北师大版七上数学上册动点题
- 格式:docx
- 大小:70.10 KB
- 文档页数:10
第2章有理数及其运算——数轴动点问题专题(二)1.在一条不完整的数轴上从左到右有点A,B,D,C,其中AB=2,BD=3,DC=1,如图所示,设点A,B,D,C所对应数的和是p.(1)若以B为原点,写出点A,D,C所对应的数,并计算p的值;(2)若原点O在图中数轴上点C的右边,且CO=1,求p的值.2.已知:数轴上A.B两点表示的有理数为a、b,且(a﹣1)2+|b+2|=0.(1)A、B各表示哪一个有理数?(2)点C在数轴上表示的数是c,且与A、B两点的距离和为11,求多项式a(bc+3)﹣|c2﹣3(a﹣c2)|的值;(3)小蚂蚁甲以1个单位长度/秒的速度从点B出发向其左边6个单位长度处的一颗饭粒爬去,3秒后位于点A的小蚂蚁乙收到它的信号,以2个单位长度/秒的速度也迅速爬向饭粒,小蚂蚁甲到达后背着饭粒立即返回,与小蚂蚁乙在数轴上D点相遇,则点D表示的有理数是什么?从出发到此时,小蚂蚁甲共用去多少时间?3.如图,数轴上A、B、C三点表示的数分别为a、b、c,且a、b满足|a+8|+(b﹣12)2=0.(1)则a=,b=;(2)动点P从A点出发,以每秒10个单位的速度沿数轴向右运动,到达B点停留片刻后立即以每秒6个单位的速度沿数轴返回到A点,共用了6秒;其中从C到B,返回时从B到C(包括在B点停留的时间)共用了2秒.①求C点表示的数c;②设运动时间为t秒,求t为何值时,点P到A、B、C三点的距离之和为23个单位?4.数轴上点A,C对应的数分别是a,c,且a,c满足:|a+6|+(c﹣1)2=0,点B对应的数是﹣2.(1)填空:a=,c=;在数轴上描出点A,B,C;(2)若点M在数轴上对应的数为m,且满足|m﹣1|+|m+6|=15,则m=;(3)若A,B两点同时沿数轴正方向匀速运动,点A的速度为每秒2个单位长度,点B的速度为每秒1个单位长度,在运动过程中,点A到点C的距离是点B到点C距离的3倍时,点A对应的数是多少?5.如图,在数轴上A点表示数a,B点表示数b,AB表示A点和B点之间的距离,数轴上有一点C,且C 点到A点的距离是C点到B点距离的2倍,且a、b满足|a+4|+(b﹣11)2=0.(1)直接写出点C表示的数;(2)点P从A点以每秒4个单位的速度向右运动,点Q同时从B点以每秒3个单位的速度向左运动,若AP+BQ=2PQ,求时间t;(3)数轴上有一定点N,N点在数轴上对应的数为2,若点P与点M同时从A点出发,一起向右运动,P点的速度为每秒6个单位,M点的速度为每秒3个单位,在P点到达点B之前:①的值不变;②2BM﹣BP的值不变,其中只有一个正确,请你找出正确的结论并求出其值.6.数轴上A,B,C三点对应的数a,b,c满足(a+40)2+|b+10|=0,B为线段AC的中点.(1)直接写出A,B,C对应的数a,b,c的值.(2)如图1,点D表示的数为10,点P,Q分别从A,D同时出发匀速相向运动,点P的速度为6个单位/秒,点Q的速度为1个单位/秒.当点P运动到C后迅速以原速返回到A又折返向C点运动;点Q 运动至B点后停止运动,同时P点也停止运动.求在此运动过程中P,Q两点相遇点在数轴上对应的数.(3)如图2,M,N为A,C之间两点(点M在N左边,且它们不与A,C重合),E,F分别为AN,CM的中点,求的值.7.如图,数轴上有A、B、C三个点,A、B、C对应的数分别是a、b、c,且满足|a+24|+|b+10|+(c﹣10)2=0,动点P从A出发,以每秒1个单位的速度向终点C运动,设运动时间为t秒.(1)求a、b、c的值;(2)若点P到A点的距离是点P到B点的距离的2倍,求点P对应的数;(3)当点P运动到B点时,点Q从点A出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回,运动到终点A.在点Q开始运动后第几秒时,P、Q两点之间的距离为4?请说明理由.8.如图,在数轴上A点表示数a,B点表示数b,AB表示A点和B点之间的距离,C是AB的中点,且a、b满足|a+2|+(b+2a)2=0(1)求点C表示的数;(2)若点P从A向右运动,点M为AP中点,在P点到达点B之前,求证:2BM﹣BP为定值(3)点P从A点以每秒2个单位的速度向右运动,点Q同时从B点出发以每秒1个单位的速度向左运动,若AP+BQ=2PQ,求时间t.9.如图:在数轴上A点表示数a,B点表示数b,C点表示数c,b是最大的负整数,且a、c满足|a+3|与(c﹣5)2互为相反数.(1)a=,b=,c=;(2)若将数轴折叠,使得A点与C点重合,则点B与数表示的点重合;(3)点A、B、C开始在数轴上运动,若点A以每秒2个单位长度的速度向左运动,同时,点B和点C 分别以每秒1个单位长度和3个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点B与点C之间的距离表示为BC.①请问:3BC﹣2AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.②探究:在(3)的情况下,若点A、C向右运动,点B向左运动,速度保持不变,3BC﹣4AB的值是否随着时间t的变化而改变若变化,请说明理由;若不变,请求其值.10.如图,在数轴上的A点表示数a,B点表示数b,a、b满足(a+2)2+|b﹣4|=0.(1)点A表示的数为,点B表示的数为.(2)若在原点O处放一挡板,一小球甲从点A处以1个单位/秒的速度向左运动;同时另一小球乙从点B处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反的方向运动,设运动的时间为t(秒).①t=1时,甲小球到原点的距离=;乙小球到原点的距离=.当t=3时,甲小球到原点的距离=;乙小球到原点的距离=.②试探究:甲、乙两小球到原点的距离可能相等吗?若不能,请说明理由;若能,请举例说明.11.根据如图给出的数轴,解答下面的问题:(1)点A表示的数是,点B表示的数是.若将数轴折叠,使得A与﹣5表示的点重合,则B 点与数表示的点重合;(2)观察数轴,与点A的距离为4的点表示的数是:;(3)已知M点到A、B两点距离和为8,求M点表示的数.12.已知,数轴上点A在原点左边,到原点的距离为8个单位长度,点B在原点的右边,从点A走到点B,要经过32个单位长度.(1)求A、B两点所对应的数;(2)若点C也是数轴上的点,点C到点B的距离是点C到原点的距离的3倍,求点C对应的数;(3)已知,点M从点A向右出发,速度为每秒1个单位长度,同时点N从点B向右出发,速度为每秒2个单位长度,设线段NO的中点为P,线段PO﹣AM的值是否变化?若不变求其值.13.已知:b是最小的正整数,且a、b满足(c﹣5)2+|a+b|=0,请回答问题:(1)请直接写出a、b、c的值:a=,b=,c=;(2)数轴上a,b,c所对应的点分别为A,B,C,点M是A,B之间的一个动点,其对应的数为m,请化简|2m|(请写出化简过程);(3)在(1)、(2)的条件下,点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,假设t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB.请问:BC﹣AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.14.根据给出的数轴及已知条件,解答下面的问题:(1)已知点A,B,C表示的数分别为1,﹣2.5,﹣3观察数轴,B,C两点之间的距离为;与点A的距离为3的点表示的数是;(2)若将数轴折叠,使得A点与C点重合,则与B点重合的点表示的数是;若此数轴上M,N两点之间的距离为2020(M在N的左侧),且当A点与C点重合时,M点与N点也恰好重合,则M、N两点表示的数分别是:M:,N:.(3)若数轴上P,Q两点间的距离为m(P在Q左侧),表示数n的点到P,Q两点的距离相等,则将数轴折叠,使得P点与Q点重合时,P,Q两点表示的数分别为:P,Q.(用含m,n的式子表示这两个数)15.阅读下面材料,回答问题.已知点A,B在数轴上分别表示有理数a,b.A,B两点之间的距离表示AB.(一)当A,B两点中有一点在原点时,不妨设点A在原点,如图1,AB=OB=|b|﹣|a|=b﹣a=|a﹣b|.(二)当A,B两点都不在原点时,①如图2,点A,B都在原点的右边,AB=OB﹣OA=|b|﹣|a|=b﹣a=|a﹣b|.②如图3,点A,B都在原点的左边,AB=OB﹣OA=|b|﹣|a|=﹣b﹣(﹣a)=a﹣b=|a﹣b|.③如图4,点A,B在原点的两边,AB=OA+OB=|a|+|b|=a+(﹣b)=a﹣b=|a﹣b|.综上,数轴A,B两点的距离AB=|a﹣b|.利用上述结论,回答以下几个问题:(1)数轴上点A表示的数是1,点B表示的数是x,且点B与点A在原点的同侧,AB=3,则x=.(2)数轴上点A到原点的距离是1,点B表示的数绝对值是3,则AB=.(3)若点A、B在数轴上表示的数分别是﹣4、2,设P在数轴上表示的数是x,当|PA|+|PB|=8时,直接写x的值.16.数轴上有A,B,C三点,给出如下定义:若其中一个点与其它两个点的距离恰好满足2倍的数量关系,则称该点是其它两个点的“关联点”.例如数轴上点A,B,C所表示的数分别为1,3,4,此时点B是点A,C的“关联点”.(1)若点A表示数﹣2,点B表示数1,下列各数﹣1,2,4,6所对应的点分别是C1,C2,C3,C4,其中是点A,B的“关联点”的是;(2)点A表示数﹣10,点B表示数15,P为数轴上一个动点:①若点P在点B的左侧,且点P是点A,B的“关联点”,求此时点P表示的数;②若点P在点B的右侧,点P,A,B中,有一个点恰好是其它两个点的“关联点”,请直接写出此时点P表示的数.17.数轴上有两点A,B,点C,D分别从原点O与点B出发,沿BA方向同时向左运动.(1)如图,若点N为线段OB上一点,AB=16,ON=2,当点C,D分别运动到AO,BN的中点时,求CD的长;(2)若点C在线段OA上运动,点D在线段OB上运动,速度分别为每秒1cm,4cm,在点C,D运动的过程中,满足OD=4AC,若点M为直线AB上一点,且AM﹣BM=OM,求的值.18.已知数轴的原点为O,如图所示,点A表示﹣2,点B表示3,请回答下列问题:(1)数轴是什么图形?数轴在原点右边的部分(包括原点)是什么图形?数轴上表示不小于﹣2,且不大于3的部分是什么图形?请你分别给它们取一个合适的名字;(2)请你在射线AO上再标上一个点C(不与A点重合),那么表示点C的值x的取值范围是.19.一辆货车从百货大楼出发负责送货,向东走了4千米到达小明家,继续向东走了1.5千米到达小红家,然后向西走了8.5千米到达小刚家,最后返回百货大楼.(1)以百货大楼为原点,向东为正方向,1个单位长度表示1千米,请你在数轴上标出小明、小红、小刚家的位置.(小明家用点A表示,小红家用点B表示,小刚家用点C表示)(2)小明家与小刚家相距多远?(3)若货车每千米耗油0.2升,那么这辆货车此次送货共耗油多少升?20.如图,将一根木棒放在数轴(单位长度为1cm)上,木棒左端与数轴上的点A重合,右端与数轴上的点B重合.(1)若将木棒沿数轴向右水平移动,则当它的左端移动到点B时,它的右端在数轴上所对应的数为30;若将木棒沿数轴向左水平移动,则当它的右端移动到点A时,它的左端在数轴上所对应的数为6,由此可得这根木棒的长为cm;(2)图中点A所表示的数是,点B所表示的数是;(3)由(1)(2)的启发,请借助“数轴”这个工具解决下列问题:一天,妙妙去问奶奶的年龄,奶奶说:“我若是你现在这么大,你还要37年才出生;你若是我现在这么大,我就119岁啦!”请问奶奶现在多少岁了?。
北师大版数学七年级上册第五章一元一次方程微专题——应用题动点类训练31.如图1,已知点C在线段AB上,线段AC=10厘米,BC=6厘米,点M,N分别是AC,BC的中点.(1)求线段MN的长度.(2)根据第(1)题的计算过程和结果,设AC=a,BC=b,其他条件不变,则MN=______ .(3)动点P、Q分别从A、B同时出发,点P以2cm/s的速度沿AB向右运动,终点为B,点Q以1cm/s 的速度沿AB向左运动,终点为A,当一个点到达终点,另一个点也随之停止运动.设点P的运动时间为t(s).当C、P、Q三点中,有一点恰好是以另外两点为端点的线段的中点时,求时间t.2.已知数轴上有两点A、B,点A表示的数是4,点B表示的数是−11,点C是数轴上一动点.(1)如图1,若点C在点B的左侧,且BC:AB=3:5,求点C到原点的距离.(2)如图2,若点C在A、B两点之间时,以点C为折点,将此数轴向右对折,当A、B两点之间的距离为1时,求C点在数轴上对应的数是多少?(3)如图3,在(1)的条件下,动点P、Q两点同时从C、A出发向右运动,同时动点R从点A向左运动,已知点P的速度是点R的速度的3倍,点Q的速度是点R的速度的2倍少5个单位长度/秒.经过4秒,点P、Q之间的距离是点Q、R之间距离的一半,求动点Q的速度.3.距离是天文学、物理学、数学,甚至哲学中的热门话题。
唯有深入了解距离,才能更好地把握宇宙尺度,把握做人做事的分寸。
研究数轴我们发现:若点A在数轴上对应的数为a,点B对应的数为b,则A、B两点之间的距离为AB=|a−b|。
已知如图,点O为原点,点A、B在数轴上对应的数分别为−2和6。
(1)①A,B两点之间的距离为__________;②点R是数轴上一点,若点R到点A的距离为6(RA=6),则点R在数轴上对应的数为___。
(2)数轴上有一动点T,当点T以每秒1个单位长度的速度从O点向左匀速运动时,点A也以每秒4个单位长度的速度向左匀速运动,同时点B也以每秒6个单位长度的速度向左匀速运动,若它们同时出发,则几秒后T点到A、B两点的距离相等?4.如图,动点A从原点出发向数轴负方向运动,同时,动点B也从原点出发向数轴正方向运动,运动到3秒钟时,两点相距15个单位长度.已知动点A、B的运动速度比之是3∶2(速度单位:1个单位长度/秒).(1)直接写出动点A的运动速度是___个单位长度/秒,动点B的运动速度是___个单位长度/秒;(2)A、B两点运动到3秒时停止运动,请在数轴上标出此时A、B两点的位置;(3)若A、B两点分别从(2)中标出的位置再次同时开始在数轴上运动,运动的速度不变,运动的方向不限,问:运动到几秒钟时,A、B两点之间相距4个单位长度?5.如图,AB=12cm,点C在线段AB上,AC=3BC,点P,Q在线段AB上来回运动,动点P从点A出发,以4cm/s的速度向右运动,到达点B之后立即返回,以4cm/s的速度向左运动;动点Q从点C出发,以1cm/s的速度向右运动,到达点B之后立即返回,以1cm/s的速度向左运动.设它们同时出发,运动时间为t秒,当第二次重合时,P、Q两点停止运动.(1)AC=______cm,BC=______cm;(2)当t=______秒时,点P与点Q第一次重合;当t=______秒时,点P与点Q第二次重合;(3)当t为何值时,AP=PQ?6.已知,线段AB上有三个点C、D、E,AB=18,AC=2BC,D、E为动点(点D在点E的左侧),并且始终保持DE=8.(1)如图1,当E为BC中点时,求AD的长;(2)如图2,点F为线段BC的中点,AF=3AD,求AE的长;(3)若点D从A出发向右运动(当点E到达点B时立即停止),运动的速度为每秒2个单位,当运动时间t为多少秒时,使AD、BE两条线段中,一条的长度恰好是另一条的两倍.7.如图,线段AB=36cm,动点P从A出发,以3cm/秒的速度沿射线AB运动,点M为AP的中点.(1)点P出发多少秒后,PB=2PM;(2)当点P在线段AB上运动时,试说明2BM−BP为定值;(3)当点P在线段AB延长线上运动,点N为BP的中点时,请判断线段MN的长度是否发生改变,若改变,请说明理由;若不改变,请求其值.8.已知a是最大的负整数,b是−6的相反数,c=−|−2|,且a、b、c分别是点A、B、C在数轴上对应的数.(1)a=______,b=______,c=______;(2)若动点P从点A出发沿数轴正方向运动,动点Q同时从点B出发也沿数轴正方向运动,点P的速度是每秒2个单位长度,点Q的速度是每秒1个单位长度,求运动几秒后,点P可以追上点Q?(3)在(2)的条件下,P、Q出发的同时,动点M从点C出发沿数轴正方向运动,速度为每秒5个单位长度,点M追上点Q后立即返回沿数轴负方向运动.求点M追上点Q后再经过几秒,MQ= 2MP9.【背景知识】数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结合.研究数轴我们发现了许多重要的规律:若数轴上点A、点B表示的数分别为a、b,则A,B两点之间的距离AB=|a−b|.如图,已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,如果把数轴沿表示−2的点对折A、B两点刚好重合.(1)数轴上点B表示的数是______;AB=______.(2)动点P从A点出发,以每秒2个单位长度的速度沿数轴向左匀速运动,动点Q从点B出发,以每秒8个单位长度的速度沿数轴向右匀速运动,若点P、Q同时出发,当P、Q之间的距离恰好等于2时求点P表示的数.(3)动点P从A点出发,以每秒2个单位长度的速度沿数轴向右匀速运动,动点Q从点B出发,以每秒8个单位长度的速度沿数轴向右匀速运动,当点Q到达点A时立即以每秒10个单位长度的速度沿数轴向左匀速运动,当点Q回到点B立即停止,若点P、Q同时出发,同时停止,求当PA=QA时,求点Q表示的数.10.如图,已知在原点为O的数轴上三个点A、B、C,OA=AB=BC=20cm,动点P从点O出发向右以每秒2cm的速度匀速运动;同时,动点Q从点C出发向左以每秒a cm的速度匀速运动.设运动时间为t秒.(1)当点P从点O运动到点C时,求t的值;(2)若a=3,那么经过多长时间P,Q两点相距20cm?(3)当PA+PB=40cm,|QB−QC|=10cm时,求a的值.11.已知数轴上A,B两点表示的数分别为−8和20,若A,B两点同时出发,A点运动速度为每秒3个单位,B点运动速度为每秒1个单位,设运动时间为t秒.(1)点A向右运动,B点向左运动,当t为何值时,A,B两点之间距离为8?(2)若A点和B点都向右运动,多少秒后,A,B两点之间距离为8?(3)在(2)的条件下,另一动点M同时从O点出发,以每秒2个单位的速度向右运动,多少秒后,点M到点A和点B的距离相等?12.已知数轴上点A表示的数为12,点B表示的数为−8.动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,同时动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)当点P与点Q关于原点O对称时,求t的值;(2)是否存在t的值,使得点P与点Q之间的距离为3个单位长度?若存在,请求出t的值;若不存在,请说明理由.13.阅读理解:如图①,数轴上线段的长度可以用线段端点表示的数进行减法运算得到,例如,线段AB=0−(−1)=1:线段:BC=2−0=2;线段AC=2−(−1)=3(大的数减去小的数).(1)数轴上点A、B表示的数分别是−3和2,则AB=______;(2)数轴上点M表示的数是−1,线段MN的长为2,则点N表示的数是______;(3)如图②,数轴上点A、B表示的数分别是−4和6,动点P从点A出发,沿AB方向以每秒2个单位长度的速度运动,点P运动多少秒时BP=4.并求此时点P表示的数是多少?14.已知a是最大的负整数,b=−|−5|,c是−4的相反数,且a,b,c分别是点A,B,C在数轴上对应的数.(1)则a=__________,b=__________,c=__________;(2)在数轴上,若点D到A的距离刚好是3,则D点叫做A的“幸福点”则A的幸福点D所表示的数应该是__________;(3)若动点P从点B出发以3个单位长度沿数轴向正方向运动,到达点C后立即原路返回,最后在B处停止运动.动点Q同时从点C出发每秒1个单位长度沿数轴向负方向运动,到达点A后停止运动.求运动几秒后,点P与点Q可以遇见?15.如图,在数轴上A点表示数a,B点表示数b,C点表示数c,且a、c满足|a+3|+|c−9|=0.若点A与点B之间的距离表示为AB=|a−b|,点B与点C之间的距离表示为BC=|b−c|,点B 在点A、C之间,且满足BC=2AB.(1)a=______,b=______,c=______;(2)若点P为数轴上一动点,其对应的数为x,当|x−a|=3时,x=______;当代数式|x−a|+ |x−c|取得最小值时,此时最小值为______.(3)动点M从B点位置出发,沿数轴以每秒1个单位的速度向终点C运动,同时动点N从A点出发,以每秒2个单位的速度沿数轴向C点运动,设运动时间为t秒.问:当t为何值时,M,N两点之间的距离为2个单位?16.已知:如图线段AB=15,C为线段AB上一点,且BC=6。
欢迎阅读七年级数学上册动点问题1、如图,有一数轴原点为O,点A所对应的数是-1 12,点A沿数轴匀速平移经过原点到达点B.(1)如果OA=OB,那么点B所对应的数是什么?(2)从点A到达点B所用时间是3秒,求该点的运动速度.(3K和点C2、动点3秒后,(1(2)若(3AB 追上A3为数轴上一动点,其对应的数为x.(1(2(3)点个单位长度/点A4A点的秒.(1)点(2)A(3)A方向的运动,且在运动过程中,始终有CB:CA=1:2,若干秒钟后,C停留在-10处,求此时B 点的位置?5、在数轴上,点A表示的数是-30,点B表示的数是170.(1)求A、B中点所表示的数.(2)一只电子青蛙m,从点B出发,以4个单位每秒的速度向左运动,同时另一只电子青蛙n,从A点出发以6个单位每秒的速度向右运动,假设它们在C点处相遇,求C点所表示的数.(3)两只电子青蛙在C点处相遇后,继续向原来运动的方向运动,当电子青蛙m处在A点处时,问电子青蛙n处在什么位置?(4)如果电子青蛙m从B点处出发向右运动的同时,电子青蛙n也向右运动,假设它们在D点处相遇,求D点所表示的数6、已知数轴上有A、B、C三点,分别代表—24,—10,10,两只电子蚂蚁甲、乙分别从A、C 两点同时相向而行,甲的速度为4个单位/秒。
⑴问多少秒后,甲到A、B、C的距离和为40个单位?⑵若乙的速度为6个单位/秒,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,问甲、乙在数轴上的哪个点相遇?⑶在⑴⑵的条件下,当甲到A、B、C的距离和为40个单位时,甲调头返回。
问甲、乙还能在数轴上相遇吗?若能,求出相遇点;若不能,请说明理由。
7、已知数轴上两点A、B对应的数分别为—1,3,点P为数轴上一动点,其对应的数为x。
⑴若点P到点A、点B的距离相等,求点P对应的数;⑵数轴上是否存在点P,使点P到点A、点B的距离之和为5?若存在,请求出x的值。
若不存在,请说明理由?⑶当点点B8、如图(1)若(2R从A秒,点R 与点Q(3、D两PQ 9秒4(1(2)第3(3)点C的点为1秒时,10(1)数轴上表示-3的点与表示4的点相距________个单位.(2)数轴上表示2的点先向右移动2个单位,再向左移动5个单位,最后到达的点表示的数是______.(3)数轴上若点A表示的数是2,点B与点A的距离为3,则点B表示的数是_____.(4)若|a-3|=2,|b+2|=1,且数a、b在数轴上表示的数分别是点A、点B,则A、B两点间的最大距离是______,最小距离是_________.(5)数轴上点A表示8,点B表示-8,点C在点A与点B之间,A点以每秒0.5个单位的速度向左运动,点B以每秒1.5个单位的速度向右运动,点C以每秒3个单位的速度先向右运动碰到点A 后立即返回向左运动,碰到点B后又立即返回向右运动,碰到点A后又立即返回向左运动…,三个点同时开始运动,经过_________秒三个点聚于一点,这一点表示的数是________,点C在整个运动过程中,移动了_______个单位.11、已知数轴上两点A、B对应的数分别为-1、3,数轴上一动点P对应的数为x.(1)若点P到点A,点B的距离相等,求点P对应的数;(2)当点P以每分钟1个单位长度的速度从O点向左运动时,点A以每分钟5个单位长度的速度向左运动,点B以每分钟20个单位长度的速度向左运动,问几分钟时点P到点A,点B的距离相等.12、如图,在射线OM上有三点A、B、C,满足OA=20cm,AB=60cm,BC=10cm(如图所示),点P从点O出发,沿OM方向以1cm/s的速度匀速运动,点Q从点C出发在线段CO上向点O(1)当(2(3131分钟多走1(1(25米,那么开始运动几分钟后第二相遇?14.(1)点3厘米/(1(2)若当点P MN 153cm/s16、(117、(218、19、(3)在(2)的条件下,N是直线AB上一点,且AN-BN=MN,求MNAB的值.20、如图,P是定长线段AB上一点,C、D两点分别从P、B出发以1cm/s、2cm/s的速度沿直线AB向左运动(C在线段AP上,D在线段BP上)21、(1)若C、D运动到任一时刻时,总有PD=2AC,请说明P点在线段AB上的位置:22、23、(2)在(1)的条件下,Q是直线AB上一点,且AQ-BQ=PQ,求PQAB的值.24、25、(3)在(1)的条件下,若C、D运动5秒后,恰好有CD=12AB,此时C点停止运动,D点继续运动(D点在线段PB上),M、N分别是CD、PD的中点,下列结论:①PM-PN的值不变;② MNAB的值不变,可以说明,只有一个结论是正确的,请你找出正确的结论并求值.26、17、已知线段AB=m,CD=n,线段CD在直线AB上运动(A在B左侧,C在D左侧),若|m-2n|=-(6-n)2.(1)求线段AB、CD的长;(2)M、N分别为线段AC、BD的中点,若BC=4,求MN;(3)当CD运动到某一时刻时,D点与B点重合,P是线段AB延长线上任意一点,下列两个结论:① PA-PBPC是定值;② PA+PBPC是定值,请选择正确的一个并加以证明.18(1(2)若当点P段MN(3且19路线运动到P速度为1cm∕s.(1)问(2)当20、如图,点C是线段AB(1(2)若线段AB=a,求线段DE的长度.(3)若甲、乙两点分别从点A、D同时出发,沿AB方向向右运动,若甲、乙两点同时到达B点,请你写出一组符合条件的甲、乙两点运动的速度.。
北师大版七年级数学上册典中点第4章专训三:曲线上的动点问题简介本文档是针对北师大版七年级数学上册第4章专训三的题解答,主题为曲线上的动点问题。
该章节主要涉及曲线方程与点的坐标、曲线上两点的距离、中点坐标的计算等内容。
题解答1. 题目:已知曲线方程 $y = 2x + 1$,点 A 的坐标为 (1, 3),点B 在曲线上。
求点 B 的坐标。
解答:由已知可得,点 B 的坐标为 (x, y)。
根据曲线方程 $y =2x + 1$,代入点 B 的坐标得到 $y = 2x + 1$。
因此,点 B 的坐标为(x, 2x + 1)。
2. 题目:已知曲线方程 $x = t^2$,点 C 的坐标为 (1, 2),点 D的 x 坐标为 4。
求点 D 的 y 坐标。
解答:由已知可得,点 D 的坐标为 (4, y)。
根据曲线方程 $x =t^2$,代入点 D 的坐标得到 $4 = t^2$。
解方程得到 $t = \pm 2$,因此点 D 的 y 坐标为 $2^2 = 4$ 或 $(-2)^2 = 4$。
所以,点 D 的 y 坐标为 4。
3. 题目:已知曲线上两点 A(1, 3) 和 B(-2, -1),求线段 AB 的中点的坐标。
解答:线段 AB 的中点的坐标可以通过两点的坐标求得。
横坐标的中点坐标为 $(1 + (-2))/2 = -1/2$,纵坐标的中点坐标为 $(3 + (-1))/2 = 1$。
所以,线段 AB 的中点的坐标为 (-1/2, 1)。
4. 题目:已知曲线方程为 $x^2 + y^2 = 25$,点 P 在曲线上,点 P 到坐标原点的距离为 5。
求点 P 的坐标。
解答:根据已知条件可得 $x^2 + y^2 = 25$,点 P 的坐标为 (x, y)。
根据勾股定理,点 P 到坐标原点的距离为 $\sqrt{x^2 + y^2}$。
因此,可得方程 $\sqrt{x^2 + y^2} = 5$。
解方程得到 $x^2 + y^2 = 25$,所以点 P 的坐标为 (x, y)。
七年级动点问题大全例1 如图,在数轴上A点表示数a,B点表示数b,AB表示A点和B点之间的距离,且a、b满足|a+2|+(b+3a)2=0(1)求A、B两点之间的距离;(2)若在数轴上存在一点C,且AC=2BC,求C点表示的数;(3)若在原点O处放一挡板,一小球甲从点A处以1个单位/秒的速度向左运动;同时另一小球乙从点B处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反的方向运动,设运动的时间为t(秒),①分别表示甲、乙两小球到原点的距离(用t表示);②求甲、乙两小球到原点的距离相等时经历的时间.例2如图,有一数轴原点为O,点A所对应的数是-1 2,点A沿数轴匀速平移经过原点到达点B.(1)如果OA=OB,那么点B所对应的数是什么?(2)从点A到达点B所用时间是3秒,求该点的运动速度.(3)从点A沿数轴匀速平移经过点K到达点C,所用时间是9秒,且KC=KA,分别求点K和点C所对应的数。
例3动点A从原点出发向数轴负方向运动,同时,动点B也从原点出发向数轴正方向运动,3秒后,两点相距15个单位长度.已知动点A、B的速度比是1:4.(速度单位:单位长度/秒)(1)求出两个动点运动的速度,并在数轴上标出A、B两点从原点出发运动3秒时的位置;(2)若A、B两点从(1)中的位置同时向数轴负方向运动,几秒后原点恰好处在两个动点正中间;(3)在(2)中A、B两点继续同时向数轴负方向运动时,另一动点C同时从B点位置出发向A运动,当遇到A后,立即返回向B点运动,遇到B点后立即返回向A 点运动,如此往返,直到B追上A时,C立即停止运动.若点C一直以20单位长度/秒的速度匀速运动,那么点C从开始到停止运动,运动的路程是多少单位长度.例4已知数轴上两点A、B对应的数分别为-1、3,点P为数轴上一动点,其对应的数为x.(1)若点P到点A,点B的距离相等,求点P对应的数;(2)数轴上是否存在点P,使点P到点A、点B的距离之和为6?若存在,请求出x的值;若不存在,说明理由;(3)点A、点B分别以2个单位长度/分、1个单位长度/分的速度向右运动,同时点P以6个单位长度/分的速度从O点向左运动.当遇到A时,点P立即以同样的速度向右运动,并不停地往返于点A与点B之间,求当点A与点B重合时,点P所经过的总路程是多少?例5数轴上两个质点A、B所对应的数为-8、4,A、B两点各自以一定的速度在上运动,且A点的运动速度为2个单位/秒.(1)点A、B两点同时出发相向而行,在原点处相遇,求B点的运动速度;(2)A、B两点以(1)中的速度同时出发,向数轴正方向运动,几秒钟时两者相距6个单位长度;(3)A、B两点以(1)中的速度同时出发,向数轴负方向运动,与此同时,C点从原点出发作同方向的运动,且在运动过程中,始终有CB:CA=1:2,若干秒钟后,C停留在-10处,求此时B点的位置?例6在数轴上,点A表示的数是-30,点B表示的数是170.(1)求A、B中点所表示的数.(2)一只电子青蛙m,从点B出发,以4个单位每秒的速度向左运动,同时另一只电子青蛙n,从A点出发以6个单位每秒的速度向右运动,假设它们在C点处相遇,求C点所表示的数.(3)两只电子青蛙在C点处相遇后,继续向原来运动的方向运动,当电子青蛙m 处在A点处时,问电子青蛙n处在什么位置?(4)如果电子青蛙m从B点处出发向右运动的同时,电子青蛙n也向右运动,假设它们在D点处相遇,求D点所表示的数例7、已知数轴上有A、B、C三点,分别代表—24,—10,10,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,甲的速度为4个单位/秒。
4、数轴上两个质点A、B所对应的数为-8、4,A、B两点各自以一定的速度在上运动,且A点的运动速度为2个单位/秒.(1)点A、B两点同时出发相向而行,在原点处相遇,求B点的运动速度;(2)A、B两点以(1)中的速度同时出发,向数轴正方向运动,几秒钟时两者相距6个单位长度;(3)A、B两点以(1)中的速度同时出发,向数轴负方向运动,与此同时,C点从原点出发作同方向的运动,且在运动过程中,始终有CB:CA=1:2,若干秒钟后,C停留在-10处,求此时B点的位置?5、在数轴上,点A表示的数是-30,点B表示的数是170.(1)求A、B中点所表示的数.(2)一只电子青蛙m,从点B出发,以4个单位每秒的速度向左运动,同时另一只电子青蛙n,从A点出发以6个单位每秒的速度向右运动,假设它们在C点处相遇,求C点所表示的数.(3)两只电子青蛙在C点处相遇后,继续向原来运动的方向运动,当电子青蛙m 处在A点处时,问电子青蛙n处在什么位置?(4)如果电子青蛙m从B点处出发向右运动的同时,电子青蛙n也向右运动,假设它们在D点处相遇,求D点所表示的数6、已知数轴上有A、B、C三点,分别代表—24,—10,10,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,甲的速度为4个单位/秒。
⑴问多少秒后,甲到A、B、C的距离和为40个单位?⑵若乙的速度为6个单位/秒,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,问甲、乙在数轴上的哪个点相遇?⑶在⑴⑵的条件下,当甲到A、B、C的距离和为40个单位时,甲调头返回。
问甲、乙还能在数轴上相遇吗?若能,求出相遇点;若不能,请说明理由。
7、已知数轴上两点A、B对应的数分别为—1,3,点P为数轴上一动点,其对应的数为x。
⑴若点P到点A、点B的距离相等,求点P对应的数;⑵数轴上是否存在点P,使点P到点A、点B的距离之和为5?若存在,请求出x 的值。
若不存在,请说明理由?⑶当点P以每分钟一个单位长度的速度从O点向左运动时,点A以每分钟5个单位长度向左运动,点B一每分钟20个单位长度向左运动,问它们同时出发,几分钟后P点到点A、点B的距离相等?8、如图1,已知数轴上有三点A、B、C,AB= 12AC,点C对应的数是200.(1)若BC=300,求点A对应的数;(2)如图2,在(1)的条件下,动点P、Q分别从A、C两点同时出发向左运动,同时动点R从A点出发向右运动,点P、Q、R的速度分别为10单位长度每秒、5单位长度每秒、2单位长度每秒,点M为线段PR的中点,点N为线段RQ的中点,多少秒时恰好满足MR=4RN(不考虑点R与点Q相遇之后的情形);(3)如图3,在(1)的条件下,若点E、D对应的数分别为-800、0,动点P、Q 分别从E、D两点同时出发向左运动,点P、Q的速度分别为10单位长度每秒、5单位长度每秒,点M为线段PQ的中点,点Q在从是点D运动到点A的过程中,32QC-AM的值是否发生变化?若不变,求其值;若不变,请说明理由.9、数轴上点A对应的数是-1,B点对应的数是1,一只小虫甲从点B出发沿着数轴的正方向以每秒4个单位的速度爬行至C点,再立即返回到A点,共用了4秒钟.(1)求点C对应的数;(2)若小虫甲返回到A点后再作如下运动:第1次向右爬行2个单位,第2次向左爬行4个单位,第3次向右爬行6个单位,第4次向左爬行8个单位,…依次规律爬下去,求它第10次爬行所停在点所对应的数;(3)若小虫甲返回到A后继续沿着数轴的负方向以每秒4个单位的速度爬行,这时另一小虫乙从点C出发沿着数轴的负方向以每秒7个单位的速度爬行,设甲小虫对应的点为E点,乙小虫对应的点为F点,设点A、E、F、B所对应的数分别是xA、xE、xF、xB,当运动时间t不超过1秒时,则下列结论:①|xA-xE|+|xE-xF|-|xF-xB|不变;②|xA-xE|-|xE-xF|+|xF-xB|不变;其中只有一个结论正确,请你选择出正确的结论,并求出其定值.10、思考下列问题并在横线上填上答案.思考下列问题并在横线上填上答案.(1)数轴上表示-3的点与表示4的点相距________个单位.(2)数轴上表示2的点先向右移动2个单位,再向左移动5个单位,最后到达的点表示的数是______.(3)数轴上若点A表示的数是2,点B与点A的距离为3,则点B表示的数是_____.(4)若|a-3|=2,|b+2|=1,且数a、b在数轴上表示的数分别是点A、点B,则A、B两点间的最大距离是______,最小距离是_________.(5)数轴上点A表示8,点B表示-8,点C在点A与点B之间,A点以每秒0.5个单位的速度向左运动,点B以每秒1.5个单位的速度向右运动,点C以每秒3个单位的速度先向右运动碰到点A后立即返回向左运动,碰到点B后又立即返回向右运动,碰到点A后又立即返回向左运动…,三个点同时开始运动,经过_________秒三个点聚于一点,这一点表示的数是________,点C在整个运动过程中,移动了_______个单位.11、已知数轴上两点A、B对应的数分别为-1、3,数轴上一动点P对应的数为x.(1)若点P到点A,点B的距离相等,求点P对应的数;(2)当点P以每分钟1个单位长度的速度从O点向左运动时,点A以每分钟5个单位长度的速度向左运动,点B以每分钟20个单位长度的速度向左运动,问几分钟时点P到点A,点B的距离相等.12、如图,在射线OM上有三点A、B、C,满足OA=20cm,AB=60cm,BC=10cm (如图所示),点P从点O出发,沿OM方向以1cm/s的速度匀速运动,点Q从点C出发在线段CO上向点O匀速运动(点Q运动到点O时停止运动),两点同时出发.(1)当PA=2PB时,点Q运动到的位置恰好是线段AB的三等分点,求点Q的运动速度.(2)若点Q运动速度为3cm/s,经过多长时间P、Q两点相距70cm.(3)当点P运动到线段AB上时,分别取OP和AB的中点E、F,求OB-AP/EF 的值.13、甲、乙物体分别从相距70米的两处同时相向运动.甲第1分钟走2米,以后每分钟比前1分钟多走1米,乙每分钟走5米.(1)甲、乙开始运动后几分钟相遇?(2)如果甲、乙到达对方起点后立即折返,甲继续每分钟比前1分钟多走1米,乙继续每分钟走5米,那么开始运动几分钟后第二相遇?14、如图,线段AB=20cm .(1)点P沿线段AB自A点向B点以2厘米/秒运动,同时点Q沿线段BA自B 点向A点以3厘米/秒运动,几秒钟后,P、Q两点相遇?如图,已知数轴上A、B两点所表示的数分别为-2和8.(1)求线段AB的长;(2)若P为射线BA上的一点(点P不与A、B两点重合,M为PA的中点,N 为PB的中点,当点P在射线BA上运动时;MN的长度是否发生改变?若不变,请你画出图形,并求出线段MN的长;若改变,请说明理由.15、已知:如图1,M是定长线段AB上一定点,C、D两点分别从M、B出发以1cm/s、3cm/s的速度沿直线BA向左运动,运动方向如箭头所示(C在线段AM上,D在线段BM上)(1)若AB=10cm,当点C、D运动了2s,求AC+MD的值.(2)若点C、D运动时,总有MD=3AC,直接填空:AM=________ AB.(3)在(2)的条件下,N是直线AB上一点,且AN-BN=MN,求MNAB的值.16、如图,P是定长线段AB上一点,C、D两点分别从P、B出发以1cm/s、2cm/s 的速度沿直线AB向左运动(C在线段AP上,D在线段BP上)(1)若C、D运动到任一时刻时,总有PD=2AC,请说明P点在线段AB上的位置:(2)在(1)的条件下,Q是直线AB上一点,且AQ-BQ=PQ,求PQAB的值.(3)在(1)的条件下,若C、D运动5秒后,恰好有CD=12AB,此时C点停止运动,D点继续运动(D点在线段PB上),M、N分别是CD、PD的中点,下列结论:①PM-PN的值不变;② MNAB的值不变,可以说明,只有一个结论是正确的,请你找出正确的结论并求值.17、已知线段AB=m,CD=n,线段CD在直线AB上运动(A在B左侧,C在D 左侧),若|m-2n|=-(6-n)2.(1)求线段AB、CD的长;(2)M、N分别为线段AC、BD的中点,若BC=4,求MN;(3)当CD运动到某一时刻时,D点与B点重合,P是线段AB延长线上任意一点,下列两个结论:① PA-PBPC是定值;② PA+PBPC是定值,请选择正确的一个并加以证明.18、如图,已知数轴上A、B两点所表示的数分别为-2和8.(1)求线段AB 的长;(2)若P为射线BA上的一点(点P不与A、B两点重合),M为PA的中点,N 为PB的中点,当点P在射线BA上运动时,线段MN的长度是否发生改变?若不变,请你画出图形,并求出线段MN的长;若改变,请说明理由.(3)若有理数a、b、c在数轴上的位置如图所示:且d=|a+b|-|-2-b|-|a-2c|-5,试求7(d+2c)2+2(d+2c)-5(d+2c)2-3(d+2c)的值.19、在长方形ABCD中,AB=CD=10cm、BC=AD=8cm,动点P从A点出发,沿A⇒B⇒C⇒D路线运动到D停止;动点Q从D出发,沿D⇒C⇒B⇒A路线运动到A 停止;若P、Q同时出发,点P速度为1cm∕s,点Q速度为2cm∕s,6s后P、Q同时改变速度,点P速度变为2cm∕s,点Q速度变为1cm∕s.(1)问P点出发几秒后,P、Q两点相遇?(2)当Q点出发几秒时,点P点Q在运动路线上相距的路程为25cm?20、如图,点C是线段AB的中点,点D、E分别是线段AC、CB的中点.(1)若线段AB=10cm,求线段AC和线段DE的长度;(2)若线段AB=a,求线段DE的长度.(3)若甲、乙两点分别从点A、D同时出发,沿AB方向向右运动,若甲、乙两点同时到达B点,请你写出一组符合条件的甲、乙两点运动的速度.。
专题02数轴上的四种动点问题【知识点梳理】1.数轴上两点间的距离数轴上A、B两点表示的数为分别为a、b,则A与B间的距离AB=|a-b|;2.数轴上点移动规律数轴上点向右移动则数变大(增加),向左移动数变小(减小);当数a表示的点向右移动b个单位长度后到达点表示的数为a+b;向左移动b个单位长度后到达点表示的数为a-b.类型一、求动点表示的数例.在数轴上,点A,B在原点O的两侧,分别表示数a,2,将点A向右平移3个单位长度得到点C.若CO BO=,则a的值为()A.5-B.1-C.5-或1-D.3-【答案】C【解析】∵CO=BO,B点表示2,∴点C表示的数为±2,∴a=-2-3=-5或a=2-3=-1,故选:C.【变式训练1】在数轴上,点P从某点A开始移动,先向右移动5个单位长度,再向左移动4个单位长度,-,则点A表示的数是()最后到达1A.3B.1-C.2-D.6-【答案】C【解析】由题意可得:-1+4-5=-2,故选C.【变式训练2】如图,将一个半径为1个单位长度的圆片上的点A放在原点,并把圆片沿数轴滚动1周,点A到达点A'的位置,则点A'表示的数是_______;若起点A开始时是与—1重合的,则滚动2周后点A'表示的数是______.【答案】2π或2π-41π-或41π--【解析】因为半径为1的圆的周长为2π,所以每滚动一周就相当于圆上的A 点平移了2π个单位,滚动2周就相当于平移了4π个单位;当圆向左滚动一周时,则A'表示的数为2π-,当圆向右滚动一周时,则A'表示的数为2π;当A 点开始时与1-重合时,若向右滚动两周,则A'表示的数为41π-,若向左滚动两周,则A'表示的数为41π--;故答案为:2π①或2π-;41π-②或41π--.【变式训练3】已知数轴上点A 对应的数为6-,点B 在点A 右侧,且,A B 两点间的距离为8.点P 为数轴上一动点,点C 在原点位置.(1)点B 的数为____________;(2)①若点P 到点A 的距离比到点B 的距离大2,点P 对应的数为_________;②数轴上是否存在点P ,使点P 到点A 的距离是点P 到点B 的距离的2倍?若存在,求出点P 对应的数;若不存在,请说明理由;(3)已知在数轴上存在点P ,当点P 到点A 的距离与点P 到点C 的距离之和等于点P 到点B 的距离时,点P 对应的数为___________;【答案】(1)2;(2)①-1;②23-或10;(3)-8和-4【解析】(1)∵点A 对应的数为-6,点B 在点A 右侧,A ,B 两点间的距离为8,∴-6+8=2,即点B 表示的数为2;(2)①设点P 表示的数为x ,当点P 在点A 的左侧,PA <PB ,不符合;当点P 在A 、B 之间,x -(-6)=2-x +2,解得:x =-1;当点P 在点B 右侧,PA -PB =AB =8,不符合;故答案为:-1;②当点P 在点A 的左侧,PA <PB ,不符合;当点P 在A 、B 之间,x -(-6)=2(2-x ),解得:x =23-;当点P 在点B 右侧,x -(-6)=2(x -2),解得:x =10;∴P 对应的数为23-或10;(3)当点P 在点A 左侧时,-6-x +0-x =2-x ,解得:x =-8;当点P 在A 、O 之间时,x -(-6)+0-x =2-x ,解得:x =-4;当点P 在O 、B 之间时,x -(-6)+x -0=2-x ,解得:x =43-,不符合;当点P 在点B 右侧时,x -(-6)+x -0=x -2,解得:x =-8,不符合;综上:点P 表示的数为-8和-4.类型二、求动点的速度例.已知多项式2234x xy --的常数项是a ,次数是b ,且a ,b 两个数轴上所对应的点分别为A 、B ,若点A 、点B 同时沿数轴向正方向运动,点A 的速度是点B 的2倍,且3秒后,32OA OB =,求点B 的速度为()A .34B .14或34C .14或32D .32【答案】C【解析】∵多项式x 3-3xy 2-4的常数项是a ,次数是b ,∴a=-4,b=3,设B 速度为v ,则A 的速度为2v ,3秒后点A 在数轴上表示的数为(-4+6v ),B 点在数轴上表示的数为3+3v ,且OB=3+3v当A 还在原点O 的左边时,OA=0-(-4+6v )=4-6v ,由32OA OB =可得3(46)332v v -=+,解得14v =;当A 还在原点O 的右边时,OA=(-4+6v )-0=6v-4,由32OA OB =可得3(64)332v v -=+,解得32v =.故B 的速度为14或32,选C.故答案为:C类型三、求动点运动的时间例.如图所示,A 、B 是数轴上的两点,O 是原点,AO=10,OB=15,点P 、Q 分别从A 、B 同时出发,点P 以每秒2个单位长度的速度沿数轴向左匀速运动,点Q 以每秒4个单位长度的速度沿数轴向左匀速运动,M 为线段AP 的中点,设运动的时间为t (t≥0)秒,M 、Q 两点到原点O 的距离相等时,t 的值是()A .1t s =或252t s =B .2t s =或253t s =C .1t s =或253t s =D .2t s =或252t s =【答案】C【解析】∵O是原点,AO=10,OB=15,∴点A表示的数是-10,点B表示的数是15,∵点P以每秒2个单位长度的速度沿数轴向左匀速运动,M为线段AP的中点,∴OM=|-10-t|,∵点Q以每秒4个单位长度的速度沿数轴向左匀速运动,∴OQ=|15-4t|,∵M、Q两点到原点O的距离相等,∴|-10-t|=|15-4t|,∴-10-t=15-4t或-10-t=-(15-4t),解得:t=253或t=1,故选:C.【变式训练1】如图,点A在数轴上表示的数是16-,B在数轴上表示的数是8.若点A以6个单位长度/秒的速度向右匀速运动,同时点B以2个单位长度/秒的速度向左匀速运动,问:当8AB=时,运动时间为多少秒?()A.2秒B.13.4秒C.2秒或4秒D.2秒或6秒【答案】C【解析】设当AB=8时,运动时间为t秒,①当点A在点B的左边时,由题意得6t+2t+8=8-(-16),解得:t=2②当点A在点B的右边时,6t+2t=8-(-16)+8,解得:t=4.故选:C.【变式训练2】如图,数轴上的点O和点A分别表示0和10,点P是线段OA上一动点.点P沿O A O→→以每秒2个单位的速度往返运动1次,B是线段OA的中点,设点P运动时间为t秒(t不超过10秒).若点P在运动过程中,当2PB=时,则运动时间t的值为()A.32秒或72秒B.32秒或72秒或132或172秒C.3秒或7秒D.3秒或132或7秒或172秒【答案】B【解析】∵数轴上的点O和点A分别表示0和10,∴OA=10∵B是线段OA的中点,∴OB=AB=15 2OA=①当点P由点O向点A运动,且未到点B时,如下图所示,2PB=此时点P 运动的路程OP=OB -PB=3,∴点P 运动的时间为3÷2=32s ;②当点P 由点O 向点A 运动,且已过点B 时,如下图所示,2PB =此时点P 运动的路程OP=OB+PB=7,∴点P 运动的时间为7÷2=72s ;③当点P 由点A 向点O 运动,且未到点B 时,如下图所示,2PB =此时点P 运动的路程为OA +AP=OA +AB -PB=13,∴点P 运动的时间为13÷2=132s ;④当点P 由点A 向点O 运动,且已过点B 时,如下图所示,2PB =此时点P 运动的路程为OA +AP=OA +AB +PB=17,∴点P 运动的时间为17÷2=172s ;综上所述:当2PB =时,则运动时间t 的值为32秒或72秒或132或172秒故选B .【变式训练3】已知数轴上有,,A B C 三点,分别表示数24,10--,10,若两只电子蚂蚁甲、乙分别从,A C 两点同时相向而行,甲的速度为4个单位长度/秒,乙的速度为6个单位长度/秒,(1)甲、乙两点在数轴上哪个点相遇?(2)多少秒后甲到,,A B C 三点的距离之和是40个单位长度?【答案】(1)-10.4;(2)2秒或5秒【解析】(1)设x 秒后甲与乙相遇,则4x +6x =34,解得x =3.4,4×3.4=13.6,-24+13.6=-10.4.故甲、乙在数轴上的-10.4相遇;(2)设y秒后甲到A,B,C三点的距离之和为40个单位,B点距A,C两点的距离为14+20=34<40,A点距B、C两点的距离为14+34=48>40,C点距A、B的距离为34+20=54>40,故甲应位于AB或BC之间.①AB之间时:4y+(14-4y)+(14-4y+20)=40解得y=2;②BC之间时:4y+(4y-14)+(34-4y)=40,解得y=5,综上:2秒或5秒后甲到,,A B C三点的距离之和是40个单位长度.类型四、综合问题例.如图,在数轴上点A、B表示的数分别为﹣2、4.(1)若点M到点A、点B的距离相等,那么点M所对应的数是.(2)若点M从点B出发,以1个单位/秒的速度向左运动,同时点N恰好从点A出发,以2个单位/秒的速度向右运动,设M、N两点在数轴上的点E相遇,则点E对应的数是.(3)若点D是数轴上一动点,当动点D到点A的距离与到点B的距离之和等于10时,则点D对应的数是.(4)若点M从A点出发以每秒5个单位长度的速度沿数轴向右匀速运动,点N从B点出发以每秒4个单位长度的速度沿数轴匀速运动,设点M、N同时出发,运动时间为t秒,经过多少秒后,M、N两点间的距离为24个单位长度.【答案】(1)1;(2)2;(3)﹣4或6;(4)经过30秒或103秒后,M、N两点间的距离为24个单位长度【解析】(1)∵点A、B对应的数分别为﹣2、4,∴AB=4-(-2)=6,∵点M到点A、点B的距离相等,∴MA=3,∴点M对应的数是-2+3=1;故答案为:1;(2)t秒后,点M表示4﹣t,点N表示﹣2+2t,若两点相遇则4﹣t=﹣2+2t,解得t=2,4﹣2=2,所以点E对应的数是2.故答案为:2;(3)设点D对应的数是x,∵AB=6,∴点D不可能在线段AB上.①点D在A的左边时,DA=﹣2﹣x,DB=4﹣x,(﹣2﹣x)+(4﹣x)=10,解得x=﹣4;②点D在B的右边时,DA=2+x,DB=x﹣4,(2+x)+(x﹣4)=10,解得x=6;故答案为:﹣4或6;(4)①若点N 向右运动,t 秒后,点M 对应的数是5t ﹣2,点N 对应的数是4+4t ,MN =|(5t ﹣2)﹣(4+4t )|=|t ﹣6|=24,解得t =30或﹣18(舍去);②若点N 向左运动,t 秒后,点M 对应的数是5t ﹣2,点N 对应的数是4﹣4t ,MN =|(5t ﹣2)﹣(4﹣4t )|=|9t ﹣6|=24,解得t =103或﹣2(舍去);答:经过30秒或103秒后,M 、N 两点间的距离为24个单位长度.故答案为:(1)1;(2)2;(3)﹣4或6;(4)经过30秒或103秒后,M 、N 两点间的距离为24个单位长度【变式训练1】已知若数轴上点A 、点B 表示的数分别为,a b ,则AB a b =-∣∣,线段AB 的中点表示的数为2a b+.如图,数轴上点A 表示的数为2-,点B 表示的数为8,点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t 秒(0)t >.(1)填空:①,A B 两点间的距离AB =______,线段AB 的中点表示的数为_____;②用含t 的代数式表示:t 秒后,点P 表示的数为_______;点Q 表示的数为______.(2)求当t 为何值时,,P Q 两点相遇,并写出相遇点所表示的数.(3)若点M 为PA 的中点,点N 为PB 的中点,点P 在运动过程中,线段MN 的长度是否发生变化?若变化,请说明理由;若不变,请求出线段MN 的长.【答案】(1)①10,3;②-2+3t ,8-2t ;(2)t =2,4;(3)5【解析】(1)①AB =8-(-2)=10,AB 中点为282-+=3,故答案为:10,3;②t 秒后,点P 表示的数为-2+3t ,点Q 表示的数为8-2t ,故答案为:-2+3t ,8-2t ;(2)∵当P 、Q 两点相遇时,P 、Q 表示的数相等∴-2+3t =8-2t ,解得:t =2,∴当t =2时,P 、Q 相遇,此时,-2+3t =-2+3×2=4,∴相遇点表示的数为4;(3)∵点M 表示的数为()2233222t t-+-+=-,点N 表示的数为()8233322t t+-+=+,∴MN =333222t t ⎛⎫+-- ⎪⎝⎭=5.故答案为:(1)①10,3;②-2+3t ,8-2t ;(2)t =2,4;(3)5【变式训练2】如图,数轴上原点为O ,A ,B 是数轴上的两点,点A 对应的数是a ,点B 对应的数是b ,且a ,b 满足2(2)40a b -++=,动点M ,N 同时从A ,B 出发,分别以1个单位/秒和3个单位/秒的速度沿着数轴正方向运动,设运动时间为x 秒(x >0).(1)A 、B 两点间的距离是;动点M 对应的数是(用含x 的代数式表示);动点N 对应的数是;(用含x 的代数式表示)(2)几秒后,线段OM 与线段ON 恰好满足3OM =2ON ?(3)若M ,N 开始运动的同时,R 从﹣1出发以2个单位/秒的速度沿着数轴正方向运动,当R 与M 不重合时,求MB NBRM-的值.【答案】(1)6,2x +,34x -;(2)143秒或29秒;(3)2或 2.-【解析】(1)∵a ,b 满足2(2)40a b -++=,∴a ﹣2=0,b +4=0,∴a =2,b =﹣4,∵点A 对应的数是a ,点B 对应的数是b ,AB =2﹣(﹣4)=6.当运动时间为x 秒时,动点M 对应的数是x +2,动点N 对应的数是3x ﹣4.故答案为:6;x +2;3x ﹣4.(2)由(1)中M ,N 所对的数得OM =x +2,ON =3x ﹣4,∵3OM =2ON ,∴|32|(2)34x x+=﹣,①3(2+x )=2(3x ﹣4),解得x =143;②3(2+x )=﹣2(3x ﹣4),解得x =29;综上,143或29秒后,线段OM 与线段ON 恰好满足3OM =2ON ;(3)由题意得动点R 所对的数为﹣1+2x ,|12)((|3||2)RM x x x +-+--==,(2)(4)6MB x x =+--=+,(43)(4)3NB x x =-+--=,∴MB﹣NB =6+x ﹣3x =6﹣2x ,∵2+x =﹣4+3x ,解得x =3,∴M 与N 相遇时时间为3s ,。
七年级动点问题大全例1 如图,在数轴上A点表示数a,B点表示数b,AB表示A点和B点之间的距离,且a、b满足|a+2|+(b+3a)2=0(1)求A、B两点之间的距离;(2)若在数轴上存在一点C,且AC=2BC,求C点表示的数;(3)若在原点O处放一挡板,一小球甲从点A处以1个单位/秒的速度向左运动;同时另一小球乙从点B处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反的方向运动,设运动的时间为t(秒),①分别表示甲、乙两小球到原点的距离(用t表示);②求甲、乙两小球到原点的距离相等时经历的时间.例2如图,有一数轴原点为O,点A所对应的数是-1 2,点A沿数轴匀速平移经过原点到达点B.(1)如果OA=OB,那么点B所对应的数是什么?(2)从点A到达点B所用时间是3秒,求该点的运动速度.(3)从点A沿数轴匀速平移经过点K到达点C,所用时间是9秒,且KC=KA,分别求点K和点C所对应的数。
例3动点A从原点出发向数轴负方向运动,同时,动点B也从原点出发向数轴正方向运动,3秒后,两点相距15个单位长度.已知动点A、B的速度比是1:4.(速度单位:单位长度/秒)(1)求出两个动点运动的速度,并在数轴上标出A、B两点从原点出发运动3秒时的位置;(2)若A、B两点从(1)中的位置同时向数轴负方向运动,几秒后原点恰好处在两个动点正中间;(3)在(2)中A、B两点继续同时向数轴负方向运动时,另一动点C同时从B 点位置出发向A运动,当遇到A后,立即返回向B点运动,遇到B点后立即返回向A点运动,如此往返,直到B追上A时,C立即停止运动.若点C一直以20单位长度/秒的速度匀速运动,那么点C从开始到停止运动,运动的路程是多少单位长度.例4已知数轴上两点A、B对应的数分别为-1、3,点P为数轴上一动点,其对应的数为x.(1)若点P到点A,点B的距离相等,求点P对应的数;(2)数轴上是否存在点P,使点P到点A、点B的距离之和为6?若存在,请求出x的值;若不存在,说明理由;(3)点A、点B分别以2个单位长度/分、1个单位长度/分的速度向右运动,同时点P以6个单位长度/分的速度从O点向左运动.当遇到A时,点P立即以同样的速度向右运动,并不停地往返于点A与点B之间,求当点A与点B重合时,点P 所经过的总路程是多少?例5数轴上两个质点A、B所对应的数为-8、4,A、B两点各自以一定的速度在上运动,且A点的运动速度为2个单位/秒.(1)点A、B两点同时出发相向而行,在原点处相遇,求B点的运动速度;(2)A、B两点以(1)中的速度同时出发,向数轴正方向运动,几秒钟时两者相距6个单位长度;(3)A、B两点以(1)中的速度同时出发,向数轴负方向运动,与此同时,C点从原点出发作同方向的运动,且在运动过程中,始终有CB:CA=1:2,若干秒钟后,C停留在-10处,求此时B点的位置?例6在数轴上,点A表示的数是-30,点B表示的数是170.(1)求A、B中点所表示的数.(2)一只电子青蛙m,从点B出发,以4个单位每秒的速度向左运动,同时另一只电子青蛙n,从A点出发以6个单位每秒的速度向右运动,假设它们在C点处相遇,求C点所表示的数.(3)两只电子青蛙在C点处相遇后,继续向原来运动的方向运动,当电子青蛙m 处在A点处时,问电子青蛙n处在什么位置?(4)如果电子青蛙m从B点处出发向右运动的同时,电子青蛙n也向右运动,假设它们在D点处相遇,求D点所表示的数例7、已知数轴上有A 、B、C三点,分别代表—24,—10,10,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,甲的速度为4个单位/秒。
七年级动点问题大全例1 如图,在数轴上A点表示数a,B点表示数b,AB表示A点和B点之间的距离,且a、b满足|a+2|+(b+3a)2=0(1)求A、B两点之间的距离;(2)若在数轴上存在一点C,且AC=2BC,求C点表示的数;(3)若在原点O处放一挡板,一小球甲从点A处以1个单位/秒的速度向左运动;同时另一小球乙从点B处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反的方向运动,设运动的时间为t(秒),①分别表示甲、乙两小球到原点的距离(用t表示);②求甲、乙两小球到原点的距离相等时经历的时间.例2如图,有一数轴原点为O,点A所对应的数是-1 2,点A沿数轴匀速平移经过原点到达点B.(1)如果OA=OB,那么点B所对应的数是什么?(2)从点A到达点B所用时间是3秒,求该点的运动速度.(3)从点A沿数轴匀速平移经过点K到达点C,所用时间是9秒,且KC=KA,分别求点K和点C所对应的数。
例3动点A从原点出发向数轴负方向运动,同时,动点B也从原点出发向数轴正方向运动,3秒后,两点相距15个单位长度.已知动点A、B的速度比是1:4.(速度单位:单位长度/秒)(1)求出两个动点运动的速度,并在数轴上标出A、B两点从原点出发运动3秒时的位置;(2)若A、B两点从(1)中的位置同时向数轴负方向运动,几秒后原点恰好处在两个动点正中间;(3)在(2)中A、B两点继续同时向数轴负方向运动时,另一动点C同时从B 点位置出发向A运动,当遇到A后,立即返回向B点运动,遇到B点后立即返回向A点运动,如此往返,直到B追上A时,C立即停止运动.若点C一直以20单位长度/秒的速度匀速运动,那么点C从开始到停止运动,运动的路程是多少单位长度.例4已知数轴上两点A、B对应的数分别为-1、3,点P为数轴上一动点,其对应的数为x.(1)若点P到点A,点B的距离相等,求点P对应的数;(2)数轴上是否存在点P,使点P到点A、点B的距离之和为6?若存在,请求出x的值;若不存在,说明理由;(3)点A、点B分别以2个单位长度/分、1个单位长度/分的速度向右运动,同时点P以6个单位长度/分的速度从O点向左运动.当遇到A时,点P立即以同样的速度向右运动,并不停地往返于点A与点B之间,求当点A与点B重合时,点P 所经过的总路程是多少?例5数轴上两个质点A、B所对应的数为-8、4,A、B两点各自以一定的速度在上运动,且A点的运动速度为2个单位/秒.(1)点A、B两点同时出发相向而行,在原点处相遇,求B点的运动速度;(2)A、B两点以(1)中的速度同时出发,向数轴正方向运动,几秒钟时两者相距6个单位长度;(3)A、B两点以(1)中的速度同时出发,向数轴负方向运动,与此同时,C点从原点出发作同方向的运动,且在运动过程中,始终有CB:CA=1:2,若干秒钟后,C停留在-10处,求此时B点的位置?例6在数轴上,点A表示的数是-30,点B表示的数是170.(1)求A、B中点所表示的数.(2)一只电子青蛙m,从点B出发,以4个单位每秒的速度向左运动,同时另一只电子青蛙n,从A点出发以6个单位每秒的速度向右运动,假设它们在C点处相遇,求C点所表示的数.(3)两只电子青蛙在C点处相遇后,继续向原来运动的方向运动,当电子青蛙m 处在A点处时,问电子青蛙n处在什么位置?(4)如果电子青蛙m从B点处出发向右运动的同时,电子青蛙n也向右运动,假设它们在D点处相遇,求D点所表示的数例7、已知数轴上有A、B、C三点,分别代表—24,—10,10,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,甲的速度为4个单位/秒。
北师大版七上第四章《基本平面图形》压轴题型:动点动态问题【知识梳理】解题方法:“解题思路的延续性”-----“复制粘贴,略作修改”【例题详解】例1.如图,点C在线段AB上,点M、N分别是AC、BC的中点.(1)若AC=9cm,CB=6cm,求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=acm,其它条件不变,你能猜想MN的长度吗?请直接写出你的答案.(3)若C在线段AB的延长线上,且满足AC−BC=b cm,M、N分别为AC、BC的中点,你能猜想MN的长度吗?请画出图形,写出你的结论,并说明理由.解析:(1)∵M、N分别是AC、BC的中点,∴MC=12AC、CN=12BC,∵AC=9cm,CB=6cm,∴MN=MC+CN=12AC+12BC=12(AC+BC)=12(9+6)=7.5cm;(2)∵M、N分别是AC、BC的中点,∴MC=12AC、CN=12BC,∵AC+CB=acm,∴MN=MC+CN=AC+CB=acm)=12a(cm);(3)MN=12b,如图,∵M、N分别是AC、BC的中点,∴MC=12AC、CN=12BC,∵AC−BC=b cm,∴MN=MC−CN=12AC−12BC=12(AC−BC)=12b.例2.如图1,点C在线段AB上,图中共有3条线段:AB、AC和BC,若其中有一条线段的长度是另一条线段长度的两倍,则称点C是线段AB的一个“二倍点”.(1)一条线段的中点这条线段的“二倍点”;(填“是”或“不是”)如图2,若线段AB=20cm,点M从点B的位置开始,以每秒2cm的速度向点A运动,当点M到达点A时停止运动,运动的时间为t秒.(2)问t为何值时,点M是线段AB的“二倍点”.(3)同时点N从点A的位置开始,以每秒1cm的速度向点B运动,并与点M同时停止.请直接写出点M是线段AN 的“二倍点”时t的值.解析:(1)因为线段的中点把该线段分成相等的两部分,该线段等于2倍的中点一侧的线段长.所以一条线段的中点是这条线段的“二倍点”.故答案为:是;(2)当AM=2BM 时,20﹣2t=2×2t ,解得:t=103; 当AB=2AM 时,20=2×(20﹣2t ),解得:t=5;当BM=2AM 时,2t=2×(20﹣2t ),解得:t=203;答:t 为103或5或203时,点M 是线段AB 的“二倍点”; (3)当AN=2MN 时,t=2[t ﹣(20﹣2t )],解得:t=8;当AM=2NM 时,20﹣2t=2[t ﹣(20﹣2t )],解得:t=7.5;当MN=2AM 时,t ﹣(20﹣2t )=2(20﹣2t ),解得:t=607;答:t 为7.5或8或607时,点M 是线段AN 的“二倍点”.例3.如图,己知数轴上点A 表示的数为8, B 是数轴上—点(B 在A 点左边),且AB=10,动点P 从点A 出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>O)秒.⑴写出数轴上点B 所表示的数 ;(2) 点P 所表示的数 ;(用含t 的代数式表示);(3) C 是AP 的中点,D 是PB 的中点,点P 在运动的过程中,线段CD 的长度是否发生化?若变化,说明理由,若不变,请你画出图形,并求出线段CD 的长。
1、数轴上两点间的距离可以用两点表示的数进行减法运算得到,例如:如图①,若点A、B在数轴上分别对应的数为a,b(a<b),则A、B之间的距离可以表示为AB=b-a。
请你用以上知识解决问题:如图②,一个点从数轴上的原点开始,先向左移动2个单位长度到达A点,再向右移动3个单位长度到达B 点,然后向右移动5个单位长度到达C点。
(1)请你在图②的数轴上表示出A,B,C三点的位置;(2)若点A以每秒1个单位长度的速度向左移动,同时,点B和点C分别以每秒2个单位长度和3个单位长度的速度向右移动,设移动时间为t秒。
①当t=2时,求A,B和A,C之间的距离;②试探究:在移动过程中,3AC-4AB的值是否随着时间t的变化而变化?若变化,请说明理由;若不变,请求其值。
2、如图,数轴上相邻两点之间的距离为1个单位长度,四个点A,B,C,D对应的数分别为a,b,c,d。
|a-b|表示点A和B之间的距离。
(1)|a-b|+|c-d|= ;(2)求3a-b-c-d;(3)若a+b+c+d=2;(4)在(3)的条件下,动点P从A 点出发以1个单位长度/秒的速度向左运到,动点Q从B点出发以4个单位长度/秒的速度向左运到,动点M从C点出发以2个单位长度/秒的速度向右运到,动点N从D出发以3个单位长度/秒的速度向右运到,P,Q,M,N四点同时出发,第几秒处,线段QM的三等分点恰好是线段PN 的中点?3、如图,点A,B和线段EF都在数轴上,点A,E,F,B对应的数字分别我-2,0,3,12.线段EF沿数轴上正方向以每秒2个单位长度的速度移动,移动时间为t秒。
(1)用含有t的代数式表示AE的长为;(2)当t= 秒时,AE+BF=14.(3)若点A、B与线段EF同时移动,点A以每秒3个单位长度的速度向数轴正方向移动,点B以每秒1个单位长度的速度向数轴负方向移动,在移动过程中,是否在某一时间t,使得AE=2BF?若存在,请求出t的值;若不存在,请说明理由。
第五章《一元一次方程》数轴动点类问题专练1.【探索新知】如图1,点C将线段AB分成AC和BC两部分,若BC=πAC,则称点C是线段AB的圆周率点,线段AC、BC称作互为圆周率伴侣线段.(1)若AC=3,则AB=.(2)若点D也是图1中线段AB的圆周率点(不同于C点),则AC DB.【深入研究】如图2,现有一个直径为1个单位长度的圆片,将圆片上的某点与数轴上表示1的点重合,并把圆片沿数轴向右无滑动地滚动1周,该点到达点C的位置.(3)若点M、N均为线段OC的圆周率点,求线段MN的长度;(4)在图2中,点P、Q分别从点O、C位置同时出发,分别以每秒2个单位长度、每秒1个单位长度的速度向右匀速运动,运动时间为t秒,点P追上点Q时,停止运动,当P、C、Q三点中某一点为其余两点所构成线段的圆周率点时,请直接写出t的值.2.已知,如图A,B分别为数轴上的两点,A点对应的数为﹣10,B点对应的数为90.(1)A,B两点间的距离为.(2)现在有一只电子蚂蚁P从A点出发,以2个单位/秒的速度向右运动,同时另一只电子蚂蚁Q恰好从B点出发,以3个单位/秒的速度向左运动.运动时间为t秒,用含t 的代数式表示:①点P在数轴上表示的数为.②若两只电子蚂蚁在数轴上的C点相遇,则C点对应的数是多少.(3)若当电子蚂蚁P从A点出发时,以4个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从B点出发,以6个单位/秒的速度向左运动,经过多长的时间两只电子蚂蚁在数轴上相距20个单位长度.3.如图,一根木棒放在数轴上,数轴的1个单位长度为1cm,木棒的左端与数轴上的点A 重合,右端与点B重合.(1)若将木棒沿数轴向右水平移动,则当它的左端移动到点B时,它的右端在数轴上所对应的数为24;若将木棒沿数轴向左水平移动,则当它的右端移动到点A时,它的左端在数轴上所对应的数为6,由此可得到木棒长为cm;(2)由(1)的启发,请你借助“数轴”这个工具解决下列问题:一天,小丽问马老师年龄时,马老师说:“我像你这么大时,你只是1岁;等你到我这个年龄的时候,我已经52岁了.”请求出小丽和马老师现在多少岁了?4.如图,数轴上点A对应的有理数为12,点P以每秒1个单位长度的速度从点A出发,点Q以每秒2个单位长度的速度从原点O出发,且P、Q两点同时向数轴正方向运动.设运动时间为t秒.(1)填空:当t=2时,P,Q两点对应的有理数分别为,,PQ=.(2)当PQ=8时,求t的值.5.阅读理解:如图①,若线段AB在数轴上,A、B两点表示的数分别为a和b(b>a),则线段AB的长(点A到点B的距离)可表示为AB=b﹣a.请用上面材料中的知识解答下面的问题:如图②,一个点从数轴的原点开始,先向左移动2cm到达P点,再向右移动7cm到达Q 点,用1个单位长度表示1cm.(1)请你在图②的数轴上表示出P,Q两点的位置;(2)若将图②中的点P向左移动xcm,点Q向右移动3xcm,则移动后点P、点Q表示的数分别为多少?并求此时线段PQ的长.(用含x的代数式表示);(3)若P、Q两点分别从第(1)问标出的位置开始,分别以每秒2个单位和1个单位的速度同时向数轴的正方向运动,设运动时间为t(秒),当t为多少时PQ=2cm?6.如图,已知点A,点B是直线上的两点,AB=12厘米,点P,点Q是直线上的两个动点,点P的速度为1厘米/秒,点Q的速度为2厘米/秒.点P,Q分别从点A,点B同时相向出发沿直线运动t秒:(1)求P,Q两点刚好重合时的t值;(2)当P,Q两点重合后继续沿原来方向前进,求相距6厘米时的t值;(3)当点Q离A点的距离为2厘米时,求点P离B点的距离.7.如图,某小学将一块梯形空地改成宽为30m的长方形运动场地,要求面积不变.若在改造后的运动场地,小王、小李两人同时从点A出发,小李沿着长方形边顺时针跑,小王则是逆时针跑,并且小王每秒比小李多跑2m,经过10秒钟他们相遇.(1)求长方形的长;(2)求小王、小李两人的速度.8.如图,数轴上的三点A、B、C分别表示有理数a、b、c.(O为原点)(1)a﹣b0,a+c0,b﹣c0.(用“<”或“>”或“=”号填空)化简:|a﹣b|﹣|a+c|+|b﹣c|(2)若数轴上两点A、B对应的数分别为﹣3、﹣1,点P为数轴上一动点,其对应的数为x.①若点P到点A、点B的距离相等,则点P对应的数x为;②若点A、点B分别以2个单位长度/秒和0.5个单位长度/秒的速度同时向右运动,点P以6个单位长度/秒的速度同时从原点O向左运动.当点A与点B之间的距离为1个单位长度时,求点P所对应的数x是多少?9.如图,已知数轴上有A、B两点(点A在点B的左侧),且两点距离为8个单位长度,动点P从点A出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t >0)秒.(1)图中如果点A、B表示的数是互为相反数,那么点A表示的数是;(2)当t=3秒时,点A与点P之间的距离是个长度单位;(3)当点A表示的数是﹣3时,用含t的代数式表示点P表示的数;(4)若点P到点A的距离是点P到点B的距离的2倍,请直接写出t的值.10.已知数轴上三点A、O、B表示的数分别为4、0、﹣2,动点P从A点出发,以每秒3个单位的速度沿数轴向左匀速运动.(1)当点P到点A的距离与点P到点B的距离相等时,点P在数轴上表示的数是.(2)另一动点R从点B出发,以每秒2个单位的速度沿数轴向左匀速运动,若点P、R 同时出发,问点P运动多长时间追上点R?(3)若点M为AP的中点,点N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若发生变化,请你说明理由;若不变,请你画出图形,并求出线段MN的长度.参考答案1.解:(1)∵AC=3,BC=πAC∴BC=3π∴AB=AC+BC=3π+3故答案为:3π+3.(2)∵BC=πAC∴当BD=AC时,有AD=πBD即点D是线段AB的圆周率点故答案为:=.(3)由题意可知,点C表示的数是π+1若点M、N均为线段OC的圆周率点,不妨设M点离O点近,且OM=x,则x+πx=π+1解得:x=1∴MN=π+1﹣1﹣1=π﹣1.(4)由题意可知,点P、C、Q所表示的数分别为:2t、π+1、π+1+t当P、C、Q三点中某一点为其余两点所构成线段的圆周率点时,有以下四种情况:①点P在点C左侧,PC=πCQ∴π+1﹣2t=πt解得:t=;②点P在点C左侧,πPC=CQ∴π(π+1﹣2t)=t解得:t=;③点P在点C、点Q之间,且πPC=PQ∴π(2t﹣π﹣1)=π+1+t﹣2t解得:t=④点P在点C、点Q之间,且PC=πPQ∴2t﹣π﹣1=π(π+1+t﹣2t)解得:t=.∴符合题意的t的值为:、、、.2.解:(1)由题意,得:90﹣(﹣10)=100故答案是:100;(2)①点P表示的数是:2t﹣10.故答案是:2t﹣10;②设t秒后P、Q相遇,∴3t+2t=100,解得t=20;∴此时点P走过的路程=2×20=40,∴此时C点表示的数为﹣10+40=30.答:C点对应的数是30;(3)设经过x秒两只电子蚂蚁在数轴上相距20个单位长度,相遇前:4x﹣6x+100=20解得x=40.相遇后:6x﹣4x﹣100=20解得x=60综上所述,经过40或60秒,两只电子蚂蚁在数轴上相距20个单位长度.3.解:(1)由数轴观察知三根木棒长是24﹣6=18(cm),则此木棒长为:18÷3=6cm,故答案为:6.(2)设马老师今年x岁,因为马老师和小丽的年龄和是:52+1=53(岁),则小丽的岁数是53﹣x岁;所以,x﹣(53﹣x)+x=523x﹣53=52,x=35,小丽的年龄是:53﹣35=18(岁)答:小丽现在18岁,马老师现在35岁.4.解:(1)∵2×2=4,12+2×1=14,∴当t=2时,P,Q两点对应的有理数分别是14,4,∴PQ=14﹣4=10.故答案为:14;4;10.(2)当运动t秒时,P、Q两点对应的有理数分别为12+t,2t.①当点P在点Q右侧时:∵PQ=8,∴(12+t)﹣2t=8,解得t=4.②当点P在点Q的左侧时:∵PQ=8,∴2t﹣(12+t)=8,解得t=20.综上所述,当PQ=8时,t的值为4或20.5.解:(1)P,Q两点的位置如图所示:(2)由题意得,点P所表示的数为:﹣2﹣x;点Q所表示的数为:5+3xPQ=5+3x﹣(﹣2﹣x)=7+4x;∴移动后点P、点Q表示的数分别为:(﹣2﹣x)和:(5+3x);(3)由题意得运动时间为t(秒)后点P和点Q表示的数分别为:﹣2+2t和5+t,则由PQ=2cm得:|5+t﹣(﹣2+2t)|=2∴|7﹣t|=2∴7﹣t=2或7﹣t=﹣2∴t=5或t=9.∴当t为5或9时PQ=2cm.6.解:(1)由题意,得:t+2t=12,解得t=4.故P,Q两点刚好重合时的t值为4秒;(2)因为运动时间为t秒,则2(t﹣4)+(t﹣4)=6,3t﹣12=6,t=6.故相距6厘米时的t值为6秒;(3)当点Q离A点的距离为2厘米时,分两种情况:①点Q在A点的右边,因为AB=12cm,此时t=5,P点经过了5厘米,点P离B点的距离为7厘米;②点Q在A点的左边,因为点Q运动了(12+2)÷2=7(秒),此时t=7,P点经过了7厘米,所以点P离B点的距离为12﹣7=5(厘米).综上所说,点P离B点的距离为7厘米或者5厘米.7.解:(1)长方形的长为:(60+30)×30÷2÷30=45m;(2)设小李的速度是xm/s,则小王的速度是(x+2)m/s,由题意得10(x+x+2)=(45+30)×2,解得:x=6.5,则x+2=8.5.答:小李的速度是6.5m/s,则小王的速度是8.5m/s.8.解:(1)a﹣b<0,a+c<0,b﹣c<0;故答案为:<,<,<;|a﹣b|﹣|a+c|+|b﹣c|=2c;(2)①数轴上两点A、B对应的数分别为﹣3、﹣1,点P到点A、点B的距离相等,x==﹣2,②设运动t秒时,点A与点B之间的距离为1个单位长度,当A没追上B之前,2t﹣0.5t=2﹣1解得:t=,则点P表示×(﹣6)=﹣4;当A追上B之后,2t﹣0.5t=2+1解得:t=2,则点P表示2×(﹣6)=﹣12.9.解:(1)∵A、B两点间的距离为8个单位长度,且点A、B表示的数是互为相反数,点A在点B的左侧,∴点A表示的数是﹣4,点B表示的数是4.故答案为:﹣4.(2)AP=2t=2×3=6.故答案为:6.(3)∵点A表示的数为﹣3,动点P从点A出发,以每秒2个单位长度的速度沿数轴向右匀速运动,∴AP=2t,∴点P表示的数为2t﹣3.(4)设点A表示的数为a,则点B表示的数为a+8,∴当运动时间为t秒时,点P表示的数为a+2t,∴AP=2t,BP=|(a+8)﹣(a+2t)|=|8﹣2t|.∵AP=2BP,∴2t=2|8﹣2t|,即2t=16﹣4t或2t=4t﹣16,解得:t=或t=8.∴当点P到点A的距离是点P到点B的距离的2倍时,t的值为或8.10.解:(1)∵A,B表示的数分别为4,﹣2,∴AB=6,∵PA=PB,∴点P表示的数是1,故答案为:1;(2)设P点运动x秒追上R点,由题意得:2x+6=3x 解得:x=6答:P点运动6秒追上R点.(3)MN的长度不变.①当P点在线段AB上时,如图示:∵M为PA的中点,N为PB的中点∴又∵MN=MP+NP∴∵AP+BP=AB,AB=6∴②当P点在线段AB的延长线上时,如图示:∵MN=MP﹣NP,AB=AP﹣BP=6∴=.。
第2章《有理数及其运算》——数轴动点问题压轴专题(三)1.一辆货车从仓库出发去送货,向东走了2千米到达超市A,继续向东走了2.5千米到达超市B,然后向西走了8.5千米到达超市C,继续向西走了5千米到达超市D,此时发现车上还有距离仓库仅1千米的超市E的货还未送,于是开往超市E,最后回到仓库.(1)超市C在仓库的东面还是西面?距离仓库多远?(2)超市B距超市D多远?(3)如果货车每千米耗油0.08升,那么货车在这次送货中共耗油多少升?2.在数轴上有M、N两点,M点表示的数分别为m,N点表示的数是n(n>m),则线段MN的长(点M到点N的距离)可表示为MN=n﹣m,请用上面材料中的知识解答下面的问题:一个点从数轴上的原点O开始,先向左移动3cm到达A点,再向右移动2cm 到达B点,然后向右移动4cm到达C点,用1cm表示1个单位长度.(1)请你在数轴上表示出A、B、C三点的位置,并直接写出线段AC的长度.(2)若数轴上有一点D,且AD=4cm,则点D表示的数是什么?(3)若将点A向右移动xcm,请用代数式表示移动后的点所表示的数.(4)若点P以从点A向原点O移动,同时点Q以与点P相同的速度从原点O向点C 移动,试探索:PQ的长是否会发生改变?如果不变,请求出PQ的长.如果改变,请说明理由.3.如图,已知数轴上A、B两点所表示的数分别为﹣2和6.(1)求线段AB的长;(2)已知点P为数轴上点A左侧的一个动点,且M为PA的中点,N为PB的中点.请你画出图形,并探究MN的长度是否发生改变?若不变,求出线段MN的长;若改变,请说明理由.4.一辆货车从百货大楼出发负责送货,向东走了4千米到达小明家,继续向东走了1.5千米到达小红家,然后向西走了8.5千米到达小刚家,最后返回百货大楼.(1)以百货大楼为原点,向东为正方向,1个单位长度表示1千米,请你在数轴上标出小明、小红、小刚家的位置.(小明家用点A表示,小红家用点B表示,小刚家用点C 表示)(2)小明家与小刚家相距多远?(3)若货车每千米耗油1.5升,那么这辆货车此次送货共耗油多少升?5.如图所示,一个点从数轴上的原点开始,先向右移动3个单位长度,再向左移动5个单位长度,可以看到终点表示的数是﹣2,已知点A、B是数轴上的点,请参照图并思考,完成下列各题.(1)如果点A表示数﹣3,将点A向右移动7个单位长度,那么终点B表示的数是,A、B两点间的距离是;(2)如果点A表示数3,将A点向左移动7个单位长度,再向右移动5个单位长度,那么终点B表示的数是,A、B两点间的距离为;(3)如果点A表示数﹣4,将A点向右移动16个单位长度,再向左移动25个单位长度,那么终点B表示的数是,A、B两点间的距离是;(4)一般地,如果A点表示的数为m,将A点向右移动n个单位长度,再向左移动p 个单位长度,那么请你猜想终点B表示什么数?A、B两点间的距离为多少?6.如图,数轴的单位长度为1.(1)如果点A,D表示的数互为相反数,那么点B表示的数是多少?(2)如果点B,D表示的数互为相反数,那么图中表示的四个点中,哪一点表示的数的绝对值最大?为什么?(3)当点B为原点时,若存在一点M到A的距离是点M到D的距离的2倍,则点M 所表示的数是.7.已知在纸面上有一数轴(如图),折叠纸面.(1)若表示数1的点与表示数﹣1的点重合,则表示﹣2的点与表示数的点重合;(2)若表示数﹣1的点与表示数3的点重合,回答以下两个问题:①表示数5的点与表示数的点重合;②若数轴上A、B两点之间的距离为m(A在B的左侧),且A、B两点经折叠后重合,直接写出A、B两点表示的数(用含m的式子表示)是多少?8.如图所示,一个点从数轴上的原点开始,先向右移动2个单位长度,再向左移动5个单位长度,可以看到终点表示是﹣3,已知A、B是数轴上的点,请参照如图并思考,完成下列各题.(1)如果点A表示的数﹣1,将点A向右移动4个单位长度,那么终点B表示的数是.A、B两点间的距离是.(2)如果点A表示的数2,将点A向左移动6个单位长度,再向右移动3个单位长度,那么终点B表示的数是.A、B两点间的距离是.(3)如果点A表示的数m,将点A向右移动n个单位长度,再向左移动p个单位长度,那么请你猜想终点B表示的数是.A、B两点间的距离是.9.如图,在数轴上有三点A、B、C,请据图回答下列问题:(1)将点B向左平移3个单位后,三个点所表示的数谁最小?是多少?(2)怎样移动A、B两个点中的一个,才能使这两点表示的数为互为相反数?有几种移动方法?(3)怎样移动A、B、C中的两个点,才能使三个点所表示的数相同,有几种移动方法?10.如图.在一条不完整的数轴上一动点A向左移动4个单位长度到达点B,再向右移动7个单位长度到达点C.(1)若点A表示的数为0,求点B、点C表示的数;(2)若点C表示的数为5,求点B、点A表示的数;(3)如果点A、C表示的数互为相反数,求点B表示的数.11.如图,点A、B都在数轴上,O为原点.(1)点B表示的数是;(2)若点B以每秒2个单位长度的速度沿数轴向右运动,则2秒后点B表示的数是;(3)若点A、B分别以每秒1个单位长度、3个单位长度的速度沿数轴向右运动,而点O不动,t秒后,A、B、O三个点中有一个点是另外两个点为端点的线段的中点,求t 的值.12.如图,在数轴上有三个点A、B、C,完成系列问题:(1)将点B向右移动六个单位长度到点D,在数轴上表示出点D.(2)在数轴上找到点E,使点E到A、C两点的距离相等.并在数轴上标出点E表示的数.(3)在数轴上有一点F,满足点F到点A与点F到点C的距离和是9,则点F表示的数是.13.在学习绝对值后,我们知道,|a|表示数a在数轴上的对应点与原点的距离.如:|5|表示5在数轴上的对应点到原点的距离.而|5|=|5﹣0|,即|5﹣0|表示5、0在数轴上对应的两点之间的距离.类似的,有:|5﹣3|表示5、3在数轴上对应的两点之间的距离;|5+3|=|5﹣(﹣3)|,所以|5+3|表示5、﹣3在数轴上对应的两点之间的距离.一般地,点A、B在数轴上分别表示有理数a、b,那么A、B之间的距离可表示为|a﹣b|.请根据绝对值的意义并结合数轴解答下列问题:(1)数轴上表示2和3的两点之间的距离是;数轴上P、Q两点的距离为3,点P 表示的数是2,则点Q表示的数是.(2)点A、B、C在数轴上分别表示有理数x、﹣3、1,那么A到B的距离与A到C的距离之和可表示为(用含绝对值的式子表示);满足|x﹣3|+|x+2|=7的x的值为.(3)试求|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣100|的最小值.14.邮递员骑摩托车从邮局出发,先向东骑行2km到达A村,继续向东骑行3km到达B村,然后向西骑行9km到C村,最后回到邮局.(1)以邮局为原点,以向东方向为正方向,用1个单位长度表示1km,请你在数轴上表示出A、B、C三个村庄的位置;(2)C村离A村有多远?(3)若摩托车每1km耗油0.03升,这趟路共耗油多少升?15.已知:在纸面上有一数轴,如图所示,点O为原点,点A1、A2、A3、…分别表示有理数1、2、3、…,点B1、B2、B3、…分别表示有理数﹣1、﹣2、﹣3、….(1)折叠纸面:①若点A1与点B1重合,则点B2与点重合;②若点B1与点A2重合,则点A5与有理数对应的点重合;③若点B1与A3重合,当数轴上的M、N(M在N的左侧)两点之间的距离为9,且M、N两点经折叠后重合时,则M、N两点表示的有理数分别是,;(2)拓展思考:点A在数轴上表示的有理数为a,用|a|表示点A到原点O的距离.①|a﹣1|是表示点A到点的距离;②若|a﹣1|=3,则有理数a=;③若|a﹣1|+|a+2|=5,则有理数a=.16.如图,点O为数轴原点,点A表示的数是4,将线段OA沿数轴移动,移动后的线段记为O′A′.(1)当点O′恰好是OA的中点时,数轴上点A′表示的数为.(2)设点A的移动距离AA′=x.①当O′A=1时,求x的值;②D为线段AA′的中点,点E在线段OO′上,且OE=OO′,当点D,E所表示的数互为相反数时,求x的值.17.如图所示,数轴上从左到右的三个点A,B,C所对应数的分别为a,b,c.其中点A、点B两点间的距离AB的长是2019,点B、点C两点间的距离BC的长是1000,(1)若以点C为原点,直接写出点A,B所对应的数;(2)若原点O在A,B两点之间,求|a|+|b|+|b﹣c|的值;(3)若O是原点,且OB=19,求a+b﹣c的值.18.元旦放假时,小明一家三口一起乘小轿车去探望爷爷、奶奶和姥爷、姥姥.早上从家里出发,向东走了5千米到超市买东西,然后又向东走了2.5千米到爷爷家,下午从爷爷家出发向西走了10千米到姥爷家,晚上返回家里.(1)若以小明家为原点,向东为正方向,用1个单位长度表示1千米,请将超市、爷爷家和姥爷家的位置在下面数轴上分别用点A、B、C表示出来;(2)超市和姥爷家相距多少千米?(3)若小轿车每千米耗油0.08升,求小明一家从出发到返回家,小轿车的耗油量.19.已知数轴上A,B,C三点对应的数分别为﹣1、3、5,点P为数轴上任意一点,其对应的数为x.点A与点P之间的距离表示为AP,点B与点P之间的距离表示为BP.(1)若AP=BP,则x=;(2)若AP+BP=8,求x的值;(3)若点P从点C出发,以每秒3个单位的速度向右运动,点A以每秒1个单位的速度向左运动,点B以每秒2个单位的速度向右运动,三点同时出发.设运动时间为t秒,试判断:4BP﹣AP的值是否会随着t的变化而变化?请说明理由.20.规定:如果点A、点B在数轴上表示的数分别是a、b,那么|a﹣b|表示A、B两点间距离.(1)数轴上表示﹣3的点与表示4的点相距个单位;(2)若|a﹣3|=2,|b+2|=1,且数a、b在数轴上表示的数分别是点A、点B,求A、B 两点间的最大距离和最小距离;(3)数轴上点A表示8,点B表示﹣8,点C在点A与点B之间,A点以每秒0.5个单位的速度向左运动,点B以每秒1.5个单位的速度向右运动,点C以每秒3个单位的速度先向右运动碰到点A后立即返回向左运动,碰到点B后又立即返回向右运动,碰到点A后又立即返回向左运动,如此往返,三个点同时开始运动,问经过多少秒三个点聚于一点?这一点表示的数是哪个数?点C在整个运动过程中,共移动了多少个单位?。
专题03数轴上动点问题综合的三种考法【知识点精讲】1.数轴上两点间的距离数轴上A 、B 两点表示的数为分别为a 、b ,则A 与B 间的距离AB=|a -b|;2.数轴上点移动规律数轴上点向右移动则数变大(增加),向左移动数变小(减小);当数a 表示的点向右移动b 个单位长度后到达点表示的数为a+b ;向左移动b 个单位长度后到达点表示的数为a -b.类型一、求运动的时间()2,C D 两点间距离=____;,B C 两点间距离=;()2,C D 之间的距离为3.51 2.5-=,B ,C 两点间距离为()12--()a b -﹣在数轴上表示的数,【答案】(1)a=12,b=﹣20;(2)12﹣6t,﹣20+2t;((1)b=,c=.故答案是:1或9;(3)①点A 表示的数是-3-mt ;点B 表示的数是-1+2t ;点C 所表示的数是4+5t .故答案是:-3-mt ;-1+2t ;4+5t ;②∵点A 表示的数是-3-mt ;点B 表示的数是-1+2t ;点C 所表示的数是4+5,∴d 1=4+5t-(-1+2t)=3t+5,d 2=-1+2t-(-3-mt)=(m+2)t+2,∴2d 1-d 2=2(3t+5)-[(m+2)t+2]=(4-m )t+12,∵2d 1-d 2的值不会随着时间t 的变化而改变∴4-m=0,∴m=4,故当m=4时,2d 1-d 2的值不会随着时间t 的变化而改变,此时2d 1-d 2的值为12.【点睛】本题考查了数轴上两点间的距离及动点问题,掌握距离公式及平移规律是解决问题的关键.本题体现了数形结合的数学思想.例2.如图,在数轴上A 点表示的数是-8,B 点表示的数是2.动线段4CD =(点D 在点C 的右侧),从点C 与点A 重合的位置出发,以每秒2个单位的速度向右运动,运动时间为t 秒.(1)①已知点C 表示的数是-6,试求点D 表示的数;②用含有t 的代数式表示点D 表示的数;(2)当2AC BD =时,求t 的值.(3)试问当线段CD 在什么位置时,AD BC +或AD BC -的值始终保持不变?请求出它的值并说明此时线段CD 的位置.【答案】(1)①-2;②24t -;(2)6或2;(3)当线段CD 在线段AB 上时或当点B 在线段CD 内,AD BC +值保持不变,值为14,当线段CD 在点B 的右侧时AD BC -的值保持不变,值为14【分析】(1)①已知点C 表示的数是-6,4CD =(点D 在点C 的右侧),即可得到点D 的坐标;②点C 与点A 重合的位置出发,以每秒2个单位的速度向右运动,运动时间为t 秒.AC=2t,AD=2t+4,即可表示点D 表示的数;(2)先求出2AC t =,再分当点D 在点B 左侧和当点D 在点B 右侧讨论,列方程求解即可;(3)分当线段CD 在线段AB 上时(图1)或当点B 在线段CD 内时(图2)和当线段CD 在点B 的右侧时(图3)讨论,求出AD BC +或AD BC -的值即可得出结论.【详解】解:(1)①已知点C 表示的数是-6,4CD =(点D 在点C 的右侧),∴点D 表示的数是-2;②∵点C 从与点A 重合的位置出发,以每秒2个单位的速度向右运动,运动时间为t 秒,∴AC=2t,AD=2t+4,∵2AC BD =,∴()22224t t =--⎡⎤⎣⎦∴2t =②当点D 在点B 右侧(图2,3)∵2AC BD =,∴()22242t t =--⎡⎤⎣⎦∴6t =综上所述,6t =或2t =(3)①当线段CD 在线段AB 上时(图1)或当点AD BC +的值保持不变,且14AD BC AB CD +=+=②当线段CD 在点B 的右侧时(图3)AD BC -的值保持不变,且AD BC AC CD BC -=+-【点睛】此题主要考查了数轴和一元一次方程的应用决问题的关键.【变式训练1】如图:在数轴上A 点表示数,a B 在B 左边两个单位长度处,C 在B 右边5个单位处A B C三点,点P从数轴上表示4的点开始往左运动,速度为1例.如图所示,在数轴上有,,个单位/s,运动时间为ts.(1)操作一:折叠纸面,使表示数1的点与表示数﹣1的点重合,则此时表示数数的点重合;的左侧),求A,B两点所表示的数分别是多少?③在②的条件下,在数轴上找到一点P,设点P表示的数为x.当PA+PB=12时,直接写出x的值.【答案】(1)-4(2)①-5;②A、B两点表示的数分别是-3,7;③x的值为-4或8.【分析】(1)先求出中心点,再求出对应的数即可;(2)①求出中心点是表示2的点,再根据对称求出即可;②求出中心点是表示2的点,求出A、B到表示2的点的距离是5,即可求出答案;③根据点P在数轴上的位置,分类讨论,当点P在点A的左侧时,当点P在点A、B之间时,当点P在点A的右侧时,根据各种情形求解即可.【详解】(1)解:∵折叠纸面,使数字1表示的点与-1表示的点重合,可确定中心点是表示0的点,∴4表示的点与-4表示的点重合,故答案为∶-4;(2)解:①∵折叠纸面,使表示数6的点与表示数﹣2的点重合,可确定中心点是表示2的点,∴表示数9的点与表示数-5的点重合;故答案为∶-5;②∵折叠后,数轴上的A,B两点也重合,且A,B两点之间的距离为10(点A在点B的左侧),∴A、B两点距离中心点的距离为10÷2=5,∵中心点是表示2的点,∴A、B两点表示的数分别是-3,7;③当点P在点A的左侧时,∵PA+PB=12,∴-3-x+7-x=12,解得x=-4;当点P在点A、B之间时,此时PA+PB=12不成立,故不存在点P在点A、B之间的情形;当点P在点A的右侧时,∵PA+PB=12,∴x-(-3)+x-7=12,解得x=8,综上x的值为-4或8.【点睛】本题考查了数轴的应用,能求出折叠后的中心点的位置是解此题的关键.两点之间的距离表示两点对应的数分别为P,Q停止运动求出运动时的运动方向和运动速度已知,利用路程=速度的值比较即可得出结论,如图2所示,当N在A点左侧,M在A点右侧时,x=时,点P到点A的距离PA=______;此时点(1)当6(2)当点P运动到B点时,点Q同时从A点出发,以每秒4移动几秒时恰好与点。
第05讲 难点探究专题:线段上的动点问题(4类热点题型讲练)目录【考点一 线段上含动点求线段长问题】【考点二 线段上含动点求定值问题】【考点三 线段上含动点求时间问题】【考点四 线段上含动点的新定义型问题】【考点一 线段上含动点求线段长问题】例题:(23-24七年级上·重庆沙坪坝·期末)1.点C 在线段AB 上满足2AC BC =,点D 和点E 是线段AB 上的两动点(点D 在点E 的左侧)满足21cm DE =,36cm AB =.(1)当点E 是BC 的中点时,求AD 的长度;(2)当53AD CE =时,求CD 的长度.【变式训练】(2023七年级上·全国·专题练习)2.(1)如图,已知12cm AB =,点C 为线段AB 上的一个动点,D 、E 分别是AC 、BC 的中点;①若点C 恰为AB 的中点,则DE = cm ;②若4cm AC =,则DE = cm ;(2)如图,点C 为线段AB 上的一个动点,D 、E 分别是AC BC 、的中点;若AB a =,则DE = ;(23-24七年级上·浙江宁波·期末)3.如图,已知线段12AB =,点C 为线段AB 上一动点,点D 在线段CB 上且满足:1:2CD DB =.(1)当点C 为AB 中点时,求CD 的长.(2)若E 为AD 中点,当2DE CE =时,求AC 的长.(23-24七年级上·河北承德·期末)4.应用题:如图,已知线段12AB =cm ,点C 为线段AB 上的一个动点,点D 、E 分别是AC 和BC 的中点.(1)若4AC =,求DE 的长;(2)若C 为AB 的中点,则AD 与AB 的数量关系是______;(3)试着说明,不论点C 在线段AB 上如何运动,只要不与点A 和B 重合,那么DE 的长不变.(2023七年级上·全国·专题练习)5.如图,P 是线段AB 上一点,18cm AB =,C ,D 两动点分别从点P ,B 同时出发沿射线BA 向左运动,到达点A 处即停止运动.(1)若点C ,D 的速度分别是1cm/s ,2cm/s .①若2cm 14cm AP <<,当动点C ,D 运动了2s 时,求AC PD +的值;②若点C 到达AP 中点时,点D 也刚好到达BP 的中点,求:AP PB ;(2)若动点C ,D 的速度分别是1cm/s ,3cm/s ,点C ,D 在运动时,总有3PD AC =,求AP 的长度.(23-24七年级上·河南周口·阶段练习)6.综合与实践已知数轴上A 、B 两点所表示的数分别为3-和9.(1)观察发现:直接写出线段AB=__________.(2)情境探究:情境①:当点P为线段AB的中点时,且M为PA的中点,N为PB的中点,请你借助直尺在图1中画出相应的图形,并写出线段MN=__________;情境②:当点P为线段AB上的一个动点时,如图2,且M为PA的中点,N为PB的中点,试通过计算判断MN的长度是否发生变化?(3)迁移类比:当点P为数轴上点A左侧的一个动点时,如图3,且M为PA的中点,N为PB的中点,直接写出线段MN的长.【考点二线段上含动点求定值问题】例题:(23-24七年级上·河南许昌·期末)7.如图,数轴上点A,B表示的有理数分别为6-,3,点P是射线AB上的一个动点(不与点A,B重合),M是线段AP靠近点A的三等分点,N是线段BP靠近点B的三等分点.(1)若点P表示的有理数是0,那么MN的长为___________;若点P表示的有理数是6,那么MN的长为___________.(2)点P在射线AB上运动(不与点A,B重合)的过程中,MN的长是否发生改变?若不改变,请写出求MN的长的过程;若改变,请说明理由.【变式训练】(23-24七年级上·湖南湘西·期末)8.如图,M 是线段AB 上一动点,沿A B A ®®以1cm/s 的速度往返运动1次,N 是线段BM 的中点,5cm AB =,设点M 运动时间为t 秒()010t ££.(1)当2t =时,①AM =______cm ,②此时线段BN 的长度=______cm ;(2)用含有t 的代数式表示运动过程中AM 的长;(3)在运动过程中,若AM 中点为C ,则CN 的长度是否变化?若不变,求出CN 的长;若变化,请说明理由.(23-24七年级上·江苏南通·阶段练习)9.如图,B 是线段AD 上一动点,沿A D A ®®的路线以2cm /s 的速度往返运动1次,C 是线段BD 的中点,10cm AD =,设点B 的运动时间为()s 010t t ££.(1)当2t =时,则线段AB =________cm ,线段CD =________cm ;(2)当t 为何值时,AB CD =?(3)点B 从点A 出发的同时,点E 也从点A 出发,以cm /s(02)a a <<的速度向点D 运动,若当运动时间t 满足05t ££时,线段EC 的长度始终是一个定值,求这个定值和a 的值.(23-24七年级上·全国·单元测试)10.A ,B 两点在数轴上的位置如图所示,其中点 A 对应的有理数为4-,且10AB =.动点 P 从点 A 出发,以每秒2个单位长度的速度沿数轴正方向运动,设运动时间为t 秒(t 0>).(1)当1t =时,AP 的长为 ,点 P 表示的有理数为 ;(2)当2PB =时,求t 的值;(3)M 为线段AP 的中点,N 为线段PB 的中点.在点 P 运动的过程中,线段MN 的长度是否发生变化?若变化,请说明理由;若不变,求出线段MN 的长.(23-24七年级上·福建福州·期末)11.如图,线段24AB =,动点P 从A 出发,以每秒2个单位长度的速度沿射线AB 运动,M 为AP 的中点.点P 的运动时间为x 秒.x=时,求BM的长;(1)若5(2)当P在线段AB上运动时,2BM PB-是定值吗? 如果是,请求出该定值,如果不是,请说明理由;(3)当P在射线AB上运动时,N为BP的中点,求MN的长度.(23-24七年级上·河南南阳·期末)AB=,C、D是线段AB上的两个动点(点C在点D的左侧,且都12.如图,已知线段16不与端点A、B重合),2CD=,E为BC的中点.AC=时,求DE的长;(1)如图1,当4(2)如图2,F为AD的中点.、在线段AB上移动过程中,线段EF的长度是否会发生变化,若会,请说明理由;①点C D若不会,请仅以图2为例求出EF的长;CF=时,请直接写出线段DE的长.②当0.5【考点三线段上含动点求时间问题】例题:(22-23七年级上·江苏宿迁·阶段练习)AE=,点B、C、D在线段AD上,且13.如图1,已知线段48cmAB BC CD DE=.:::1:2:1:2(1)BC =__________cm ,CD =__________cm ;(2)已知动点M 从点A 出发,以2cm /s 的速度沿A B C D E ----向点E 运动;同时动点N 从点E 出发,以1cm /s 的速度沿E D C B A ----向点A 运动,当点M 到达点E 后立即以原速返回,直到点N 到达点A ,运动停止;设运动的时间为t .①求t 为何值,线段MN 的长为12cm ;②如图2,现将线段AE 折成一个长方形ABCD (点A 、E 重合),请问:是否存在某一时刻,以点A 、B 、M 、N 为顶点的四边形面积与以点C 、D 、M 、N 为顶点的四边形面积相等,若存在,求出t 的值;若不存在,请说明理由.【变式训练】(23-24七年级上·浙江宁波·期末)14.定义:在同一直线上有,,A B C 三点,若点C 到,A B 两点的距离呈2倍关系,即2AC BC =或2BC AC =,则称点C 是线段AB 的“倍距点”.(1)线段AB 的中点 该线段的“倍距点”;(填“是”或者“不是”)(2)已知9AB =,点C 是线段AB 的“倍距点”,直接写出AC = .(3)如图1,在数轴上,点A 表示的数为2,点B 表示的数为20,点C 为线段AB 中点.①现有一动点P 从原点O 出发,以每秒2个单位的速度沿数轴向右匀速运动.设运动时间为t 秒(0)t >,求当t 为何值时,点P 为AC 的“倍距点”?②现有一长度为2的线段MN (如图2,点M 起始位置在原点),从原点O 出发,以每秒1个单位的速度沿数轴向右匀速运动.当点N 为MC 的“倍距点”时,请直接写出t 的值.【考点四 线段上含动点的新定义型问题】例题:(23-24七年级上·福建龙岩·期末)15.已知线段20AB =,点C 在线段AB 上,且35AC AB =.(1)求线段AC,CB的长;=.(2)点P是线段AB上的动点,线段AP的中点为D,设AP a①请用含有a的式子表示线段PC,DC的长;②若三个点D,P,C中恰有一点是其它两点所连线段的中点,则称D,P,C三点为“和谐点”,求使得D,P,C三点为“和谐点”的a的值.【变式训练】(22-23七年级上·山东青岛·期末)AB AC和BC,若其中一条16.如图1,点C在线段AB上,图中有三条线段,分别为线段,线段的长度是另外一条线段长度的2倍,则称点C是线段AB的“巧点”.(1)线段的中点______这条线段的“巧点”,线段的三等分点_______这条线段的“巧点”(填“是”或“不是”);AB=,点C为线段AB的“巧点”,则AC=_______;(2)若线段18cmAB=,动点P从点A出发,以2cm/s的速度沿AB向点B运动,点(3)如图2,已知.18cmQ从点B出发,以1cm/s的速度沿BA向点A运动,点P、Q同时出发,当其中一点到达终点时,运动停止,设运动的时间为t秒,当t为何值时,点P为线段AQ的“巧点”?并说明理由.(23-24七年级上·安徽·期末)17.(1)【新知理解】如图1,点C在线段AB上,图中有3条线段,分别是AC,BC,AB,若其中任意一条线段是另一条线段的两倍,则称点C是线段AB的“妙点”.根据上述定义,线段的三等分点______这条线段的“妙点”.(填“是”或“不是”)(2)【新知应用】-,点B对应的数为7,若点C在线段AB 如图2,A,B为数轴上的两点,点A对应的数为5上,且点C为线段AB的“妙点”,当点C在数轴的负半轴上时,点C对应的数为______.(3)【拓展探究】已知A,B为数轴上的两点,点A对应的数为a,点B对应的数为b,且a,b满足()2-++=,动点P,Q分别从A,B两点同时出发,相向而行,若点P的运动速度840a b为每秒2个单位长度,点Q的运动速度为每秒3个单位长度,当点P,Q相遇时,运动停止.求当点P恰好为线段AQ的“妙点”时,点P在数轴上对应的数.1.(1)9cm (2)33cm 2【分析】本题考查线段的和差,线段的中点.(1)由2AC BC =,36cm AC BC AB +==可得24cm AC =,12cm BC =,由点E 是BC 的中点,得到16cm 2CE BC ==,从而15cm CD DE CE =-=,9cm AD AC CD =-=;(2)设cm CE x =,则55cm 33AD CE x ==,()524cm 3CD AC AD x =-=-,根据21cm CD CE DE +==即可得到方程,求解即可解答.【详解】(1)∵2AC BC =,36cm AC BC AB +==,∴24cm AC =,12cm BC =,∵点E 是BC 的中点,∴()11126cm 22CE BC ==´=,∵21cm DE =,∴()21615cm CD DE CE =-=-=,∴()24159cm AD AC CD =-=-=;(2)设cm CE x =,则55cm 33AD CE x ==,()524cm 3CD AC AD x =-=-,∵21cm CD CE DE +==,∴524213x x -+=,解得92x =,∴()559332424cm 3322CD x =-=-´=.2.(1)①6;② 6;(2)2a【分析】本题考查了两点间的距离、线段的和差、线段的中点等知识点,掌握同一条直线上的两条线段的中点间的距离等于这两条线段和的一半成为解题的关键.(1)①根据线段的中点性质可得162AC CB AB ===、132CD AC ==、132CE CB ==,然后根据线段的和差即可解答;②由线段的和差可得1248CB =-=,再根据线段的和差可得122CD AC ==,142CE CB ==,然后根据线段的和差即可解答;(2)根据线段的中点性质可得AD DC CE EB ==,,再根据线段的和差即可解答.【详解】解:(1)①∵12cm AB =,点C 恰为AB 的中点,∴()162AC CB AB cm ===,∵D 、E 分别是AC 、BC 的中点,∴()132CD AC cm ==,()132CE CB cm ==,∴336(cm)DE =+=;②∵12cm AB =,4cm AC =,∴()1248CB cm =-=,∵D 、E 分别是AC 、BC 的中点,∴()122CD AC cm ==,()142CE CB cm ==,∴246(cm)DE =+=,故答案为:6,6;(2)∵点D 、E 分别是AC 、BC 的中点,∴AD DC CE EB ==,,∴()111222DE DC CE AC BC AB a =+=+==.故答案为:12a .3.(1)2(2)6【分析】本题考查了两点间的距离,解题的关键是正确的识别图形.(1)根据线段中点的性质计算即可;(2)根据线段中点的性质和给出的数据,结合图形计算.【详解】(1)解:∵点C 为AB 中点,12AB =∴162BC AB ==,∵:1:2CD DB =∴123CD BC ==;(2)解:如图,∵E 为AD 中点,∴12AE DE AD ==∵2DE CE =,∴CD CE =,∵12CD DB =::,∴22BD CD CE DE ===,∴143AE DE BD AB ====,∴122CE DE ==,∴426AC AE CE =+=+=.4.(1)6cmDE =(2)14AD AB =(3)见解析【分析】此题考查了线段的和差计算,线段中点的计算,解题的关键是熟练掌握线段之间的数量关系.(1)首先根据线段的和差关系求出8BC AB AC =-=,然后根据线段中点的概念求出2DC =,4CE =,进而求和可解;(2)根据线段中点的概念求解即可;(3)根据线段中点的概念求解即可.【详解】(1)Q 4AC =,\8BC AB AC =-=,Q 点D 是AC 的中点,\2DC =,Q 点E 是BC 的中点,\4CE =,\6DE DC CE =+=(cm );(2)Q C 为AB 的中点,\12AC AB =,Q 点D 是AC 的中点,\11112224AD AC AB AB ==´=;(3)Q 点D 是AC 的中点,\12DC AC =,Q 点E 是BC 的中点,\12CE CB =,\1116222DE DC CE AC CB AB =+=+==(cm ),\DE 的长不变.5.(1)①12cm ;②1:2;(2)9cm 2.【分析】(1)①先计算BD PC ,,再计算AC PD +即可;②利用中点的性质求解即可;(2)设运动时间为s t ,则cm PC t =,3cm BD t =,得到3BD PC =,又由3PD AC =,得到3PB AP =,进而得到14AP AB =即可求解;本题考查了线段上动点问题、求线段的长度,充分利用中点和线段的倍数关系是解题的关键.【详解】(1)解:①由题意得:()224cm BD =´=,()122cm PC =´=,()182412cm AC PD AB PC BD \+=--=--=;②∵点C 到达AP 中点时,点D 也刚好到达BP 的中点,设运动时间为t ,则:22AP PC t ==,24BP BD t ==,:2:41:2AP PB t t \==;(2)解:设运动时间为s t ,则cm PC t =,3cm BD t =,3BD PC \=,3PD AC=Q ()3333PB PD BD PC AC PC AC AP \=+=+=+=,()19cm 42AP AB \==.6.(1)12(2)情境①:图见解析,6;情境②:MN 的长度不变.(3)6【分析】本题考查了两点间的距离,线段的中点,理解中点的定义是解答本题的关键.(1)根据两点间的距离求解即可;(2)情境①:先根据点P 为线段AB 的中点求出6AP BP ==,再根据M 为PA 的中点,N 为PB 的中点求出3MP =,3NP =,然后相加即可;情境②:根据M 为PA 的中点,N 为PB 的中点求出12MP AP =,12NP BP =,然后相加即可;(3)根据中点的定义得12PM AP =,12PN BP =,然后根据MN PN PM =-求解即可.【详解】(1)()9312MN =--=.故答案为:12;(2)情境①:如图,∵点P 为线段AB 的中点,∴162AP BP AB ===.∵M 为PA 的中点,N 为PB 的中点,∴132MP AP ==,132NP BP ==,∴6MN MP NP =+=.故答案为:6;情境②:∵M 为PA 的中点,N 为PB 的中点,∴12MP AP =,12NP BP =,∴6MN MP NP =+=.∴()11622MN MP NP AP BP AB =+=+==,∴MN 的长度不变;(3)∵M 为PA 的中点,N 为PB 的中点,∴12PM AP =,12PN BP =,∴()11622MN PN PM PB PA AB =-=-==.7.(1)6;6(2)不会,MN 的长为定值6【分析】本题主要考查了两点间的距离,熟练掌握两点间的距离公式是解题的关键.(1)根据题意求出AP BP 、的长度,根据三等分点的定义求出NP MP 、的长度,即可得到答案;(2)分63a -<<及3a >两种情况分类讨论即可得到答案.【详解】(1)解:若点P 表示的有理数是0,根据题意可知:6,3AP BP ==,Q M 是线段AP 靠近点A 的三等分点,N 是线段BP 靠近点B 的三等分点,224,233MP AP NP BP \====,6MN MP NP \=+=;若点P 表示的有理数是6,12,3AP BP \==,Q M 是线段AP 靠近点A 的三等分点,N 是线段BP 靠近点B 的三等分点,228,233MP AP NP BP \====,6MN MP NP \=-=;故答案为:6;6;(2)解:MN 的长不会发生改变;设点P 表示的有理数为a (6a >-且3a ¹),当63a -<<时,6AP a =+,3BP a =-,Q M 是线段AP 靠近点A 的三等分点,N 是线段BP 靠近点B 的三等分点,2222(6),(3)3333MP AP a NP BP a \==+==-,6MN MP NP \=+=;当3a >时,6AP a =+,3BP a =-,Q M 是线段AP 靠近点A 的三等分点,N 是线段BP 靠近点B 的三等分点,2222(6),(3)3333MP AP a NP BP a \==+==-,6MN MP NP \=-=;综上所述,点P 在射线AB 上运动(不与点A ,B 重合)的过程中,MN 的长不会发生改变,长是定值6.8.(1)①2,②1.5;(2)当05t ££时,cm AM t =,当510t <£时,()10cm AM t =-;(3)CN 的长度不变,为2.5cm【分析】本题主要考查了线段的和差计算,线段中点的定义,列代数式:(1)①根据路程等于速度乘以时间进行求解即可;②根据线段的和差关系和线段中点的定义可得答案;(2)分当05t ££时,当510t <£时,两种情况讨论求解即可;(3)根据线段中点的定义得到1122CM AM NM BM ==,,再由线段的和差关系可得1 2.5cm 2CN CM MN AB =+==.【详解】(1)解;①由题意得,212cm AM =´=;②∵5cm AB =,2cm AM =,∴3cm BM AB AM =-=,∵N 是线段BM 的中点,∴1 1.5cm 2BN BM ==;(2)解:当05t ££时,cm AM t =,当510t <£时,()10cm AM t =-;(3)解:∵点C 和点N 分别是AM BM ,的中点,∴1122CM AM NM BM ==,,∴111 2.5cm 222CN CM MN AM BM AB =+=+==,∴CN 的长度不变,为2.5cm .9.(1)4;3(2)5S 3或25S 3(3)1a =,定值为5【分析】本题考查线段动点问题,线段中点性质,线段和差关系(1)根据2t =可求出AB 的长以及BC 的长,再由C 是线段BD 的中点,即可求得;(2)分情况讨论,当A D ®时,存在AB CD =;当D A ®时,存在AB CD =,考虑两种情况即可;(3)根据点B 和点E 的速度,可以大概画出示意图,从而表示出线段EC ,即可求得.【详解】(1)解:∵10cm AD =,点B 以2cm /s 的速度运动,∴2t =时,4cm AB =,6cm BD =,∵C 是线段BD 的中点,∴3cmBC CD ==故答案为:43,(2)解:∵C 是线段BD 的中点,∴12BC CD BD ==,∵AB CD =,∴AB BC CD ==,∴310AB =,10cm 3AB CD ==,当点B 从A D ®时,()1052s 33t =¸=当点B 从D A ®时,∵点B 沿A D A ®®的路线需要()()1010210s +¸=故()52510s 33t =-=综上所述,当t 为5s 3或25s 3时,AB CD =.(3)解:如图,由题意得:点E 的速度是cm /s a ,点B 速度为2cm /s∵02a <<,∴点B 在点E 右侧,由题意可知2,,102AB t AE at BD t===-∴2EB t at=-∵C 是线段BD 的中点∴152BC BD t ==-即25EC EB BC t at t=+=-+-∵线段EC 的长度始终是一个定值∴()15EC a t =-+故10a -=解得1a =,定值为510.(1)2,2-;(2)4t =或6t =;(3)5MN =【分析】本题主要是考查数轴上两点之间的距离,线段的和差运算和线段的中点的定义,只要能够画出图形就可以轻松解决,但是要注意考虑问题要全面.(1)根据点P 的运动速度,即可求出;(2)当2PB =时,要分两种情况讨论,点P 在点B 的左侧或是右侧;(3)分两种情况结合中点的定义可以求出线段的长度不变.【详解】(1)解:因为点 P 的运动速度每秒2个单位长度,所以当1t =时,AP 的长为2,因为点 A 对应的有理数为4-,2AP =,所以点P 表示的有理数为2-;(2)解:当2PB =,要分两种情况讨论,点P 在点B 的左侧时,因为10AB =,所以8AP =,所以4t =;点P 在点B 的是右侧时,12AP =,所以6t =;(3)解:MN 长度不变且长为5.理由如下:当P 在线段AB 上时,如图,∵M 为线段AP 的中点,N 为线段PB 的中点,∴12MP AP =,12NP BP =,∴ ()1122MN AP BP AB =+=,∵10AB =,∴5MN =.当P 在线段AB 的延长线上时,如图,同理可得:()11522MN MP NP AP BP AB =-=-==;综上:5MN =.11.(1)19cm(2)2BM PB -是定值,定值为24(3)12cm【分析】本题考查了与线段中点有关的计算,线段的和与差.明确线段之间的数量关系是解题的关键.(1)当5x =时,2510AP =´=,则152AM AP ==,根据BM AB AM =-,计算求解即可;(2)由题意知,12AM AP =,BM AB AM =-,根据()()22BM PB AB AM AB AP AB -=---=,求解作答即可;(3)由题意知,分当P 在线段AB 上运动时,如图1,根据()1122MN MP NP AP BP AB =+=+=,计算求解即可;当P 在线段AB 的延长线上运动时,如图2,根据()1122MN MP NP AP BP AB =-=-=,计算求解即可.【详解】(1)解:当5x =时,2510AP =´=,∵M 为AP 的中点,∴152AM AP ==,∴19BM AB AM =-=,∴BM 的长为19.(2)解:当P 在线段AB 上运动时, 2BM PB -是定值;由题意知,12AM AP =,BM AB AM =-,∴()()22224BM PB AB AM AB AP AB AP AB AP AB -=---=--+==,∴2BM PB -是定值,定值为24;(3)解:当P 在线段AB 上运动时,如图1,图1由题意知,1122PN BP MP AP ==,,∴()1112cm 22MN MP NP AP BP AB =+=+==;当P 在线段AB 的延长线上运动时,如图2,图2由题意知,1122PN BP MP AP ==,,()1112cm 22MN MP NP AP BP AB =-=-==;综上所述,MN 的长度为12cm .12.(1)4(2)①不会发生变化,EF 的长是7;②4.5或5.5【分析】本题考查两点间的距离,(1)先求出12BC =,再根据线段中点的定义得到6CE =,最后根据DE CE CD =-可得答案;(2)①根据()12EF AB AB CD =-+可得结论;②分两种情况讨论即可;熟练掌握线段中点的定义与线段的和差是解题关键.【详解】(1)解:∵4AC =,16AB =,∴16412BC AB AC =-=-=,∵E 为BC 的中点,∴1112622CE BC ==´=,∵2CD =,∴624DE CE CD =-=-=,∴DE 的长为4;(2)①∵E 是BC 的中点,F 是AD 的中点,16AB =,2CD =,∴12AF FD AD ==,12CE BE BC ==,∴EF FD DE=+1122AD BC CD =+-()12AD BD CD CD =++-1122AB CD =-1116222=´-´7=,∴线段EF 的长度不会发生变化,7EF =;②当点F 在点C 的左侧时,∵0.5FC =,2CD =,∴ 2.5FD FC CD =+=,由①知:7EF =,∴7 2.5 4.5DE EF FD =-=-=;当点F 在点C 的右侧时,∵0.5FC =,CD =2,∴ 1.5FD CD FC =-=,由①知:7EF =,∴7 1.5 5.5DE EF FD =-=-=,综上所述,当0.5CF =时,线段DE 的长为4.5或5.5.13.(1)16,8(2)①12t s =或20s 或36s ;②存在,8t s=【分析】本题主要考查了与线段有关的动点问题, 线段等分点的相关计算,列一元一次方程解决实际问题等知识,解决问题的关键是弄清运动的过程和画出图形.(1)根据比值列方程或直接列乘积式求得结果;(2)①分为相遇前,相遇后以及M 点返回三种情形,通过线段图列方程求得;②分为相遇前(点M 在BC 上,N 在AD 上),此时CM AN =即可列出方程求得,当M 点返回时,点M 在AD 上,点N 在BC 上,此时AM CN =,列出方程求得,【详解】(1)解:248161212BC cm =´=+++,14881212CD cm =´=+++,故答案是:16,8;(2)①当M 、N 第一次相遇时,481612t s ==+,当M 到达E 点时,48242t s ==,如图1,当016t <<时,21248t t ++=,∴12t =,如图2,当1224t <<时,21248t t -+=,∴20t =,如图3,当2448t <<时,24812t t =-+,∴36t =,综上所述:12t s =或20s 或36s ;②如图4,当016t <<时,由AN CM =得,242t t -=,∴8t =,如图5,当2432t £<时,24824t t -=-,∴24t =,此时不构成四边形,舍去综上所述:8t s =.14.(1)不是(2)3或6或9或18(3)①52或4或10;②5t =或8或10或13【分析】本题考查数轴上两点间的距离,线段的中点,线段的和差,(1)根据中点的意义可得AP BP =,不满足“倍距点”定义,即可作答;(2)分情况讨论当点C 在线段AB 上时,当点C 在线段AB 延长线上时,当点C 在线段BA 延长线上时,再根据“倍距点”的定义求解即可;(3)①由题意得,2OP t =,表示出22,211AP t CP t =-=-,根据点P 为AC 的“倍距点”,可得2AP CP =或2CP AP =,得出222211t t -=-或211222t t -=-,解绝对值方程求解即可;②由题意得点M 表示的数为t ,点N 表示的数为2t +,表示出2119NC t t =+-=-,根据点N 为MC 的“倍距点”,可得2NC MN =或2MN NC =,进而得出94t -=或91t -=,解绝对值方程求解即可;熟练掌握知识点,准确理解新定义是解题的关键.【详解】(1)假设点P 是线段AB 的中点,∴AP BP =,∴线段AB 的中点不是该线段的“倍距点”,故答案为:不是;(2)当点C 在线段AB 上时,9AB AC BC =+=,若2AC BC =,则6AC =,若2BC AC =,则3AC =;当点C 在线段AB 延长线上时,2AC BC =,则9AB BC ==,则18AC =当点C 在线段BA 延长线上时,2BC AC =,则9AB AC ==;故答案为:3或6或9或18;(3)∵在数轴上,点A 表示的数为2,点B 表示的数为20,点C 为线段AB 中点,∴点C 表示的数为11,①由题意得,2OP t =,∴22,211AP t CP t =-=-,若点P 为AC 的“倍距点”,则2AP CP =或2CP AP =,即222211t t -=-,解得4t =或10;或211222t t -=-,解得 2.5t =(负舍);综上,t 的值为52或4或10;②由题意得点M 表示的数为t ,点N 表示的数为2t +,∴2119NC t t =+-=-,∵点N 为MC 的“倍距点”,∴则2NC MN =或2MN NC =,即94t -=或91t -=,解得5t =或8或10或13.15.(1)12cm AC =,8cmCB =(2)①当点P 在线段AC 上时,()12cm PC a =-,112cm 2DC a æö=-ç÷èø;当点P 在线段BC 上时,()12cm PC a =-,112cm 2DC a æö=-ç÷èø;②a 的值为8或16【分析】本题考查两点间的距离,熟练掌握线段中点的定义和线段的和差是解题关键.(1)由线段15cm AB =,点C 在线段AB 上,且35AC AB =,可得答案;(2)①分当点P 在线段AC 上时和当点P 在线段BC 上两种情况分别计算即可;②分情况列方程可得a 的值.【详解】(1)解:解:∵线段20cm AB =,点C 在线段AB 上,且35AC AB =,∴32012cm 5AC =´=,2208cm 5CB =´=;(2)解:①当点P 在线段AC 上时,∵点D 是AP 的中点,∴1122AD AP a ==,()12cm PC AC AP a =-=-,112cm 2DC AC AD a æö=-=-ç÷èø;当点P 在线段BC 上时,∵点D 是AP 的中点,∴1122PD AP a ==,()12cm PC AP AC a =-=-,112cm 2DC AC AD a æö=-=-ç÷èø;②当点P 在线段AC 上时,则DP PC =,∴1122a a =-,解得:8a =,当点P 在线段BC 上时,则DC PC =,∴112122a a -=-,解得:16a =,综上:a 的值为8或16.16.(1)是;是(2)6cm 或9cm 或12cm (3)18s 7或18s 5或9s 2,理由见解析【分析】本题主要考查了一元一次方程的应用,线段中点的有关计算,解题的关键是理解题意,注意进行分类讨论.(1)根据线段“巧点”的定义进行判断即可;(2)根据点C 为线段AB 的中点或三等分点时,点C 是线段AB 的“巧点”进行解答即可;(3)分三种情况:当13AP AQ =时,当12AP AQ =时,当23AP AQ =时,分别列出方程求出结果即可.【详解】(1)解:根据“巧点”定义可知,线段的中点是这条线段的“巧点”,线段的三等分点是这条线段的“巧点”;故答案为:是;是.(2)解:∵当点C 为线段AB 的中点或三等分点时,点C 是线段AB 的“巧点”,∴()11189cm 22AC AB ==´=,或()11186cm 33AC AB ==´=,或()221812cm 33AC AB ==´=.故答案为:6cm 或9cm 或12cm .(3)解:由题意得:2AP t =,BQ t =,18AQ t =-,t 的范围应该在0~9秒之间,∵点P 为AQ 的巧点,∴点P 应该在点Q 的左边,t 的范围应该在0~6秒之间,当13AP AQ =时,P 为AQ 的巧点,∴()1218t 3t =- ,解得:187t =;当12AP AQ =时,P 为AQ 的巧点,∴()t 21218t =-,解得:185t =;当23AP AQ =时,P 为AQ 的巧点,∴()2218t 3t =- ,解得:92t =;所以当t 为18s 7或18s 5或9s 2时,点Р为线段AQ 的“巧点”.17.(1)是;(2)1-;(3)163或4【分析】本题主要考查一元一次方程的应用,解题的关键是正确的理解题意和分类讨论的思想的应用.(1)根据“妙点”的定义即可判断;(2)根据点C 为线段AB 的“妙点”,且点C 在数轴的负半轴上,则2BC AC =,设C 为x ,建立方程求解即可;(3)设当点P 恰好为线段AQ 的“妙点”时,,P Q 的运动时间为t ,13AP AQ =或13PQ AQ =,利用方程的思想解得t ,继而求得点P 在数轴上对应的数.【详解】(1)如图1,∵C 为线段AB 的三等分点,∴2BC AC =,∴点C 为线段AB 的“妙点”故答案为:是(2)如图2,∵点A 对应的数为5-,点B 对应的数为7,∴7(5)12AB =--=,又点C 为线段AB 的“妙点”,当点C 在数轴的负半轴上时,设C 为x ,∵2BC AC =,∴72(5)x x -=+,解得:1x =-,点C 对应的数为1-,故答案为:1-(3)()2840a b -++=Q ,∴8,4a b ==-,∴8(4)12AB =--=设当点P 恰好为线段AQ 的“妙点”时,,P Q 的运动时间为t ,则2,3,123,125AP t BQ t AQ t PQ t ===-=-,依题意:13AP AQ =或13PQ AQ =,即12(123)3t t =-或1125(123)3t t -=-,解得:43t =或2t =,又当点P ,Q 相遇时,2312t t +=,得125t =,即1205t ££,当43t =时,48233AP =´=,故点P 在数轴上对应的数为816833-=,当2t =时,224AP =´=,故点P 在数轴上对应的数为844-=,故答案为:163或4。
北师大版七上数学上册动点题集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-七年级数学上册动点问题1、如图,有一数轴原点为O,点A所对应的数是-1 12,点A沿数轴匀速平移经过原点到达点B.(1)如果OA=OB,那么点B所对应的数是什么?(2)从点A到达点B所用时间是3秒,求该点的运动速度.(3)从点A沿数轴匀速平移经过点K到达点C,所用时间是9秒,且KC=KA,分别求点K和点C所对应的数。
2、动点A从原点出发向数轴负方向运动,同时,动点B也从原点出发向数轴正方向运动,3秒后,两点相距15个单位长度.已知动点A、B的速度比是1:4.(速度单位:单位长度/秒)(1)求出两个动点运动的速度,并在数轴上标出A、B两点从原点出发运动3秒时的位置;(2)若A、B两点从(1)中的位置同时向数轴负方向运动,几秒后原点恰好处在两个动点正中间;(3)在(2)中A、B两点继续同时向数轴负方向运动时,另一动点C同时从B 点位置出发向A运动,当遇到A后,立即返回向B点运动,遇到B点后立即返回向A点运动,如此往返,直到B追上A时,C立即停止运动.若点C一直以20单位长度/秒的速度匀速运动,那么点C从开始到停止运动,运动的路程是多少单位长度.3、已知数轴上两点A、B对应的数分别为-1、3,点P为数轴上一动点,其对应的数为x.(1)若点P到点A,点B的距离相等,求点P对应的数;(2)数轴上是否存在点P,使点P到点A、点B的距离之和为6若存在,请求出x的值;若不存在,说明理由;(3)点A、点B分别以2个单位长度/分、1个单位长度/分的速度向右运动,同时点P以6个单位长度/分的速度从O点向左运动.当遇到A时,点P立即以同样的速度向右运动,并不停地往返于点A与点B之间,求当点A与点B重合时,点P所经过的总路程是多少4、数轴上两个质点A、B所对应的数为-8、4,A、B两点各自以一定的速度在上运动,且A点的运动速度为2个单位/秒.(1)点A、B两点同时出发相向而行,在原点处相遇,求B点的运动速度;(2)A、B两点以(1)中的速度同时出发,向数轴正方向运动,几秒钟时两者相距6个单位长度;(3)A、B两点以(1)中的速度同时出发,向数轴负方向运动,与此同时,C 点从原点出发作同方向的运动,且在运动过程中,始终有CB:CA=1:2,若干秒钟后,C停留在-10处,求此时B点的位置5、在数轴上,点A表示的数是-30,点B表示的数是170.(1)求A、B中点所表示的数.(2)一只电子青蛙m,从点B出发,以4个单位每秒的速度向左运动,同时另一只电子青蛙n,从A点出发以6个单位每秒的速度向右运动,假设它们在C 点处相遇,求C点所表示的数.(3)两只电子青蛙在C点处相遇后,继续向原来运动的方向运动,当电子青蛙m处在A点处时,问电子青蛙n处在什么位置(4)如果电子青蛙m从B点处出发向右运动的同时,电子青蛙n也向右运动,假设它们在D点处相遇,求D点所表示的数6、已知数轴上有A、B、C三点,分别代表—24,—10,10,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,甲的速度为4个单位/秒。
⑴问多少秒后,甲到A、B、C的距离和为40个单位⑵若乙的速度为6个单位/秒,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,问甲、乙在数轴上的哪个点相遇⑶在⑴⑵的条件下,当甲到A、B、C的距离和为40个单位时,甲调头返回。
问甲、乙还能在数轴上相遇吗若能,求出相遇点;若不能,请说明理由。
7、已知数轴上两点A、B对应的数分别为—1,3,点P为数轴上一动点,其对应的数为x。
⑴若点P到点A、点B的距离相等,求点P对应的数;⑵数轴上是否存在点P,使点P到点A、点B的距离之和为5若存在,请求出x 的值。
若不存在,请说明理由⑶当点P以每分钟一个单位长度的速度从O点向左运动时,点A以每分钟5个单位长度向左运动,点B一每分钟20个单位长度向左运动,问它们同时出发,几分钟后P点到点A、点B的距离相等8、如图1,已知数轴上有三点A、B、C,AB= 12AC,点C对应的数是200.(1)若BC=300,求点A对应的数;(2)如图2,在(1)的条件下,动点P、Q分别从A、C两点同时出发向左运动,同时动点R从A点出发向右运动,点P、Q、R的速度分别为10单位长度每秒、5单位长度每秒、2单位长度每秒,点M为线段PR的中点,点N为线段RQ 的中点,多少秒时恰好满足MR=4RN(不考虑点R与点Q相遇之后的情形);(3)如图3,在(1)的条件下,若点E、D对应的数分别为-800、0,动点P、Q分别从E、D两点同时出发向左运动,点P、Q的速度分别为10单位长度每秒、5单位长度每秒,点M为线段PQ的中点,点Q在从是点D运动到点A的过程中, 32QC-AM的值是否发生变化若不变,求其值;若不变,请说明理由.9、数轴上点A对应的数是-1,B点对应的数是1,一只小虫甲从点B出发沿着数轴的正方向以每秒4个单位的速度爬行至C点,再立即返回到A点,共用了4秒钟.(1)求点C对应的数;(2)若小虫甲返回到A点后再作如下运动:第1次向右爬行2个单位,第2次向左爬行4个单位,第3次向右爬行6个单位,第4次向左爬行8个单位,…依次规律爬下去,求它第10次爬行所停在点所对应的数;(3)若小虫甲返回到A后继续沿着数轴的负方向以每秒4个单位的速度爬行,这时另一小虫乙从点C出发沿着数轴的负方向以每秒7个单位的速度爬行,设甲小虫对应的点为E点,乙小虫对应的点为F点,设点A、E、F、B所对应的数分别是xA、xE、xF、xB,当运动时间t不超过1秒时,则下列结论:①|xA-xE|+|xE-xF|-|xF-xB|不变;②|xA-xE|-|xE-xF|+|xF-xB|不变;其中只有一个结论正确,请你选择出正确的结论,并求出其定值.10、思考下列问题并在横线上填上答案.思考下列问题并在横线上填上答案.(1)数轴上表示-3的点与表示4的点相距________个单位.(2)数轴上表示2的点先向右移动2个单位,再向左移动5个单位,最后到达的点表示的数是______.(3)数轴上若点A表示的数是2,点B与点A的距离为3,则点B表示的数是_____.(4)若|a-3|=2,|b+2|=1,且数a、b在数轴上表示的数分别是点A、点B,则A、B两点间的最大距离是______,最小距离是_________.(5)数轴上点A表示8,点B表示-8,点C在点A与点B之间,A点以每秒个单位的速度向左运动,点B以每秒个单位的速度向右运动,点C以每秒3个单位的速度先向右运动碰到点A后立即返回向左运动,碰到点B后又立即返回向右运动,碰到点A后又立即返回向左运动…,三个点同时开始运动,经过_________ 秒三个点聚于一点,这一点表示的数是________,点C在整个运动过程中,移动了_______个单位.11、已知数轴上两点A、B对应的数分别为-1、3,数轴上一动点P对应的数为x.(1)若点P到点A,点B的距离相等,求点P对应的数;(2)当点P以每分钟1个单位长度的速度从O点向左运动时,点A以每分钟5个单位长度的速度向左运动,点B以每分钟20个单位长度的速度向左运动,问几分钟时点P到点A,点B的距离相等.12、如图,在射线OM上有三点A、B、C,满足OA=20cm,AB=60cm,BC=10cm (如图所示),点P从点O出发,沿OM方向以1cm/s的速度匀速运动,点Q从点C出发在线段CO上向点O匀速运动(点Q运动到点O时停止运动),两点同时出发.(1)当PA=2PB时,点Q运动到的位置恰好是线段AB的三等分点,求点Q的运动速度.(2)若点Q运动速度为3cm/s,经过多长时间P、Q两点相距70cm.(3)当点P运动到线段AB上时,分别取OP和AB的中点E、F,求 OB-AP/EF 的值.13、甲、乙物体分别从相距70米的两处同时相向运动.甲第1分钟走2米,以后每分钟比前1分钟多走1米,乙每分钟走5米.(1)甲、乙开始运动后几分钟相遇(2)如果甲、乙到达对方起点后立即折返,甲继续每分钟比前1分钟多走1米,乙继续每分钟走5米,那么开始运动几分钟后第二相遇14、如图,线段AB=20cm.(1)点P沿线段AB自A点向B点以2厘米/秒运动,同时点Q沿线段BA自B 点向A点以3厘米/秒运动,几秒钟后,P、Q两点相遇如图,已知数轴上A、B两点所表示的数分别为-2和8.(1)求线段AB的长;(2)若P为射线BA上的一点(点P不与A、B两点重合,M为PA的中点,N为PB的中点,当点P在射线BA上运动时;MN的长度是否发生改变若不变,请你画出图形,并求出线段MN的长;若改变,请说明理由.15、已知:如图1,M是定长线段AB上一定点,C、D两点分别从M、B出发以1cm/s、3cm/s的速度沿直线BA向左运动,运动方向如箭头所示(C在线段AM 上,D在线段BM上)16、(1)若AB=10cm,当点C、D运动了2s,求AC+MD的值.17、(2)若点C、D运动时,总有MD=3AC,直接填空:18、AM=________ AB.19、(3)在(2)的条件下,N是直线AB上一点,且AN-BN=MN,求 MNAB的值.20、如图,P是定长线段AB上一点,C、D两点分别从P、B出发以1cm/s、2cm/s的速度沿直线AB向左运动(C在线段AP上,D在线段BP上)21、(1)若C、D运动到任一时刻时,总有PD=2AC,请说明P点在线段AB上的位置:22、23、(2)在(1)的条件下,Q是直线AB上一点,且AQ-BQ=PQ,求 PQAB的值.24、25、(3)在(1)的条件下,若C、D运动5秒后,恰好有 CD=12AB,此时C点停止运动,D点继续运动(D点在线段PB上),M、N分别是CD、PD的中点,下列结论:①PM-PN的值不变;② MNAB的值不变,可以说明,只有一个结论是正确的,请你找出正确的结论并求值.26、17、已知线段AB=m,CD=n,线段CD在直线AB上运动(A在B左侧,C在D左侧),若|m-2n|=-(6-n)2.(1)求线段AB、CD的长;(2)M、N分别为线段AC、BD的中点,若BC=4,求MN;(3)当CD运动到某一时刻时,D点与B点重合,P是线段AB延长线上任意一点,下列两个结论:① PA-PBPC是定值;② PA+PBPC是定值,请选择正确的一个并加以证明.18、如图,已知数轴上A、B两点所表示的数分别为-2和8.(1)求线段AB的长;(2)若P为射线BA上的一点(点P不与A、B两点重合),M为PA的中点,N 为PB的中点,当点P在射线BA上运动时,线段MN的长度是否发生改变若不变,请你画出图形,并求出线段MN的长;若改变,请说明理由.(3)若有理数a、b、c在数轴上的位置如图所示:且d=|a+b|-|-2-b|-|a-2c|-5,试求7(d+2c)2+2(d+2c)-5(d+2c)2-3(d+2c)的值.19、在长方形ABCD中,AB=CD=10cm、BC=AD=8cm,动点P从A点出发,沿ABCD 路线运动到D停止;动点Q从D出发,沿DCBA路线运动到A停止;若P、Q同时出发,点P速度为1cm∕s,点Q速度为2cm∕s,6s后P、Q同时改变速度,点P速度变为2cm∕s,点Q速度变为1cm∕s.(1)问P点出发几秒后,P、Q两点相遇?(2)当Q点出发几秒时,点P点Q在运动路线上相距的路程为25cm20、如图,点C是线段AB的中点,点D、E分别是线段AC、CB的中点.(1)若线段AB=10cm,求线段AC和线段DE的长度;(2)若线段AB=a,求线段DE的长度.(3)若甲、乙两点分别从点A、D同时出发,沿AB方向向右运动,若甲、乙两点同时到达B点,请你写出一组符合条件的甲、乙两点运动的速度.。