到地球中心O 的最大距离和最小距离分别是R A 和R B .设卫星对应的角动量分别是L A 、L B ,动能分别是E KA 、E KB ,则应有(A) L B > L A ,E KA > E KB . (B) L B > L A ,E KA = E KB . (C) L B = L A ,E KA = E KB . (D) L B < L A ,E KA = E KB .(E) L B = L A ,E KA < E KB . [ ]43、(5036B25)假设卫星环绕地球中心作圆周运动,则在运动过程中,卫星对地球中心的(A) 角动量守恒,动能也守恒.(B) 角动量守恒,动能不守恒.(C) 角动量不守恒,动能守恒.(D) 角动量不守恒,动量也不守恒.(E) 角动量守恒,动量也守恒. [ ]44、(0126B40)花样滑冰运动员绕通过自身的竖直轴转动,开始时两臂伸开,转动惯量为J 0,角速度为ω0.然后她将两臂收回,使转动惯量减少为31J 0.这时她转动的角速度变为 (A) 31ω0. (B) ()3/1 ω0. (C) 3 ω0. (D) 3 ω0. [ ]二、填空题1、(0166B35)一质量为M 的质点沿x 轴正向运动,假设该质点通过坐标为x 的位置时速度的大小为kx (k 为正值常量),则此时作用于该质点上的力F =_____ _____,该质点从x = x 0点出发运动到x = x 1处所经历的时间∆t =________.2、(0181A20)一个质量为m 的质点,沿x 轴作直线运动,受到的作用力为i t F F ϖϖ cos 0ω= (SI)t = 0时刻,质点的位置坐标为0x ,初速度00=v ϖ.则质点的位置坐标和时间的关系式是x =______________________________________3、(0449C50) 质量为0.25 kg 的质点,受力i t F ϖϖ= (SI)的作用,式中t 为时间.t j ϖϖ2 (SI)的速度通过坐标原点,则该质点任意时刻的位置矢量是______________.4、(0544A20) 2在如图所示的装置中,忽略滑轮和绳的质量及轴上摩擦,假设绳子不可伸长,则m 2的加速度a 2 =___________________.5、(0545A20)图中所示的装置中,略去轴上摩擦以及滑轮和绳的质量,且假设绳不可伸长,则质量为m 1的物体的加速度a 1 =_______________________.6、(0652A20)在半径为R 的定滑轮上跨一细绳,绳的两端分别挂着质量为m 1和m 2的物体,且m 1 > m 2.若滑轮的角加速度为β,则两侧绳中的张力分别为T 1 =_______________________,T 2 =_____________________________.7、(0653A20)一冰块由静止开始沿与水平方向成30°倾角的光滑斜屋顶下滑10 m 后到达屋缘.若屋缘高出地面10 m .则冰块从脱离屋缘到落地过程中越过的水平距离为________________.(忽略空气阻力,g 值取10 m ·s -2) 8、(0348A15)如图所示,小球沿固定的光滑的1/4圆弧从A 点由静止开始下滑,圆弧半径为R ,则小球在A 点处的切向加速度 a t =______________________,小球在B 点处的法向加速度a n =_______________________.9、(0069A20) 在一以匀速v ϖ行驶、质量为M 的(不含船上抛出的质量)船上,分别向前和向后同时水平抛出两个质量相等(均为m )物体,抛出时两物体相对于船的速率相同(均为u ).试写出该过程中船与物这个系统动量守恒定律的表达式(不必化简,以地为参考系)________________________________.10、(0173B40)湖面上有一小船静止不动,船上有一打渔人质量为60 kg .如果他在船上向船头走了 4.0米,但相对于湖底只移动了 3.0米,(水对船的阻力略去不计),则小船的质量为____________________.11、(0539B25)一块木料质量为45 kg ,以 8 km/h 的恒速向下游漂动,一只10 kg 的天鹅以 8 km/h 的速率向上游飞动,它企图降落在这块木料上面.但在立足尚未稳时,它就又以相对于木料为2 km/h 的速率离开木料,向上游飞去.忽略水的摩擦,木料的末速度为________________________.12、(0755B25)质量为M 的车沿光滑的水平轨道以速度v 0前进,车上的人质量为m ,开始时人相对于车静止,后来人以相对于车的速度v 向前走,此时车速变成V ,则车与人系统沿轨道方向动量守恒的方程应写为______________________________.13、(0971B30)一个人站在平板车上掷铅球,人和车总质量为M ,铅球的质量为m ,平板车可沿水平、光滑的直轨道移动.设铅直平面为xy 平面,x 轴与轨道平行,y 轴正方向竖直向上.已知未掷球时,人、车、球皆静止.球出手时沿斜上方,它相对于车的初速度在xy 平面内,其大小为v 0,方向与x 轴正向的夹角为θ ,人在掷球过程中对车无滑动,则球被抛出之后,车对地的速度 =V ϖ______________________________________________,球对地的速度 =v ϖ_______________________________________________.14、(0175B35)如图所示,一光滑的滑道,质量为M 高度为h ,放在一光滑水平面上,滑道底部与水平面相切.质量为m 的小物块自滑道顶部由静止下滑,则 (1) 物块滑到地面时,滑道的速度为____________________;(2) 物块下滑的整个过程中,滑道对物块所作的功为___________________.15、(0185B20)光滑一个力F 作用在质量为 1.0 kg 的质点上,使之沿x 轴运动.已知在此力作用下质点的运动学方程为3243t t t x +-= (SI).在0到4 s 的时间间隔内,(1) 力F 的冲量大小I =__________________.(2) 力F 对质点所作的功W =________________.16、(0373B35)质量为m 的物体,初速极小,在外力作用下从原点起沿x 轴正向运动.所受外力方向沿x 轴正向,大小为F = kx .物体从原点运动到坐标为x 0的点的过程中所受外力冲量的大小为__________________.17、(0465C50) 如图,两个用轻弹簧连着的滑块A 和B ,滑块A 的质量为m 21,B 的质量为m ,弹簧的劲度系数为k ,A 、B 静止在光滑的水平面上(弹簧为原长).若滑块A 被水平方向射来的质量为m 21、速度为v 的子弹射中,则在射中后,滑块A 及嵌在其中的子弹共同运动的速度v A =________________,此时刻滑块B 的速度v B =__________,在以后的运动过程中,滑块B 的最大速度v max =__________.18、(0466C50)如图所示,劲度系数为k 的弹簧,一端固定在墙上,另一端连接一质量为M 的容器,容器可在光滑的水平面上运动,当弹簧未变形时,容器位于O 点处.今使容器自O 点左边l 0处从静止开始运动,每经过O 点一次,就从上方滴管中滴入一质量为m 的油滴.则在容器第一次到达O 点油滴滴入前的瞬时,容器的速率v =____________________;当容器中刚滴入了n 滴油后的瞬时,容器的速率 u =__________________________. 19、(0756B25)质量m 的小球,以水平速度v 0与光滑桌面上质量为M 的静止斜劈作完全弹性碰撞后竖直弹起,则碰后斜劈的运动速度值v =________________________;小球上升的高度 h =____________________________________. 20、(0757A15)质量为m 1和m 2的两个物体,具有相同的动量.欲使它们停下来,外力对它们做的功之比W 1∶W 2 =__________;若它们具有相同的动能,欲使它们停下来,外力的冲量之比I 1∶I 2 =__________.21、(0777B40) 有一宇宙飞船,欲考察某一质量为M 、半径为R 的星球,当飞船距这一星球中心5R 处时与星球相对静止.飞船发射出一质量为m (m <<M ) 的仪器舱,其相对星球的速度为v 0,要使这一仪器舱恰好掠过星球表面 (与表面相切),发射倾角应为θ(见图).为确定θ 角,需设定仪器舱掠过星球表面时的速度v ,并列出两个方程.它们是_______________________________与________________________________________________________________.22、(0778A10)若作用于一力学系统上外力的合力为零,则外力的合力矩____________(填一定或不一定)为零;这种情况下力学系统的动量、角动量、机械能三个量中一定守恒的量是________________.23、(0972B40)一根长为l 的细绳的一端固定于光滑水平面上的O 点,另一端系一质量为m 的小球,开始时绳子是松弛的,小球与O 点的距离为h .使小球以某个初速率沿该光滑水平面上一直线运动,该直线垂直于小球初始位置与O 点的连线.当小球与O 点的距离达到l 时,绳子绷紧从而使小球沿一个以O 点为圆心的圆形轨迹运动,则小球作圆周运动时的动能E K 与初动能E K 0的比值E K / E K 0 =______________________________.ϖϖ。