SPSS操作方法:判别分析例题
- 格式:doc
- 大小:476.00 KB
- 文档页数:16
实验4判别分析的SPSS 实现【实验目的】判别分析是判别样品所属类型的一种统计方法。
本实验要求学生应用距离判别准则(即,对任给的一次观测,若它与第i 类的重心距离最近,就认为它来自第i 类),对两总体和多总体情形下分别进行判别分析。
实验中需注意协方差矩阵相等时,选取线性判别函数.【实验内容】一、 实现判别分析的软件操作二、 学会用Wilks ’Lambda 检验判断判别函数的显著性三、 从软件结果中写出分类函数(Fisher 判别函数),并利用Fisher 判别函数对待判样本判别四、 从软件结果中写出非标准的判别函数,从而计算Z 得分并建立分割点,然后对待判样本进行分类,在dis_1栏中读取。
1、例4.1,一个城市的居民家庭,按其有无割草机可分为两组,有割草机一组,记为1π无割草机一组记为2π,割草机工厂预判断一些家庭是否购买割草机,从1π 和2π分别随机抽取12个样品,调查两项之指标:1x =家庭收入,2x =房前屋后土地面积。
数据如表4-1.表4.1第一份《人类发展报告》中公布的。
该报告建议,目前对人文发展的衡量应当以人生的三大要素的指标指示分别采用出生时的预期寿命、成人识字率和实际人均GTP ,将以上三个指标指示数值合成为一个复合指数,即人文发展指数。
表2X1:0岁组死亡概率 X2:1岁组死亡概率X4:55岁组死亡概率X5:80岁组死亡概率4、对全国30个省、市自治区1994年影响各地区经济增长差异的制度变量:X1——经济增长率(%)、X2——非国有化水平(%)、X3——开放度(%)、X4——市场化程度(%)作判别分析。
5、研究某年全国各地区农民家庭收支分布规律,根据抽样调查资料进行分类处理,抽取28个省、市、自治区的样本,每个样本有六个指标。
先采用聚类分析将28个样本分为3类,其中有3个样本(北京、上海、广州)属于孤立样本,未归属于已分的三类中,现采用多组判别分析判定这28个样本的所属类别。
第五节判别分析判别分析是根据观察或测量到的若干变量值,判断研究对象如何分类的方法。
判别函数一般形式是:F1= a i1x1+a i2x2+a i3x3...+a in x nF2= a i1x1+a i2x2+a i3x3...+a in x n: :F m= a m1x1+a m2x2+a m3x 3...+a mn x nSPSS提供的判别分析过程是Discriminant过程。
【例3-9】浙江北部地区1950~1982年小麦赤霉病发生程度与气象因子研究,总结出上年12月降雨量(x1)、上年10月下旬至11月中旬和当年1~2月总降雨(x2)、上年10月下旬至11月上旬日照时数(x3)、上年10月下旬至12月中旬和当年2月总雨量(x4)以及当年3月中旬平均温度(x5)等5个因子,并将赤霉病情分为轻中重三级(y,分别用1、2、3表示)。
用这些数据建立气象因子与小麦赤霉病发生程度的判别模型。
年份x1x2x3x4x5y195014.3107.3140.0105.3 6.91 195146.5129.1154.191.311.91 195243.0143.183.9157.413.02 195371.2280.582.5317.413.93 1954.769.3145.669.511.31 1955123.9297.364.6307.213.73 195685.4115.439.4144.711.11 195738.477.394.6143.213.92 195879.696.885.499.09.62 195933.474.7129.5103.49.91 196048.195.9155.392.010.511955123.9297.364.6307.213.73 195685.4115.439.4144.711.11 195738.477.394.6143.213.92 195879.696.885.499.09.62 195933.474.7129.5103.49.91 196048.195.9155.392.010.51 19617.7116.3158.2148.115.11 19628.9225.3104.2195.513.81 196334.8150.7165.0124.611.91 196444.4147.288.3158.712.72 196574.2232.794.1154.613.53 1966.180.9148.881.311.01 1967119.6208.070.9217.813.83 196894.0130.249.2176.211.02 196932.983.6115.3135.713.82 197065.588.1126.9102.59.71 197131.359.3105.182.910.01 197252.393.3173.791.210.01 19737.298.2154.3120.715.01 1974 5.3245.8100.4200.213.711准备分析数据在SPSS数据管理窗口,定义变量名x1、x2、x3、x4、x5、y分别表示表中对应变量。
SPSS操作方法:判别分析例题为研究1991年中国城镇居民月平均收入状况,按标准化欧氏平方距离、离差平方和聚类方法将30个省、市、自治区.分为三种类型。
试建立判别函数,判定广东、西藏分别属于哪个收入类型。
判别指标及原始数据见表9-4。
1991年30个省、市、自治区城镇居民月平均收人数据表单位:元/人 x1:人均生活费收入 x6:人均各种奖金、超额工资(国有+集体) x2:人均国有经济单位职工工资 x7:人均各种津贴(国有+集体)x3:人均来源于国有经济单位标准工资x8:人均从工作单位得到的其他收入x4:人均集体所有制工资收入 x9:个体劳动者收入5贝叶斯判别的SPSS操作方法:1. 建立数据文件2.单击Analyze→ Classify→ Discriminant,打开Discriminant Analysis 判别分析对话框如图1所示:图1 Discriminant Analysis判别分析对话框3.从对话框左侧的变量列表中选中进行判别分析的有关变量x1~x9进入Independents 框,作为判别分析的基础数据变量。
从对话框左侧的变量列表中选分组变量Group进入Grouping Variable 框,并点击Define Range...钮,在打开的Discriminant Analysis: Define Range对话框中,定义判别原始数据的类别数,由于原始数据分为3类,则在Minimum(最小值)处输入1,在Maximum(最大值)处输入3(见图2)。
选择后点击Continue按钮返回Discriminant Analysis主对话框。
图2 Define Range对话框4、选择分析方法Enter independent together 所有变量全部参与判别分析(系统默认)。
本例选择此项。
Use stepwise method 采用逐步判别法自动筛选变量。
单击该项时Method 按钮激活,打开Stepwise Method对话框如图3所示,从中可进一步选择判别分析方法。
200 SPSS数据处理与分析 续表 家庭编号no 度假支出 spending 家庭年收入 income 旅行态度 travel 度假重要性 holiday 家庭人口数 family 户主年龄age36 3 62.1 5 6 3 56 37 1 35.0 4 3 4 54 38 1 49.6 5 3 5 39 39 3 39.4 6 5 3 44 40 1 37.0 2 6 5 51 41 2 54.5 7 3 3 37 42 1 38.2 2 2 3 49问题:1.根据调查数据资料可否建立区分度假支出的某种判别函数?判别度假支出的准则是什么? 2.根据建立的旅游度假判别支出准则,回溯这些家庭的旅游度假支出分属于哪些类别?与实际支出类别有无差异?每个类别分别有哪些家庭?数量有多少?3.根据建立的判别函数和准则,能否对新的家庭在度假支出上做出预测?准确度如何?4.家庭年收入、对旅行的态度、家庭度假的重要性、家庭规模和户主年龄是否较好地描述了家庭度假费用的支出分类?为什么? 第一节判别分析过程本节以开章案例“居家度假旅行支出”为例,详细介绍用SPSS 进行判别分析的选项设置与操作过程。
一、判别分析数据文件的建立1.定义变量启动SPSS ,单击底部左边的“变量视图”按钮,进入SPSS 变量设计窗口,按表12-1中表头英文名称为变量名定义变量,如图12-1所示。
2.建立数据文件按图12-1样式完成全部变量定义后,单击底部左边的“数据视图”按钮,进入SPSS 数据输入窗口,录入表12-1收集到的42个家庭的数据,建立数据文件“Data12-1.sav ”,如图12-2所示。
由于显示屏所限,图12-2显示的只是部分数据。
图12-1 判别分析的变量定义。
用SPSS软件来实现判别分析哈尔滨商业大学实验题目:___用SPSS软件来实现判别分析___________ 姓名:__张彦琛_____ 学号:__201214390009____数学与应用数学_____________________ 专业:____日期:______2012-10-27_______________________成绩一、实验目的用SPSS软件来实现判别分析及其应用。
二、实验内容已知某研究对象分为3类,每个样品考察4项指标,各类观测的样品数分别为7,4,6;另外还有2个待判样品分别为第一个样品:x1=-8,x2=-14,x3=16,x4=56 第二个样品:x1=92,x2=-17,x3=18,x4=3.0 三、实验步骤及结论(一)实验步骤把实验所用数据从Word文档复制到Excel,并进一步导入到SPSS数据文件中进行判别分析。
执行菜单命令,单击“分析—>分类—>判别”,进行操作步骤……点击确定,即可得到实验结论。
(二)实验结论表一:a检验结果箱的 M 35.960F 近似。
2.108df1 10df2 537.746Sig. .022对相等总体协方差矩阵的零假设进行检验。
a. 有些协方差矩阵是奇异矩阵,因此一般程序不会起作用。
将相对非奇异组的汇聚组内协方差矩阵检验非奇异组。
其行列式的对数为 18.794。
表一是box检验的结果。
Box的检验结果是35.390,Sig.的值为0.0022<0.05,拒绝原假设,即每类的协差阵不完全相等。
表二:特征值函数特征值方差的 % 累积 % 正则相关性a1 3.116 99.6 99.6 .870a2 .012 .4 100.0 .111a. 分析中使用了前 2 个典型判别式函数。
表二是特征值。
从表中知第一个特征值是3.116,方差贡献率为99.6%,累计贡献率为99.6%,判断率为99.6%,则第一判别函数有效。
表三:Wilks 的 Lambda函数检验 Wilks 的 Lambda 卡方 df Sig.1 到2 .240 17.840 8 .0222 .988 .1543 .985表三给出了Fisher判别函数的有效性检验。
应用数理统计(论文)中国区域经济类型的聚类和判别分析指导老师:**院系名称:材料科学与工程学号:SY********名:***2014年12月20日摘要区域经济发展的指标体系,包括人口总数、第一产业总产值、第二产业总产值、第三产业总产值、财政收入、社会消费品零售总额、货物进出口总额、平均工资、人均可支配收入和居民消费水平等。
本文主要通过系统类聚的方法,将全国31 个省市(自治区)的2013年经济发展状况进行归类分析,得出全国区域经济发展水平的一些基本情况,并进行了相应的判别分析,为我国经济在快速发展的前提下,做好协调发展提供一些启示。
关键字:区域经济聚类分析判别分析中国区域经济类型的聚类和判别分析目录1引言 (4)2数据收集 (5)3聚类分析 (8)3.1聚类分析概述 (8)3.2聚类分析过程及结果输出 (8)3.3讨论 (12)4判别分析 (14)4.1判别分析概述 (14)4.2判别分析过程及结果输出 (14)4.3讨论 (17)5结论 (18)参考文献 (19)应用数理统计(论文)1引言在制定国民经济和社会发展规划时,通常需要按照行政区域进行经济类型的划分,这有助于对不同地区经济发展存在的差异进行宏观调控,从而因地制宜出台相应的经济政策,促进各地区经济的协调发展,为国民经济持续协调健康发展奠定了坚实基础。
明确当前我国发达地区和落后地区的区间格局, 对于进一步的研究和分析我国各区域间经济发展的状况,并探求切实可行的区域协调发展政策以实现我国经济的可持续发展有着极为重要的现实意义。
在多元统计分析中,常常使用聚类分析和判别分析来解决样本的分类问题。
在事先并不知道应将样品或指标分为几类的情况下,可以使用聚类分析根据样本或指标的相似程度,将样本或指标归组分类;而在事先已经建立了样品分类,需要将新样本归入到已知分类的样本组中时,就可以使用判别分析。
本文试图通过聚类分析的方法,分析2013 年中国31 个省市(区域)经济发展发展状况和差异情况,从中寻找一些有用的信息,提出对我国经济如何在快速发展的基础上,做到协调发展的一些思考。
spss判别分析案例详解SPSS判别分析案例详解。
在统计学中,判别分析是一种用于确定不同组别之间差异的统计方法。
它可以帮助我们理解不同变量之间的关系,以及这些变量在预测和分类方面的作用。
在本文中,我们将通过一个实际的案例来详细介绍如何使用SPSS进行判别分析。
案例背景:假设我们是一家电子商务公司的数据分析师,我们想要确定哪些因素对于用户购买高价值产品的决策具有影响力。
我们收集了一些用户的个人信息和他们的购买行为数据,希望通过判别分析找出影响用户购买高价值产品的关键因素。
数据准备:首先,我们需要将收集到的数据导入SPSS软件中。
在导入数据后,我们可以对数据进行初步的检查,确保数据的完整性和准确性。
接下来,我们需要选择判别分析作为我们的分析方法,并将购买高价值产品作为分类变量,个人信息和购买行为数据作为判别变量。
分析步骤:1. 设定判别分析的目的和假设,在进行判别分析之前,我们需要明确分析的目的是什么,以及我们的假设是什么。
在这个案例中,我们的目的是找出影响用户购买高价值产品的关键因素,我们的假设是个人信息和购买行为数据会对用户的购买决策产生影响。
2. 进行判别分析,在设定好目的和假设后,我们可以开始进行判别分析。
SPSS 会根据我们选择的分类变量和判别变量,自动进行变量选择和模型拟合,得出判别函数和判别系数。
通过判别函数和判别系数,我们可以了解每个判别变量对于不同组别的影响程度,以及它们对于用户购买高价值产品的预测能力。
3. 结果解释,在得出判别函数和判别系数后,我们需要对结果进行解释。
我们可以通过判别函数的系数来理解每个判别变量对于用户购买高价值产品的影响程度,以及它们之间的相互关系。
同时,我们还可以通过判别系数的大小来评估判别模型的预测能力和区分能力。
案例分析:通过对案例数据的判别分析,我们得出了以下结论:1. 个人收入、年龄和教育程度是影响用户购买高价值产品的重要因素,其中个人收入对用户购买高价值产品的影响最大,其次是年龄和教育程度。
spss进⾏判别分析步骤_spss判别分析结果解释_spss判别分析案例详解1.Discriminant Analysis判别主对话框如图 1-1 所⽰图 1-1 Discriminant Analysis 主对话框(1)选择分类变量及其范围在主对话框中左⾯的矩形框中选择表明已知的观测量所属类别的变量(⼀定是离散变量),按上⾯的⼀个向右的箭头按钮,使该变量名移到右⾯的Grouping Variable 框中。
此时矩形框下⾯的Define Range 按钮加亮,按该按钮屏幕显⽰⼀个⼩对话框如图1-2 所⽰,供指定该分类变量的数值范围。
图 1-2 Define Range 对话框在Minimum 框中输⼊该分类变量的最⼩值在Maximum 框中输⼊该分类变量的最⼤值。
按Continue 按钮返回主对话框。
(2)指定判别分析的⾃变量图 1-3 展开 Selection Variable 对话框的主对话框在主对话框的左⾯的变量表中选择表明观测量特征的变量,按下⾯⼀个箭头按钮。
把选中的变量移到Independents 矩形框中,作为参与判别分析的变量。
(3)选择观测量图 1-4 Set Value ⼦对话框如果希望使⽤⼀部分观测量进⾏判别函数的推导⽽且有⼀个变量的某个值可以作为这些观测量的标识,则⽤Select 功能进⾏选择,操作⽅法是单击Select 按钮展开Selection Variable。
选择框如图1-3 所⽰。
并从变量列表框中选择变量移⼊该框中再单击Selection Variable 选择框右侧的Value按钮,展开Set Value(⼦对话框)对话框,如图1-4 所⽰,键⼊标识参与分析的观测量所具有的该变量值,⼀般均使⽤数据⽂件中的所有合法观测量此步骤可以省略。
(4)选择分析⽅法在主对话框中⾃变量矩形框下⾯有两个选择项,被选中的⽅法前⾯的圆圈中加有⿊点。
这两个选择项是⽤于选择判别分析⽅法的l Enter independent together 选项,当认为所有⾃变量都能对观测量特性提供丰富的信息时,使⽤该选择项。
实验四:多元判别分析一.实验目的1.熟练掌握使用SPSS对数据进行多元判别分析的方法2.掌握对数据的多元判别结果的分析方法二.实验要求1.能够按照实验题目要求完成实验题目2.掌握实验中要求的掌握方法,熟练操作SPSS3.对实验结果进行分析三.实验内容实验过程:1.依次点击“分析——分类——判别”并设置相关量,如下图一所示:【图一】分析的结果如表一所示:【表一】判别分析案例处理摘要未加权案例N 百分比有效100 100.0 排除的缺失或越界组代码0 .0至少一个缺失判别变量0 .0缺失或越界组代码还有至少一个缺失判别变量0 .0合计0 .0 合计100 100.0组统计量group 均值标准差有效的 N(列表状态)未加权的已加权的正常人pa 28.2136 4.70056 25 25.000alpha_ag 67.5780 16.75241 25 25.000 hp 257.1212 126.27684 25 25.000 alpha_at 282.1680 30.83337 25 25.000肝癌,AFP检测阳性pa 15.8555 10.21072 40 40.000 alpha_ag 120.7943 62.04790 40 40.000 hp 321.8357 249.33407 40 40.000 alpha_at 492.4633 151.32253 40 40.000肝癌,AFP检测阴性pa 16.3145 7.80152 20 20.000 alpha_ag 55.2980 26.12832 20 20.000 hp 91.4700 126.45050 20 20.000 alpha_at 313.3080 55.59623 20 20.000肝硬化pa 21.9793 8.47264 15 15.000 alpha_ag 69.6187 50.46477 15 15.000hp 297.1527 210.05123 15 15.000alpha_at 314.7287 72.52736 15 15.000 合计pa 19.9554 9.77612 100 100.000 alpha_ag 86.7146 53.67732 100 100.000hp 255.8815 212.46384 100 100.000alpha_at 377.3982 140.18786 100 100.000汇聚的组内矩阵pa alpha_ag hp alpha_at相关性pa 1.000 -.112 .119 -.290alpha_ag -.112 1.000 .456 .528hp .119 .456 1.000 .484alpha_at -.290 .528 .484 1.000分析 1协方差矩阵的均等性的箱式检验对数行列式group 秩对数行列式正常人 4 25.055肝癌,AFP检测阳性 4 32.930肝癌,AFP检测阴性 4 26.634肝硬化 4 29.759汇聚的组内 4 30.930打印的行列式的秩和自然对数是组协方差矩阵的秩和自然对数。
为研究1991年中国城镇居民月平均收入状况,按标准化欧氏平方距离、离差平方和聚类方法将30个省、市、自治区.分为三种类型。
试建立判别函数,判定广东、西藏分别属于哪个收入类型。
判别指标及原始数据见表9-4。
1991年30个省、市、自治区城镇居民月平均收人数据表单位:元/人 x1:人均生活费收入 x6:人均各种奖金、超额工资(国有+集体) x2:人均国有经济单位职工工资 x7:人均各种津贴(国有+集体)x3:人均来源于国有经济单位标准工资 x8:人均从工作单位得到的其他收入x4:人均集体所有制工资收入 x9:个体劳动者收入5贝叶斯判别的SPSS操作方法:1. 建立数据文件2.单击Analyze→Classify→Discriminant,打开Discriminant Analysis判别分析对话框如图1所示:图1 Discriminant Analysis判别分析对话框3.从对话框左侧的变量列表中选中进行判别分析的有关变量x1~x9进入Independents 框,作为判别分析的基础数据变量。
从对话框左侧的变量列表中选分组变量Group进入Grouping Variable 框,并点击Define Range...钮,在打开的Discriminant Analysis: Define Range 对话框中,定义判别原始数据的类别数,由于原始数据分为3类,则在Minimum(最小值)处输入1,在Maximum(最大值)处输入3(见图2)。
选择后点击Continue按钮返回Discriminant Analysis主对话框。
图2 Define Range对话框4、选择分析方法✧Enter independent together 所有变量全部参与判别分析(系统默认)。
本例选择此项。
✧Use stepwise method 采用逐步判别法自动筛选变量。
单击该项时Method 按钮激活,打开Stepwise Method对话框如图3所示,从中可进一步选择判别分析方法。
图3 Stepwise Method对话框✧Method栏,选择变量的统计量方法Wilks’lambda (默认)按统计量Wilks λ最小值选择变量;Unexplained variance :按照所有组方差之和最小值选择变量;Mahalanobis’distance:按照相邻两组的最大马氏距离选择变量;Smallest F ratio:按组间最小F值比的最大值选择变量;Rao’s V按照统计量Rao V最大值选择变量。
✧Criteria 选择逐步回归的标准(略)选择系统默认项。
5.单击Statistics 按钮,打开Statistics对话框如图4所示,从中指定输出的统计量。
✧Descriptives描述统计量栏Means -各类中各自变量的均值,标准差std Dev 和各自变量总样本的均值和标准差(本例选择)。
Univariate ANOV----对各类中同一自变量均值都相等的假设进行检验,输出单变量的方差分析结果(本例选择)。
Box’s M --对各类的协方差矩阵相等的假设进行检验(本例选择)。
图4 Statistics对话框✧Function coefficients 选择输出判别函数系数Fisherh’s 给出贝叶斯判别函数系数(本例选择)Unstandardized 给出未标准化的典型判别(也称典则判别)系数(费舍尔判别函数)。
✧Matrices 栏选择给出的自变量系数矩阵Within-groups correlation 合并类内相关系数矩阵(本例选择)Within-groups covariance 合并类内协方差矩阵(本例选择)Separate-groups covariance 各类内协方差矩阵(本例选择)Total covariance 总协方差矩阵(本例选择)6.单击Classify按钮,打开Classify对话框如图5所示:图5 Classify对话框✧Prior Probabilities栏,选择先验概率。
All groups equal 各类先验概率相等(系统默认);Compute from groups sizes 各类的先验概率与其样本量成正比. (本例选择)✧Use Covariance Matrix 栏,选择使用的协方差矩阵Within-groups --使用合并类内协方差矩阵进行分类(系统默认)(本例选择)Separate-groups --使用各类协方差矩阵进行分类✧Display栏,选择生成到输出窗口中的分类结果Casewise results 输出每个观测量包括判别分数实际类预测类(根据判别函数求得的分类结果)和后验概率等。
Summary table 输出分类的小结给出正确分类观测量数(原始类和根据判别函数计算的预测类相同)和错分观测量数和错分率(本例选择)。
Leave-one-out classification 输出交互验证结果。
✧Plots栏,要求输出的统计图Combined-groups 生成一张包括各类的散点图(本例选择);Separate-groups 每类生成一个散点图;Territorial map 根据生成的函数值把各观测值分到各组的区域图。
(本例选择)6.单击Save 按钮,打开Save对话框,见图6.图6 Save对话框✧Predicted group membership 建立一个新变量,系统根据判别分数,把观测量按后验概率最大指派所属的类;(本例选择)✧Discriminant score 建立表明判别得分的新变量,该得分是由未标准化的典则判别函数计算。
(本例选择)Probabilities of group membership 建立新变量表明观测量属于某一类的概率。
有m 类,对一个观测量就会给出m 个概率值,因此建立m 个新变量。
(本例选择)全部选择完成后,点击OK,得到输出结果如下:Group Statistics 各类统计分析a The covariance matrix has 25 degrees of freedom.3 人均生活费收入(元/人)292.972 38.451 14.013 37.178 13.567 78.758 -8.776 29.547 16.466 人均国有经济单位职工工资38.451 36.758 2.665 -13.730 -14.286 16.990 19.297 3.658 4.120人均来源于国有经济单位标准工资14.013 2.665 .843 1.649 .400 4.905 -.783 1.806 .732人均集体所有制工资收入37.178 -13.730 1.649 16.731 11.802 8.488 -15.180 5.753 .532人均集体所有制职工标准工资13.567 -14.286 .400 11.802 9.278 1.340 -11.632 3.026 -.549人均各种奖金、超额工资(国有+集体)78.758 16.990 4.905 8.488 1.340 29.089 -3.967 10.556 4.171人均各种津贴(国有+集体)-8.776 19.297 -.783 -15.180 -11.632 -3.967 18.898 -2.998 1.312 均从工作单位得到的其他收入29.547 3.658 1.806 5.753 3.026 10.556 -2.998 7.891 .680个体劳动者收入16.466 4.120 .732 .532 -.549 4.171 1.312 .680 1.246To tal人均生活费收入(元/人)493.973 182.382 51.722 40.606 15.154 123.390 24.245 39.841 1.513 人均国有经济单位职工工资182.382 146.169 52.685 -20.328 -19.362 40.532 42.118 11.447 2.648 人均来源于国有经济单位标准工资51.722 52.685 37.092 -12.222 -7.958 7.157 5.158 -.595 -.133 人均集体所有制工资收入40.606 -20.328 -12.222 28.788 18.414 15.043 -11.572 5.872 -.720 人均集体所有制职工标准工资15.154 -19.362 -7.958 18.414 12.542 6.755 -10.523 2.711 -1.031 人均各种奖金、超额工资(国有+集体)123.390 40.532 7.157 15.043 6.755 37.318 1.737 13.194 .106 人均各种津贴(国有+集体)24.245 42.118 5.158 -11.572 -10.523 1.737 30.703 .708 2.548 均从工作单位得到的其他收入39.841 11.447 -.595 5.872 2.711 13.194 .708 8.911 .335 个体劳动者收入 1.513 2.648 -.133 -.720 -1.031 .106 2.548 .335 1.603a The total covariance matrix has 27 degrees of freedom.Box's Test of Equality of Covariance Matrices 协方差矩阵相等的检验The ranks and natural logarithms of determinants printed are those of the group covariance matrices.a Rank < 6b Too few cases to be non-singularTest Results(a)检验结果a Some covariance matrices are singular and the usual procedure will not work. The non-singular groups will be tested against their own pooled within-groups covariance matrix. The log of its determinant is 17.611.注意,检验没有通过,即各类的协方差相等的假设在显著性水平下是不成立的。
Summary of Canonical Discriminant Functions典型判别函数综述只有两个判别函数,所以特征值只有两个。