20140603-Role of Leukocyte Cell-Derived Chemotaxin 2 as a Biomarker in Hepatocellular Carcinoma
- 格式:pdf
- 大小:1.15 MB
- 文档页数:11
综述China &Foreign Medical Treatment 中外医疗肠神经胶质细胞在炎症性肠病中的作用研究进展杜俊艳1,骆淑娥2,温萌11.甘肃卫生职业学院附属医院门诊部,甘肃兰州 730207;2.解放军96640部队医院外一科,甘肃兰州730030[摘要] 近年来,肠神经胶质细胞(enteric glial cell, EGC )在炎症性肠病(inflammatory bowel disease, IBD )发病机制中引起广泛关注。
在IBD 患者中,肠道EGC 通过释放细胞因子和介质参与调节肠道炎症反应,EGC 与肠道上皮细胞、免疫细胞和神经元等相互作用,参与调节肠道的免疫平衡和功能,EGC 在炎症性肠病治疗中的潜在应用,调控和干预EGC 有望为治疗提供新思路和策略。
[关键词] 肠神经系统;肠神经胶质细胞;胶质细胞源性神经营养因子-胶质细胞系源性神经营养因子受体α1/原癌基因自分泌环路[中图分类号] R4 [文献标识码] A [文章编号] 1674-0742(2023)09(a)-0195-04Advances in the Study of the Role of Enteric Glial Cells in Inflammatory Bowel DiseaseDU Junyan 1, LUO Shu'e 2, WEN Meng 11.Outpatient Department, Affiliated Hospital of Gansu Health Vocational College, Lanzhou, Gansu Province, 730207 China;2.Department of Surgery, PLA 96640 Army Hospital, Lanzhou, Gansu Province, 730030 China[Abstract] In recent years, enteric glial cells (EGC) have attracted widespread attention in the pathogenesis of inflam⁃matory bowel disease (IBD). In IBD patients, intestinal EGCs are involved in the regulation of intestinal inflammatory responses through the release of cytokines and mediators, and EGCs interact with intestinal epithelial cells, immune cells, and neurons to participate in the regulation of intestinal immune homeostasis and function. The potential appli⁃cation of EGC in the treatment of inflammatory bowel disease, modulation and intervention of EGC is expected to pro⁃vide new ideas and strategies for treatment.[Key words] Enteric nervous system; Enteric glial cells; GDNF-GFRa1/RET autocrine loop溃疡性结肠炎(ulcerativecolitis, UC )是一种与克罗恩病(crohn's disease, CD )同属炎性肠病(in⁃flammatory bowel disease, IBD )的慢性反复发作的肠炎[1]。
内皮祖细胞膜微粒与脑卒中治疗相关性研究进展邱文姬;陈煜森【摘要】Vascular endothelial dysfunction is related to the occurrence and development of stroke.Endothelial progenitor cells-derived microvesicles (EPC-MVs) can slow the progression of stroke and improve the prognosis of stroke by repairing the damaged vascular endothelium,providing a new method for the treatment of stroke.This article reviews the correlation between EPC-MVs and stroke treatment.%血管内皮功能障碍与脑卒中的发生发展互为因果.内皮祖细胞膜微粒可以通过修复损伤的血管内皮来延缓脑卒中的进展和改善脑卒中患者的预后,为脑卒中的治疗提供了新的方法.本文就内皮祖细胞膜微粒与脑卒中治疗相关性进行综述.【期刊名称】《海南医学》【年(卷),期】2018(029)005【总页数】4页(P674-677)【关键词】内皮祖细胞;内皮祖细胞膜微粒;脑卒中;修复;治疗【作者】邱文姬;陈煜森【作者单位】广东医科大学,广东湛江524000;广东医科大学附属医院,广东湛江524000【正文语种】中文【中图分类】R743.3脑卒中俗称“中风”,是以高发生率、高致残率、高致死率和高复发率为特点的急性脑血管循环障碍性疾病。
一般分为缺血性卒中(如脑梗死)和出血性卒中(如脑出血)两大类。
由于脑供血动脉闭塞,使该动脉的供血区得不到血液中的氧气和营养而发生坏死,被称为缺血性脑卒中,约占80%~85%;而由于脑动脉硬化而血管破裂,血液进入脑内和脑周围间隙,使脑细胞得不到正常血管内运输的氧气和营养供应而发生坏死,另被称为出血性脑卒中,占15%~20%。
学 报Journal of China Pharmaceutical University 2023,54(6):682 - 694682生物质谱技术在腺相关病毒(AAV)载体制剂质量控制中的应用李孟效,李惠琳*(中山大学药学院,广州 510006)摘 要 腺相关病毒(adeno-associated virus,AAV)是一种基因治疗中常用的病毒载体。
由于其安全性较高且能够靶向多种细胞,在临床前和临床研究中得到了较多的应用。
不过在设计和生产的过程中,AAV载体有着诸多会影响其安全性和疗效的关键质量属性。
生物质谱技术的发展和应用为生物大分子的研究提供了一个便捷的平台,尤其是在蛋白质序列、结构和相互作用方面。
对于AAV载体而言,质谱技术可以实现衣壳蛋白比率、翻译后修饰、血清型、空衣壳比率的测定或表征,从而协助对AAV载体的质量控制。
与现有方法相比,质谱技术具有样品需求量少、分析快速灵敏、适用于完整AAV载体的分析和质量分辨率高的优点,并且可以区分空衣壳、满衣壳和部分包封的衣壳。
未来,通过将更加高效的蛋白质分离技术与质谱技术联用、开发新的信息处理软件平台和新的质谱检测方法,质谱技术有望在AAV载体的设计和生产中发挥更加重要的作用。
关键词腺相关病毒;质谱;质量控制;非变性质谱;电荷检测质谱中图分类号R392 文献标志码 A 文章编号1000 -5048(2023)06 -0682 -13doi:10.11665/j.issn.1000 -5048.2023062901引用本文李孟效,李惠琳.生物质谱技术在腺相关病毒(AAV)载体制剂质量控制中的应用[J].中国药科大学学报,2023,54(6):682–694.Cite this article as:LI Mengxiao,LI Huilin. Application of biological mass spectrometry in quality control of adeno-associated virus carrier preparations[J].J China Pharm Univ,2023,54(6):682–694.Application of biological mass spectrometry in quality control of adeno-asso⁃ciated virus carrier preparationsLI Mengxiao, LI Huilin*School of Pharmaceutical Science, Sun Yat-Sen University, Guangzhou 510006, ChinaAbstract Adeno-associated virus (AAV) is a common viral vector used in gene therapy.Because of its high safe⁃ty and its ability to target a variety of cells, it has been widely used in preclinical and clinical studies.However, during the design and production, AAV vectors have many key quality attributes that affect their safety and efficacy. The development and application of biological mass spectrometry technology provides a convenient platform for the research on biological macromolecules, especially in the aspects of protein sequence, structure and interac⁃tion.For AAV vectors, mass spectrometry can facilitate the determination or characterization of capsid protein ratio, post-translational modification, serotype, and empty capsid ratio, thus assisting in the quality control of AAV pared with the existing methods, mass spectrometry has the advantages of smaller amount of sample size, faster and more sensitive analysis, being more suitable for the analysis of complete AAV vectors with higher mass resolution, and can distinguish empty capsids, full capsids and partial capsids.In the future, mass spectrometry technology is expected to play a more important role in the design and production of AAV vectors through the coupling of more efficient protein separation technology with mass spectrometry, the development of new information processing software platforms and new mass spectrometry detection techniques.Key words adeno-associated virus (AAV); mass spectrometry (MS); quality control; native MS; charge detec⁃tion MS收稿日期2023-06-29 *通信作者Tel:138****4968E-mail:lihlin6@基金项目国家自然科学基金资助项目(No.81872836,No.91953102);广东省自然科学基金资助项目(No.2019A1515011265)第 54 卷第 6 期李孟效,等:生物质谱技术在腺相关病毒(AAV )载体制剂质量控制中的应用This study was supported by the National Natural Science Foundation of China (No.81872836, No.91953102) and the National Nat⁃ural Science Foundation of Guangdong Province (No.2019A1515011265)1 腺相关病毒(AAV)概述基因治疗是指为了治疗目的而修改操纵基因表达或改变活细胞的基因,基因治疗的方式可以划分基因补充和基因编辑,基因补充是指将遗传物质导入需要治疗的靶细胞,基因编辑是指对细胞已有的缺陷基因进行修改和调控,但无论哪种方式都需要依赖特定的递送载体才能完成[1]。
白血病干细胞表面分子标志物及分化抗原高表达与难治性急性白血病王荣华;陈信义;褚雨霆;侯丽;王婧【摘要】Leukemia is one of the malignant cloning diseases derived from hematopoietic stem cell. There are more and more researches showing that leukaemia stem cell( LSC )is the origin of the recurrence of leukemia, which has the similarity with the normal haemopoietic stem cell in infinite proliferation and self-renewing. And LSC can get away with the effect of drugs in its resting stage and lead to the recurrent and refractory leukemia. The relapse and refractory of leukemia are closely related to the high expression of differentiation antigens and the surface molecular markers of LSC. Consequently,the biological target drug,which targets specific surface antigens or molecular markers of LSC ,has become the new emphasis in the research of leukemia.%白血病是一类起源于造血干细胞的恶性克隆性疾病,越来越多的研究证明,白血病干细胞(LSC)是白血病复发的根源,其具有与正常造血干细胞类似的无限增殖和自我更新能力,且LSC处于静止期,能逃逸化学药物的治疗作用,从而导致白血病复发和难治.其中,白血病复发及其难治与LSC表面分子标志物及分化抗原表达密切相关.因此,以LSC特异性表面抗原或分子标志物为靶点,寻找和发现治疗白血病的生物靶向药物已成为可能治愈白血病研究的重点.【期刊名称】《医学综述》【年(卷),期】2012(018)013【总页数】4页(P1973-1976)【关键词】白血病干细胞;分子标志物;分化抗原;难治性急性白血病【作者】王荣华;陈信义;褚雨霆;侯丽;王婧【作者单位】北京中医药大学东直门医院血液肿瘤科,北京100700;北京中医药大学东直门医院血液肿瘤科,北京100700;北京中医药大学东直门医院血液肿瘤科,北京100700;北京中医药大学东直门医院血液肿瘤科,北京100700;北京中医药大学东直门医院血液肿瘤科,北京100700【正文语种】中文【中图分类】R733.711.1 LSC表面分化抗原高表达目前的研究发现,M0、M1、M2、M4、M5 的LSC 细胞表面抗原表型是从HSC恶性转化而来,因而,具有许多HSC的表型标记,如表达 C、CD133、HLA-DR-等。
卵泡抑素样蛋白1在自身免疫性疾病中的研究进展张艳;彭肖;徐凤金【摘要】卵泡抑素样蛋白1(FSTL1)是一种新近发现的细胞外基质糖蛋白,其可能通过转化生长因子β信号转导通路及雌激素受体信号转导通路刺激产生.FSTL1有其特殊的结构,在胚胎发育的调控炎症反应、细胞增殖、迁移、组织重塑、肿瘤免疫等一系列病理生理过程中发挥重要作用.其参与自身免疫疾病的发生与发展,如类风湿关节炎(RA)、系统性红斑狼疮等.血清FSTL1水平与RA疾病活动的生化及临床指标有关,其可作为RA活动的一项血清学指标.FSTL在狼疮肾炎的发生、发展中扮演重要角色,可能成为自身免疫性疾病治疗的新靶点.%Follistatin-like protein1(FSTL1) is a newly discovered extracellular matrixglycoprotein.Transforming growth factor β signal transduction pathways and estrogen receptor signal transduction pathways can promote FSTL1's production.It has the special structure and it plays an important role in regulation of embryonic development,inflammatory reaction,cell proliferation,tissue remodeling,tumor immunity and so on.It involves in the occurrence and development of autoimmune diseases,such as rheumatoid arthritis(RA) and systemic lupus erythematosus.Serum FSTL1 level is associated with the disease activity of RA and it can be used as a serological indicator of RA activity.FSTL1 plays an important role in the occurrence and development in lupus nephritis,which may be a new target for the autoimmune disease treatment.【期刊名称】《医学综述》【年(卷),期】2017(023)008【总页数】5页(P1496-1499,1504)【关键词】卵泡抑素样蛋白1;信号通路;自身免疫【作者】张艳;彭肖;徐凤金【作者单位】哈励逊国际和平医院风湿免疫科,河北衡水 053000;哈励逊国际和平医院风湿免疫科,河北衡水 053000;哈励逊国际和平医院风湿免疫科,河北衡水053000【正文语种】中文【中图分类】R593.2卵泡抑素样蛋白1(follistatin-like protein 1,FSTL1)是一种新近发现的细胞外基质糖蛋白,因其与卵泡抑素共同拥有富含半胱氨酸的卵泡抑素位区而归属于卵泡抑素家族。
聚乙二醇化重组人粒细胞集落刺激因子用于多发性骨髓瘤自体造血干细胞动员的研究丁筱1黄文阳2刘雪莲'杨艳萍1樊红琼1岳婷婷1邹德慧2邱录贵2靳凤艳1 '吉林大学第一医院肿瘤中心血液科,长春130021;2中国医学科学院血液病医院(中国 医学科学院血液学研究所)实验血液学国家重点实验室国家血液系统疾病临床研究 中心,天津 300020通信作者:斩凤艳,Email:fengyanjin@【摘要】目的探讨聚乙二醇化重组人粒细胞集落刺激因子(PEG-rhG-CSF)用于多发性骨髓瘤(MM)患者外周血造血干细胞动员(PBSCM)的效果及药物经济学价值。
方法回顾性分析2015年1月至2017年10月在吉林大学第一医院和中国医学科学院血液病医院住院治疗的9丨例初治MM患者资料。
根据患者意愿,采用大剂量化疗结合皮下注射PEG-rhG-CSF或重组人粒细胞集落刺激因子UhG-CSF)进 行干细胞动员,分别为42、49例。
分析两组动员后采集单个核细胞(MNC)数、采集物CD34+细胞数、动员 中最高中性粒细胞(mANC)数、动员的费用以及移植后白细胞和血小板植人时间,,结果PEG-rhG-CSF 组和rhG-CSF组的中位采集MNC 数分别为 5.86x10s / kg[ ( 1.08 ~ 24.54)x l〇8 / kg]和 6.61x l〇« / kg [(0.83 ~ 33.80)x l〇V kg],差异无统计学意义(t/= 883.00, P= 0.245); PEG-rhG-CSF组的中位采集物CD34+细胞数高于rhG-CSF组,分别为5.56 x l〇6/kg[(0.94~ 19.90) x l〇V kg]和4.82x l〇6/kg[(丨.12~ 14.61) x l〇V kg],差异有统计学意义((7= 732.00, P= 0.038)。
PEG-rhG-CSF组动员期间中位mANC数 较 rhG-CSF组低,分别为 20.50x l09/L[(7.26~61.30)x l0V L;^32.08x l0V L[(6.92~69.99)x l0V L],差异有统计学意义(i/= 490.00, P= 0.001)。
软骨寡聚基质蛋白与疾病关系的研究进展金炼驰1,赖永洁2△摘要:软骨寡聚基质蛋白(COMP )为细胞外基质(ECM )中的非胶原糖蛋白,通过其不同结构域与组织中的多种ECM 、细胞表面黏附分子、生长因子等相互作用,参与了多种疾病的发病过程,并发挥不同作用。
本文就COMP 的基本结构、功能,以及在骨关节系统病变、心血管系统疾病、组织纤维化和癌症等疾病发生过程中发挥的作用进行了综述。
关键词:软骨寡聚基质蛋白质;细胞外基质;生物标记;纤维化中图分类号:R392.12文献标志码:ADOI :10.11958/20202516Research progress on the role of cartilage oligomeric matrix protein in human diseasesJIN Lian-chi 1,LAI Yong-jie 2△1Zhuhai Campus of Zunyi Medical University/Education and Innovation Base for Immunology Graduate Students in GuizhouProvince,Zhuhai 519041,China;2Department of Immunology and Pathogenic Biology,Zhuhai Campus of Zunyi Medical University△Corresponding Author E-mail:*********************Abstract:Cartilage oligomeric matrix protein (COMP)is a non-collagenous glycoprotein component of extracellularmatrix (ECMs).COMP interacts with other ECMs,cell adhesive proteins,growth factors via its multi-functional P is known to play a role in the development of miscellaneous human diseases.This paper reviews the basic structure and function of COMP and its role in the pathogenesis of joint and cardiovascular diseases,tissue fibrosis and cancer.Key words:cartilage oligomeric matrix protein;extracellular matrix;biomarkers;fibrosis基金项目:国家自然科学基金青年基金项目(81700341),贵州省自然科学基金(黔科合基础[2020]1Y297),贵州省教育厅科学基金(黔教合KY 字[2017]184)作者单位:1遵义医科大学珠海校区/贵州省免疫学研究生创新研究基地(邮编519041);2遵义医科大学珠海校区免疫学与病原生物学教研室作者简介:金炼驰(1991),女,硕士在读,主要从事细胞外基质蛋白在组织纤维化中的作用机制研究。
《中国组织工程研究》 Chinese Journal of Tissue Engineering Research99·研究原著·刘敏,女,1993年生,陕西省汉中市人,汉族,在读硕士,主要从事牙釉质发育相关影响因素研究。
通讯作者:王磊,博士,副主任医师,副教授,北京大学口腔医院修复科,北京市 100081并列通讯作者:王衣祥,博士,研究员,副教授,北京大学中心实验室,北京市 100081文献标识码:A来稿日期:2019-03-04 送审日期:2019-03-06 采用日期:2019-05-23 在线日期:2019-09-26Liu Min, Master candidate, Department of Prosthodontics, Peking University Hospital of Stomatology, Beijing 100081, ChinaCorresponding author: Wang Lei, MD, Associate chief physician, Associate professor, Department of Prosthodontics, Peking University Hospital of Stomatology, Beijing 100081, ChinaCorresponding author: Wang Yixiang, MD, Researcher, Associate professor, ClinicalLaboratory, Peking University Hospital of Stomatology, Beijing 100081, China釉原蛋白羧基末端肽加速细胞周期促进成釉细胞系ALC 细胞增殖刘 敏1,王睿捷1,宋丹阳1,杨 随1,谭 陶2,王 磊1,王衣祥3 (北京大学口腔医院,1修复科,3中心实验室,北京市 100081; 2北京大学首钢医学院口腔科,北京市 100144)DOI:10.3969/j.issn.2095-4344.1858 ORCID: 0000-0003-4338-4123(刘敏)文章快速阅读:文题释义:釉原蛋白羧基末端肽:是由牙齿发育过程中成釉细胞表达的基质金属蛋白酶20水解全长釉原蛋白产生的,其具有调控骨髓间充质干细胞和牙周膜成纤维细胞增殖和分化的作用。
E3泛素连接酶CUL2在宫颈癌中的研究进展张宏蕾,赵卫红△【摘要】泛素化是蛋白质翻译后调控的重要途径。
作为体内最大的E3泛素连接酶家族,Cullin-Ring 类E3泛素连接酶广泛参与调控机体内细胞周期蛋白和转录因子的降解。
其中,CUL2作为骨架分子形成CUL2泛素连接酶复合物,在希佩尔-林道(von Hippel-Lindau ,VHL )肿瘤抑制因子相关受体底物的泛素化降解中发挥重要的作用。
目前,研究发现CUL2普遍参与肿瘤血管生成、细胞动力、免疫逃逸、细胞增殖及等肿瘤恶变机制的调控。
综述CUL2在肿瘤发生中的作用机制及其与宫颈癌的关系,旨在为宫颈癌的诊断和治疗提供新的作用靶点。
【关键词】宫颈肿瘤;癌;泛素蛋白连接酶类;泛素化蛋白;泛素化;脑视网膜血管瘤抑制蛋白质Research Progress of E3Ubiquitin Ligase CUL2in Cervical CancerZHANG Hong-lei,ZHAO Wei-hong.Basic MedicalCollege,Shanxi Medical University,Taiyuan 030001,China (ZHANG Hong-lei);Department of Obstetrics and Gynecology,Second Hospital of Shanxi Medical University,Taiyuan 030001,China (ZHAO Wei-hong)Corresponding author:ZHAO Wei-hong,E-mail:*****************.cn【Abstract 】Ubiquitin is an important way of post-translational regulation of proteins.As the largest E3ubiquitin ligase familyin vivo,Cullin-Ring E3ubiquitin ligases are widely involved in regulating the degradation of cyclins and transcription factors in vivo.CUL2,as a skeleton molecule,forms the CUL2ubiquitin ligase complex,which plays an important role in the ubiquitination degradation of von Hippel-Lindau (VHL)tumor suppressor related receptor substrates.At present,studies have found that CUL2is generally involved in the regulation of tumor malignant transformation mechanisms such as tumor angiogenesis,cell dynamics,immune escape,cell proliferation,and epithelial mesenchymal transition.In this paper,the mechanism of CUL2in carcinogenesis and its relationship with cervical cancer are reviewed,aiming to provide a new target for diagnosis and treatment of cervical cancer.【Keywords 】Uterine cervical neoplasms ;Carcinoma ;Ubiquitin -protein ligases ;Ubiquitinated proteins ;Ubiquitination ;Vonhippel-lindau tumor suppressor protein(J Int Obstet Gynecol ,2021,48:121-125)基金项目:国家自然科学基金(81702583);山西省优秀青年基金(201901D211506)作者单位:030001太原,山西医科大学基础医学院(张宏蕾);山西医科大学第二医院妇产科(赵卫红)通信作者:赵卫红,E-mail :*****************.cn △审校者·综述·泛素化是蛋白质在翻译后的重要修饰之一,是蛋白质被降解前的信号,即需要被降解的蛋白质会先被泛素化标记,形成泛素-蛋白质复合体,之后再被26S 蛋白酶体降解[1]。
2,3-DPG:2,3-diphosphatidylglyceric acid,2,3-二磷酸甘油酸2-CdA:2-chlorodeoxyadenosin,cladribine,2-氯去氧腺苷3H-TdR:tritiated thymide,氚标记胸腺嘧啶核苷5-Aza:5-azacytidine,5-氮(杂)胞苷a2-PI:a2-antiplasmin, a2-纤溶酶原抑制物AA:aplastic anemia,再生障碍性贫血AAV:adeno-associated virus,腺病毒相关病毒Ab:antibody,抗体ABC:avidin-biiotin complex method,亲和素生物素复合物法ABMT:autologous bone marrow transplant,自体骨髓移植Ac:accessory cell,辅佐细胞ACD:acid citrate dextrose,酸性枸橼酸盐葡萄糖ACP:acid phosphatase,酸性磷酸梅ACTD:actinomycin D,放线菌素DAcute:急性的ACV:cyclovir,阿昔洛韦Ad:adenovirus,腺病毒AD:antigen determinant,抗原决定簇ADA:adenosine deaminase,腺苷脱氨酶ADCC:antibody-dependent cell-mediated cytotoxicity)抗体依赖细胞介导性细胞毒性Adjuvant therapy:辅助治疗AEL:acute erythrocytic leukemia,急性红白血病AEoL:acute eosinophilic leukemia,急性嗜酸粒细胞白血病AFP:alpha fetoprotein,甲胎蛋白Ag:antigen,抗原aGVHD:acute graft versus host disease,急性移植物抗宿主病Aid:anti-idiotype antibody,抗独特型抗体AidS:acquired immune deficiency syndrome,获得性免疫缺陷综合征AIF:apoptosis-inducing factor,凋亡诱导因子AIHA:autoimmune hemolytic anemia,自身免疫性溶血性贫血AL:acute leukemia, 急性白血病ALCL:anaplastic large cell lymphoma,退行性大细胞淋巴瘤ALG:antilymphocyte globulin, 抗淋巴细胞球蛋白ALIP:abnormal localization of immature precursor,未成熟前体细胞异常定位ALL:acute lymphocytic leukemia,急性淋巴细胞白血病Allo-BMT:allogeneic bone marrow transplantation,异基因骨髓移植Allo-PBSCT:allogeneic peripheral blood stem cell transplantation,异基因外周血干细胞移植Allogeneic:异基因的Allograft:异体移植物Alopecia:脱发ALP(AKP):Alkaline phosphatase,碱性磷酸酶AM:adhesion molecule,粘附分子AMKL:acute megakaryoblastic leukemia,急性巨核细胞白血病AML:acute myeloid leukemia,急性髓性白血病AMM:agnogenic myeloid metaplasia,特发性髓外化生ANA:antinuclear antibody,抗核抗体Ana-LL:anaplastic large cell lymphoma,大细胞淋巴瘤Anaphylaxis:过敏症ANC:absolute neutrophil count,中性粒细胞绝对值Anemia:贫血ANLL:acute non-lymphocytic leukemia,急性非淋巴细胞性白血病Antibiotic:抗生素;抗生的Antiemetic:止吐剂,止吐药antineoplastic drugs:抗肿瘤药物Antisense:反义引物APBSCT:autologous peripheral blood stem cell transplantation,自体外周血干细胞移植APC:antigen processing cell,抗原呈递细胞Apheresis:血浆分离置换法,血液成分部分清除APL:acute promyelocytic leukemia,急性早幼粒细胞白血病Aplasia:发育不良,成形不完全Apoptosis:凋亡Ara-C:arabinosyl cytosine,aracytidine阿糖胞苷ARDS:acute respiratory distress syndrome,急性呼吸窘迫综合症;AidS-related diseases艾滋病相关疾病Ascites:腹水ASCT:autologous stem cell transplantation,自体干细胞移植Aspergillus:曲霉属ASS:anterior superior spine,髂前上棘AT1257:nitrocaphane,消瘤芥ATG:antithymocyte globulin,抗胸腺细胞球蛋白ATL:adult T cell leukemia/lymphoma,成人T细胞白血病/淋巴瘤ATLS:acute tumor lysis syndrome,急性肿瘤溶解综合征ATRA:all-transretinoic acid,全反式维甲酸AUL:acute undifferentiated cell leukemia,急性未分化细胞白血病AuSCT:autologous stem cell transplantation,自体造血干细胞移植Autologous:自体的Autograft:自体移植物Auto-BMT: autologous bone marrow transplantation,自体骨髓移植β2-MG:β2-microglobulin,β2-微球蛋白Back-up:备份BCNU:Carmustine,卡氮芥,卡莫司汀BCR:breakpoint cluster region,断裂点丛集区BFU-E: burst-forming unit-erythroid,早期红系集落生成细胞Biopsy:活检Blast cell:原始血细胞,母细胞Blast-CFC:blast colony forming cell,原始细胞集落形成细胞Blast crisis:原始细胞危象Bm:memory B lymphocyte,记忆B淋巴细胞BMG:benign monoclonal gammopathies,良性单克隆丙球蛋白病BMT:bone marrow transplantation,骨髓移植Bone marrow biopsy:骨髓活检Bone marrow puncture:骨髓穿刺Bone marrow smear:骨髓穿刺涂片BRM:biological response modifier,生物应答调节剂Bu:busulfan,白消安,马利兰Buffer:缓冲,缓冲剂,缓冲液CALLA:common acute lymphocytic leukemia antigen,普通急性淋巴细胞白血病抗原CAM:cell adhesion molecule,细胞粘附分子Candida:念珠菌属,假丝酵母属Catheter:导管CB:cord blood,脐带血CB1348:chlorambucil:苯丁酸氮芥CBC:complete blood count,全血细胞计数CBCL:cutaneous B-cell lymphoma,皮肤B细胞淋巴瘤CBSCT:cord blood stem cell transplantation,脐血干细胞移植CCI:corrected count increment,校正增值计数CCNSA:cell cycle non-specific agents,细胞周期非特异性药物CCNU:lomustine,洛莫司汀,环己亚硝脲CCR:continuous complete remission,持续完全缓解CCSA:cell cycle specific agents,细胞周期特异性药物CD:Castleman's disease,Castleman病CD:cluster of differentiation,分化群CD3AK:CD3 activated killer,CD3激活的杀伤细胞CDK:cyclin dependent protein kinase,周期素依赖蛋白激酶CEA:carcinoembryonic antigen,癌胚抗原CEL:chronic eosinophil leukemia,慢性嗜酸性粒细胞白血病Central line:中心静脉导管,见central venous catheter.Central venous catheter: 中心静脉导管,又叫做central line,Hickman catheter Centrifugation:离心CFC:colony-forming cell,克隆形成细胞CFU:colony-forming unit,集落形成单位CFU-Blast:colony-forming unit-Blast,原始集落生成细胞CFU-E:colony-forming unit-erythroid,红系集落生成细胞CFU-G:colony-forming unit-granulocyte,粒系集落生成细胞CFU-GM:colony-forming unit-granulocyte/macrophage,粒单系集落生成细胞CFU-L:colony-forming unit-leukemia,白血病细胞集落生成单位CFU-MEG:colony-forming unit-megakaryocyte巨核系集落生成细胞CGD:chronic granulomatous disease,慢性肉芽肿病CGP:circulating granulocyte pool,循环粒细胞池cGVHD:chronic graft versus host disease,慢性移植物抗宿主病Chemo-responsive:化疗敏感的Chemotherapy:化学疗法Chronic慢性的C.I.:continuous infusion,持续静脉点滴CIK:cytokine-induced killer cells 细胞因子诱导的杀伤细胞CliniMACS:clinical magnetic activated cell sorting,临床级磁性活化细胞分选系统CLL:chronic lymphocytic leukemia,慢性淋巴细胞白血病CML:chronic myelogenous leukemia,慢性粒细胞白血病CML-AP:CML-accelerated phase,慢性粒细胞白血病加速期CML-BP:CML-blastic phase,慢性粒细胞白血病急变期CML-CP:CML-chronic phase,慢性粒细胞白血病慢性期CMML:chronic myelo-monocytic leukemia,慢性粒-单细胞白血病CMPD:chronic myeloproliferative disease,慢性骨髓增生性疾病CMV:cytomegalovirus,巨细胞病毒CNR:cytokine negative response cell,细胞因子不反应细胞CNS:central nervous system,中枢神经系统CNSL:central nervous system leukemia,中枢神经系统白血病Collection: 采集Colony stimulating factor:集落刺激因子c-onc:cellular oncogene,细胞癌基因Conditioning:预处理Conjunctivitis:结膜炎Convalescence:恢复,恢复期CP:cancer procoagulant,癌性促凝物质CPD:citrate phosphate dextrose,枸橼酸盐-磷酸盐-葡萄糖CPDA:citrate phosphate dextrose adenine,枸橼酸盐-磷酸盐-葡萄糖-腺嘌呤Cpmax:peak concentration,峰浓度CPT:camptothecine,喜树碱CR:complete remission,完全缓解CRABP:cytoplasmic retinoic acid binding protein,胞浆维甲酸结合蛋白CRP:C reaction protein,丙反应蛋白CRR:complete remission rate,完全缓解率Cryopreservation:冷冻保存,深低温保藏CSF:colony stimulating factor,集落刺激因子CSF:cerebrospinal fluid,脑脊液CTCL:cutaneous T cell lymphoma,皮肤T细胞淋巴瘤CTCL:central T cell lymphoma,中枢T细胞淋巴瘤CTL:cytotoxicity T lymphocyte,细胞毒性T淋巴细胞Cyclin:周期素Cytomegalovirus:巨细胞病毒DC:dendric cell,树突细胞D-D:D dimer,D-二聚体Del:deletion,缺失Dermatitis:皮炎De nova AML:非继发性急性髓性白血病DFS:disease free survival,无病生存期DI:DNA index,DNA 指数DIC:disseminated intravascular coagulation,播散性血管内凝血Dilution:稀释DL:discordant lymphoma,混杂型淋巴瘤Donor:供者Dysplasia:发育不良,发育异常EBV:Epstein-Barr virus,EB病毒ECM:extracellular matrix,细胞外基质-ectomy:(后缀)(外科)切除,除去,去掉Edema:水肿EGF:epithelial growth factor,表皮生长因子-emia:(后缀)血液疾病Encephalopathy:脑病Encode: 编码Engraftment:移植物植入Enrich:富集Enzyme:酶Eosinophil:嗜酸性粒细胞EPO:erythropoietin,促红素,红细胞生成素ETT:essential thrombocythemia,原发性血小板增多症Ex vivo:体外FACS:fluorescence activated cell sorting,荧光活化细胞分选系统FCM:flow cytometry,流式细胞分析技术FDC:follicular dendritic cells,滤泡树突状细胞FDGF:fibroblast derived growth factor,成纤维细胞源生长因子Febrile:发热的FFP:fresh frozen plasma,新鲜冰冻血浆FGF:fibroblast growth factor,成纤维细胞生长因子FHH:familial hemophagocytic histiocytosis,家族性嗜血组织细胞增生症FISH:fluorescence in situ hybridization,荧光原位杂交FMF:familial Mediteranean fever,家族性地中海热Foley catheter:弗利氏导尿管,气囊导尿管FrTBI:fractional total body irradiation,分次全身照射FSRC:胎羊体内增殖的人造血干细胞Fungus:真菌Fungi:Fungus复数形式G6PD:glucise-6-phosphate dehydrogenase,6-磷酸葡萄糖脱氢酶Gastritis:胃炎Gastrointestinal:胃肠道的G-CFC:granulocyte colony forming cells,粒细胞集落形成细胞G-CSF:granulocyte colony stimulating factor,粒细胞集落刺激因子GCV:cytomegalovirus,巨细胞病毒GCV:ganciclovir,更昔洛韦GI:gastrointestinal,胃肠道的GM-CSF:granulocyte-macrophage colony stimulating factor,粒-巨噬细胞集落刺激因子GM-CFC:granulocyte-macrophage colony forming cells,粒-巨噬细胞集落形成细胞Graft rejection:移植排斥(反应)Graft-versus-host disease:移植物抗宿主病Granulocyte:粒细胞Growth factor:生长因子GTR:granulocyte turnover rate,粒细胞转换率GVHD:graft-versus-host disease,移植物抗宿主病GVHR: graft-versus-host reaction,移植物抗宿主反应GVL:graft-versus-leukemia,移植物抗白血病GVT:graft-versus-tumor,移植物抗肿瘤Haploidentical: 半相和的Harvest: 收集,采集HC:hemorrhagic cystitis,出血性膀胱炎HCL:hairy cell leukemia,毛细胞白血病HD:Hodgkin's disease,霍奇金病HD:high dose,大剂量Hematocrit:红细胞压积Hematology:血液学Hematopoiesis:造血作用,生血作用Hematopoietic system:造血系统Hemoglobin:血色素,血红蛋白Hemorrhage:出血Hemorrhagic cystitis:出血性膀胱炎Hepat- :(前缀)肝的Hepatitis:肝炎HES:hypereosinophilic syndrome,高嗜酸粒细胞综合征HGF:hematopoietic growth factor,造血生长因子HHV:human herpus virus,人疱疹病毒Hickman catheter:Hichman导管,中心静脉插管HIV:human immune deficiency virus,人免疫缺陷病毒HLA:human leukocyte antigen,人类白细胞抗原HLH:hemophagocytic lymphohistiocytosis,嗜血细胞性淋巴组织细胞增生症HMR:histiocytic medullary reticulosis,组织细胞性髓性网状细胞增生症Homogenic transplantation:同基因移植Homozygote:纯合子HPC:hematopoietic progenitor cell,造血祖细胞HPP-CFU:high proliferative potential colony-forming unit,高增殖潜能集落形成单位HR-ALL:high risk ALL,高危型急性淋巴细胞白血病HSC:Hand-Schuller-Christian disease,韩-薛-柯病HSC:hematopoietic stem cell,造血干细胞HSR:homogenously staining region,均染色区HSV:herpes simplex virus,单纯疱疹病毒HTC:typing cell,纯合子分型细胞HTLV:human T cell leukemia virus,人类T细胞白血病病毒HVOD:hepatic venous occlusive disease,肝静脉闭塞病Hyper- :(前缀)高,超,(过)多Hyperalimentation:高营养支持,静脉高营养Hyperpigmentation:色素沉着过度Hypertension:高血压Hypo- :(前缀)(过)低,少于Hypotension:低血压IAHS: infectous-associated hemophagocytic syndrome,感染相关嗜血细胞综合征id:medium dose,中剂量id:initial dose,初始剂量IF:involved field,累及野IFN:interferon,干扰素Ig:immunoglobulin,免疫球蛋白IGFs: insulin-like growth factor,胰岛素样生长因子IgH:immunoglobulin heavy chain,免疫球蛋白重链IL:interleukin,白细胞介素Iliac crest:髂嵴I.M.:intramuscular,肌肉注射Immune system:免疫系统Immunocompromised:免疫受损的Immunoglobulin:免疫球蛋白Immunological tolerance:免疫耐受Immunosuppression:免疫抑制Incubation:孵育informed-consent:知情同意Intravenous:静脉内的inv: inversion,倒位in vitro: 体外,离体in vivo: 体内IP:interstitial pneumonia,间质性肺炎Isolation: 分离I.T.:intrathecal injection,鞘内注射-itis:(后缀)炎症ITP:idiopathic thrombocytopenia purpura,特发性血小板减少性紫癜Jaundice:黄疸KPS:Karnofsky score, Karnofsky评分LAK:lymphokine-activated killer(cells),淋巴因子激活杀伤(细胞)Laminar air flow unit:层流间LCH:Langerhans cell histiocytosis,郎格罕细胞(组织细胞)增生症LD:lymphocyte depletion,淋巴细胞消减型LD:low dose,小剂量LDH:lactate dehydrogenase,乳酸脱氢酶Leukapheresis: 白细胞采集物Leukemia:白血病Leukocyte:白细胞Leukopenia:白细胞减少症LFA:lymphocyte function associated antigen,淋巴细胞功能相关抗原LFS:leukemia free survival,无白血病存活期LGL:low grade lymphoma,低度恶性淋巴瘤LHR:lymphocytic homing function receptor, 淋巴细胞归家功能受体LI:labeling index,标记指数LIF:leukemia inhibition factor,白血病抑制因子Lineage:系LOH:loss of heterozygosity,杂合性丢失LP:lymphocyte predominance,淋巴细胞为主型LRP:lung resistance related protein,肺抗性相关蛋白LTB:life-threatening bleeding,致命性出血LTC-IC:long-term culture-initiating cell,长期培养起始细胞LTR:long terminal repeat:长末端重复序列LVL:large volume leukapheresis,大容量白细胞单采Lymphocyte: 淋巴细胞Macrophage:巨噬细胞MACS:magnetic activated cell sorting,磁性活化细胞分选MAK: monocytokine-activated killer(cells),单核细胞因子激活杀伤(细胞)Malabsorption:吸收障碍MALT:mucosa-associated lymphoid tissue,粘膜相关淋巴样组织÷ Matching:配型MBDI:marrow blast decline index骨髓原始细胞减少指数MC:mixed cellularity,混合细胞型McAb:monoclonal antibody,单克隆抗体mCR: median complete remission,中位完全缓解MDR:multiple drug resistance,多药耐药MDS:myelodysplastic syndrome,骨髓增生异常综合征Megakaryocyte:巨核细胞Metabolite:代谢物Metastatic:转移的MF:myelofibrosis,骨髓纤维化MF:mycosis fungoides,蕈样霉菌病MGDS:megakaryocyte growth and differentiation factor,巨核细胞增殖分化因子MGP:marginal granulocyte pool,边缘粒细胞池MGUS: monoclonal gammopathy of undetermined significance,未定性的单克隆γ球蛋白血症MH:malignant histocytosis,恶性组织细胞增生症MHAS:minor histocompatibility antigen systems,次要组织相容性抗原系统MHC:major histocompatibility complex,主要组织相容性抗原复合体MLC:mixed lymphocyte culture,混合淋巴细胞培养MLL:mixed lineage leukemia,混合系白血病MM:multiple myeloma,多发性骨髓瘤MNC:mononuclear cells,单个核细胞Mobilization:动员Monoclonal antibody:单克隆抗体Monocyte:单核细胞Monozygotic:单合子的Morbidity:发病率MPD:myeloproliferative disease, 骨髓增殖性疾病MPO:myeloperoxidase,髓过氧化物酶MRD:minimal residual disease,微小残留病变MRP:multidrug resistance-associated protein,多药耐药相关蛋白Mucositis:粘膜炎MUD:matched unrelated donor,非血缘关系配型相合供体NAP:neutrophil alkaline phosphatase,中性粒细胞碱性磷酸酶NB:neuroblastoma,神经母细胞瘤NBM:normal bone marrow,正常骨髓Negative selection:阴性选择Neuro- :(前缀)神经的Neutropenia:中性粒细胞减少症Neutrophil:中性粒细胞NG:neutrophil granulocyte,中性粒细胞NGF:nerve growth factor, 神经生长因子NHL:non-Hodgkin's lymphoma,非霍奇金淋巴瘤NK: nature killer cell,自然杀伤细胞Nonmyeloablative transplantation: 非清髓性移植NPO:不能进食NS:nodular sclerosis,结节硬化型Oncology:肿瘤学Oto- :(前缀)耳的PA:plasminogen activator,纤溶酶原激活物Packed red blood cells: 压积红细胞PAE:post antibiotic effects,抗生素后续作用PAI:plasminogen activator inhibitor,纤溶酶原激活物抑制剂Palliative:减轻的,缓解的palliative care unit (PCU):终末期病房,临终关怀病房Pancytopenia:全血细胞减少症-pathy:(后缀)病PB:peripheral blood, 外周血PBL:peripheral blood lymphocyte,外周血淋巴细胞PBPC:peripheral blood progenitor cell,外周血祖细胞PBSCT:peripheral blood stem cell transplantation,外周血干细胞移植PCA:procoagulant activity,促凝活性物质PCD:programmed cell death,细胞程序化死亡PCL:plasma cell leukemia,浆细胞白血病PCLI:plasma cell label index,浆细胞标记指数PCR:polymerase chain reaction, 多聚酶链反应PCR-RFLP: PCR-restriction fragment length polymorphisms,限制性片段长度多态性分析PCR-SSOPH: PCR-sequence specific oligonucleotideprobe hybridization,序列特异性寡核苷酸探针杂交PDD:percentage depth dosage,百分深度剂量PDGF:platelet derived growth factor,血小板衍生生长因子PDR:primary drug resistance,原药耐药PE:plasma exchange,血浆置换-penia:(后缀)缺乏,不足Peripheral neuropathy:周围神经病变Petechiae:瘀点,瘀斑Pfu: plaque forming unit,空斑形成单位PHA:phytahematoagglutinin,植物血凝素Phlebitis:静脉炎PHSC:pluripotential hematopoietic stem cell,多能造血干细胞-plasia:(后缀)发展,形成Plasma:血浆Plasma cell: 浆细胞Platelet:血小板PLG:plasminogen,纤溶酶原PLL:prolymphocytic leukemia,幼淋巴细胞白血病PLT:platelet,血小板PLT:primed lymphocyte test,预致敏淋巴细胞试验PMN:polymorphonuclear leukocyte,多形核白细胞PNH:paroxysmal nocturnal hemoglobinuria,阵发性睡眠性血红蛋白尿÷ PNRE:p53 negative response element,p53阴性反应元件POD:PML oncogenic domain,PML癌基因结构域Polycythemia:红细胞增多症Positive selection:阳性选择PPSC: pluripotent hemotopoietic stem cell,全能造血干细胞Preparative regimen:预处理方案Progenitor:前体,祖先Prognosis:预后Prophylactic:adj.预防的;n. 预防性,预防药Prophylaxis:预防法,预防Protocol:草案,协议,治疗方案Proto-onc: proto-oncogene,原癌基因PSS:posterior superior spine,髂后上棘PT:prothrombin time,凝血酶原时间PTCL:peripheral T celll lymphoma,外周T细胞型淋巴瘤PTH:post-transfusion hepatitis, 输血后肝炎Pulmonary:肺的Purging:净化Purity:纯度PV:polycythemia vera,真性红细胞增多症Quality of Life (QOL):生活质量RA:refractory anemia,难治性贫血RAEB:refractory anemia with excessive blasts,难治性贫血伴原始细胞增多型RAEB-T:refractory anemia with excessive blasts,transformation,难治性贫血伴原始细胞增多转化型RAR:retinoic acid receptor,维甲酸受体RAS:refractory anemia with sideroblasts,难治性贫血伴环状铁粒幼细胞增多RAS:retinoic acid syndrome,维甲酸综合征RB:retinoblastoma,视网膜母细胞瘤RBC: red blood cell,红细胞Reagent:试剂Recipient:受者Rejection:排斥Relapse:复发Remission:缓解Renal:肾脏的,肾的RFS:replase free survival,无复发生存RPC:radiation protective competence, 辐射保护能力Regimen-related toxicity (RRT):预处理相关毒性RT-PCR:reverse transcription polymerase chain reaction, 逆转录多聚酶链反应SBB:sudan black B,苏丹黑BSCE:sister chromatial exchange,姐妹染色单体交换SCF:stem cell factor,干细胞因子SCid:severe combined immunodeficiency disease,重症联合免疫缺陷SCL:stem cell leukemia,干细胞白血病SE:specific estarase,特异性酯酶Selectin:选择素Sense primer:同义引物Separation:(细胞)分选Sepsis:脓血病,败血病Sequencing测序SF:serum ferritin,血清铁蛋白SHML:sinus histocytosis with massive lymphadenopathy,窦性组织细胞增生症伴块状淋巴结肿大SIA:stroma-support immunocytometric assay,基质支持免疫细胞流式细胞仪技术法SLE:systemic lupus erythematosus,系统性红斑狼疮SLL:small lymphocytic lymphoma,小淋巴细胞淋巴瘤Solid tumor:实体瘤SR-ALL:standard risk acute lymphocytic leukemia,标危型急性淋巴细胞白血病SRC:SCid/NOD小鼠体内增殖的人造血干细胞,SCid造血重建细胞SS:Sezary syndrome,Sezary综合征Stem cell:干细胞STNI:subtotal nodal irradiation,次全淋巴结照射Stomatitis:口炎Subclavian catheter:锁骨下导管Supernatant:上清Syn-BMT:Syngeneic bone marrow transplant:同基因骨髓移植Syngeneic:同基因的TAM:tumor associated macrophage,肿瘤相关巨噬细胞t-AML:treatment associated AML,治疗相关的急性髓性白血病TA-GVHD:transfusion associated graft-versus-host disease,输血相关的移植物抗宿主病TAA:tumor associated antigen,肿瘤相关抗原TBGP:total blood granulocyte pool,总血液粒细胞池TBI:total body irradiation,全身照射Tc:time of cell cycle, 细胞周期时间TCD:T cell depletion, T细胞去除TCL:T cell leukemia/lymphoma,T细胞白血病/淋巴瘤TCR:T cell receptor,T细胞受体TCS:tumor cell survival,肿瘤细胞成活TEN:total enteral nutrition,完全胃肠内营养TF:tissue factor,组织因子TF:thymic factor,胸腺因子TFPI:tissue factor pathway inhibitor,组织因子途径抑制物TGF:therapeutic gain factor,治疗获得系数TGF-β:transforming growth factor-β,转化生长因子βThrombocyte:血小板Thrombocytopenia:血小板减少症TIL:tumor infiltrate lymphocyte,肿瘤浸润淋巴细胞TL:testis leukemia睾丸白血病TLI:total Lymphoid irradiation,全淋巴照射Thrombotic microangiopathy (TMA):血栓性微血管病TNF:tumor necrosis factor,肿瘤坏死因子TNI:total nodal irradiation,全淋巴结照射TOPO II:topoisomerase II,拓扑易构酶IIToxin:毒素Tpdt:potential doubling time,倍增时间T-PLL:T-prolymphocytic leukemia,T幼淋细胞白血病TPN:total parenteral nutrition,全肠道外营养,静脉高营养TPO:thrombopoietin,促血小板生成素TPS:treatment planning system,治疗计划系统Translocation:易位Trauma:创伤TRM:transplantation related mortality,移植相关死亡率TSC:timed-sequential chemotherapy,时相序贯化疗TSPA:triophosphoramide,噻替派TTP:thrombotic thrombocytopenic purpura,血栓性血小板减少性紫癜Tumor:肿瘤Tumor burden:肿瘤负荷UCB:umbilical cord blood,脐带血Ultrasound:超声Umbilical cord:脐带VAHS:viral associated hemophagocytic syndrome,病毒相关嗜血细胞综合征VGPR:very good partial remission,非常良好的部分缓解Viability:活性Virus:病毒VOD:veno-occlusive disease,静脉阻塞性疾病v-onc: virus oncogene,病毒癌基因VPF: vascular permeability factor,血管渗透因子VZV:varicella zoster virus,水痘带状疱疹病毒WBC:white blood cell,白细胞Whole blood:全血WT:Wilms tumor,肾母细胞瘤Xerostomia:口腔干燥症。
免疫组织化学技术检测正常、增生及恶性子宫内膜组织中白血病抑制因子的表达Mylonas I;Makovitzky J;Shabani N;郭慧方【期刊名称】《世界核心医学期刊文摘:妇产科学分册》【年(卷),期】2005(000)005【摘要】Leukaemia inhibitory factor (LIF) is a pleiotrophic cytokine, which might play an important role in human reproduction and endocrine-responsive tumours. Ther efore, the aim of this study was to determine the frequency and tissue distribut ion of LIF in normal, hyperplastic and malignant endometrium. Paraffin-fixed en dometrial tissue was obtained from normal premenopausal women (n = 15), endometr ial hyperplasia (n = 20), endometroid adenocarcinoma (n = 32) and endometrial po lyps (n =9). The LIF expression was demonstrated by immunohistochemical meansa nd evaluated with a semiquantitative immunoreactive score. The Mann-Whitney U- test was used for statistical evaluation. The lowest expression of LIF was obser ved in endometrial adenocarcinomas compared to all groups, while endometrial pol yps expressed the highest LIF immunostaining. The expression in normal human gla ndular cells was significantly higher during the late secretory phase than in th e proliferative phase. The highest expression of LIF was observed in endometrial polyps. Simple hyperplasia showed a significantly higher LIF expression than pr oliferative endometrium and adenocarcinoma.Adenomatous hyperplasia (AH) grade I -III had a significantly higher LIF expression than adenocarcinoma. The lowest expression of LIF was observed in adenocarcinoma, being statistically significan t compared to all groups. LIF was immunohistochemically demonstrated in normal, hyperplastic and malignant endometrial tissue, suggesting a widespread but compl ex role for LIF in hyperplastic and malignant endometrial growth regulation. AH I-III also expressed LIF with statistically higher immunostaining than adenocar cinoma. Since AH III can be considered as a precursor of endometrial cancer, LIF could be a marker of cell transformation.【总页数】1页(P21-21)【作者】Mylonas I;Makovitzky J;Shabani N;郭慧方【作者单位】【正文语种】中文【中图分类】R711.7【相关文献】1.HOXA11基因在人良、恶性子宫内膜增生组织中的表达及临床意义 [J], 王燕;钟刚;胡俊波;杨帆;杜欣;吴莺;方敏;李红英2.雌孕激素受体在子宫内膜癌、子宫内膜不典型增生及正常子宫内膜中不同表达的临床意义 [J], 覃建庆;宋一丽;李明勋3.紧密连接分子claudin-4在正常、增生和恶性子宫内膜组织中的表达 [J], 潘晓玉;瓮占平;王波4.Claudin-7和β-catenin在正常、增生和恶性子宫内膜组织中的表达和意义 [J],熊晶;王渝;程恒辉;周晟5.生存素在正常子宫内膜、增生子宫内膜及子宫内膜癌中的表达研究 [J], 王蕊;刘朝霞;俞进;梁竹巍;魏丽惠因版权原因,仅展示原文概要,查看原文内容请购买。
Intra Oral Delivery (口腔内传递)直接由口腔黏膜吸收,瞬间进入血液循环,有效成分不流失。
Universities, Departments,FacultiesResearchersButler University College of Pharmacy and Health Sciences Health Sciences USA Associate Professor Nandita G. DasMain focus on her research facilities are about peformulation, biopharmaceutics, drug targeting, anticancer drug delivery.Purdue University School of Pharmacy and Pharmacal Sciences Department of Industrial and Physical Pharmacy (IPPH) USA Professor Kinam ParkControlled Drug Delivery, Glucose-Sensitive Hydrogels for Self-Regulated Insulin Delivery, Superporous Hydrogel Composites, Oral Vaccination using Hydrogel Microparticles, Fractal Analysis of Pharmaceutical Solid Materials.St. John's University School of Pharmacy and Allied Health ProfessionsUSA Professor Parshotam L. MadanControlled and targeted drug delivery systems; Bio-erodible polymers as drug delivery systemsThe University of Iowa College of Dentistry Department of Oral Pathology, Radiology, and Medicine USA Professor Christopher A. Squierpermeability of skin, and oral mucosa to exogenous substances, including alcohol and tobacco, and drug deliveryThe University of Iowa College of Pharmacy Department of Pharmaceutics USA Associate Professor Maureen D. DonovanMucosal drug delivery especially via the nasal, gastrointestinal and vaginal epithelia; and mechanisms of drug absorption and disposition.The University of Texas at San Antonio College of Engineering Department of Biomedical Engineering USA Professor Jeffrey Y. ThompsonDental restorative materials and implantsThe University of Utah Pharmaceutics & Pharmaceutical Chemistry USA Professor John W. MaugerDr. Maugner is mainly focused on dissolution testing and coating technology of orally administered drug products with bitter taste about which he is one of the inventors of a filed patent.University of Kentucky College of Pharmacy Pharmaceutical Sciences USA Professor Peter CrooksDr. Crooks is internationally known for his research work in drug discovery, delivery, and development, which includes drug design and synthesis, pharmacophore development, drug biotransformation studies, prodrug design, and medicinal plant natural product research. His research also focuses on preclinical drug development, including drug metabolism and pharmacokinetics in animal models, dosage form development, and drug delivery assessment using both conventional and non-conventional routes, and preformulation/formulation studies.Associate Professor Russell MumperDr. Mumper's main research areas are thin-films and mucoadhesive gels for (trans)mucosal delivery of drugs, microbicides, and mucosal vaccines, and nanotemplate engineering of nano-based detection devices and cell-specific nanoparticles for tumor and brain targeting, gene therapy and vaccines.West Virginia University School of Pharmacy Department of Basic Pharmaceutical Sciences USA Associate Professor Paula Jo Meyer StoutDr. Stout's research areas are composed of dispersed pharmaceutical systems, sterile product formulation DDS for dental diseases and coating of sustained release formulations.Monash University Victorian College of Pharmacy Department of Pharmaceutics Australia Professor Barrie C. FinninTransdermal Drug Delivery. Physicochemical Characterisation of Drug Candidates. Topical Drug Delivery. Drug uptake by the buccal mucosaProfessor Barry L. ReedTransdermal Drug Delivery. Topical Drug Delivery. Formulation of Dental Pharmaceuticals.University of Gent Faculty of Pharmaceutical Sciences Department of Pharmaceutics Belgium Professor Chris Vervaet-Extrusion/spheronisation - Bioadhesion - Controlled release based on hot stage extrusion technology - Freeze-drying - Tabletting and - GranulationPh.D. Els AdriaensMucosal drug delivery (Vaginal and ocular) Nasal BioadhesionUniversity of Gent Faculty of Pharmaceutical SciencesLaboratory of Pharmaceutical Technology Belgium Professor Jean Paul Remonbioadhesive carriers, mucosal delivery, Ocular bioerodible minitablets, Compaction of enteric-coated pellets; matrix-in-cylinder system for sustained drug delivery; formulation of solid dosage forms; In-line monitoring of a pharmaceutical blending process using FT-Raman spectroscopy; hot-melt extruded mini-matricesDanish University of Pharmaceutical Sciences Department of Pharmaceutics Denmark Associate Professor Jette JacobsenLow soluble drugs ?in vitro lymphatic absorption Drug delivery to the oral cavity ?in vitro models (cell culture, diffusion chamber) for permeatbility and toxicity of drugs, in vivo human perfusion model, different formulation approaces, e.g. iontophoresis.。
TGR5是新型的代谢调节因子李熠;冯健;范忠才【摘要】G蛋白偶联胆汁酸受体1(TGR5)是一种特殊的胆汁酸膜受体,在胆汁酸信号网中起着重要作用。
它的激活可以控制血糖,调节血脂平衡,提高能量消耗,并发挥抗炎作用等,进而有望成为治疗一系列代谢性疾病的药物靶点。
%G protein-coupled bile acid receptor 1(TGR5) is a specific membrane receptor of bile acids , playing an important role in the bile acid signaling network .Its activation has been proved to increase the glycemic control , regulate of blood lipid balance , enhance energy expenditure , exert anti-inflammatory actions and so on .It suggests that TGR5 may play an important role in metabolic diseases .【期刊名称】《基础医学与临床》【年(卷),期】2015(000)001【总页数】4页(P108-111)【关键词】TGR5;糖代谢;脂代谢;能量代谢;动脉粥样硬化【作者】李熠;冯健;范忠才【作者单位】泸州医学院附属医院心血管疾病研究室心血管内科,四川泸州646000;泸州医学院附属医院心血管疾病研究室心血管内科,四川泸州646000;泸州医学院附属医院心血管疾病研究室心血管内科,四川泸州646000【正文语种】中文【中图分类】Q493代谢综合征是一种由多种心血管危险因素参与为特征的临床综合征,包括胰岛素抵抗、脂质代谢异常、高血压和肥胖等,其中胰岛素抵抗被认为是其最重要的病因之一。
原代神经小胶质细胞培养方法的初探廖婷;袁雪;荣曦;刘红【摘要】目的:建立一种简单有效的小胶质细胞原代培养和纯化方法.方法:取出生24h的SD大鼠的脑皮层组织,胰酶消化成单个细胞、培养,待细胞长满培养瓶后,用力拍打培养瓶3min,离心并收集沉淀,加入新培养基再培养,采用免疫荧光法鉴定其纯度.结果:共聚焦显微镜鉴定小胶质细胞纯度达到96.85%.结论:拍击法提纯小胶质细胞的培养方法产量多,纯度高,为小胶质细胞在神经退行性疾病相关研究提供了基础.%Objective:To establish a simple and efficient method for the separation and purification of primary microglia.Methods:The cerebral cortex tissues were collected from one-day-old neonatal SD rats,and cells were obtained through trypsin digestion.The single cell suspension was then cultured.After the cells were confluent on the bottom of the culture flask,the culture flask was vigorously tapped for 3min,then centrifuged and the precipitate was collected and cultured again.The purity was identified by immunofluorescence. Results:The purity of microglia was96.85%.Conclusion:Vigorously tapping the culture flask could achieve high yield and high purity of microglia,and it provided the foundation for the study of microglia in neurodegenerative diseases.【期刊名称】《广西医科大学学报》【年(卷),期】2019(036)004【总页数】4页(P650-653)【关键词】小胶质细胞;原代培养;纯化方法;神经退行性疾病【作者】廖婷;袁雪;荣曦;刘红【作者单位】广西医科大学第一附属医院老年内分泌科,南宁 530021;广西医科大学第一附属医院老年内分泌科,南宁 530021;广西医科大学第一附属医院老年内分泌科,南宁 530021;广西医科大学第一附属医院老年内分泌科,南宁 530021【正文语种】中文【中图分类】R741小胶质细胞在中枢神经系统的损伤及疾病转归过程中起着重要作用[1]。
[8]涂梦恬,李良平.肝细胞核因子受体4α在非酒精性脂肪性肝病中的研究现状[J].国际消化病杂志,2017,37(3):144-147.Tu MT,Li LP.Research status of hepatocyte nuclear factor receptor4αin nonalcoholic fatty liver disease[J].Int J Gastroenterol,2017,37(3):144-147.doi:10.3969/j.issn.1673-534X.2017.03.003.[9]Thayer TE,Lino Cardenas CL,Martyn T,et al.The role of bone morphogenetic protein signaling in non-alcoholic fatty liver disease [J].Sci Rep,2020,10(1):9831.doi:10.1038/s41598-020-66770-8.[10]Cariou B,Byrne CD,Loomba R,et al.NAFLD as a metabolic disease in humans:A literature review[J].Diabetes Obes Metab,2021,23(5):1069-1083.doi:10.1111/dom.14322.[11]Theofilatos D,Anestis A,Hashimoto K,et al.Transcriptional regulation of the human liver X receptorαgene by hepatocyte nuclear factor4α[J].Biochem Biophys Res Commun,2016,469(3):573-579.doi:10.1016/j.bbrc.2015.12.031.[12]Vespasiani-Gentilucci U,Dell'Unto C,De Vincentis A,et al. Combining genetic variants to improve risk prediction for NAFLD and its progression to cirrhosis:a proof of concept study[J].Can J Gastroenterol Hepatol,2018,2018:7564835.doi:10.1155/2018/ 7564835.[13]Khalid YS,Dasu NR,Suga H,et al.Increased cardiovascular events and mortality in females with NAFLD:a meta-analysis[J]. Am J Cardiovasc Dis,2020,10(3):258-271.[14]Trépo E,Valenti L.Update on NAFLD genetics:From new variants to the clinic[J].J Hepatol,2020,72(6):1196-1209.doi:10.1016/ j.jhep.2020.02.020.[15]Matsuo S,Ogawa M,Muckenthaler MU,et al.Hepatocyte nuclear factor4alpha controls iron metabolism and regulates transferrin receptor2in mouse liver[J].J Biol Chem,2015,290(52):30855-30865.doi:10.1074/jbc.M115.694414.[16]Chi X,Wei X,Gao W,et al.Dexmedetomidine ameliorates acute lung injury following orthotopic autologous liver transplantation in rats probably by inhibiting Toll-like receptor4-nuclear factor kappa B signaling[J].J Transl Med,2015,13:190.doi:10.1186/ s12967-015-0554-5.[17]Wang L,Yao M,Zheng W,et al.Insulin-like growth factor I receptor:a novel target for hepatocellular carcinoma gene therapy [J].Mini Rev Med Chem,2019,19(4):272-280.doi:10.2174/ 1389557518666181025151608.(2020-10-23收稿2021-01-17修回)(本文编辑李鹏)不同部位脑梗死华勒变性的特点及对神经功能的影响王冬梅,蔡桂淑,刘立生△摘要:目的探讨不同部位脑梗死华勒变性的特点及对神经功能的影响。
原代骨髓基质细胞共培养对K562细胞伊马替尼敏感性及细胞周期的影响王吉刚;周凡;刘彦琴;白颖;刘景华;吴丹彤【期刊名称】《中国组织工程研究》【年(卷),期】2014(000)028【摘要】BACKGROUND:Leukemia cells can obtain drug resistance phenotype mediated by adhesion to bone marrow stromal cells. But, for chronic myelogenous leukemia with adhesion functional defects, the role and mechanism of bone marrow stromal cells in imatinib-resistant formation remain unclear. OBJECTIVE:To construct the co-cultured model of bone marrow stromal cells-K562 cells and to investigate the influences of the co-culture with bone marrow stromal cells from the patients with chronic myelogenous leukemia on imatinib sensitivity of K562 cells and cellcycle. METHODS:The co-culture model was constructed by co-culturing K562 cells with bone marrow stromal cells isolated and cultured from the patients with chronic myelogenous leukemia. The IC50 values of K562 cells exposed to imatinib were quantified by MTT assay. The apoptotic rates of K562 cells exposed to 0.5μmol/L imatinib for 72 hours were detected by flow cytometry through Annexin V-FIT/PI labeling. The cellcycles, cellcycle protein (cyclin A, cyclin D1 and cyclin E) expression of K562 cells co-cultured with bone marrow stromal cells for 72 hours were analyzed by flow cytometry.RESULTS AND CONCLUSION:The IC50 values of co-culturegroup and suspension culture group were respectively (0.52±0.02)μmol/L and (1.27±0.05)μmol/L, and their comparison showed significant differences (P<0.01). After 72 hours of treatment with 0.5μmol/L imatinib, the apoptotic rates in the co-culture group and suspension culture group were respectively (15.48±4.17)%and (32.01±6.83)%, and their comparison showed significant differences (P<0.01). The percentages of G0-G1 phase of K562 cells co-cultured with bone marrow stromal cells for 72 hours were (48.81±8.27)%, which were significantly higher than the suspension culture group (25.78±3.26%) (P<0.01). The co-culture with bone marrow stromal cells from the patients with chronic myelogenous leukemia could mediate K562 cells resistance to imatinib. The mechanism was possibly related with G0/G1 arrest of K562 cells induced by co-culture with bone marrow stromal cells.%背景:与骨髓基质细胞黏附可介导白血病细胞耐药,而对于黏附功能缺陷的慢性髓细胞白血病而言,骨髓基质细胞在伊马替尼耐药形成中的作用及其机制尚不清楚。
Role of Leukocyte Cell-Derived Chemotaxin2as a Biomarker in Hepatocellular CarcinomaHirohisa Okabe1,2,Evan Delgado1,Jung Min Lee1,Jing Yang1,Hiroki Kinoshita2,Hiromitsu Hayashi2, Allan Tsung3,Jaideep Behari4,Toru Beppu2,5,Hideo Baba2,Satdarshan P.Monga1,4*1Department of Pathology,University of Pittsburgh,Pittsburgh,Pennsylvania,United States of America,2Department of Gastroenterological Surgery,Graduate School of Life Sciences,Kumamoto University,Kumamoto,Japan,3Department of Surgery,University of Pittsburgh Medical Center,Pittsburgh,Pennsylvania,United States of America,4Department of Medicine,University of Pittsburgh,Pittsburgh,Pennsylvania,United States of America,5Department of Multidisciplinary Treatment for Gastroenterological Cancer,Kumamoto University Hospital,Kumamoto,JapanAbstractWe sought to identify a secreted biomarker for b-catenin activation commonly seen in hepatocellular carcinoma(HCC).By examination of our previously published genearray of hepatocyte-specific b-catenin knockout(KO)livers,we identified secreted factors whose expression may be b-catenin-dependent.We verified expression and secretion of the leading factor in HCC cells transfected with mutated(Hep3B S33Y)-b-catenin.Serum levels of biomarker were next investigated in a mouse model of HCC with b-catenin gene(Ctnnb1)mutations and eventually in HCC patients.Leukocyte cell-derived chemotaxin-2 (LECT2)expression was decreased in KO livers.Hep3B S33Y expressed and secreted more LECT2in media as compared to Hep3B WT.Mice developing HCC with Ctnnb1mutations showed significantly higher serum LECT2levels.However patients with CTNNB1mutations showed LECT2levels of54.28622.32ng/mL(Mean6SD;n=8)that were insignificantly different from patients with non-neoplastic chronic liver disease(32.8621.1ng/mL;n=15)or healthy volunteers(33.267.2ng/mL;n=11).Intriguingly,patients without b-catenin mutations showed significantly higher serum LECT2levels(54.26622.25ng/mL;n=46).While b-catenin activation was evident in a subset of non-mutant b-catenin HCC group with highLECT2expression,serum LECT2was unequivocally similar between b-catenin-active and-normal group.Further analysis showed that LECT2levels greater than50ng/ml diagnosed HCC in patients irrespective of b-catenin mutations with specificity of96.1%and positive predictive value of97.0%.Thus,LECT2is regulated by b-catenin in HCC in both mice and men,but serum LECT2reflects b-catenin activity only in mice.Serum LECT2could be a potential biomarker of HCC in patients.Citation:Okabe H,Delgado E,Lee JM,Yang J,Kinoshita H,et al.(2014)Role of Leukocyte Cell-Derived Chemotaxin2as a Biomarker in Hepatocellular Carcinoma.PLoS ONE9(6):e98817.doi:10.1371/journal.pone.0098817Editor:Diego Calvisi,Institut fu¨r Pathologie,Greifswald,Germany,GermanyReceived February19,2014;Accepted May6,2014;Published June3,2014Copyright:ß2014Okabe et al.This is an open-access article distributed under the terms of the Creative Commons Attribution License,which permits unrestricted use,distribution,and reproduction in any medium,provided the original author and source are credited.Funding:This study was funded by NIH grants1R01DK62277,R01DK100287and Endowed Chair for Experimental Pathology to SPM.The funders had no role in study design,data collection and analysis,decision to publish,or preparation of the manuscript.Competing Interests:SPM is a consultant for Abbvie and PhaseRx.None of the content in the current manuscript was affected by the consultation relationship.In addition,this does not alter the authors’adherence to PLOS ONE policies on sharing data and materials.*E-mail:smonga@IntroductionPrimary liver cancer,which is predominantly hepatocellular carcinoma(HCC),is the sixth most common cancer worldwide and the third most frequent cause of cancer mortality[1].b-Catenin gene(CTNNB1)mutations are one of the major oncogenic gene alterations in HCC seen in10–40%,while mutations affecting Axin1are seen in around10%of all HCCs[2].CTNNB1 mutations are observed in exon-3that contain phosphorylation sites essential for b-catenin degradation leading to its stabilization and enhanced expression of target genes such as glutamine synthetase (GS),axin2and regucalcin[3,4,5,6].This mutation is mutually exclusive to p53mutation,which is the most common mutation in HCC[7,8].No routine test is currently available that can yield any genetic information relevant to HCC.Since biopsies for HCC carry high risk because HCCs are usually associated with an underlying liver disease,serum biomarkers specific for a molecular aberration may be highly relevant in personalized medicine in Oncology.LECT2is a16kDa chemotactic protein purified from human T-cell line[9].Since hepatocytes are the chief source,expression of LECT2is specific for liver[10].LECT2is a direct target of b-Catenin and has been shown to have a role in the pathogenesis of HCC[11].In a mouse liver tumor model,LECT2prohibits tumor progression by regulating Th2-based inflammation[12].Although its role is well known as chemokine-like secreted protein involved in inflammation,there is no investigation about its serum levels especially in the setting of liver tumor development.Here,screening a previously published Affymetrix gene array, we identify Lect2expression to be decreased in hepatocyte-specific b-catenin knockout livers[13].Next,using an in vitro analysis in human HCC cells,we demonstrate that indeed LECT2expression and its protein levels reflect b-catenin activity and hence hypothesize that it may be a good biomarker for HCC with b-catenin activation.The utility of LECT2as a biomarker was validated first in a mouse liver tumor model where exon-3 mutation in b-catenin gene and ensuing b-catenin activation is implicated in HCC pathogenesis[14,15].However,in HCC patients,serum LECT2levels were not significantly different intumor with CTNNB1or without CTNNB1mutations when compared to patients with chronic liver disease or healthy volunteers.Furthermore,despite b-catenin activation observed in an additional subset of non-CTNNB1mutated HCC,which showed high LECT2expression,serum LECT2levels were not predictive for active b-catenin signaling in the tumor.Interestingly though,irrespective of molecular aberrations,LECT2levels were significantly higher in all HCC patients versus patients with cirrhosis or healthy controls.In fact,serum LECT2$50ng/ml indicated HCC with high specificity and positive predictive value. Materials and MethodsCell lines and treatmentHuman HCC cell lines,Hep3B,HepG2,SNU449,SNU398, and HuH7,were obtained from the American Type Culture Collection(Manassas,VA).Cells were cultured in Eagle’s minimal essential medium(EMEM)or RPMI supplemented with10%vol/ vol FBS at37u C in a humidified5%carbon dioxide atmosphere. For siRNA knockdown experiment,the cells were transfected using Lipofectamine2000(Life Technologies,Grand Island,NY) with b-catenin(CTNNB1)or scrambled Negative Control siRNAs (Ambion,Grand Island,NY)as previously described[16].Wild type b-Catenin gene(WT)or b-Catenin gene mutated at serine33 to tyrosine(S33Y),which is constitutively active,were stably transfected into Hep3B cells to generate Hep3B WT and Hep3B S33Y,respectively,as described previously[17].Animal studiesAll animal experiments were performed under the guidelines of the National Institutes of Health and the Institutional Animal Use and Care Committee at the University of Pittsburgh and approved by the Institutional Animal Use and Care Committee at the University of Pittsburgh.C3H/He mice were injected intraperi-toneally with DEN(Sigma-Aldrich,Inc.)at a dose of90m g/gram body weight at6weeks of age and3weeks later putting them on a diet containing0.05%phenobarbital(PB)until sacrifice at6–8 months.Serum was collected at time of euthanasia and simultaneously,liver tissues were collected for histology and protein analysis.Mutation analysisGenomic DNA was extracted using DNA Micro Kit(Qiagen, Valencia,CA)from both the frozen liver sections after hematoxilin and eosin(HE)staining(Sigma-Aldrich,Inc.)to identify the tumor and from patient’s frozen liver tumor tissues.Amplification of exon 3of b-catenin gene(CTNNB1)using polymerase chain reaction (PCR),gel extraction,purification of PCR products,and direct sequencing were performed as described previously[18]. Immunohistochemistry and Western blot Immunohistochemical staining and Western blot was performed as described previously[19].Rabbit polyclonal anti-GS(Santa Cruz,1:100dilution)was used in immunohistochemistry.Anti-bodies used in Western blot were mouse monoclonal anti-b-Catenin antibody(Santa Cruz,1:1000dilution),goat polyclonal anti-LECT2antibody(Santa Cruz,1:100dilution),and rabit polyclonal anti-GAPDH(Santa Cruz,1:1000dilution).Real-time polymerase chain reactionIn mice analyses,total RNA was extracted from frozen sections after H&E staining using a mirVana microRNA isolation kit (Ambion)in accordance with the manufacturer’s instructions. After reverse transcription and DNase treatment were performed,qRT-PCR was performed on a StepOne Plus using26SYBR Green PCR Master Mix(Applied Biosystems,Foster,CA).The primers’sequences are as follows:Glutamine Synthetase(encoded by Glul)forward,59-CTCGCTCTCCTGACCTGTTC-39and reverse,59-TTCAAGTGGGAACTTGCTGA-39;LECT2for-ward,59-CCCACAACAATCCTCATTTCA-39and reverse,59-GTTAGCCCATGGTCCTGCTA-39;GAPDH was used as an internal control.In human analyses,total RNA was extracted from frozen tissues and qRT-PCR analysis performed as described previously[20]. Enzyme-linked immunosorbent assay(ELISA)Serum LECT2levels were measured by either human or mouse LECT2ELISA kit(Medical&Biological Laboratories(MBL)Co, Ltd,Niigata,Japan)according to the manufacture’s protocol. Clinical tissue and serum samplesAll tissues and materials used in this study were obtained under an approved Institutional Review Board protocol at the University of Pittsburgh and Kumamoto University.Specifically,frozen tissues and serum samples were obtained from HCC patients in the Department of Surgery,University of Pittsburgh(Pittsburgh, PA;n=20)with a written informed consent approved by the University of Pittsburgh Institutional Review Board.Frozen tissues and serum samples from HCC patients were also collected by the Department of Gastroenterological Surgery,Kumamoto Univer-sity(Kumamoto,Japan;n=45),with a written informed consent approved by the Institutional Review Board at the Kumamoto University.Additional serum samples were obtained from patients with chronic liver disease(n=15)in the Department of Medicine that did not have any evidence of HCC as determined by normal serum a-fetoprotein and negative abdominal ultrasound or CT scan within6months of serum collection.These patients also signed informed consent prior to providing serum samples and the University of Pittsburgh Institutional review board approved the study.Chromatin immunoprecipitation(ChIP)ChIP Assay was performed using Hep3B WT and Hep3B S33Y cells(Cambridge,MA).36106cells were fixed with1% formaldehyde for10min,incubated with glycine(0.125M)for 5min,and then washed twice with PBS.After a short spin,the pellets were resuspended in cell lysis buffer(5mM PIPES,pH8.0, 85mM KCl,0.5%NP-40)by pipetting.After centrifugation,the pellets were resuspended in nuclear lysis buffer(50mM Tris, pH8.1,10mM EDTA,1%SDS)containing protease inhibitors by pipetting,and sonicated to break chromatin into fragments of around0.3–1.0kb length.Subsequent IP experiment was performed with ChIP-IT High sensitivity kit(Active motif, Carlsbad,CA).The diluted DNA-protein complex(25m g of protein)was incubated overnight at4u C with different antibodies (rabbit anti-TCF4,Cell Signaling Technology;rabbit IgG and goat anti-HNF1a,Santa Cruz)in the presence of herring sperm DNA and protein A/G agarose beads.PCR was performed using primers for LECT2promoter region:59-CAGCCCAGAA-GACTGTCGAT-39(forward)and59-GATTAGAGTTGC-CCCCACAC-39(reverse);albumin promoter region,59-TGGAGAAAACAGTTCCAGATGGT-39(forward)and59-CGTGTGGGGTTGACAGAAGA-39(reverse).Cell culture and luciferase AssaySNU449cells were plated in24well plate and treated with either50nM control si-RNA or50nM b-Catenin si-RNA withlipofectamine iMAX (Invitrogen).TOPFLASH reporter plasmid was transfected using the lipofectamine 2000(Invitrogen)a day after the siRNA treatment.Subsequently,cells were treated with TGF-b 1(5ng/mL)(R&D system)for 24hours.Cells were lysed and prepared using the luciferase reporter assay system (Promega,Madison,WI).Reporter activity was read on a luminometer (Lumat;EG &G Berthold).Statistical analysisStatistical analysis was performed using the JMP 8.0software (SAS Institute,Cary,NC,USA).Values were presented as the mean 6standard deviation (SD).Differences between two variables were calculated using the Wilcoxon test.Multiple samples were compared by ANOVA followed by Tukey-Kramer post hoc test.P ,0.05was considered to indicate a statistically significant difference.ResultsIdentification of LECT2regulation by b -CateninTo identify specific biomarkers for b -catenin upregulation,we utilized our previous dataset of microarray analysis comparing gene expression of liver tissue of hepatocyte-specific b -catenin knockout (KO)with that of wild type (WT)[13].From a list of 2963upregulated genes in WT as compared to KO (withfoldFigure 1.Regulation of LECT2expression by b -catenin.A.Strategy to identify biomarker for b -catenin activation.Microarray analysis was performed using liver tissue from hepatocyte-specific b -catenin knockout (KO)and wild-type (WT)mice,which identified 14secreted targets.Lect 2expression was 117-fold lower in KO livers.B.b -Catenin expression in Hep3B cells and stable cell lines established with wild-type b -catenin (Hep3B WT)-or mutated b -catenin (Hep3B S33Y)-transfected cells.C.Representative Western blot shows increased LECT2protein levels in Hep3B S33Y cells as compared to Hep3B WT.D.Hep3B S33Y cells transfected with either b -catenin or control siRNA showed decreased b -catenin and LECT2protein levels in a representative Western blot.E.Increased LECT2protein levels were observed in culture media collected from Hep3B S33Y cells as compared to Hep3B WT as analyzed by ELISA.Basal media was used as a negative control.F.Occupation of Lect2promoter by TCF4especially in Hep3B S33Y cells was as assessed by ChIP.Albumin promoter is not regulated by b -catenin but by HNF1a ,which is used as quality control for chromatin.doi:10.1371/journal.pone.0098817.g001Table 1.Candidate genes encoding secreted protein.Gene NameLect2leukocyte cell-derived chemotaxin 2AFP alpha fetoproteinSlpi secretory leukocyte protease inhibitor Del1del1minor splice variantClecsf8C-type lectin,superfamily member 8Sh2d1a SH2domain protein 1AWnt10a wingless related MMTV integration site 10a IL22b interleukin-22bEgf epidermal growth factorFgf13fibroblast growth factor-related protein FGF-13Wnt4wingless-related MMTV integration site 4Igf2insulin-like growth factor 2Fdp fibrocyte-derived derived protein Scya24eotaxin-2doi:10.1371/journal.pone.0098817.t001change .5),we identified 14genes that encode for secreted proteins (Table 1).The leading candidate lect2showed a 117-fold lower expression in KO as compared to WT (Figure 1A).To validate if LECT2expression could be induced by b -catenin activation,we used two previously generated stable human cell lines,Hep3B cells expressing wild type b -catenin (Hep3B WT )and Hep3B cells expressing S33Y-mutated b -catenin (Hep3B S33Y ),the latter showing highest b -catenin levels (Figure 1B)[17].We compared LECT2expression between these cell lines using qRT-PCR analysis and detected a notable increase in its expression in Hep3B S33Y cells (data not shown).Whole cell lysates also showed increased LECT2protein levels in Hep3B S33Y as compared toHep3B WT cells (Figure 1C).To see if LECT2upregulation is caused by active b -catenin,Hep3B S33Y were transiently transfect-ed with b -catenin or control siRNA.b -Catenin knockdown led to a notable decrease in LECT2protein levels (Figure 1D).Next,to assess if LECT2is being secreted,conditioned media was collected from Hep3B WT and Hep3B S33Y cells and subjected to ELISA assay.Significantly higher LECT2protein was detected in conditioned media from Hep3B S33Y (0.2960.13ng/mL)as compared to Hep3B WT cells (0.02360.046ng/mL)(Figure 1E).Basal media,used a negative control,also showed lack of any LECT2protein (0.01760.057ng/mL).Figure 2.Serum LECT2levels in mice with b -catenin gene mutated HCC.A.Representative picture of b -catenin (left panel)and GS (right panel)immunohistochemistry of liver of a tumor bearing mouse at 8months after DEN/PB treatment.Magnification,ing frozen tissue from a representative tumor,b -catenin gene exon-3mutation affecting codon 33(red box)was confirmed by direct sequencing.C.Serum LECT2levels were significantly (*)increased in tumor bearing versus non-tumor bearing DEN/PB treated mice as analyzed by ELISA.(*p ,0.01).D.Representative pictures of frozen sections from which tumors (T1-T3)were scraped for direct sequencing.E.Sequence analysis from three tumor lesions (T1-T3)show S33Y-b -catenin gene mutations in codon 33(red boxes)by direct sequencing.F.Glutamine Synthetase (Glul)and Lect2expression in three tumor lesions (T1-T3)were assessed by qRT-PCR.Gene expression of background liver tissues surrounding tumor are shown as N.doi:10.1371/journal.pone.0098817.g002Figure3.No correlation of b-catenin mutations or b-catenin activation to serum LECT2levels in patients.A.Serum LECT2levels in patients with HCC with CTNNB1mutations,absent CTNNB1mutations,patients with chronic liver fibrosis(CH/LC),and healthy volunteer(HV)as assessed by ELISA.(*p,0.05).B.No correlation observed between LECT2expression in tumor and serum levels of LECT2in HCC patients(n=28).C.Nocorrelation observed between LECT2expression in b-catenin mutated tumors and serum levels of LECT2in these HCC patients(n=4).D.NoLastly,to specifically determine if b-catenin-T cell factor(TCF) signaling was indeed regulating LECT2expression,chromatin immunoprecipitation(ChIP)analysis was performed on extracts from Hep3B S33Y and Hep3B WT cells.As shown in figure1F, LECT2was pulled down with TCF4and not control IgG in Hep3B S33Y cells.This indicates promoter activity driven by TCF4-b-catenin in Hep3B S33Y cells.Albumin,whose expression is b-catenin-TCF independent,was pulled down by HNF1a in both Hep3B S33Y and Hep3B WT cells.These results show occupancy of Lect2promoter by TCF4,thus demonstrating its regulation by the b-catenin-TCF signaling.HCC with b-Catenin mutation increases serum LECT2 level in miceTo investigate if Lect2could be a serum biomarker in mice,we used a murine HCC model,which utilizes b-catenin signaling as a major mechanism of carcinogenesis.Tumor induction by a single injection of diethylnitrosamine followed by exposure to PB as described in methods and elsewhere has been shown to select for exon-3mutations in b-catenin gene to give rise to HCC at6-8 months[14,15].Indeed,HCC observed in mice with this protocol were strongly GS-positive and had nuclear b-catenin accumula-tion as observed by immunohistochemical staining(Figure2A). Genetic alteration in b-catenin gene contributing to b-catenin activation was confirmed by direct sequencing(Figure2B).We could recognize liver tumor formation in9mice out of13that were subjected to DEN/PB protocol.Strikingly,the9mice with evidence of histological tumor burden showed significantly(p, 0.01)higher serum Lect2levels(55.9619.9ng/mL)as compared to the4non-tumor bearing mice(24.965.5ng/mL)(Figure2C). To confirm mutations in b-catenin gene due to existing tumor heterogeneity and also verify corresponding Lect2expression,we extracted both genomic DNA and total RNA from same nodules (Figure2D).Direct sequencing showed a common mutation (S33Y)in T1,T2and T3nodules(Figure2E).We next examined Lect2mRNA expression as well as Glul mRNA(encoding GS protein)expression in these tumor nodules.All3-tumor nodules had high Lect2and Glul expressions as compared to the background liver(Figure2F).Thus,in mice Lect2expression and eventually its secretion is upregulated by b-catenin mutations in HCC,which can be detected in serum and hence may be a useful biomarker in this mouse model.Serum LECT2level is inconsistent with b-Catenin mutations in human HCCSera were available from54HCC patients through appropriate IRB approvals.Eight of the54patients showed b-catenin gene (CTNNB1)alterations in the form of missense mutations in exon-3 (Table2).Remaining46patients lacked any genetic alterations in exon-3of CTNNB1.Additionally,we enrolled healthy volunteers and also patients with cirrhosis due to chronic liver disease (Table3)to determine serum LECT2levels and address its efficacy as a tumor marker.Based on Tukey-Kramer post hoc test, serum LECT2levels in patients with mutated b-Catenin (54.28622.32ng/mL;n=8)were not statistically different from either patients with cirrhosis(32.8621.1ng/mL,p=0.091; n=15)or healthy volunteers(33.267.2ng/mL,p=0.137; n=11).On the other hand,patients who did not harbor CTNNB1 mutations showed significantly higher LECT2level (54.26622.25ng/mL;n=46)than those with cirrhosis and from healthy volunteers(p=0.0044and0.0176,respectively) (Figure3A).To address if serum LECT2levels showed any correlation with LECT2expression in the tumors,we selected a group of28 patients for which had serum and corresponding tumor tissue (Table2).Intriguingly,no correlation of serum LECT2to its mRNA expression was detectable(Figure3B).Even upon stratification of tumors for presence(n=4)or absence(n=24)of b-catenin gene mutations,no correlation was evident between serum LECT2and its gene expression(Figure3C–D).This led us to further investigate if a subset of these tumors with WT b-catenin gene may still have b-catenin activation.We examined expression of several surrogate Wnt target genes such as AXIN2,REGUCALCIN,LECT2and GLUL in all28tumors using qRT-PCR.Based on the known heterogeneity in Wnt signaling in HCC,we labeled a tumor to be b-catenin-active if at least2of4 target genes were simultaneously upregulated.In addition to the4 tumors with CTNNB1mutations,12more samples showed increased expression of target genes indicative of b-catenin activation as shown in a heat map(Figure3E).Based on this classification,we next compared serum LECT2levels between patients with WT b-catenin gene with active Wnt signaling(+)and with WT b-catenin gene with absent Wnt signaling(2).While some HCC patients in the former group showed high serum LECT2levels,there was no statistical difference between the two groups(Figure3F).Lastly,we compared b-catenin target gene expression among the three HCC groups;1)patients with CTNNB1mutations(MT), 2)patients with WT b-catenin gene but active Wnt signaling(+), and3)those with WT b-catenin gene but lacking Wnt signaling (2).Patients in MT and(+)groups were insignificantly different from each other in expression values of AXIN2,REGUCALCIN, LECT2and GLUL,although the expression was always highest in the MT group(Figure3G).However,both these groups showed significantly higher expression of these four target genes when compared to the(2)group clearly demonstrating lack of active Wnt signaling in this subgroup of HCCs(Figure3D).Intriguingly, (2)group also showed significantly lower LECT2expression than MT and(+)(Figure3G).Taken together,these data indicate that despite some HCC patients showing low LECT2expression in tumors,they unex-pectedly still showed high serum LECT2level with the values ranging from50–80ng/mL.Increased serum LECT2is a biomarker of HCC-independent of b-catenin mutation/activation in tumors Next,due to heterogeneity in HCC,we investigated if serum LECT2levels may be a biomarker of HCC irrespective of acorrelation observed between LECT2expression in non-b-catenin mutated tumors and serum levels of LECT2in these HCC patients(n=24).E.Heat map shows expression of b-catenin target genes in b-catenin-mutated(MT)and non-mutated wild-type(WT)HCC patients(n=28).Genes assessed included AXIN2,REGUCALCIN,LECT2,and GLUL.(+)indicates b-catenin activity as seen by increased expression of at least2target genes whereas(2) indicates absent b-catenin activation reflected by lack of target gene expression.F.Serum LECT2levels showed insignificant difference in HCC patients that lacked b-catenin gene mutations but showed high expression of b-catenin target genes versus patients who have neither b-catenin gene mutations nor any increase in b-catenin target gene expression.G.b-Catenin target gene expression shown by qRT-PCR.Steel-Dwass test was performed to compare the values among three groups.*,p,0.05.(+)indicates b-catenin activity as seen by increased expression of at least2target genes whereas(2)indicates lack of b-catenin activity due lack of target gene expression.doi:10.1371/journal.pone.0098817.g003T a b l e 2.C l i n i c a l c h a r a c t e r i s t i c s o f p a t i e n t s w i t h H C C .P a t i e n tA g e G e n d e r T u m o r s i z e (c m )D i f f e r e n t i a t i o n s t a t u s S e r u m L E C T 2l e v e l (n g /m L )M u t a t i o n R N A a v a i l a b l eK 28481M4.1W e l l 93.2W T #K 28564M1.7W e l l 87.9W T 6K 28669F4.9M o d e r a t e 48.7W T #K 28762M1.6W e l l 62.6W T #K 28863M1.7W e l l 52.6W T #K 28958M3.8M o d e r a t e 83.3W T 6K 29077M1.5M o d e r a t e 64.6W T #K 29152M7.8M o d e r a t e 63.4W T #K 29339M2.0M o d e r a t e 69.3W T #K 29436M2.5M o d e r a t e 32.8W T6K 29574M4.0M o d e r a t e 78.2W T#K 29676M2.4M o d e r a t e 46.9W T#K 29770M4.4N e c r o s i s (T A C E )95.1W T6K 29866M4.3M o d e r a t e 54.4W T6K 29967M2.5M o d e r a t e 61.3W T#K 30074F5.5M o d e r a t e 32.8W T6K 30164M3.5M o d e r a t e 57.2M T6K 30286M5.5P o o r 51.8M T#K 30365M2.3M o d e r a t e 41.8W T#K 30476F1.0W e l l 56.1W T#K 30577F2.5M o d 34.9M T#K 30673M1.0W e l l 56.1W T#K 30772M2.3M o d e r a t e 64.2W T6K 30866M11.0M o d e r a t e 66.1W T#K 30972M6.8M o d e r a t e 58.7W T#K 31076M4.6W e l l 101.3M T#K 31168F9.0M o d e r a t e 45.6W T6K 31260M1.3P o o r49.3W T6K 31382M4.0M o d e r a t e34.7W T6K 31483F4.5M o d e r a t e59.5M T6K 31562M4.5M o d e r a t e57.7W T#K 31675M4.0M o d e r a t e68.4W T#K 31782F7.0P o o r56.0W T#K 31869M3.0M o d e r a t e58.8M T#K 31963M4.0M o d e r a t e55.5W T#T a b l e 2.C o n t .P a t i e n tA g e G e n d e r T u m o r s i z e (c m )D i f f e r e n t i a t i o n s t a t u s S e r u m L E C T 2l e v e l (n g /m L )M u t a t i o n R N A a v a i l a b l eK 32067M2.2W e l l 60.3M T #K 32159M2.2M o d e r a t e 88.0W T #K 32263M6.0M o d e r a t e 13.4W T #K 32369M3.3M o d e r a t e 68.8W T #K 32464M3.9M o d e r a t e 56.7W T #K 32566M3.0M o d e r a t e 61.3W T 6K 32677M2.5P o o r 47.8W T 6K 32770M7.6M o d e r a t e 31.9W T 6K 32856M6.1M o d e r a t e 103.3W T 6K 32976M4.0M o d e r a t e 56.1W T6P 31858M10.6M o d e r a t e 17.2W T6P 33676F2.5M o d e r a t e 10.2W T6P 32857F4.2M o d e r a t e 5.5W T6P 51372M-M o d e r a t e 38.9W T6P 52069M5.0M o d e r a t e 18.5W T6P 78856M14.0M o d e r a t e 42.7W T6P 95871M17.0M o d e r a t e 28.4M T6P 133564M2.5W e l l 49.8W T6P 134268M2.2M o d e r a t e 26.2W T6d o i :10.1371/j o u r n a l.p o ne .0098817.t 002。