引申⑴p是q的充分不必要条
② 件,相当于P Q,如右图
从
集
⑵p是q的必要不充分条合Βιβλιοθήκη 件,相当于P Q ,如左图
角
度 ⑶p q,相当于P=Q ,
看
即:互为充要条件的两个事物
表示的是——同一事物。如
back 右图:
例3(用集合的方法来判断下列
各题中的p是q的什么条件)
1.p:菱形 q:正方形 2. p: x>4 q: x>1
p是q的充分条件,
q是p的必要条件.
在上面两个例子中,
“x>0”是“x2>0”的 充分条件,“x2>0”是“x>0”的 必要条件
“两三角形全等”是“两三角形面积相等”的充分条件 “两三角形面积相等”是“两三角形全等”的必要条件.
例1 指出下列各组命题中,p是q的什么条件,q
是p的什么条件:
⑴ p:x=y;q:x2=y2.
Go to 13
Go to 14
所以p是q的必要不充分条件
(2)同位角相等 两直线平行 所以p是q的充要条件
back
(3)p:x=3
q:x2=9
x2=9
x=3
所以p是q的充分不必要条件
4)p:四边形的对角线相等 q:四边形是平行四边形 四边形是平行四边形 四边形的对角线相等
所以p是q的既不充分也不必要条件
back
课堂练习:课本P36练习:1,2;
解:1.由图1可知p是q的 必要不充分条件 2.由图2可知p是q的 充分不必要条件
p:菱形 q:正方形
图1
q
p
01
4
图2
练习
设甲、乙、丙是三个命题,如果甲是乙的必 要条件,丙是乙的充分不必要条件,那么 ( A)