2019-2020年七年级数学下学期第一次月考试题 新人教版 (I)
- 格式:doc
- 大小:213.00 KB
- 文档页数:6
2018-2019学年度(下)七年级数学3月月考试卷一、选择题(每小题3分,共30分)1.如图,BD ∥AC ,BE 平分∠ABD ,交AC 于点E .若∠A =50°,则∠1的度数为( A )A .65°B .60°C .55°D .50°2.如图,有一块含有30°角的直角三角板的两个顶点放在直尺的对边上,如果∠2=44°,那么∠1的度数是( C )A .14°B .15°C .16°D .17°3.下列说法正确的是( D )A.因为52=25,所以5是25的算术平方根 B.因为(-5)2=25,所以-5是25的算术平方根 C.因为(±5)2=25,所以5和-5都是25的算术平方根 D.以上说法都不对4..两条相交直线与另外一条直线在同一平面内,它们的交点个数是 ( D ) A.1 B.2 C.3或2 D.1或2或35.已知下列命题:①若a >b ,则c -a <c -b ;②若a >0,则√a 2=a ;其中原命题与逆命题均为真命题的个数是( A )A. 2个B. 1个C. 0个D. -1个 6.化简:38=(C )A .±2B .-2C .2D .2 27.9的倒数等于( D ) A .3B .-3C .-13D.138.下列说法正确的是( B ) A .﹣(﹣8)的立方根是﹣2B.立方根等于本身数有﹣1,0,1C.的立方根为﹣4D.一个数的立方根不是正数就是负数9.如图5-1-31,要把河中的水引到水池A中,应在河岸B处(AB⊥CD)开始挖渠才能使水渠的长度最短,这样做的依据是( D )图5-1-31A.两点之间线段最短 B.点到直线的距离C.两点确定一条直线 D.垂线段最短10.下列图形中,不能通过其中一个四边形平移得到的是( D )二、填空题(每小题3分,共18分)11.如果那么的值是__343____12.如图BE,CF相交于O,OA,OD是射线,其中构成对顶角的角是∠BOC和∠EOF,∠EOC和∠BOF .13..若=﹣,则x= ﹣;若=6,则x= ±216 .14.已知直线a∥b,b∥c,则直线a,c的位置关系是_____a∥c_____.15.如图所示,∠ABC=40°,DE∥BC,DF⊥AB于点F,则∠ADF=50°.16.|6-3|+|2-6|的值为26-1三、解答题(共72分)17..如图5-1-3,直线AB与CD相交于点O,∠AOC∶∠AOD=1∶2.求∠BOD的度数.图5-1-3解:由邻补角的性质,得∠AOC +∠AOD =180°. 由∠AOC ∶∠AOD =1∶2,得∠AOD =2∠AOC ,∠AOC +2∠AOC =180°,解得∠AOC =60°.由对顶角相等,得∠BOD =∠AOC =60°. 17.求下列各式的值:(1)3-1 000; 解:-10.(2)-3-64; 解:-4.(3)-3729+3512; 解:-1.18.如图所示,当光线从空气中射入水中时,光线的传播方向发生了变化,在物理学中这种现象叫做光的折射,∠1=43°,∠2=27°,那么光的传播方向改变了多少度?解:∠BFD =∠1=43°,∠2=27°,则∠DFE =∠BFD -∠2=43°-27°=16°,所以光的传播方向改变了16°.19.求下列各数的平方根和算术平方根:(1)1.44;解:1.44的平方根是± 1.44=±1.2,算术平方根是 1.44=1.2. (2)169289; 解:169289的平方根是±169289=±1317,算术平方根是169289=1317. 20.计算:(1)2+32-52; 解:原式=- 2.(2)38+(-2)2-14.解:原式=31 2 .21.如图,某次考古发掘出的一块梯形残缺玉片,工作人员从玉片上量得∠A=115°,∠D =100°,已知梯形的两底AD∥BC,请你帮助工作人员求出另外两个角的度数,并说明理由.解:∵AD∥BC,∠A=115°,∠D=100°,∴∠B=180°-∠A=180°-115°=65°,∠C=180°-∠D=180°-100°=80°22.有一天李小虎同学用《几何画板》画图,他先画了两条平行线AB,CD,然后在平行线间画了一点E,连接BE,CE后(如图(1)所示),他用鼠标左键点住点E,拖动后,分别得到图(2)(3)(4),这时突然想,∠B,∠D与∠BED之间的度数有没有某种联系呢?接着李小虎同学通过利用《几何画板》的“度量角度”和“计算”的功能,找到了这三个角之间的关系.(1)你能探讨出图(1)至(4)中的∠B,∠D与∠BED之间的关系吗?(2)请从所得的四个关系中,选一个说明它成立的理由.解:(1)图(1):∠BED=∠B+∠D;图(2):∠B+∠BED+∠D=360°;图(3):∠BED=∠D-∠B;图(4):∠BED=∠B-∠D.(2)选图(3).理由如下:如图所示,过点E作EF∥AB.因为AB∥CD,所以EF∥CD,所以∠D=∠DEF,∠B=∠BEF,因为∠BED=∠DEF-∠BEF,所以∠BED=∠D-∠B.23.如图,CD∥AB,OE平分∠AOD,OF⊥OE,∠D=50°,求∠BOF的度数.解:∵CD∥AB,∴∠AOD =180°-∠D =180°-50°=130°. ∵OE 平分∠AOD ,∴∠EOD =12∠AOD =12×130°=65°.∵OF ⊥OE ,∴∠DOF =90°-∠EOD =90°-65°=25°.∴∠BOF =180°-∠AOD -∠DOF =180°-130°-25°=25°.24.已知2a -1的平方根是±3,3a -b +2的算术平方根是4,求a +3b 的立方根.解:∵2a -1的平方根是±3,∴2a -1=9,a =5. ∵3a -b +2的算术平方根是4,∴3a -b +2=16. 又∵a =5,∴b =1. ∴a +3b =8.∴a +3b 的立方根是2.。
七年级下学期第一次月考(数学)(考试总分:120 分)一、 单选题 (本题共计10小题,总分30分) 1.(3分)下列运算中,正确的是( )A .2352a a a += B .()326aa -=-C .3618a a a ⋅=D .77)(ab ab -=-2.(3分)叶绿体是植物进行光合作用的场所,叶绿体DNA 最早发现于衣藻叶绿体,长约0.00005米.其中,0.00005用科学记数法表示为( ) A .40.510-⨯B .4510-⨯C .5510-⨯D .35010-⨯3.(3分)下列计算正确的是( )A 、()055-=- B 、()111=--C 、6622x x -=D 、()()122=-÷-a a4.(3分)下列等式中,成立的是( )A 、222()x y x y +=+ B 、222()x y x y -=- C 、()2222x y x xy y -=-+D 、22()()x y x y x y -+-=-5.(3分)已知α与β互余,β与γ互补,若α=50°,则γ的度数是( )A 、40°B 、50°C 、130°D 、140°6.(3分)下列各式中,不能用平方差公式计算的是( )A 、))((y x y x +--B 、))((y x y x --+-C 、))((y x y x ---D 、))((y x y x +-+7.(3分)已知5x y +=-,3xy =,则22x y +=( )A 、25B 、﹣25C 、19D 、﹣198.(3分)已已已①已④已已① 已② 已③ 已④ 已已已已已已已已∠1已∠2已已已已已已已 已已 A已①已②已③已④B.①已②已③C.①已③D.①9.(3分)已已已AB ∥CD 已∠1已∠2已∠3已130°已已∠2已已已 已已A已25°B.30°C.35°D.40°10.(3分)如图,已知a b ∥,170∠=,240∠=,则3∠=( ).A.50°B.60°C.70°D.80°二、 填空题 (本题共计8小题,总分24分) 11.(3分)计算()2323_________;a b a -⋅-=12.(3分)已知4,8,_____________;x y x y a a a +===则13.(3分)202020218(0.125)⋅-= ;()0220213--⨯= ; 14.(3分)已知248264n n n -⨯÷=,那么_________;n =15.(3分)将一个长方形纸条按图所示折叠一下,若1140=︒∠,则2=∠______;16.(3分)如图,直角三角形是直角三角形沿方向平移后所得到的图形,且与AC 相交于点P ,若6AB =,2DP =,3CF =,则图中阴影部分的面积为_______________.17.(3分)如图,已知AB CD ∥,BC 平分ABE ∠,34C =∠°,则BED =∠______________.21DEF ABC BCDE18.(3分)如图,一把长方形直尺沿直线断开并错位,点E 、D 、B 、F 在同一条直线上,若125ADE ∠=︒,则DBC ∠的度数为____________________.三、 解答题 (本题共计8小题,总分66分)19.(3分)我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角” (如图)就是一例.这个三角形给出了()na b +(n =1,2,3,4,5,6)的展开式(按a 的次数由大到小的顺序排列)的系数规律.例如,在三角形中第三行的三个数1,2,1,恰好对应()2222a b a ab b +=++展开式中各项的系数;第五行的五个数1,4,6,4,1,恰好对应着()4432234464a b a a b a b ab b +=++++展开式中各项的系数,等等.有如下三个结论:①当a =1,b =1时,代数式432234464a a b a b ab b ++++的值是1; ②当a =-1,b =2时,代数式432234464a a b a b ab b ++++的值是1;③当代数式432436942781a a a a +⨯+⨯+⨯+的值是1时,a 的值是-2或-4.上述结论中,所有正确结论的序号为____________.20.(3分)在数学课上,老师提出如下问题:小菲用两块形状、大小相同的三角尺完成了该题的作图,作法如下:老师说:“小菲的作法正确.”请回答:小菲的作图的依据是__________________________.21.(20分)(1) ()245x y +(2)4323105a b c a bc ÷(3)()()33a b a b +++- (4)2(23)(23)(3)x y x y x y +-+- (5)计算20202-2019×2021(乘法公式算)22.(8分)先化简,再求值. x xy x y y y x 2]8)4()2[(2÷-+-+ , 其中2,1x y =-= 23.(8分)已已24,a b -=已()()()22224b a b a b a b ab b ⎡⎤---++-÷⎣⎦已已已24.(10分)如图,AB BD ⊥,CD BD ⊥ ,180A AEF ∠∠︒+=.以下是小贝同学证明CD EF ∥的推理过程或理由,请你在横线上补充完整其推理过程或理由.25.(7分)(1)对于算式()()()()()2482020212121212+1______;++++=不用计算器,你能计算出来吗?直接写出计算结果。
七年级(下)第一次月考数学试卷一、选择题(注释)1.如图,以下条件能判定GE∥CH的是()A.∥FEB=∥ECD B.∥AEG=∥DCH C.∥GEC=∥HCF D.∥HCE=∥AEG2.如图,已知∥1=∥2=∥3=∥4,则图形中平行的是()A.AB∥CD∥EF B.CD∥EFC.AB∥EF D.AB∥CD∥EF,BC∥DE3.如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30°,那么这两个角是()A.42°、138°B.都是10°C.42°、138°或42°、10°D.以上都不对4.如图的图形中只能用其中一部分平移可以得到的是()A.B.C.D.5.下列图形不是由平移而得到的是()A.B.C.D.6.如图,哪一个选项的右边图形可由左边图形平移得到()A.B.C.D.7.下列说法中正确的是()A.两直线被第三条直线所截得的同位角相等B.两直线被第三条直线所截得的同旁内角互补C.两平行线被第三条直线所截得的同位角的平分线互相垂直D.两平行线被第三条直线所截得的同旁内角的平分线互相垂直8.下列说法正确的是()A.不相交的两条线段是平行线B.不相交的两条直线是平行线C.不相交的两条射线是平行线D.在同一平面内,不相交的两条直线是平行线9.已知,如图,AB∥CD,则∥α、∥β、∥γ之间的关系为()A.∥α+∥β+∥γ=360°B.∥α﹣∥β+∥γ=180°C.∥α+∥β﹣∥γ=180°D.∥α+∥β+∥γ=180°10.不能判定两直线平行的条件是()A.同位角相等B.内错角相等C.同旁内角相等D.都和第三条直线平行11.一学员在广场上练习驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是()A.第一次向左拐30°,第二次向右拐30°B.第一次向右拐50°,第二次向左拐130°C.第一次向左拐50°,第二次向右拐130°D.第一次向左拐50°,第二次向左拐13012.如图,CD∥AB,垂足为D,AC∥BC,垂足为C.图中线段的长能表示点到直线(或线段)距离的线段有()A.1条B.3条C.5条D.7条二、填空题(注释)13.如图,设AB∥CD,截线EF与AB、CD分别相交于M、N两点.请你从中选出两个你认为相等的角.14.如图,为了把∥ABC平移得到∥A′B′C′,可以先将∥ABC向右平移格,再向上平移格.15.如图,AE∥BD,∥1=120°,∥2=40°,则∥C的度数是.16.如图,已知AB∥CD,则∥1与∥2,∥3的关系是.17.如图,AB∥CD,∥B=68°,∥E=20°,则∥D的度数为度.18.如图,直线DE交∥ABC的边BA于点D,若DE∥BC,∥B=70°,则∥ADE的度数是度.三、解答题(注释)19.如图,AB∥DE∥GF,∥1:∥D:∥B=2:3:4,求∥1的度数?20.已知:如图所示,∥1=∥2,∥3=∥B,AC∥DE,且B,C,D在一条直线上.求证:AE∥BD.21.如图,已知DE∥BC,EF平分∥AED,EF∥AB,CD∥AB,试说明CD平分∥ACB.22.如图,已知∥DAB+∥D=180°,AC平分∥DAB,且∥CAD=25°,∥B=95°(1)求∥DCA的度数;(2)求∥DCE的度数.23.如图,已知∥1+∥2=180°,∥3=∥B,试说明∥AED=∥ACB.24.如图所示,已知∥1=∥2,AC平分∥DAB,试说明DC∥AB.25.已知∥AGE=∥DHF,∥1=∥2,则图中的平行线有几对?分别是?为什么?26.已知直线a∥b,b∥c,c∥d,则a与d的关系是什么,为什么?-学年七年级(下)第一次月考数学试卷参考答案与试题解析一、选择题(注释)1.如图,以下条件能判定GE∥CH的是()A.∥FEB=∥ECD B.∥AEG=∥DCH C.∥GEC=∥HCF D.∥HCE=∥AEG【考点】平行线的判定.【分析】在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线.【解答】解:∥FEB=∥ECD,∥AEG=∥DCH,∥HCE=∥AEG错误,因为它们不是GE、CH被截得的同位角或内错角;∥GEC=∥HCF正确,因为它们是GE、CH被截得的内错角.故选C.2.如图,已知∥1=∥2=∥3=∥4,则图形中平行的是()A.AB∥CD∥EF B.CD∥EFC.AB∥EF D.AB∥CD∥EF,BC∥DE【考点】平行线的判定.【分析】根据内错角相等,两直线平行;以及平行线的传递性即可求解.【解答】解:∥∥1=∥2=∥3=∥4,∥AB∥CD,BC∥DE,CD∥EF,∥AB∥CD∥EF.故选:D.3.如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30°,那么这两个角是()A.42°、138°B.都是10°C.42°、138°或42°、10°D.以上都不对【考点】平行线的性质.【分析】根据两边分别平行的两个角相等或互补列方程求解.【解答】解:设另一个角为x,则这一个角为4x﹣30°,(1)两个角相等,则x=4x﹣30°,解得x=10°,4x﹣30°=4×10°﹣30°=10°;(2)两个角互补,则x+(4x﹣30°)=180°,解得x=42°,4x﹣30°=4×42°﹣30°=138°.所以这两个角是42°、138°或10°、10°.以上答案都不对.故选D.4.如图的图形中只能用其中一部分平移可以得到的是()A.B.C.D.【考点】利用平移设计图案.【分析】根据平移的性质,对选项进行一一分析,排除错误答案.【解答】解:A、图形为轴对称所得到,不属于平移;B、图形的形状和大小没有变化,符合平移性质,是平移;C、图形为旋转所得到,不属于平移;D、最后一个图形形状不同,不属于平移.故选B.5.下列图形不是由平移而得到的是()A.B.C.D.【考点】利用平移设计图案.【分析】根据平移定义:把一个图形整体沿某一方向移动一定的距离,图形的这种移动,叫做平移可得A、B、C都是平移得到的,选项D中的对应点的连线不平行,两个图形需要经过旋转才能得到.【解答】解:A、图形是由平移而得到的,故此选项错误;B、图形是由平移而得到的,故此选项错误;C、图形是由平移而得到的,故此选项错误;D、图形是由旋转而得到的,故此选项正确;故选:D.6.如图,哪一个选项的右边图形可由左边图形平移得到()A.B.C.D.【考点】生活中的平移现象.【分析】根据平移的性质作答.【解答】解:观察图形可知C中的图形是平移得到的.故选C.7.下列说法中正确的是()A.两直线被第三条直线所截得的同位角相等B.两直线被第三条直线所截得的同旁内角互补C.两平行线被第三条直线所截得的同位角的平分线互相垂直D.两平行线被第三条直线所截得的同旁内角的平分线互相垂直【考点】平行线的性质;同位角、内错角、同旁内角.【分析】根据平行线的性质,结合各选项进行判断即可.【解答】解:A、两平行线被第三条直线所截得的同位角相等,原说法错误,故本选项错误;B、两平行线被第三条直线所截得的同旁内角互补,原说法错误,故本选项错误;C、两平行线被第三条直线所截得的同位角的平分线互相平行,原说法错误,故本选项错误;D、两平行线被第三条直线所截得的同旁内角的平分线互相垂直,说法正确,故本选项正确;故选D.8.下列说法正确的是()A.不相交的两条线段是平行线B.不相交的两条直线是平行线C.不相交的两条射线是平行线D.在同一平面内,不相交的两条直线是平行线【考点】平行线.【分析】根据平行线的定义,即可解答.【解答】解:根据平行线的定义:在同一平面内,不相交的两条直线是平行线.A,B,C错误;D正确;故选:D.9.已知,如图,AB∥CD,则∥α、∥β、∥γ之间的关系为()A.∥α+∥β+∥γ=360°B.∥α﹣∥β+∥γ=180°C.∥α+∥β﹣∥γ=180°D.∥α+∥β+∥γ=180°【考点】平行线的性质.【分析】根据两直线平行,同旁内角互补以及内错角相等即可解答,此题在解答过程中,需添加辅助线.【解答】解:过点E作EF∥AB,则EF∥CD.∥EF∥AB∥CD,∥∥α+∥AEF=180°,∥FED=∥γ,∥∥α+∥β=180°+∥γ,即∥α+∥β﹣∥γ=180°.故选C.10.不能判定两直线平行的条件是()A.同位角相等B.内错角相等C.同旁内角相等D.都和第三条直线平行【考点】平行线的判定.【分析】判定两直线平行,我们学习了两种方法:①平行公理的推论,②平行线的判定公理和两个平行线的判定定理判断.【解答】解:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,内错角相等;和第三条直线平行的和两直线平行.故选C.11.一学员在广场上练习驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是()A.第一次向左拐30°,第二次向右拐30°B.第一次向右拐50°,第二次向左拐130°C.第一次向左拐50°,第二次向右拐130°D.第一次向左拐50°,第二次向左拐130【考点】平行线的性质.【分析】首先根据题意对各选项画出示意图,观察图形,根据同位角相等,两直线平行,即可得出答案.【解答】解:如图:故选:A.12.如图,CD∥AB,垂足为D,AC∥BC,垂足为C.图中线段的长能表示点到直线(或线段)距离的线段有()A.1条B.3条C.5条D.7条【考点】点到直线的距离.【分析】本题图形中共有6条线段,即:AC、BC、CD、AD、BD、AB,其中线段AB的两个端点处没有垂足,不能表示点到直线的距离,其它都可以.【解答】解:表示点C到直线AB的距离的线段为CD,表示点B到直线AC的距离的线段为BC,表示点A到直线BC的距离的线段为AC,表示点A到直线DC的距离的线段为AD,表示点B到直线DC的距离的线段为BD,共五条.故选C.二、填空题(注释)13.如图,设AB∥CD,截线EF与AB、CD分别相交于M、N两点.请你从中选出两个你认为相等的角∥1=∥5.【考点】平行线的性质.【分析】AB∥CD,则这两条平行线被直线EF所截;形成的同位角相等,内错角相等.【解答】解:∥AB∥CD,∥∥1=∥5(答案不唯一).14.如图,为了把∥ABC平移得到∥A′B′C′,可以先将∥ABC向右平移5格,再向上平移3格.【考点】坐标与图形变化-平移.【分析】直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【解答】解:从点A看,向右移动5格,向上移动3格即可得到A′.那么整个图形也是如此移动得到.故两空分别填:5、3.15.如图,AE∥BD,∥1=120°,∥2=40°,则∥C的度数是20°.【考点】平行线的性质.【分析】根据两直线平行,内错角相等的性质求出∥AEC的度数,再根据三角形的内角和等于180°列式进行计算即可得解.【解答】解:∥AE∥BD,∥2=40°,∥∥AEC=∥2=40°,∥∥1=120°,∥∥C=180°﹣∥1﹣∥AEC=180°﹣120°﹣40°=20°.故答案为:20°.16.如图,已知AB∥CD,则∥1与∥2,∥3的关系是∥1=∥2+∥3.【考点】平行线的判定;三角形内角和定理.【分析】根据三角形的内角和等于180°,两直线平行同旁内角互补可得.【解答】解:∥AB∥CD,∥∥1+∥C=180°,又∥∥C+∥2+∥3=180°,∥∥1=∥+∥3.17.如图,AB∥CD,∥B=68°,∥E=20°,则∥D的度数为48度.【考点】三角形的外角性质;平行线的性质.【分析】根据平行线的性质得∥BFD=∥B=68°,再根据三角形的一个外角等于与它不相邻的两个内角和,得∥D=∥BFD﹣∥E,由此即可求∥D.【解答】解:∥AB∥CD,∥B=68°,∥∥BFD=∥B=68°,而∥D=∥BFD﹣∥E=68°﹣20°=48°.故答案为:48.18.如图,直线DE交∥ABC的边BA于点D,若DE∥BC,∥B=70°,则∥ADE的度数是70度.【考点】平行线的性质.【分析】根据两直线平行,同位角相等解答.【解答】解:∥DE∥BC,∥B=70°,∥∥ADE=∥B=70°.故答案为:70.三、解答题(注释)19.如图,AB∥DE∥GF,∥1:∥D:∥B=2:3:4,求∥1的度数?【考点】平行线的性质.【分析】首先设∥1=2x°,∥D=3x°,∥B=4x°,根据两直线平行,同旁内角互补即可表示出∥GCB、∥FCD的度数,再根据∥GCB、∥1、∥FCD的为180°即可求得x的值,进而可得∥1的度数.【解答】解:∥∥1:∥D:∥B=2:3:4,∥设∥1=2x°,∥D=3x°,∥B=4x°,∥AB∥DE,∥∥GCB=°,∥DE∥GF,∥∥FCD=°,∥∥1+∥GCB+∥FCD=180°,∥180﹣4x+x+180﹣3x=180,解得x=30,∥∥1=60°.20.已知:如图所示,∥1=∥2,∥3=∥B,AC∥DE,且B,C,D在一条直线上.求证:AE∥BD.【分析】根据平行线的性质求出∥2=∥4.求出∥1=∥4,根据平行线的判定得出AB∥CE,根据平行线的性质得出∥B+∥BCE=180°,求出∥3+∥BCE=180°,根据平行线的判定得出即可.【解答】证明:∥AC∥DE,∥∥2=∥4.∥∥1=∥2,∥∥1=∥4,∥AB∥CE,∥∥B+∥BCE=180°,∥∥B=∥3,∥∥3+∥BCE=180°,∥AE∥BD.21.如图,已知DE∥BC,EF平分∥AED,EF∥AB,CD∥AB,试说明CD平分∥ACB.【考点】平行线的判定与性质.【分析】求出EF∥CD,根据平行线的性质得出∥AEF=∥ACD,∥EDC=∥BCD,根据角平分线定义得出∥AEF=∥FED,推出∥ACD=∥BCD,即可得出答案.【解答】解:∥DE∥BC,∥∥EDC=∥BCD,∥EF平分∥AED,∥∥AEF=∥FED,∥EF∥AB,CD∥AB,∥EF∥CD,∥∥AEF=∥ACD,∥∥ACD=∥BCD,∥CD平分∥ACB.22.如图,已知∥DAB+∥D=180°,AC平分∥DAB,且∥CAD=25°,∥B=95°(1)求∥DCA的度数;(2)求∥DCE的度数.【分析】(1)利用角平分线的定义可以求得∥DAB的度数,再依据∥DAB+∥D=180°求得∥D 的度数,在∥ACD中利用三角形的内角和定理.即可求得∥DCA的度数;(2)根据(1)可以证得:AB∥DC,利用平行线的性质定理即可求解.【解答】解:(1)∥AC平分∥DAB,∥∥CAB=∥DAC=25°,∥∥DAB=50°,∥∥DAB+∥D=180°,∥∥D=180°﹣50°=130°,∥∥ACD中,∥D+∥DAC+∥DCA=180°,∥∥DCA=180°﹣130°﹣25°=25°.(2)∥∥DAC=25°,∥DCA=25°,∥∥DAC=∥DCA,∥AB∥DC,∥∥DCE=∥B=95°.23.如图,已知∥1+∥2=180°,∥3=∥B,试说明∥AED=∥ACB.【考点】平行线的判定与性质.【分析】首先判断∥AED与∥ACB是一对同位角,然后根据已知条件推出DE∥BC,得出两角相等.【解答】证明:∥∥1+∥4=180°(平角定义),∥1+∥2=180°(已知),∥∥2=∥4,∥EF∥AB(内错角相等,两直线平行),∥∥3=∥ADE(两直线平行,内错角相等),∥∥3=∥B(已知),∥∥B=∥ADE(等量代换),∥DE∥BC(同位角相等,两直线平行),∥∥AED=∥ACB(两直线平行,同位角相等).24.如图所示,已知∥1=∥2,AC平分∥DAB,试说明DC∥AB.【考点】平行线的判定.【分析】根据角平分线的性质可得∥1=∥CAB,再加上条件∥1=∥2,可得∥2=∥CAB,再根据内错角相等两直线平行可得CD∥AB.【解答】证明:∥AC平分∥DAB,∥∥1=∥CAB,∥∥1=∥2,∥∥2=∥CAB,∥CD∥AB.25.已知∥AGE=∥DHF,∥1=∥2,则图中的平行线有几对?分别是?为什么?【考点】平行线的判定.【分析】先由∥AGE=∥DHF根据同位角相等,两直线平行,得到AB∥CD,再根据两直线平行,同位角相等,可得∥AGF=∥CHF,再由∥1=∥2,根据平角的定义可得∥MGF=∥NHF,根据同位角相等,两直线平可得GM∥HN.【解答】解:图中的平行线有2对,分别是AB∥CD,GM∥HN,∥∥AGE=∥DHF,∥AB∥CD,∥∥AGF=∥CHF,∥∥MGF+∥AGF+∥1=180°∥NHF+∥CHF+∥2=180°,又∥∥1=∥2,∥∥MGF=∥NHF,∥GM∥HN.26.已知直线a∥b,b∥c,c∥d,则a与d的关系是什么,为什么?【考点】平行公理及推论.【分析】由平行线的传递性容易得出结论.【解答】解:a与d平行,理由如下:因为a∥b,b∥c,所以a∥c,因为c∥d,所以a∥d,即平行具有传递性.。
七年级下学期月考数学试题考试时间:120分钟试卷满分:150分第Ⅰ卷(本卷满分100分)一、选择题:(共10小题,每小题3分,共30分)下面每小题给出的四个选项中, 有且只有一个是正确的, 请把正确选项前的代号填在答卷指定位置.1.在同一平面内,两条直线的位置关系是A.平行.B.相交.C.平行或相交.D.平行、相交或垂直2.点P(-1,3)在A.第一象限.B.第二象限.C.第三象限.D.第四象限.3.下列各图中,∠1与∠2是对顶角的是4.如图,将左图中的福娃“欢欢”通过平移可得到图为A.B.C.D.5.下列方程是二元一次方程的是A.2xy=.B.6x y z++=.C.235yx+=.D.230x y-=.6.若0xy=,则点P(x,y)一定在A.x轴上.B.y轴上.C.坐标轴上.D.原点.7.二元一次方程21-=x y有无数多组解,下列四组值中不是该方程的解的是A.12xy=⎧⎪⎨=-⎪⎩.B.11xy=-⎧⎨=-⎩.C.1xy=⎧⎨=⎩.D.11xy=⎧⎨=⎩.8.甲原有x元钱,乙原有y元钱,若乙给甲10元,则甲所有的钱为乙的3倍;若甲给乙10元,则甲所有的钱为乙的2倍多10元.依题意可得A.103(10)102(10+10x yx y+=-⎧⎨-=+⎩).B.10310210x yx y+=⎧⎨-=+⎩.12B.12A.12C.1 2D.C .3(10)2(10)x y x y =-⎧⎨=+⎩.D .103(10)102(10)10x y x y -=+⎧⎨+=-+⎩.9.如图,点E 在BC 的延长线上,则下列条件中,不能判定AB ∥CD 的是A .∠3=∠4.B .∠B =∠DCE .C .∠1=∠2.D .∠D+∠DAB =180°.10.下列命题中,是真命题的是A .同位角相等.B .邻补角一定互补.C .相等的角是对顶角.D .有且只有一条直线与已知直线垂直. 二、填空题(共10小题,每小题3分,共30分)下列不需要写出解答过程,请将结果直接填写在答卷指定的位置.11.剧院里5排2号可以用(5,2)表示,则7排4号用 表示.12.如图,已知两直线相交,∠1=30°,则∠2=__ _. 13.如果⎩⎨⎧-==13y x ,是方程38x ay -=的一个解,那么a =_______.14.把方程3x +y –1=0改写成含x 的式子表示y 的形式得 . 15.一个长方形的三个顶点坐标为(-1,-1),(-1,2),(3,-1),则第四个顶点的坐标是____________.16.命题“如果两条直线都与第三条直线平行,那么这两条直线也互相平行”的题设是 ,结论是 .17.如图,AB CD ∥,BC DE ∥,则∠B 与∠D 的关系是_____________.18.如图,象棋盘上,若“将”位于点(0,0),“车”位于点(—4,0),则“马”位于 .19.如图,EG ∥BC ,CD 交EG 于点F ,那么图中与∠1相等的角共有______个.20.已知x 、y 满足方程组21232x y x y +=⎧⎨-=⎩,则3x +6y +12 +4x -6y +23 的值为 . EC 第9题图三、解答题(共40分)下列各题需要在答题卷指定位置写出文字说明、证明过程或计算步骤.21.(每小题4分,共8分)解方程组:(1)⎩⎨⎧y =2x -3,3x +2y =8; (2)743211432x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩ 22.(本题满分8分)如图,∠AOB 内一点P :(1)过点P 画PC ∥OB 交OA 于点C ,画PD ∥OA 交OB 于点D ;(2)写出两个图中与∠O 互补的角;(3)写出两个图中与∠O 相等的角.23.(本题8分)完成下面推理过程:如图,已知∠1 =∠2,∠B =∠C ,可推得AB ∥CD .理由如下:∵∠1 =∠2(已知),且∠1 =∠CGD (______________ _________),∴∠2 =∠CGD (等量代换).∴CE ∥BF (___________________ ________).∴∠ =∠C (__________________________).又∵∠B =∠C (已知),∴∠ =∠B (等量代换).∴AB ∥CD (________________________________).24.(本题8分)如图,EF ∥AD ,AD ∥BC ,CE 平分∠BCF ,∠DAC =120°,∠ACF =20°,求∠FEC的度数.25.(本题8分)列方程(组)解应用题:一种口服液有大、小盒两种包装,3大盒、4小盒共装108瓶,2大盒、3小盒共装76瓶.大盒与小盒每盒各装多少瓶?第Ⅱ卷(本卷满分50分)四、解答题(共5题,共50分)下列各题需要在答题卷指定位置写出文字说明、证明过程或计算步骤.26.(每小题5分,共10分)解方程组:(1)33(1)022(3)2(1)10x y x y -⎧--=⎪⎨⎪---=⎩ (2)04239328a b c a b c a b c -+=⎧⎪++=⎨⎪-+=⎩27.(本题8分)如图,在三角形ABC 中,点D 、F 在边BC 上,点E 在边AB 上,点G 在边AC 上,AD ∥EF ,∠1+∠FEA =180°.求证:∠CDG =∠B .28.(本题10分) 29.(本题10分)江汉区某中学组织七年级同学参加校外活动,原计划租用45座客车若干辆,但有15人没有座位;如果租用同样数量的60座客车,则多出一辆,且其余客车刚好坐满.已知45座和60座客车的租金分别为220元/辆和300元/辆.(1)设原计划租45座客车x 辆,七年级共有学生y 人,则y = (用含x 的式子表示);若租用60座客车,则y = (用含x 的式子表示);(2)七年级共有学生多少人?(3)若同时租用两种型号的客车或只租一种型号的客车,每辆客车恰好坐满并且每个同学都有座位,共有哪几种租车方案?哪种方案更省钱?30.(本题12分)如图1,在平面直角坐标系中,A (a ,0),B (b ,0),C (-1,2),且第27题图2图1221(24)0a b a b ++++-=.(1)求a ,b 的值;(2)①在x 轴的正半轴上存在一点M ,使△COM 的面积=12△ABC 的面积,求出点M的坐标;②在坐标轴的其它位置是否存在点M ,使△COM 的面积=12△ABC 的面积仍然成立,若存在,请直接写出符合条件的点M 的坐标;(3)如图2,过点C 作CD ⊥y 轴交y 轴于点D ,点P 为线段CD 延长线上一动点,连接OP ,OE 平分∠AOP ,OF ⊥OE .当点P 运动时,OPDDOE ∠∠的值是否会改变?若不变,求其值;若改变,说明理由.七年级数学试卷参考答案第Ⅰ卷(本卷满分100分)一、1. C 2. B 3. B 4.C 5. D 6. C 7. D 8.A 9. A 10. B二、11. (7,4) 12. 30° 13. -1 14.y =1-3x 15.(3,2)16.两直线都平行于第三条直线,这两直线互相平行 17.互补 18.(3,3) 19.2 20.4三、21.(1)21xy=⎧⎨=⎩(2)1212xy=⎧⎨=⎩(每小题过程2分,结果2分)22.(1)如图…………………………………………2分(2)∠PDO,∠PCO等,正确即可;……………………………5分(3)∠PDB,∠PCA等,正确即可.……………………………8分23.对顶角相等……………………………2分同位角相等,两直线平行……………………………4分BFD两直线平行,同位角相等……………………………6分BFD内错角相等,两直线平行……………………………8分24.∵EF∥AD,(已知)∴∠ACB+∠DAC=180°.(两直线平行,同旁内角互补) …………2分∵∠DAC=120°,(已知)∴∠ACB=60°.……………………………3分又∵∠ACF=20°,∴∠FCB=∠ACB-∠ACF=40°.……………………………4分∵CE平分∠BCF,∴∠BCE=20°.(角的平分线定义)……5分∵EF∥AD,AD∥BC(已知),∴EF∥BC.(平行于同一条直线的两条直线互相平行)………………6分∴∠FEC=∠ECB.(两直线平行,同旁内角互补)∴∠FEC=20°.……………………………8分25.解:设大盒和小盒每盒分别装x瓶和y瓶,依题意得……………1分341082376x y x y +=⎧⎨+=⎩ ……………………………4分解之,得2012x y =⎧⎨=⎩ ……………………………7分答:大盒和小盒每盒分别装20瓶和16瓶.……………………8分第Ⅱ卷(本卷满分50分)26.(1)92x y =⎧⎨=⎩ ; (2)325a b c =⎧⎪=-⎨⎪=-⎩(过程3分,结果2分)27.证明:∵AD ∥EF ,(已知)∴∠2=∠3.(两直线平行,同位角相等)……………………………2分∵∠1+∠FEA=180°,∠2+∠FEA=180°,……………………………3分∴∠1=∠2.(同角的补角相等)……………………………4分∴∠1=∠3.(等量代换)∴DG ∥AB .(内错角相等,两直线平行)……6分∴∠CDG=∠B .(两直线平行,同位角相等)……………………………8分28.解:(1)画图略, ……………………………2分A 1(3,4)、C 1(4,2).……………………………4分(2)(0,1)或(―6,3)或(―4,―1).……………………………7分(3)连接AA 1、CC 1;∵1117272AC A S ∆=⨯⨯= 117272AC C S ∆=⨯⨯= ∴四边形ACC 1 A 1的面积为:7+7=14. 也可用长方形的面积减去4个直角三角形的面积:11472622121422⨯-⨯⨯⨯-⨯⨯⨯=. 答:四边形ACC 1 A 1的面积为14.……………………………10分29.(1)4515x +; 60(1)x -; ……………………………2分解:(2)由方程组451560(1)y x y x =+⎧⎨=-⎩ ……………………………4分解得5240x y =⎧⎨=⎩ ……………………………5分答:七年级共有学生240人.……………………………6分(3)设租用45座客车m 辆,60座客车n 辆,依题意得4560240m n += 即3416m n +=其非负整数解有两组为:04m n =⎧⎨=⎩和41m n =⎧⎨=⎩故有两种租车方案:只租用60座客车4辆或同时租用45座客车4辆和60座客车1辆. ……………………………8分当0,4m n ==时,租车费用为:30041200⨯=(元);当4,1m n ==时,租车费用为:220430011180⨯+⨯=(元);∵11801200<,∴同时租用45座客车4辆和60座客车1辆更省钱.………………10分30.解:(1)∵221(24)0a b a b ++++-=,又∵2210,(24)0a b a b ++≥+-≥, ∴2210(24)0a b a b ++=+-=且 .∴ 210240a b a b ++=⎧⎨+-=⎩ ∴ 23a b =-⎧⎨=⎩即2,3a b =-=. ……………………………3分(2)①过点C 做CT ⊥x 轴,CS ⊥y 轴,垂足分别为T 、S .∵A (﹣2,0),B (3,0),∴AB =5,因为C (﹣1,2),∴CT =2,CS =1,△ABC 的面积=12 AB ·CT =5,要使△COM 的面积=12△ABC 的面积,即△COM 的面积=52 ,所以12 OM ·CS =52,∴OM =5.所以M 的坐标为(0,5).……………6分 ②存在.点M 的坐标为5(,0)2-或5(,0)2或(0,5)-.………………9分 (3)OPD DOE∠∠的值不变,理由如下: ∵CD ⊥y 轴,AB ⊥y 轴 ∴∠CDO=∠DOB=90°∴AB ∥AD ∴∠OPD=∠POB∵OF ⊥OE ∴∠POF+∠POE=90°,∠BOF+∠AOE=90°∵OE 平分∠AOP ∴∠POE=∠AOE ∴∠POF=∠BOF∴∠OPD=∠POB=2∠BOF∵∠DOE+∠DOF=∠BOF+∠DOF=90° ∴∠DOE=∠BOF∴∠OPD =2∠BOF=2∠DOE ∴2OPD DOE ∠=∠.……………………………12分。
七年级下学期第一次月考数学试卷(含参考答案)(满分150分;时间:120分钟)学校:___________班级:___________姓名:___________考号:___________一.选择题(共10小题,每题4分)1.计算:(12)﹣1=()A.2B.-2C.12D.﹣122.地球是人与自然共同生存的家园,在这个家园中,还住着许多常常被人们忽略的微小生命,在冰岛海岸的黄铁矿粘液池中的古菌身上,科学家发现了基因片段,并提取出了最小的生命体,它的直径仅为0.00 000 002米,将数字0.00 000 002用科学记数法表示为()A.2x10﹣7B.2x10﹣8C.2x10﹣9D.20x10﹣83.下面四个图形中,∠1与∠2是对顶角的图形是()A. B. C. D.4.下列计算正确的是( )A.a6+a2=a8B.a6÷a2=a3C.a6·a2=a12D.(a6)2=a125.下列乘法中,不能运用平方差公式进行运算的是( )A.(x+a)(x-a)B.(a+b)(-a-b)C.(-x-b)(x-b)D.(b+m)(m-b )6.如果"□×2ab=4a2b”,那么"口"内应填的代数式是()A.2bB.2abC.aD.2a7.如图,某污水处理厂要从A处把处理过的水引入排水渠PQ,为了节约用料,铺设垂直于排水渠的管道AB.这种铺设方法蕴含的数学原理是()A.两点确定一条直线B.两点之间,线段最短C.过一点可以作无数条直线D.垂线段最短(第7题图) (第10题图)8.如果a=(﹣2024)0,b=(﹣2022)﹣1,c=(-2)2024.则a ,b ,c 三数的大小关系是( ) A.c>a>b B.a>b>c C.a>c>b D.c>b>a9.若(3x+2)(3x+a )的化简结果中不含x 的一次项,则常数a 的值为( ) A.-2 B.-1 C.0 D.210.如图有两张正方形纸片A 和B ,图1将B 放置在A 内部,测得阴影部分面积为2,图2将正方形AB 开列放置后构造新正方形,测得阴影部分面积为20,若将3个正方形A 和2个正方形B 并列放置后构造新正方形如图3,(图2,图3中正方形AB 纸片均无重叠部分)则图3阴影部分面积( )A.22B.24C.42D.44 二.填空题(共6小题,每题4分) 11.计算:a(a+3)= .12.如图,用直尺和三角尺作出直线AB 、CD ,得到AB ∥CD 的理由是 .(第12题图) (第15题图)13.若x 2-kx+4一个完全平方式,则k 的值是 . 14.42020×(﹣0.25)2021= .15.一副三角板按如图方式摆放,且∠1比∠2大50°,则∠1= . 16.观察下列运算并填空: 1×2×3×4+1=25=52; 2×3×4×5+1=121=112; 3×4×5×6+1=361=192;根据以上结果,猜想并研究:(n+1)(n+2)(n+3)(n+4)+1= . 三.解答题(共16小题) 17.(12分)计算:(1)(﹣1)4+(3.14-π)0+(﹣13)﹣1 (2)(-1)3+(3+π)0-|﹣2|+(13)-2(3)(-1)2023-(3.14-π)0-(12)﹣2+|﹣3| (4)﹣12023×|﹣34|+(3.14-π)0-2﹣118.(12分)(1)(a+2b)(3a -b) (2)(12m ³-6m 2+2m)÷2m(3)x 2·x 6-(2x 2)4+x 9÷x (4)m 2·m 4+(m 3)2-m 8÷m 219.(12分)用乘法公式进行简便运算:(1)102x98 (2)10032(3)20242-20232 (4)20232-2023×2048+2024220.(6分)先化简,再求值:(2x+y)(2x -y)-(2x -y )2,其中x=﹣2,y=﹣1221.(4分)如图,已知∠2=∠3,求证:AB∥CD.证明:∵∠2=∠3(已知)又∠1=∠3()∴= ()∴AB∥CD()22.(6分)如图,CE平分∠ACD,若∠1=30°,∠2=60°,求证:AB∥CD.23.(10分)观察以下等式:(x+1)(x2-x+1)=x3+1(x+3)(x2-3x+9)=x3+27(x+6)(x2-6x+36)=x3+216...(1)按以上等式的规律,填空:(a+b)(a2-ab+b2)= ;(2)利用多项式的乘法法则,说明(1)中的等式成立.(3)利用(1)中的公式化简:(x+y)(x2-xy+y2)-(x+2y)(x2-2xy+4y2)24.(12分)实践与探究,如图1,边长为a的大正方形有一个边长为b的小证方形,把图1中的阴影部分折成一个长方形(如图2所示)。
七年级下学期第一次月考数学试题(时间:80分钟 满分:120分)一、选择题:(每小题3分,共计42分)1、面积为5的正方形的边长在 ( )A 0和1之间B 1和2之间C 2和3之间D 3和4之间2、下列命题正确的是 ( )A 一个角的补角是钝角B 两条直线和第三条直线相交,同位角相等C 连接两点的线段叫两点的距离D 对顶角相等3、如图,直线AB ,CD 相交于点O ,OE AB ⊥于O ,55COE ︒∠=,则BOD ∠的度数是( ) A 40︒ B 45︒ C 30︒ D 35︒4、如图,将ABC V 沿AB 方向平移至DEF V ,且5AB =,2DB =,则CF 的长度为( )A 5B 3C 2D 15、如图,下列推理及所注明的理由都正确的是 ( )A 因为DE //BC ,所以1C ∠=∠ (同位角相等,两直线平行)B 因为23∠=∠,所以 DE //BC (两直线平行,内错角相等)C 因为DE //BC ,所以 23∠=∠ (两直线平行,内错角相等)D 因为1C ∠=∠,所以DE //BC (两直线平行,同位角相等)6、同一平面内的四条直线满足a b ⊥,b c ⊥,c d ⊥,则下列式子成立的是 ( )A a //dB a d ⊥C b d ⊥D a c ⊥7、若225a =,3b =,则a b +等于 ( )A 8-B 8±C 2±D 8±或 2±8、给出下列实数:3,3.14 ,364,5,2- ,5π,4 ,13 ,3.102100210002L L ,其中无理数有 ( ) A 2个 B 3个 C 4个 D 5个9、如图,不能判断直线AB CD //的条件的是 ( )A 13∠=∠B 24180∠+∠=dC 45∠=∠D 23∠=∠10、如图,与B ∠是同旁内角的有 ( )A 1个B 2个C 3个D 4个11、如图,AB CD // ,EF BD ⊥,垂足为E ,150∠=d,则2∠的度数为 ( )A 50dB 40dC 30dD 20d12、已知实数a ,b 在数轴上对应的点如图所示,则下列式子正确的是( ) A 0ab > B 0a b +< C a b < D 0a b -> 13、已知一个正方体的表面积为12 2dm ,则 这个正方体的棱长为 ( )A 1 dm B2dm C 6dm D 3 dm 14、关于()2a 与 2a ,下列结论中正确的是 ( )A a 为任意实数时,都有()2a =2a 成立。
七年级下学期第一次月考数学试卷满分:150分考试用时:120分钟范围:第一章《整式的乘除》~第二章《相交线与平行线》班级姓名得分一、选择题(本大题共10小题,共30.0分)1.计算6m6÷(−2m2)3的结果为()A. −mB. −1C. 34D. −342.如果(3x2y−2xy2)÷m=−3x+2y,则单项式m为()A. xyB. −xyC. xD. −y3.已知:如图,AB⊥CD,垂足为O,EF为过点O的一条直线,则∠1与∠2的关系一定成立的是()A. 相等B. 互余C. 互补D. 互为对顶角4.如图,如果∠AOB=∠COD=90∘,那么∠1=∠2,这是根据()A. 直角都相等B. 等角的余角相等C. 同角的余角相等D. 同角的补角相等5.计算下列各式①(a3)2÷a5=1;②(−x4)2÷x4=x4;③(x−3)0=1(x≠3);④(−a3b)5÷12a5b2=2a4b,正确的有()A. 4个B. 3个C. 2个D. 1个6.要使(x2+ax+1)⋅(−6x3)的展开式中不含x4项,则a应等于()A. 6B. −1C. 16D. 07.如图,用尺规作图作∠AOC=∠AOB的第一步是以点O为圆心,以任意长为半径画弧①,分别交OA、OB于点E、F,那么第二步的作图痕迹②的作法是()A. 以点F为圆心,OE长为半径画弧B. 以点F为圆心,EF长为半径画弧C. 以点E为圆心,OE长为半径画弧D. 以点E为圆心,EF长为半径画弧8.在平面中,如图,两条直线最多只有1个交点,三条直线最多有3个交点……若n条直线最多有55个交点,则n的值为()A. 9B. 10C. 11D. 129.在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图1),把余下的部分拼成一个长方形(如图2),根据两个图形中阴影部分的面积相等,可以验证()A. (a+b)2=a2+2ab+b2B. (a−b)2=a2−2ab+b2C. (a+2b)(a−b)=a2+ab−2b2D. a2−b2=(a+b)(a−b)10.点P为直线l外一点,点A、B、C为直线l上三点,PA=4cm,PB=5cm,PC=2cm,则点P到直线l的距离是().A. 2cmB. 4cmC. 5cmD. 不超过2cm二、填空题(本大题共5小题,共20.0分)11.若(2x3y2)⋅(−3x m y3)⋅(5x2y n)=−30x7y6,则m+n=.12.天平的左边挂重为(2m+3)(2m−3)+12m,右边挂重为(2m+3)2,请你猜一猜,天平倾斜.(填“会”或“不会”)13.已知:OA⊥OC,∠AOB:∠AOC=2:3.则∠BOC的度数为__.14.如下图,直线AB,CD相交于点O,∠AOC=70°,∠BOC=2∠EOB,则∠AOE的度数为________.15.如图,直线AB,CD相交于点O,OE平分∠BOD,且∠AOE=140°,则∠AOC的度数为________________.三、解答题(本大题共10小题,共100.0分)16.(8分)计算:(1)2x⋅(3x2−x−5);ab2−4a2b)⋅(−4ab).(2)(1217.(10分)如图,直线AB、CD相交于点O,OE平分∠BOD,∠AOC=70°,∠COF=90°,求:(1)∠BOD的度数;(2)写出图中互余的角;(3)∠EOF的度数.18.(10分)如果两个角的差的绝对值等于60°,就称这两个角互为友好角,例如:∠1=100°,∠2=40°,|∠1−∠2|=60°,则∠1和∠2互为友好角(本题中所有角都指大于0°且小于180°的角),将两块直角三角板如图1摆放在直线EF上,其中∠AOB=∠COD=60°,保持三角板ODC不动,将三角板AOB绕O点以每秒2°的速度顺时针旋转,旋转时间为t秒.(1)如图2,当AO在直线CO左侧时,①与∠BOE互为友好角的是____,与∠BOC互为友好角的是____,②当t=____时,∠BOE与∠AOD互为友好角;(2)若在三角板AOB开始旋转的同时,另一块三角板COD也绕点O以每秒3°的速度逆时针旋转,当OC旋转至射线OE上时两三角板同时停止,当t为何值时,∠BOC 与∠DOF互为友好角(自行画图分析).19.(10分)【注重实践探究】我们知道对于一个图形,通过不同的方法计算图形的面积可以得到一个数学等式.例如:由图1可得到(a+b)2=a2+2ab+b2.(1)写出图2所表示的数学等式:;写出图3所表示的数学等式:;(2)利用上述结论,解决下列问题:已知a+b+c=11,bc+ac+ab=38,求a2+b2+c2的值.20.(10分)爱动脑筋的丽丽和娜娜在做数学小游戏,两个人各报一个整式,丽丽报的整式A作被除式,娜娜报的整式B作除式,要求商式必须为4xy(即A÷B=4xy).(1)若丽丽报的是x3y−6xy2,则娜娜应该报什么整式?(2)若娜娜也报x3y−6xy2,则丽丽应该报什么整式?21.(8分)一个棱长为103的正方体,在某种物体的作用下,其棱长以每秒扩大到原来的102倍的速度增长,求3秒后该正方体的棱长.22.(10分)已知x2−4x−1=0,求代数式(2x−3)2−(x+y)(x−y)−y2的值.23.(10分)如下图,直线AB,CD相交于点O.(1)若∠AOD比∠AOC大40°,求∠BOD的度数;(2)若∠AOD:∠AOC=3:2,求∠BOD的度数.24.(12分)在∠AOB和∠COD中,(1)如图1,已知∠AOB=∠COD=90°,当∠BOD=40°时,求∠AOC的度数;(2)如图2,已知∠AOB=82°,∠COD=110°,且∠AOC=2∠BOD时,请直接写出∠BOD的度数;(3)如图3,当∠AOB=α,∠COD=β,且∠AOC=n∠BOD(n>1)时,请直接用含有α,β,n的代数式表示∠BOD的值.25.(12分)如图,,平分,反向延长射线至.(1)和是否互补?说明理由;射线是的平分线吗?说明理由;反向延长射线至点,射线将分成了的两个角,求.答案1.D2.B3.B4.C5.C6.D7.D8.C9.D10.D11.312.会13.30°或150°14.125°15.80°16.解:(1)原式=6x3−2x2−10x(2)原式=−2a2b3+16a3b2.17.解:(1)∵∠AOC=70°∴∠BOD=∠AOC=70°;(2)∠AOC和∠BOF,∠BOD和∠BOF,∠EOF和∠EOD,∠BOE和∠EOF;(3)因为OE平分∠BOD,∠BOD=70°所以∠BOE=35°,因为∠COF=90°,且A、O、B三点在一条直线AB上,所以∠BOF=180°−70°−90°=20°,所以∠EOF=∠BOE+∠BOF=35°+20°=55°.18.解:(1)①∠AOE;∠BOD或∠AOC;②15s.(2)由题意可知:三角板旋转40秒停止,∠DOF=3t①当OB在OC左侧时,∠BOC=120°−5t|∠BOC−∠DOF|=60°,表示为|120°−5t−3t|=60°即|120°−8t|=60°去绝对值得120°−8t=60°(如图1)或8t−120°=60°(如图2)∴t=7.5或t=22.5②当OB在OC右侧时,∠BOC=5t−120°|∠BOC−∠DOF|=60°,表示为|5t−120°−3t|=60°即|2t−120°|=60°去绝对值得2t−120°=60°或120°−2t=60°(如图3)∴t=90(不符合题意,应舍去)或t=30综合①②,故当t为7.5s、22.5s、30s时,∠BOC与∠DOF互为友好角.19.解:(1)(a+b+c)2=a2+b2+c2+2ab+2bc+2ac;(a−b−c)2=a2+b2+c2+2bc−2ab−2ac;(2)由(1)可得a2+b2+c2=(a+b+c)2−(2ab+2bc+2ac)=(a+b+c)2−2(ab+bc+ac)=112−2×38=45.20.解:(1)∵A=x3y−6xy2,∴B=(x3y−6xy2)÷4xy=14x2−32y,∴娜娜应该报的整式为14x2−32y;(2)A=(x3y−6xy2)×4xy=4x4y2−24x2y3;21.解:3秒后该正方体的棱长为109.22.解:(2x−3)2−(x+y)(x−y)−y2=4x2−12x+9−x2+y2−y2=3x2−12x+9.因为x2−4x−1=0,所以x2−4x=1.所以原式=3(x2−4x)+9=3+9=12.23.解:(1)设∠AOC=x,则∠AOD=x+40°,∴x+x+40°=180°,∴∠BOD=x=70°.(2)设∠AOD=3x,∠AOC=2x,∴3x+2x=180°,x=36°,∴∠BOD=∠AOC=72°.24.解:(1)如图1,∵∠AOB=∠COD=90°,∠BOD=40°,∴∠AOC=∠AOB+∠COD−∠BOD=90°+90°−40°=140°,答:∠AOC的度数为140°;(2)如图2,∵∠AOB=82°,∠COD=110°,∴∠AOC=∠AOB+∠COD−∠BOD=82°+110°−∠BOD,又∵∠AOC=2∠BOD,∴2∠BOD=82°+110°−∠BOD,∴∠BOD=82°+110°=64°,3答:∠BOD的度数为64°;(3)如图3,∵∠AOB=α,∠COD=β,∴∠AOC=∠AOB+∠COD−∠BOD=α+β−∠BOD,又∵∠AOC=n∠BOD,∴n∠BOD=α+β−∠BOD,∴∠BOD=α+β,n+1答:∠BOD=α+β.n+125.解:(1)互补.理由:因为∠AOD+∠BOC=360°−∠AOB−∠DOC=360°−90°−90°=180°,所以∠AOD和∠BOC互补.(2)OF是∠BOC的平分线.理由:因为OE平分∠AOD,所以∠AOE=∠DOE,因为∠COF=180°−∠DOC−∠DOE=90°−∠DOE,∠BOF=180°−∠AOB−∠AOE=90°−∠AOE,所以∠COF=∠BOF,即OF是∠BOC的平分线.(3)因为OG将∠COF分成了4:3的两个部分,所以∠COG:∠GOF=4:3或者∠COG:∠GOF=3:4.①当∠COG:∠GOF=4:3时,设∠COG=4x°,∠GOF=3x°,由(2)得:∠BOF=∠COF=7x°因为∠AOB+∠BOF+∠FOG=180,所以90+7x+3x=180,解方程得:x=9,所以∠AOD=180−∠BOC=180−14x=54.②当∠COG:∠GOF=3:4时,设∠COG=3x°,∠GOF=4x°,同理可列出方程:90+7x+4x=180,,解得:x=9011所以∠AOD=180−∠BOC=180−14x=720.11)°.综上所述,∠AOD的度数是54°或(72011。
(A )D C B A (B )DC B A (C )D C B A(D )D CB A七年级数学下学期第一次月考试题一、选择题(每题3分,共24分) 1、下列计算中正确的是( )A. B. C.= D.2、已知:2×2x=212,则x 的值为( )A 、5B 、10C 、11D 、12 3、以下列各组线段长为边,能组成三角形的是( )A .1cm ,2cm ,4 cmB .8 crn ,6cm ,4cmC .12 cm ,5 cm ,6 cmD .2 cm ,3 cm ,6 cm4、下列多项式相乘的结果是a 2-a-6的是( )A .(a-2)(a+3)B .(a+2)(a-3)C .(a-6)(a+1)D .(a+6)(a-1)5、下列运算,结果正确的是 ( ) A .B .C .D .6、下列各式是完全平方式的是( ) A .B .C .D .7、在下列各图的△ABC 中,正确画出AC 边上的高的图形是( )8、如图,长方形的长为a ,宽为b ,横向阴影部分为长方形,另一阴影部分为平行四边形,它们的宽都为c,则空白部分的面积是 ( )A. ab -bc +ac -c 2B. ab -bc -ac +c 2C.ab -ac -bcD.ab -ac -bc -c 2二、填空题(每题3分,共30分)9、氢原子中电子和原子核之间的距离为,用科学记数法表示这个距离是 cm. 10、若8x=4x+2,则x=______11、若计算(x+m )(x+2)的结果不含关于字母x 的一次项,则m=_______5322a a a =+532a a a =∙32a a ∙6a 532a a a =+0.00000000529cm12、化简a 4b 3÷(ab )3的结果是_______。
13、写出下列用科学记数法表示的数的原来的数:2.35×10=14、从边长为的大正方形纸板中挖去一个边长为的小正方形后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙).那么通过计算阴影部分的面积可以验证公式_________15、当x =___________________时,多项式取得最小值.16、如果16a 2 + Mab +9 b 2是一个完全平方式,则M=_______17、观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…,则89的个位数字是__________________18、已知: ··· , 若(为正整数),则 .三、解答题(本大题共有10小题,共96分.解答时请写出必要的过程) 19.计算(每小题5分,共30分) (1)(2)(﹣2a )3﹣(﹣a )•(3a )2(3)(x+2)2﹣(x ﹣1)(x ﹣2) (4)(a+b )2(a ﹣b )22-,=+,,15441544833833322322222⨯⨯=+⨯=+ba b a ⨯=21010+b a 、=+b a(5)(a﹣3)(a+3)(a2+9)(6)(m﹣2n+3)(m+2n﹣3)20先化简再求值(8分)21.已知:26=a2=4b, 求a+b的值.(8分)22..已知: ,求x的值.(8分)23),6)(2()3)(2(2=-+-+---+bababababa)其中(()1=2-4-2xx23.(10分)我们规定一种运算:,例如,.按照这种运算规定,当x 等于多少时,24. (10分)如图1是一个长为4a 、宽为b 的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成的一个“回形”正方形(如图2).(1)图2中的阴影部分的面积为_______________;(用a 、b 的代数式表示)(4分)(2)观察图2请你写出 (a +b ) 2、(a -b ) 2、ab 之间的等量关系是_____________________;(2分) (3)根据(2)中的结论,若, 则;(2分) (4)实际上通过计算图形的面积可以探求相应的等式.如图3,你有什么发现? .(2分)图1 图2 图3b c d a ad bc =- 3 5364524 6=⨯-⨯=- -3462 4x x =+ 1 x 30x-2 x-1x ++=49,5=⋅=+y x y x =-y x25. (本题10分)李叔叔刚分到一套新房,其结构如图所示(单位:m),他打算除卧室外,其余部分铺地砖. (1)至少需要多少平方米地砖? (5分)(2)如果铺的这种地砖的价格为每平方米75元,那么李叔叔至少需要花多少元钱?(5分)26.(本题12分)阅读下列材料:一般地,n个相同的因数a相乘记为a n,记为a n.如2×2×2=23=8,此时,3叫做以2为底8的对数,记为log28(即log28=3).一般地,若a n=b(a>0且a≠1,b>0),则n叫做以a为底b的对数,记为log a b(即log a b=n).如34=81,则4叫做以3为底81的对数,记为log381(即log381=4).(1)计算以下各对数的值:log24= ,log216= ,log264= .(每空1分)(2)观察(1)中三数4、16、64之间满足怎样的关系式,log24、log216、log264之间又满足怎样的关系式。
实验学校第一次月考试卷七年级数学题号一二三总分得分一、单项选择题(每小题3分,共30分)1. 下列各式中,正确的是()A. B. C. D.2. 若,则()A. B. C. D.3. 1纳米=10-9米,将20纳米用科学记数法表示为()米A. B. C. D.4. 在某天的网课上,数学老师讲了单项式乘多项式,随堂练习中有这样一道题:□,你认为□内应填写()A. B. C. D.5. 已知是完全平方式,则的值是()A. B. C. D.6. 下面是某同学在一次测试中的计算,其中运算正确的个数为()①;②;③;④.A.个B.个C.个D.个7. 两个角的和与这两个角的差互补,则这两个角()A.一个是锐角,一个是钝角B.都是直角C.都是钝角D.必有一个是直角8. 如图,将图1中阴影部分无重叠、无缝隙地拼成图2,根据两个图形中阴影部分的面积关系得到的等式是()A. B. C.D.9. 一个多项式除以,所得的商是,余式是,则这个多项式是( )A.B.C.D.10. 如图,大正方形与小正方形的面积之差是40,则 阴影部分的面积是( ) A.80 B.40C.20D.10二、填空题(每空3分,共18分) 11. 计算:1102-109×111= ________.12. 若1216x +=,5311()y a a a ⋅=,则x +y = _______. 13. 若2217x x +=,则1x x+=________. 14. 若a-b =2,则代数式a 2-b 2-4b 的值为________.15. 一个正方形的边长增加3cm ,它的面积就增加了39cm 2,这个正方形的边长是________cm .16. 如图,已知直角△ABC 中,AC=5,BC=12,AB=13,则点C 到AB 的距离为________.三、解答题(本大题共7小题,满分72分) 17. 计算(每小题7分,共14分)(1)2422323()()3a b a b a b ⋅-+; (2)3222(4612)2.a b a b ab ab -+÷18. (8分)先化简,再求值:2222111[()()](2)222x y x y x y ++--,其中1, 2.x y =-= 19.(9分)已知平面上的四点A ,B ,C ,D.按下列要求画出图形:画线段AC ,射线AD ,直线BC ; 在线段AC 上找一点P ,使 PB+PD 最小;在直线BC 上找一点Q ,使得DQ 最短,并说明理由20.(7分)已知△ABC 的三边a ,b ,c 满足2220a b c ab bc ac ++---=,试判断△ABC 的形状并予以证明.21.(9分)如图,直线AB ,CD 相交于点O ,OE 平分∠AOC ,OF ⊥OE 于点O ,∠AOD =68°,求∠COF 的度数.22.(12分)若a m =a n (a >0且a ≠1,m 、n 是正整数),则m=n .利用上面结论解决下列问题:(1)如果528162x x ÷⋅=,求x 的值; (2)如果212224x x +++=,求x 的值;(3)若53,425m m x y =-=-,用含x 的代数式表示y .23.(13分)从边长为a 的正方形中剪掉一个边长为b 的正方形(如图),然后将剩余部分拼成一个长方形(如图).(1)图1剩余部分面积可以表示为 ,图2长方形面积可以表示为 ,能验证的等式是 .(2)若x 2-y 2=16,x+y =8,求x-y 的值; (3)计算:2222211111(1)(1)(1)(1)(1)23420192020---⋅⋅⋅--.第一次月考参考答案一、选择题(每小题3分,共30分)DBDAD ABCDC二、填空题(每小题3分,共18分)1 5 ±3 4 25三、解答题17. (每小题7分)解:(1).(2).18. 解:=……………………………………………(5分)把,代入,原式. ……………………………………………………………(8分)19.(1)如图所示,线段AC,射线AD,直线BC即为所求. (3分)(2)如图所示,点P即为所求. ……………………………(5分)(3)如图所示,点Q即为所求. 理由:垂线段最短.………(9分)20. 解:是等边三角形.理由如下:……………………(1分)∵,∴,即,∴, ……………………(5分)∴,,,即,∴是等边三角形. ……………………………………(7分)21. (9分)解:∵,∴.…………(3分)∵平分,∴. ………………………………(6分)∵,∴,…………………………………………(8分)∴………………………………(9分)22. 解:,∴,解得. …………………………………………………………(3分)∵,∴,∴,∴ . ……………………………………………………(3分)∵ , ∴ ,∵ ,∴ .……………………………………(3分)23.(1)…………………(2分)=…………………………………(4分) (2)∵ ==,又∵ =, ∴ ==;……………………………………………(4分)(3)2222211111(1)(1)(1)(1)(1)23420192020---⋅⋅⋅--. =……,,,.…………………………………………………………(5分)。
安徽省 七年级下学期第一次月考数学试卷温馨提示:亲爱的同学,如果把这份试卷比作一片蔚蓝的海,那么,现在我们启航,展开你智慧和自信的双翼,乘风破浪,你定能收获无限…… 一、选择题(每小题3分共30分) 1.下列计算正确的是 ( ) A .3x -2x =1 B .3x+2x=5x 2C .3x ·2x=6xD .3x -2x=x 2.如图,阴影部分的面积是( ) A .xy 27B .xy 29C .xy 4D .xy 23.下列计算中正确的是( )A .2x+3y=5xyB .x ·x 4=x 4C .x 8÷x 2=x 4D .(x 2y )3=x 6y 34.在下列计算中正确的是( ) A .2x +3y =5xy ;B .(a +2)(a -2)=a 2+4; C .a 2•ab =a 3b ;D .(x -3)2=x 2+6x +95.下列运算中结果正确的是( )A .633·x x x =;B .422523x x x =+;C .532)(x x =; D .222()x y x y +=+. 6.下列说法中正确的是( ). A .2t 不是整式; B . y x 33-的次数是4; C .ab 4与xy 4是同类项; D .y1是单项式 7.ab 减去22b ab a +-等于 ( ).A .222b ab a++; B .222b ab a +--;C .222b ab a -+-;D .222b ab a ++-8.下列各式中与a-b-c 的值不相等的是( ) A .a-(b+c ) B .a-(b-c )第2题图aa bb图1 图2(第10题图)C .(a-b )+(-c )D .(-c )-(b-a )9.已知x 2+kxy+64y 2是一个完全平方式,则k 的值是( ) A .8 B .±8 C .16 D .±1610.如下图(1),边长为a 的大正方形中剪去一个边长为b 的小正方形,小明将图(1)的阴影部分拼成了一个长方形,如图(2).这一过程可以验证( ) A .a 2+b 2-2ab=(a-b)2; B .a 2+b 2+2ab=(a+b)2; C .2a 2-3ab+b 2=(2a-b)(a-b) ; D .a 2-b 2=(a+b) (a-b)二、填空题(每小题4分共32分) 11.计算:32()x x -=· . 12.单项式z yx n 123-是关于x 、y 、z 的五次单项式,则n = ;13.若243(3)()x x x x n ++=++,则_______n = 14.若a 2+b 2=5,ab =2,则(a +b )2.15.若4x 2+kx +25=(2x -5)2,那么k 的值是 . 16.计算:1232-124×122=______ ___.17.将多项式42+x 加上一个整式,使它成为完全平方式,试写出满足上述条件的两个整式: , .18.将4个数排成2行、2列,两边各加一条竖直线记成 ,定义 =,若=6,则__________.三、解答题(19题10分,20题12分,21题10分,22题6分,23题8分,24题12分)19.(1)计算:22()()a b a ab b +-+; (2)()()x y x y -+-2(x-y )-20.(1)先化简,再求值:(a –b)2+b(a –b),其中a=2,b=–1/2(2)先化简,再求值:2(32)(32)5(1)(21)x x x x x +-----,其中13x =-21.按下列程序计算,把答案写在表格内:(1)填写表格:输入n 3 21—2 —3 …输出答案11… (2)请将题中计算程序用代数式表达出来,并给予化简.22.如图为杨辉三角表,它可以帮助我们按规律写出(a+b )n(其中n 为正整数)•展开式的系数,请仔细观察表中规律,填出(a+b )4的展开式中所缺的系数. (a+b )1=a+b ;(a+b )2=a 2+2ab+b 2;(a+b )3=a 3+3a 2b+3ab 2+b 3; (a+b )4=a 4+_____a 3b+_____a 2b 2+______ab 3+b 423.阅读下列题目的解题过程:已知a 、b 、c 为ABC △的三边,且满足222244a cbc a b -=-,试判断ABC △的形状.n平方+n÷n -n 答案解:222244(A)a c b c a b -=-2222222222()()()(B)(C)ABC c a b a b a b c a b ∴-=+-∴=+∴是直角三角形△问:(1)上述解题过程,从哪一步开始出现错误?请写出该步的代号: ;(2)错误的原因为: ; (3)本题正确的结论为:24.(10分)若x+y=3,且(x+2)(y+2)=12. (1)求xy 的值;(2)求x 2+3xy+y 2的值.参考答案教师的职务是‘千教万教,教人求真’;学生的职务是‘千学万学,学做真人’。
2019-2020 年七年级下学期数学第一次月考试卷姓名:________班级:________成绩:________一、 单选题 (共 6 题;共 12 分)1. (2 分) (2017·庆云模拟) 下列计算中,结果是 a6 的是( )A . a2+a4B . a2•a3C . a12÷a2D . (a2)32. (2 分) 数轴上的点 M 对应的数是-2,那么将点 M 向右移动 4 个单位长度,此时点 M 表示的数是( )A . -6B.2C . -6 或 2D . 都不正确3. (2 分) (2019 七下·南京月考) 下列各式中计算正确的是( )A . (a3)2=a5B . (xy2)3=xy6C . t10÷t9=tD . x3x3=2x64. (2 分) (2020 八上·大东期末) 下列命题中的假命题是( )A . 两直线平行,内错角相等B . 同位角相等,两直线平行C . 两直线平行,同旁内角相等D . 平行于同一条直线的两直线平行5. (2 分) (2016 八上·庆云期中) 下面各组线段中,能组成三角形的是( )A . 5,11,6B . 8,8,16C . 10,5,4D . 6,9,146. (2 分) (2018 七下·市南区期中) 计算的结果是( )A.第1页共9页B.9 C. D.二、 填空题 (共 10 题;共 11 分)7. (1 分) (2017·河南模拟) 计算:|﹣ |+3﹣2=________. 8. (1 分) (2017·丹东模拟) 目前发现一种病毒直径约是 0.0000252 米,将 0.0000252 用科学记数法表示为 ________. 9. (1 分) 一个多边形的每一个外角都等于 36°,则该多边形的内角和等于________ °. 10. (1 分) (2017 七下·寿光期中) 若 m、n 互为相反数,则(3m)2(32)n=________. 11. (1 分) 如图,AB 为⊙O 直径,点 C、D 在⊙O 上,已知∠AOD=50°,AD∥OC,则∠BOC=________度.12. (1 分) 计算:(﹣8)2014×0.1252013=________. 13. (1 分) 如果一个多边形的内角和是外角和的 3 倍,则这个多边形边数为________. 14. (2 分) (2019 七上·句容期末) 如图,一个宽度相等的纸条按如图所示方法折叠压平,则∠1 的度数等 于________°.15. (1 分) (2020 七下·下陆月考) 如图,补充一个适当的条件________,使 AE∥BC.(填一个即可)第2页共9页16. (1 分) (2020·宁波模拟) 已知:如图,矩形 OABC 中,点 B 的坐标为,双曲线的一支与矩形两边 AB,BC 分别交于点 E,F. 若将△BEF 沿直线 EF 对折,B 点落在 y 轴上的点 D 处,则点 D 的坐标是________三、 解答题 (共 10 题;共 103 分)17. (10 分) 利用公式简便计算:+(﹣ )1999×(1 )2000×(﹣ )﹣3 .18. (10 分) 化简求值:(﹣ xy)2[xy(2x﹣y)﹣2x(xy﹣y2)],其中 x=﹣1 ,y=﹣2.19. (10 分) (2017·泾川模拟) 计算:|﹣2|﹣2cos60°+( ) ﹣1﹣(π﹣ )0 . 20. (11 分) (2019 八上·金坛月考) 在如图的方格中,每个小正方形的边长都为 1,△ABC 的顶点均在格点 上.在建立平面直角坐标系后,点 B 的坐标为(﹣1,2).(1) ①把△ABC 向下平移 8 个单位后得到对应的△A1B1C1,画出△A1B1C1;②画出与△A1B1C1 关于 y 轴对称的△A2B2C2;(2) 若点 P(a,b)是△ABC 边上任意一点,P2 是△A2B2C2 边上与 P 对应的点,写出 P2 的坐标为________;(3) 试在 y 轴上找一点 Q,使得点 Q 到 B2、C2 两点的距离之和最小,此时,QB2+QC2 的最小值为________.21. (10 分) (2019 八上·呼和浩特期中) 如图,在四边形中中,,,.第3页共9页(1) 求证:;(2) 若,求的度数.22. (10 分) (2019 七下·漳州期中) 如图,点 , 在线段 上,点 , 分别在线段 和上,,.(1) 判断 与 的位置关系,并说明理由;(2) 若是的平分线,,且怎样的位置关系?23. (10 分) (2018 八上·句容月考) 如图,在中,于 、 两点,与 相交于点 .,试说明 与有、 分别垂直平分 和 ,交(1) 若的周长为 15 cm,求 的长.(2) 若,求的度数.24. (7 分) (2019 七下·淮安月考)(1) 你发现了吗?,________;(2) 请你通过计算,判断与之间的关系;(3) 我们可以发现:________;第4页共9页,由上述计算,我们发;(4) 利用以上的发现计算:.25. (15 分) (2017·百色) 计算:+( ) ﹣1﹣(3﹣π)0﹣|1﹣4cos30°|26. (10 分) (2018 七下·长春月考) 感知:如图①,∠ACD 为△ABC 的外角,易得∠ACD=∠A+∠B(不需证明) ;(1) 探究:如图②,在四边形 ABDC 中,试探究∠BDC 与∠A、∠B.、∠C 之间的关系,并说明理由; (2) 应用:如图③,把一块三角尺 XYZ 放置在△ABC 上,使三角尺的两条直角边 XY、XZ 恰好经过点 B、C, 若∠A=50°,则∠ABX+∠ACX=________度;(直接填答案,不需证明) (3) 拓展:如图④,BE 平分∠ABD,CE 平分∠ACD,若∠BAC=100°,∠BDC=150°,则∠BEC=________度. (直 接填答案,不需证明)第5页共9页一、 单选题 (共 6 题;共 12 分)1-1、 2-1、 3-1、 4-1、 5-1、 6-1、二、 填空题 (共 10 题;共 11 分)7-1、 8-1、 9-1、 10-1、 11、答案:略 12-1、 13-1、 14-1、 15-1、 16-1、三、 解答题 (共 10 题;共 103 分)参考答案17-1、第6页共9页18-1、 19、答案:略20-1、 20-2、 20-3、 21、答案:略22-1、第7页共9页22-2、 23-1、23-2、 24-1、 24-2、第8页共9页24-3、 24-4、 25-1、 26、答案:略第9页共9页。
2015-2016学年湖北省恩施州咸丰县清坪镇七年级(下)第一次月考数学试卷一、选择题1.如图,∠1和∠2是对顶角的图形有()个.A.1 B.2 C.3 D.42.∠1与∠2互为邻补角,则下列说法不一定正确的是()A.∠1>∠2B.∠1+∠2=180°C.∠1与∠2有一条公共边D.∠1与∠2有一条边互为反向延长线3.若两条平行线被第三条直线所截,则一组同位角的平分线互相()A.垂直B.平行C.重合D.相交4.如图所示,AB∥CD,则与∠1相等的角(∠1除外)共有()A.5个B.4个C.3个D.2个5.如图所示,已知AD∥BC,∠C=30°,∠ADB:∠BDC=1:2,那么∠ADB等于()A.45°B.30°C.50°D.36°6.如图所示,a∥b,∠2是∠1的3倍,则∠2等于()A.45°B.90°C.135°D.150°7.点P为直线l外一点,点A、B、C为直线上三点,PA=3cm,PB=4cm,PC=5cm,则点P到直线l 的距离为()A.2cm B.3cm C.小于3cm D.不大于3cm8.如图所示,已知∠1=∠2,要使∠3=∠4,只要()A.∠1=∠3 B.∠2=∠4 C.∠1=∠4 D.AB∥CD9.下列命题是真命题的是()A.若x>y,则x2>y2B.若|a|=|b|,则a=bC.若a>|b|,则a2>b2D.若a<1,则a>10.如果∠A和∠B的两边分别平行,那么∠A和∠B的关系是()A.相等B.互余或互补C.互补D.相等或互补11.如图所示,△FDE经过怎样的平移可得到△ABC()A.沿射线EC的方向移动DB长 B.沿射线CE的方向移动DB长C.沿射线EC的方向移动CD长 D.沿射线BD的方向移动BD长12.如图所示,有下列五种说法:①∠1和∠4是同位角;②∠3和∠5是内错角;③∠2和∠6是同旁内角;④∠5和∠2是同位角;⑤∠1和∠3是同旁内角;其中正确的是()A.①②③B.①②③④C.①②③④⑤D.①②④⑤二、填空题13.如图所示,AB与CD相交所成的四个角中,∠1的邻补角是,∠2的对顶角是.14.如图,若∠1=25°,则∠2=,∠3=,∠4=.15.如图,∠1+∠2=180°,∠3=108°,则∠4=度.16.如图,△ABC是由四个形状、大小完全一样的三角形拼成,则可以看着是由△ADE平移得到的小三角形是.三.解答题(72分)17.推理填空:(1)∵AD∥BC,∴∠FAD=;(2)∵∠1=∠2,∴∥;(3)∵AD∥BC,∴∠C+∠=180°.18.按要求画图.(1)过P点画直线L的垂线(2)过点C画线段AB的垂线段19.如图,AB∥CD∥EF,写出∠A,∠C,∠AFC的关系并说明理由.20.如图所示,AB∥CD,∠3:∠2=3:2,求∠1的度数.21.如图,已知∠1=∠2=90°,∠3=30°,∠4=60°,图中有几对平行线?说说你的理由.22.如图,AB∥CD,∠1:∠2:∠3=1:2:3,说明BA平分∠EBF的道理.23.直线AB、CD相交于点O,OE、OF分别是∠AOC、∠BOD的平分线(1)射线OE、OF在同一直线上吗?为什么?(2)OG平分∠AOD,OE与OG有什么位置关系?为什么?24.如图,在四边形ABCD中,AB∥CD,P为BC上一点,设∠CDP=α,∠CPD=β.(1)试说明不论P在BC上怎么移动,总有α+β=∠B的理由;(2)点P在BC的延长线移动是否存在上述结论?若存在,给予证明;若不存在写出你的结论.2015-2016学年湖北省恩施州咸丰县清坪镇民族中学七年级(下)第一次月考数学试卷参考答案与试题解析一、选择题1.如图,∠1和∠2是对顶角的图形有()个.A.1 B.2 C.3 D.4【考点】对顶角、邻补角.【分析】根据对顶角的两边互为反向延长线进行判断.【解答】解:图形中从左向右第1,2,4个图形中的∠1和∠2的两边都不互为反向延长线,故不是对顶角,只有第3个图中的∠1和∠2的两边互为反向延长线,是对顶角.故选:A.【点评】本题考查对顶角的定义,是一个需要熟记的内容.2.∠1与∠2互为邻补角,则下列说法不一定正确的是()A.∠1>∠2B.∠1+∠2=180°C.∠1与∠2有一条公共边D.∠1与∠2有一条边互为反向延长线【考点】对顶角、邻补角.【分析】根据邻补角的定义解答即可.【解答】解:由邻补角的定义得:B,C,D正确,A不一定正确,故选A.【点评】本题考查了邻补角的定义,是基础题,熟记概念是解题的关键.3.若两条平行线被第三条直线所截,则一组同位角的平分线互相()A.垂直B.平行C.重合D.相交【考点】平行线的性质.【分析】此题需要先画图,根据图与已知,求解即可.【解答】已知:AB∥CD,PM与QN分别平分∠EMB与∠MND.求证:PM∥QN.证明:∵AB∥CD,∴∠EMB=∠MND,∵PM与QN分别平分∠EMB与∠MND,∴∠1=∠EMB,∠2=∠MND,∴∠1=∠2,∴PM∥QN.故选B.【点评】此题考查了平行线的性质与判定.解题时要注意文字题的解题方法:首先画图,写出已知求证,再证明.4.如图所示,AB∥CD,则与∠1相等的角(∠1除外)共有()A.5个B.4个C.3个D.2个【考点】平行线的性质.【分析】根据平行线的性质和对顶角相等作答.【解答】解:∵AB∥CD,∴∠3=∠1,∵∠1=∠2,∠3=∠4,∴∠1=∠2=∠3=∠4.故选C.【点评】此题考查了平行线的性质:两直线平行,同位角相等.还考查了对顶角相等.解题时注意数形结合思想的应用.5.如图所示,已知AD∥BC,∠C=30°,∠ADB:∠BDC=1:2,那么∠ADB等于()A.45°B.30°C.50°D.36°【考点】平行线的性质.【分析】直接利用平行线的性质得出∠ADC=150°,再利用∠ADB:∠BDC=1:2,求出答案.【解答】解:∵AD∥BC,∠C=30°,∴∠ADC+∠C=180°,则∠ADC=150°,∵∠ADB:∠BDC=1:2,∴∠ADB+2∠ADB=150°,解得:∠ADB=50°故选:C.【点评】此题主要考查了平行线的性质,得出∠ADC的度数是解题关键.6.如图所示,a∥b,∠2是∠1的3倍,则∠2等于()A.45°B.90°C.135°D.150°【考点】平行线的性质.【分析】由a∥b,即可得∠3=∠1,又由∠2是∠1的3倍,即可得∠2=3∠3,由∠2+∠3=180°,即可求出∠2的度数.【解答】解:∵a∥b,∴∠3=∠1,∵∠2是∠1的3倍,∴∠2=3∠1=3∠3,∵∠2+∠3=180°,∴4∠3=180°,解得:∠3=45°,∴∠2=135°.故选C.【点评】此题考查了平行线的性质与二元一次方程组的解法.此题比较简单,注意掌握两直线平行,同位角相等定理的应用.7.点P为直线l外一点,点A、B、C为直线上三点,PA=3cm,PB=4cm,PC=5cm,则点P到直线l 的距离为()A.2cm B.3cm C.小于3cm D.不大于3cm【考点】点到直线的距离.【分析】根据直线外一点到直线的垂线段的长度,叫做点到直线的距离,可得连接直线外一点P与直线上任意点,所得线段中垂线段最短;然后根据PA=3cm,PB=4cm,PC=5cm,可得三条线段的最短的是3cm,所以点P到直线l的距离不大于3cm,据此判断即可.【解答】解:连接直线外一点P与直线上任意点,所得线段中垂线段最短;因为PA=3cm,PB=4cm,PC=5cm,所以三条线段的最短的是3cm,所以点P到直线l的距离不大于3cm.故选:D.【点评】此题主要考查了点到直线的距离的含义以及特征,考查了分析推理能力的应用,解答此题的关键是要明确:连接直线外一点P与直线上任意点,所得线段中垂线段最短.8.如图所示,已知∠1=∠2,要使∠3=∠4,只要()A.∠1=∠3 B.∠2=∠4 C.∠1=∠4 D.AB∥CD【考点】平行线的判定.【分析】已知∠1=∠2,要使∠3=∠4,则需∠BEF=∠CFE.再根据平行线的判定,则需AB∥CD即可.【解答】解:假设∠3=∠4,即∠BEF=∠CFE,由内错角相等,两直线平行,可得AB∥CD.故已知∠1=∠2,要使∠3=∠4,只要AB∥CD.故选D.【点评】在做探究题的时候注意要把已知和结论进行综合分析.9.下列命题是真命题的是()A.若x>y,则x2>y2B.若|a|=|b|,则a=bC.若a>|b|,则a2>b2D.若a<1,则a>【考点】命题与定理.【分析】利用平方的性质、绝对值的定义、不等式的性质及倒数的知识分别计算后即可确定正确的选项.【解答】解:A、当x=1,y=﹣2时若x>y,则x2>y2错误;B、若|a|=|b|,则a=±b,故错误;C、若a>|b|,则a2>b2正确;D、当a=时若a<1,则a>错误,故选:C.【点评】本题考查了命题与定理的知识,解题的关键是了解平方的性质、绝对值的定义、不等式的性质及倒数的知识,难度不大.10.如果∠A和∠B的两边分别平行,那么∠A和∠B的关系是()A.相等B.互余或互补C.互补D.相等或互补【考点】平行线的性质.【分析】本题主要利用两直线平行,同位角相等以及同旁内角互补作答.【解答】解:如图知∠A和∠B的关系是相等或互补.故选D.【点评】如果两个的两条边分别平行,那么这两个角的关系是相等或互补.11.如图所示,△FDE经过怎样的平移可得到△ABC()A.沿射线EC的方向移动DB长 B.沿射线CE的方向移动DB长C.沿射线EC的方向移动CD长 D.沿射线BD的方向移动BD长【考点】生活中的平移现象.【分析】易得两个三角形的对应顶点,前一个三角形的对应顶点到后一个三角形的对应顶点为平移的方向,两个三角形对应顶点之间的距离为移动的距离.【解答】解:由图中可以看出B和D是对应顶点,C和E是对应顶点,那么△FDE沿射线EC的方向移动DB长可得到△ABC,故选A.【点评】用到的知识点为:两个对应顶点之间的距离为平移的距离;从原图形的对应顶点到新图形的对应顶点为平移的方向.12.如图所示,有下列五种说法:①∠1和∠4是同位角;②∠3和∠5是内错角;③∠2和∠6是同旁内角;④∠5和∠2是同位角;⑤∠1和∠3是同旁内角;其中正确的是()A.①②③B.①②③④C.①②③④⑤D.①②④⑤【考点】同位角、内错角、同旁内角.【分析】根据内错角、同位角以及同旁内角的定义寻找出各角之间的关系,再比照五种说法判断对错,即可得出结论.【解答】解:根据内错角、同位角以及同旁内角的定义分析五种说法.①∠1和∠4是同位角,即①成立;②∠3和∠5是内错角,即②成立;③∠2和∠6是内错角,即③不成立;④∠5和∠2是同位角,即④成立;⑤∠1和∠3是同旁内角,即⑤成立.故选D.【点评】本题考查了同位角、内错角以及同旁内角的定义,解题的关键是根据内错角、同位角以及同旁内角的定义寻找各角之间的关系.本题属于基础题,难度不大,解决该题型题目时,寻找到各角的关系再去对照各种说法即可得出结论.二、填空题13.如图所示,AB与CD相交所成的四个角中,∠1的邻补角是∠1和∠4,∠2的对顶角是∠3.【考点】对顶角、邻补角.【分析】根据对顶角和邻补角的定义解答,注意两直线相交,一个角的对顶角只有一个,但邻补角有两个.【解答】解:由图形可知,∠1的邻补角是∠1和∠4,∠2的对顶角是∠3,故答案为:∠1和∠4,∠3.【点评】本题考查了邻补角和对顶角,解决本题的关键是熟记邻补角和对顶角的定义.14.如图,若∠1=25°,则∠2=155°,∠3=25°,∠4=155°.【考点】对顶角、邻补角.【专题】计算题.【分析】根据邻补角的定义和对顶角的性质,直线a、b相交,则∠1与∠2互为邻补角,即∠1+∠2=180°,把∠1=25°代入,可求∠2,再运用对顶角相等,可求∠3,∠4.【解答】解:∵∠1+∠2=180°,∠1=25°,∴∠2=180°﹣25°=155°.∴∠3=∠1=25°,∠4=∠2=155°.【点评】本题考查邻补角的定义和对顶角的性质,是一个需要熟记的内容.15.如图,∠1+∠2=180°,∠3=108°,则∠4=72度.【考点】平行线的判定与性质.【专题】计算题.【分析】先根据∠1+∠2=180°可得出a∥b,再根据同旁内角互补即可求解;【解答】解:∵∠1+∠2=180°,∴a∥b,∴∠3+∠5=180°,∵∠3=108°,∴∠5=180°﹣108°=72°,∴∠4=72°,故答案为:72°.【点评】本题考查平行线的判定与性质,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键.16.如图,△ABC是由四个形状、大小完全一样的三角形拼成,则可以看着是由△ADE平移得到的小三角形是△DBF或△EFC.【考点】平移的性质.【分析】根据平移的性质,结合图形直接求得结果.【解答】解:由△ADE平移得到的小三角形是△DBF或△EFC,故答案为:△DBF或△EFC.【点评】本题主要考查了平移的性质,要注意平移不改变图形的形状、大小和方向,注意结合图形解题的思想,难度适中.三.解答题(72分)17.推理填空:(1)∵AD∥BC,∴∠FAD=∠ABC;(2)∵∠1=∠2,∴AB∥CD;(3)∵AD∥BC,∴∠C+∠ADC=180°两直线平行,同旁内角互补.【考点】平行线的判定与性质.【专题】推理填空题.【分析】(1)由平行线的性质可得同位角相等,可得∠FAD=∠ABC;(2)由平行线的判定可得内错角相等,两直线平行,可得AB∥CD;(3)由平行线的性质可得同旁内角互补,可得答案.【解答】解:(1)∵AD∥BC,∴∠FAD=∠ABC;(2)∵∠1=∠2,∴AB∥CD;(3)∵AD∥BC,∴∠C+∠ADC=180°两直线平行,同旁内角互补.故答案为:(1)∠ABC;(2)AB;CD;(3)∠ADC;两直线平行,同旁内角互补.【点评】本题主要考查平行线的判定和性质,掌握平行线的判定和性质是解题的关键,即①同位角相等⇔两直线平行,②内错角相等⇔两直线平行,③同旁内角互补⇔两直线平行,④a∥b,b∥c⇒a ∥c.18.按要求画图.(1)过P点画直线L的垂线(2)过点C画线段AB的垂线段【考点】作图—基本作图.【分析】(1)根据过直线外一点画已知直线的垂线方法画出图形即可.(2)过点C画出直线AB的垂线即可解决问题.【解答】解:(1)如图1所示,图中直线PM就是所求的垂线.(2)如图2中所示,线段CM就是所求的垂线段.【点评】本题考查基本作图、解题的关键是熟练掌握过一点画已知直线的方法,作图时保留作图痕迹,属于中考常考题型.19.如图,AB∥CD∥EF,写出∠A,∠C,∠AFC的关系并说明理由.【考点】平行线的性质.【分析】由AB∥CD,根据平行线的性质得∠A=∠1,在利用三角形外角性质得到∠1=∠C+∠AFC,所以∠A=∠C+∠AFC.【解答】解:∠A=∠C+∠AFC.理由如下:如图,∵AB∥CD,∴∠A=∠1,∵∠1=∠C+∠AFC,∴∠A=∠C+∠AFC.【点评】本题考查了平行线的性质:两直线平行,同位角相等.也考查了三角形外角性质.20.如图所示,AB∥CD,∠3:∠2=3:2,求∠1的度数.【考点】平行线的性质;对顶角、邻补角.【专题】计算题.【分析】本题主要利用两直线平行,同旁内角互补以及邻补角的定义进行做题.【解答】解:设∠3=3x,∠2=2x,由∠3+∠2=180°,可得3x+2x=180°,∴x=36°,∴∠2=2x=72°;∵AB∥CD,∴∠1=∠2=72°.【点评】本题重点考查了平行线的性质及邻补角的定义,是一道较为简单的题目.21.如图,已知∠1=∠2=90°,∠3=30°,∠4=60°,图中有几对平行线?说说你的理由.【考点】平行线的判定.【分析】根据平行线的判定定理1(同位角相等,两直线平行)和定理5(在同一平面内,如果两条直线同时垂直于同一条直线,那么这两条直线平行)进行判断.【解答】解:图中共有2对平行线.①AB∥CD.理由如下:∵∠1=∠2=90°,∴AB∥CD(在同一平面内,如果两条直线同时垂直于同一条直线,那么这两条直线平行);②∵∠2=90°,∴∠4+∠5=90°,又∵∠3=30°,∠4=60°,∴∠3=∠5,∴EF∥HG(同位角相等,两直线平行).综上所述,图中共有2对平行线,它们是:AB∥CD、EF∥HG.【点评】本题考查了平行线的判定.正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.22.如图,AB∥CD,∠1:∠2:∠3=1:2:3,说明BA平分∠EBF的道理.【考点】平行线的性质;角平分线的定义.【专题】证明题.【分析】据题意可以设三角分别为x°、2x°、3x°,由同旁内角互补可得到∠1=36°,∠2=72°,从而可求得∠EBA=72°,即可得BA平分∠EBF.【解答】证明:设∠1、∠2、∠3分别为x°、2x°、3x°,∵AB∥CD,∴由同旁内角互补,得2x°+3x°=180°,解得x=36°;∴∠1=36°,∠2=72°,∵∠EBG=180°,∴∠EBA=180°﹣(∠1+∠2)=72°;∴∠2=∠EBA,∴BA平分∠EBF.【点评】本题主要考查两直线平行,同旁内角互补的性质,还涉及到平角及角平分线的性质,关键是找到等量关系.23.直线AB、CD相交于点O,OE、OF分别是∠AOC、∠BOD的平分线(1)射线OE、OF在同一直线上吗?为什么?(2)OG平分∠AOD,OE与OG有什么位置关系?为什么?【考点】角平分线的定义.【分析】根据角平分线的定义以及邻补角的性质即可求解.【解答】解:(1)∵OE、OF分别平分∠AOC、∠BOD的平分线,∴∠AOC=∠BOD=2∠AOE=2∠DOF,∵∠AOD+∠AOC=180°,∴∠AOE+∠AOD+∠DOF=180°,∴OE与OF在同一直线上,(2)∵OE、OG分别是∠AOC、∠AOD的平分线,∴∠AOC=2∠AOE,∠AOD=2∠AOG,∵∠AOC+∠AOD=180°,∴∠AOE+∠AOG=90°,∴OE⊥OG【点评】本题考查角平分线的定义,涉及邻补角的性质,注意格式书写.24.如图,在四边形ABCD中,AB∥CD,P为BC上一点,设∠CDP=α,∠CPD=β.(1)试说明不论P在BC上怎么移动,总有α+β=∠B的理由;(2)点P在BC的延长线移动是否存在上述结论?若存在,给予证明;若不存在写出你的结论.【考点】平行线的性质.【分析】(1)过点P作PQ∥AB,根据两直线平行,内错角相等可得∠DPQ=∠α,两直线平行,同位角相等可得∠B=∠CPQ,整理即可得解;(2)过点P作PQ∥AB,根据两直线平行,内错角相等可得∠DPQ=∠α,两直线平行,同旁内角互补∠B+∠CPQ=180°,整理即可得解.【解答】(1)解:如图,过点P作PQ∥AB,∵AB∥CD,∴AB∥PQ∥CD,∴∠DPQ=∠α,∠B=∠CPQ,∴∠B=α+β;(2)解:如图,过点P作PQ∥AB,∵AB∥CD,∴AB∥PQ∥CD,∴∠DPQ=∠α,∠B+∠CPQ=180°,∴∠B+α+β=180°.【点评】本题考查了平行线的性质,熟记性质是解题的关键,难点在于过点P作出AB的平行线.文本仅供参考,感谢下载!。
七年级(下)第一次月考数学试卷一、选择题(共10小题,每小题3分,满分30分)1.下列命题中,是真命题的是()A.同位角相等B.邻补角一定互补C.相等的角是对顶角D.有且只有一条直线与已知直线垂直2.在同一平面内,不重合的两条直线的位置关系是()A.平行 B.相交C.平行或相交D.平行、相交或垂直3.下列各图中,∠1与∠2是对顶角的是()A.B. C.D.4.已知,∠1与∠2互为邻补角,∠1=140°,则∠2的余角的度数为()A.30° B.40° C.50° D.100°5.平面内四条直线最少有a个交点,最多有b个交点,则a+b=()A.6 B.4 C.2 D.06.下列说法正确的是()A.1的平方根是1B.6是36的算术平方根C.同一平面内的三条直线满足a⊥b,b⊥c,则a⊥cD.两直线被第三条直线所截,内错角相等7.已知,如图,三角形ABC中,∠BAC=90°,AD⊥BC于D,则图中相等的锐角的对数有()A.4对B.3对C.2对D.1对8.如图,点E在BC的延长线上,则下列条件中,不能判定AB∥CD的是()A.∠3=50°,∠4=50°B.∠B=40°,∠DCB=140°C.∠1=60°,∠2=60°D.∠D+∠DAB=180°9.如图,AB∥EF,BC∥DE,∠B=70°,则∠E的度数为()A.90° B.110°C.130°D.160°10.如图,AB∥CD∥EF,∠ABE=38°,∠ECD=110°,则∠BEC的度数为()A.42° B.32° C.62° D.38°二、填空题(共8小题,每小题4分,满分32分)11.36的平方根是;的算术平方根是.12.用“<”或“>”填空: +1 4.13.点到直线的距离是指这点到这条直线的.14.把命题“等角的补角相等”改写成“如果…那么…”的形式是.15.一个正数的平方根为2﹣m与3m﹣8,则m的值为.16.在同一平面内如图,EG∥BC,CD交EG于点F,那么图中与∠1相等的角共有个.17.如图,已知:∠1=∠2,∠3=108°,则∠4的度数为.18.如果两条平行线被第三条直线所截,那么同位角的平分线的位置关系是.三、解答题(共5小题,满分58分)19.如图,∠AOB内一点P:(1)过点P画PC∥OB交OA于点C,画PD∥OA交OB于点D;(2)写出两个图中与∠O互补的角;(3)写出两个图中与∠O相等的角.20.求下列各式中的x的值:(1)x2﹣81=0(2)36x2﹣49=0.21.如图,已知∠A=∠F,∠C=∠D,可以证明BD∥CE.在下列括号中填写推理理由证明:∵∠A=∠F∴AC∥DF()∴∠C+∠=180°()∵∠C=∠D∴∠D+∠DEC=180°()∴BD∥CE ().22.小明打算用一块面积为900cm2的正方形木板,沿着边的方向裁出一个长方形面积为588cm2桌面,并且的长宽之比为4:3,你认为能做到吗?如果能,计算出桌面的长和宽;如果不能,请说明理由.23.如图,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=120°,∠ACF=20°,求∠FEC的度数.2015-2016学年河南省安阳市滑县大寨一中七年级(下)第一次月考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.下列命题中,是真命题的是()A.同位角相等B.邻补角一定互补C.相等的角是对顶角D.有且只有一条直线与已知直线垂直【考点】命题与定理.【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:A、两直线平行,同位角相等,故此选项错误;B、根据邻补角的定义,故此选项正确;C、相等的角不一定是对顶角,故此选项错误;D、过直线外一点,有且只有一条直线与已知直线垂直,故此选项错误.故选:B.【点评】此题主要考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.2.在同一平面内,不重合的两条直线的位置关系是()A.平行 B.相交C.平行或相交D.平行、相交或垂直【考点】平行线.【专题】常规题型.【分析】根据直线的位置关系解答.【解答】解:在同一平面内,不重合的两条直线只有两种位置关系,是平行或相交,所以在同一平面内,不重合的两条直线的位置关系是:平行或相交.故选C.【点评】本题考查了两直线的位置关系,需要特别注意,垂直是相交特殊形式,在同一平面内,不重合的两条直线只有平行或相交两种位置关系.3.下列各图中,∠1与∠2是对顶角的是()A.B. C.D.【考点】对顶角、邻补角.【分析】根据对顶角的定义对各选项分析判断后利用排除法求解.【解答】解:A、∠1与∠2不是对顶角,故A选项错误;B、∠1与∠2是对顶角,故B选项正确;C、∠1与∠2不是对顶角,故C选项错误;D、∠1与∠2不是对顶角,故D选项错误.故选:B.【点评】本题主要考查了对顶角的定义,熟记对顶角的图形是解题的关键.4.已知,∠1与∠2互为邻补角,∠1=140°,则∠2的余角的度数为()A.30° B.40° C.50° D.100°【考点】对顶角、邻补角.【分析】根据互为邻补角的两个角的和等于180°求出∠2,再根据互为余角的两个角的和等于90°列式计算即可得解.【解答】解:∵∠1与∠2互为邻补角,∠1=140°,∴∠2=180°﹣∠1=180°﹣140°=40°,∴∠2的余角的度数为90°﹣40°=50°.故选C.【点评】本题考查了邻补角和余角的定义,是基础题,熟记概念是解题的关键.5.平面内四条直线最少有a个交点,最多有b个交点,则a+b=()A.6 B.4 C.2 D.0【考点】直线、射线、线段.【专题】计算题.【分析】当所有直线两两平行时交点个数最少;交点最多时根据交点个数公式代入计算即可求解;依此得到a、b的值,再相加即可求解.【解答】解:交点个数最多时, ==6,最少有0个.所以b=6,a=0,所以 a+b=6.故选:A.【点评】本题考查了相交线的交点问题,熟记公式是解题的关键.6.下列说法正确的是()A.1的平方根是1B.6是36的算术平方根C.同一平面内的三条直线满足a⊥b,b⊥c,则a⊥cD.两直线被第三条直线所截,内错角相等【考点】算术平方根;平方根;垂线;同位角、内错角、同旁内角.【分析】根据平方根的概念、平行公理和平行线的性质判断即可.【解答】解:1的平方根是±1,A错误;6是36的算术平方根,B正确;同一平面内的三条直线满足a⊥b,b⊥c,则a∥c,C错误;两直线被第三条直线所截,内错角不一定相等,D错误,故选:B.【点评】本题考查的是平方根、算术平方根的概念、垂直的定义,正确理解相关的概念和性质是解题的关键.7.已知,如图,三角形ABC中,∠BAC=90°,AD⊥BC于D,则图中相等的锐角的对数有()A.4对B.3对C.2对D.1对【考点】直角三角形的性质.【分析】根据直角三角形两锐角互余和同角的余角相等写出相等的角即可.【解答】解:相等的锐角有:∠B=∠CAD,∠C=∠BAD共2对.故选C.【点评】本题考查了直角三角形两锐角互余的性质,熟记性质并准确识图是解题的关键.8.如图,点E在BC的延长线上,则下列条件中,不能判定AB∥CD的是()A.∠3=50°,∠4=50°B.∠B=40°,∠DCB=140°C.∠1=60°,∠2=60°D.∠D+∠DAB=180°【考点】平行线的判定.【分析】直接利用平行线的判定定理判定,即可求得答案,注意排除法在解选择题中的应用.【解答】解:A、∵∠3=50°,∠4=50°,∴∠3=∠4,∴AD∥BC,故错误;B、∵∠B=40°,∠DCB=140°,∴∠B+∠DCB=180°,∴AB∥CD,正确;C、∵∠1=60°,∠2=60°,∴∠1=∠2,∴AB∥CD,正确;D、∵∠D+∠DAB=180°,∴AB∥CD,正确.故选A.【点评】此题考查了平行线的判定.此题比较简单,注意掌握数形结合思想的应用.9.如图,AB∥EF,BC∥DE,∠B=70°,则∠E的度数为()A.90° B.110°C.130°D.160°【考点】平行线的性质.【专题】计算题.【分析】首先根据BC∥DE,依据两直线平行,同位角相等求得∠1的度数,然后根据AB∥EF,依据两直线平行,同旁内角互补即可求解.【解答】解:∵BC∥DE,∴∠1=∠B=70°,∵AB∥EF,∴∠E+∠1=180°,∴∠E=180°﹣∠1=180°﹣70°=110°.故选B.【点评】本题利用了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补.10.如图,AB∥CD∥EF,∠ABE=38°,∠ECD=110°,则∠BEC的度数为()A.42° B.32° C.62° D.38°【考点】平行线的性质.【分析】由AB∥CD∥EF,∠ABE=38°,∠ECD=110°,根据平行线的性质,即可求得∠BEF与∠CEF 的度数,继而求得答案.【解答】解:∵AB∥CD∥EF,∠ABE=38°,∠ECD=110°,∴∠BEF=∠ABE=38°,∠CEF=180°﹣∠ECD=70°,∴∠BEC=∠CEF﹣∠BEF=32°.故选B.【点评】此题考查了平行线的性质.此题难度不大,注意掌握数形结合思想的应用.二、填空题(共8小题,每小题4分,满分32分)11.36的平方根是±6 ;的算术平方根是.【考点】算术平方根;平方根.【分析】根据平方根的定义和算术平方根的定义进行计算即可得解.【解答】解:∵(±6)2=36,∴36的平方根是±6;∵()2=,∴的平方根是.故答案为:±6;.【点评】本题考查了算术平方根、平方根的定义,是基础题,熟记概念是解题的关键.12.用“<”或“>”填空: +1 >4.【考点】实数大小比较.【分析】首先估算出的取值范围,再进一步确定+1的范围,进一步得出结论解决问题.【解答】解:∵3<<4,∴4<+1<5,所以+1>4.故答案为:>.【点评】此题考查实数的大小比较,估算的取值范围是解决问题的关键.13.点到直线的距离是指这点到这条直线的垂线段的长度.【考点】点到直线的距离.【分析】根据点到直线的距离的定义解答.【解答】解:点到直线的距离是指这点到这条直线的:垂线段的长度.故答案为:垂线段的长度.【点评】本题考查了点到直线的距离的定义,是基础题,熟记概念是解题的关键.14.把命题“等角的补角相等”改写成“如果…那么…”的形式是如果两个角是等角的补角,那么它们相等.【考点】命题与定理.【分析】命题中的条件是两个角相等,放在“如果”的后面,结论是这两个角的补角相等,应放在“那么”的后面.【解答】解:题设为:两个角是等角的补角,结论为:相等,故写成“如果…那么…”的形式是:如果两个角是等角的补角,那么它们相等.故答案为:如果两个角是等角的补角,那么它们相等.【点评】本题主要考查了将原命题写成条件与结论的形式,“如果”后面是命题的条件,“那么”后面是条件的结论,解决本题的关键是找到相应的条件和结论,比较简单.15.一个正数的平方根为2﹣m与3m﹣8,则m的值为 3 .【考点】平方根.【分析】根据一个正数的平方根有两个,它们互为相反数,根据互为相反数的两个数的和为0,可得答案.【解答】解:一个正数的平方根为2﹣m与3m﹣8,(2﹣m)+(3m﹣8)=0m=3,故答案为:3.【点评】本题考查了平方根,注意一个正数的两个平方根的和为0.16.在同一平面内如图,EG∥BC,CD交EG于点F,那么图中与∠1相等的角共有 2 个.【考点】平行线的性质.【分析】根据两直线平行,同位角相等,内错角相等找出与∠1相等的角即可.【解答】解:如图,∵EG∥BC,∴∠1=∠2,∠1=∠3,∴与∠1相等的角有2个角.故答案为:2.【点评】本题考查了平行线的性质,熟记性质并准确识图,找出∠1的同位角、内错角是解题的关键.17.如图,已知:∠1=∠2,∠3=108°,则∠4的度数为72°.【考点】平行线的判定与性质.【分析】根据“同位角相等,两直线平行”判定AB∥CD,然后由“两直线平行,同旁内角互补”得到∠3+∠4=180°,由此易求∠4的度数.【解答】解:如图,∵∠1=∠2,∴AB∥CD,∴∠3+∠4=180°.又∵∠3=108°,∴∠4=72°.故答案是:72°.【点评】此题考查了平行线的判定与性质.平行线的判定是由角的数量关系判断两直线的位置关系.平行线的性质是由平行关系来寻找角的数量关系.18.如果两条平行线被第三条直线所截,那么同位角的平分线的位置关系是平行.【考点】平行线的性质;同位角、内错角、同旁内角.【分析】根据两直线平行,同位角相等,即可得一组同位角相等即∠FEB=∠GFD,又由角平分线的性质求得∠1=∠2,然后根据同位角相等,两直线平行,即可求得答案.【解答】解:∵AB∥CD,∴∠FEB=∠GFD,∵EM与FN分别是∠FEM与∠GFD的平分线,∴∠1=∠FEB,∠2=∠GFD,∴∠1=∠2,∴EM∥FN.故答案为:平行.【点评】本题考查了平行线性质的应用,注意:平行线的性质有:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.三、解答题(共5小题,满分58分)19.如图,∠AOB内一点P:(1)过点P画PC∥OB交OA于点C,画PD∥OA交OB于点D;(2)写出两个图中与∠O互补的角;(3)写出两个图中与∠O相等的角.【考点】作图—基本作图;余角和补角;平行线的性质.【分析】(1)根据平行线的画法画图即可;(2)根据平行线的性质:两直线平行,同旁内角互补可得答案;(3)根据平行线的性质:两直线平行,同位角相等可得答案.【解答】解:(1)如图所示:(2)与∠O互补的角有∠PDO,∠PCO;(3)与∠O相等的角有∠PDB,∠PCA.【点评】此题主要考查了平行线的画法,以及平行线的性质,关键是掌握平行线性质定理;定理1:两直线平行,同位角相等.定理2:两直线平行,同旁内角互补.定理3:两直线平行,内错角相等.20.求下列各式中的x的值:(1)x2﹣81=0(2)36x2﹣49=0.【考点】立方根.【分析】(1)根据移项,可得乘方的形式,根据开方,可得答案;(2)根据移项,等式的性质,可得乘方的形式,根据开方,可得答案.【解答】解:(1)x2=81,x=±9;(2)36x2=49,xx=±.【点评】本题考查了平方根,先化成乘方的形式,再开方运算.21.如图,已知∠A=∠F,∠C=∠D,可以证明BD∥CE.在下列括号中填写推理理由证明:∵∠A=∠F∴AC∥DF(内错角相等,两直线平行)∴∠C+∠DEC =180°(两直线平行,同旁内角互补)∵∠C=∠D∴∠D+∠DEC=180°(等量代换)∴BD∥CE (同旁内角互补,两直线平行).【考点】平行线的判定与性质.【专题】推理填空题.【分析】由已知的一对内错角相等,利用内错角相等两直线平行得出AC与DF平行,再由两直线平行内错角相等得到∠D=∠1,而∠C=∠D,等量代换得到一对同位角相等,利用同位角相等两直线平行即可得到BD与CE平行.【解答】证明:∵∠A=∠F∴AC∥DF(内错角相等,两直线平行)∴∠C+∠DEC=180°(两直线平行,同旁内角互补)∵∠C=∠D∴∠D+∠D EC=180°(等量代换)∴BD∥CE (同旁内角互补,两直线平行).故答案是:内错角相等,两直线平行;DEC;两直线平行,同旁内角互补;等量代换;同旁内角互补,两直线平行【点评】此题考查了平行线的判定与性质,属于推理型填空题,熟练掌握平行线的判定与性质是解本题的关键.22.小明打算用一块面积为900cm2的正方形木板,沿着边的方向裁出一个长方形面积为588cm2桌面,并且的长宽之比为4:3,你认为能做到吗?如果能,计算出桌面的长和宽;如果不能,请说明理由.【考点】算术平方根.【专题】计算题.【分析】根据长方形的面积,可得一个元二次方程,根据解方程,可得长方形的边长,根据长方形的边长与正方形的边长的比,可得答案.【解答】解:能做到,理由如下设桌面的长和宽分别为4x(cm)和3x(cm),根据题意得,4x×3x=588.12x2=588x2=49,x>0,x==7∴4x=4×7=28 (cm) 3x=3×7=21(cm)∵面积为900cm2的正方形木板的边长为30cm,28cm<30cm∴能够裁出一个长方形面积为588 cm2并且长宽之比为4:3的桌面,答:桌面长宽分别为28cm和21cm.【点评】本题考查了算术平方根,开平方是求边长的关键,注意算术平方根都是非负数.23.如图,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=120°,∠ACF=20°,求∠FEC的度数.【考点】平行线的判定与性质.【分析】推出EF∥BC,根据平行线性质求出∠ACB,求出∠FCB,根据角平分线求出∠ECB,根据平行线的性质推出∠FEC=∠ECB,代入即可.【解答】解:∵EF∥AD,AD∥BC,∴EF∥BC,∴∠ACB+∠DAC=180°,∵∠DAC=120°,∴∠ACB=60°,又∵∠ACF=20°,∴∠FCB=∠ACB﹣∠ACF=40°,∵CE平分∠BCF,∴∠BCE=20°,∵EF∥BC,∴∠FEC=∠ECB,∴∠FEC=20°.【点评】本题考查了平行线的性质和判定,平行公理及推论,注意:平行线的性质有①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.。
七年级下学期数学第一次月考试卷满分:150分考试用时:120分钟范围:第五章《相交线与平行线》~第六章《实数》班级姓名得分一、选择题(本大题共10小题,共40.0分)1.如图,直线a,b被直线c,d所截,若∠1=∠2,∠3=125°,则∠4的度数是()A. 65°B. 60°C. 55°D. 75°2.如图,AB//CD,∠FGB=154°,FG平分∠EFD,则∠AEF的度数等于()A. 26°B. 52°C. 54°D. 77°3.下列语句正确的是()A. 4是16的算术平方根,即±√16=4B. −3是27的立方根C. √64的立方根是2D. 1的立方根是−14.已知实数a,b在数轴上的位置如图所示,下列结论中正确的是()A. a>bB. |a|<|b|C. ab>0D. −a>b5.如图,在下列给出的条件中,不能判定AB//DF的是()A. ∠A=∠3B. ∠A+∠2=180°C. ∠1=∠4D. ∠1=∠A6. 如图摆放的一副学生用直角三角板,∠F =30°,∠C =45°,AB 与DE 相交于点G ,当EF//BC 时,∠EGB 的度数是( )A. 135°B. 120°C. 115°D. 105°7. 若a 2=4,b 2=9,且ab <0,则a −b 的值为( )A. −2B. ±5C. 5D. 58. 下列结论正确的是( )A. 数轴上任意一点都表示唯一的有理数B. 数轴上任意一点都表示唯一的无理数C. 两个无理数之和一定是无理数D. 数轴上任意两点之间还有无数个点9. 下列说法中,不正确的有( )①任何数都有算术平方根;②一个数的算术平方根一定是正数;③a 2的算术平方根是a ;④(π−4)2的算术平方根是π−4;⑤算术平方根不可能是负数,A. 2个B. 3个C. 4个D. 5个10. 如图,AF//CD ,CB 平分∠ACD ,BD 平分∠EBF ,且BC ⊥BD ,下列结论:①BC 平分∠ABE ;②AC//BE ;③∠CBE +∠D =90°;④∠DEB =2∠ABC ,其中结论正确的个数有( )A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共10小题,共30.0分)11. 若√3a −23与√2−b 3为相反数,且b ≠0,则ab 的值为________. 12. 已知y =√x −3+√3−x +1,则x +y 的算术平方根是________. 13. 如图,有下列3个结论:①能与∠DEF 构成内错角的角的个数是2;②能与∠EFB 构成同位角的角的个数是1;③能与∠C构成同旁内角的角的个数是4,以上结论正确的是______.14.如图,直线AB、CD相交于点O,OE⊥AB,垂足为点O,∠COE:∠BOD=2:3,则∠AOD=______.15.若√2a−2与|b+2|互为相反数,则(a−b)2的平方根=______.16.一个正数x的两个不同的平方根是2a−3和5−a,则x的值是________.17.如图所示,AB//CD,EC⊥CD.若∠BEC=30°,则∠ABE的度数为______.18.已知直线a//b,将一块含30°角的直角三角板ABC按如图所示方式放置(∠BAC=30°),并且顶点A,C分别落在直线a,b上,若∠1=22°,则∠2的度数是______.19.一副直角三角尺叠放如图1所示,现将45°的三角尺ADE固定不动,将含30°的三角尺ABC绕顶点A顺时针转动(旋转角不超过180度),使两块三角尺至少有一组边互相平行.如图2:当∠BAD=15°时,BC//DE.则∠BAD(0°<∠BAD<180°)其它所有可能符合条件的度数为_____.20.已知一个数的平方根是3a+1和a+11,求这个数的立方根是______.三、解答题(本大题共6小题,共80.0分)21.(12分)计算:3;(1)(−1)3+|1−√2|+√8(2)(−3)2+2×(√2−1)−|−2√2|.22.(12分)阅读下列材料∵√4<√7<√9,即2<√7<3,∴√7的整数部分为2,小数部分为(√7−2).规定实数m的整数部分记为[m],小数部分记为{m).如:[√7]=2,{7}=√7−2.解答以下问题:(1)[√10]=________,{√5}=________;(2)求{√5}+{5−√5}的值.23.(12分)工人师傅准备从一块面积为16平方分米的正方形工料上裁剪出一块面积为12平方分米的长方形的工件。
2022-2023学年七年级数学下学期第一次月考试卷(试卷满分120分;完成时间120分钟)一、选择题(共8小题,每小题3分,计24分.每小题只有一个选项是符合题意的)1.在下面的四个图形中,能由如图经过平移得到的图形是()A. B. C. D.2.下列式子没有意义的是()3 B.3- C.()23- D.3-3.如图,下列各角与B ∠不是同旁内角的是()A.BAE ∠B.C ∠C.BAD∠ D.BAC ∠4.对于命题“如果1a <,那么21a <”,能说明它是假命题的反例是()A.2a =- B.2a = C.12a =- D.0a =5.下列各式中,运算正确的是()()222-=- B.233=-293-=- D.93=±6.将一块含30︒角的直角三角板和一把直尺按如图所示的方式摆放,若240∠=︒,则1∠的度数为()A.10︒B.15︒C.20︒D.25︒7.8m -m 共有()A.4个B.3个C.2个D.1个8.如图,BM 、CN 分别在ABC ∠和BCD ∠内部,若34∠∠=,则下列条件中,不能判定AB CD∥的是()A.12∠∠=B.13∠∠=且24∠∠=C.1390∠∠+=︒且2490∠∠+=︒D.1290∠∠+=︒二、填空题(共5小题,每小题3分,计15分)9.5的算术平方根是______.10.如图,某村庄要在河岸l 上建一个水泵房引水到C 处.他们的做法是:过点C 作CD l ⊥于点D ,将水泵房建在了D 处.这样做最节省水管长度,其数学道理是______.11.如图所示,三角形ABC 沿直线AB 向下平移可以得到三角形DEF ,如果6AB =,3BD =,那么BE 的长为______.12.如图,把一张对边平行的纸片ABCD 沿EF 折叠后D 、C 分别在M 、N 的位置上,EM 与BF 交于点G ,若65EFG ∠=︒,则2∠的度数为______°.13.有下列命题①对顶角相等;②同位角相等;③从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离;④平行于同一条直线的两条直线平行.其中是真命题的是______(填序号)三、解答题(共13小题,计81分.解答应写出过程)14.(5125494+.15.(5分)命题“两条平行直线被第三条直线所截,内错角相等”.(1)写出这个命题的题设和结论;(2)判断该命题的真假.16.(5分)已知一个正数m 的两个平方根为37a -和3a +,求a 和m 的值.17.(5分)如图,直线CD 、EF 相交于点O ,OA OB ⊥,若55AOE ∠=︒,75COF ∠=︒,求BOD∠的度数.18.(5分)如图是潜望镜工作原理示意图,AB 和CD 是潜望镜里的两面平行放置的镜子,已知光线经过镜子反射时,有12∠∠=,34∠∠=.进入潜望镜的光线l 和离开潜望镜的光线m 有什么位置关系?请说明理由.19.(5分)如图,网格中每个小正方形边长为1,三角形ABC 的顶点都在格点(网格线的交点)上.将三角形ABC 向上平移1格,得到三角形A B C ''',请在图中画出平移后的三角形A B C '''.20.(5分)物体自由下落的高度h (单位:米)与下落时间t (单位:秒)的关系为24.9h t =,有一学生不慎让一个玻璃杯从19.6米高的楼上自由下落,问到达地面需要多长时间?21.(6分)如图,AK 与BC 相交于点B ,BC 与CD 相交于点C ,如果160∠=︒,2120∠=︒,60D ∠=︒,那么AB 与CD 平行吗?BC 与DE 呢?并说明理由.22.(7分)如图,直线AB 与直线DE 交于点O ,射线OF 平分AOE ∠,CO DE ⊥,射线OB 平分COD ∠.(1)求1∠的度数;(2)求BOF ∠的度数.23.(7分)已知8a +的平方根是17,31a b +-的算术平方根是6,求4a b +的平方根.24.(8分)如图,已知AD BC ⊥,EF BC ⊥,垂足分别为D 、F ,23180∠∠+=︒,求证:GDC B ∠∠=.请补充证明过程,并在括号内填上相应的理由.证明:∵AD BC ⊥,EF BC ⊥(已知),∴90ADB EFB ∠∠==︒(______)∴EF AD ∥(______)∴______2180∠+=︒(______)又∵23180∠∠︒+=(已知),∴______3∠=(同角的补角相等),∴AB ∥______(______),∴GDC B ∠∠=(______).25.(8分)在一次活动课中,小红同学用一根绳子围成一个长宽之比为3:1,面积为275cm 的长方形.(1)求长方形的长和宽;(2)她用另一根绳子围成一个正方形,且正方形的面积等于原来围成的长方形面积,请问她用这根绳子围成的正方形的边长比原来长方形的宽长多少?26.(10分)如图,点E 、C 分别在直线GN 、BM 上,点A 为平面内BM 、GN 之间的一点,连接AC 、AE ,若CAE BCA AEG ∠∠∠=+.(1)如图1,过点A 作AH EF ∥,求证:BM GN ∥;(2)如图2,若60CAE ∠=︒,AC EF ∥,点D 在线段AC 上,连接DE ,且2FED BCA ∠∠=,试判断DEA ∠与GEA ∠的数量关系,并说明理由;(3)如图3,若85CAE ∠=︒,35BCA ∠=︒,且EF 、EP 分别平分AEQ ∠、NEQ ∠,求FEP ∠的度数.图1图2图32022~2023学年度第二学期第一次阶段性作业七年级数学参考答案及评分标准一、选择题(共8小题,每小题3分,计24分,每小题只有一个选项是符合题意的)1.C2.B3.C4.A5.D6.A7.B8.D二、填空题(共5小题,每小题3分,计15分)510.垂线段最短11.312.13013.①④三、解答题(共13小题,计81分.解答应写出过程)14解:原式12572=+⨯-132=15解:(1)题设:两条平行直线被第三条直线所截;结论:内错角相等.(2)该命题是真命题16.解:由题意得,3730a a -++=∴1a =,∴34a +=,∴16m =.17.∵75COF ∠=︒,∴75DOE COF ∠∠==︒,∵OA OB ⊥.∴90AOB ∠=︒,又∵55AOE ∠=︒,∴905535BOE AOB AOE ∠∠∠︒︒︒=-=-=,∴753540BOD DOE BOE ∠∠∠︒︒=-=-=︒18.解:l m ∥.理由如下:∵AB CD ∥.∴23∠∠=.∵12∠∠=,34∠∠=.∴1234∠∠∠∠===.∴1801218034∠∠∠∠︒--=︒--,即56∠∠=,∴l m ∥.欲进入潜望镜的光线l 和离开潜望镜的光线m 是平行的.19.解:如图,A B C '''△即为所求20.解:由题意得,24.919.6t =,则24t =,∵0t >,∴2t =.∴到达地面需要2秒.21.解:AB CD ∥,BC DE ∥.理由如下:∵160∠=︒,1ABC ∠∠=∴60ABC ∠=︒.又∵2120∠=︒,∴2180ABC ∠∠+=︒.∴AB CD ∥.又∵2180BCD ∠∠+=︒,∴60BCD ∠=︒.∵60D ∠=︒,∴BCD D ∠∠=.∴BC DE ∥.22.解:(1)∵CO DE ⊥,∴90COD ∠=︒.∵OB 平分COD ∠.∴11452BOD COD ∠∠∠===︒.(2)∵45BOD ∠=︒,∴45AOE BOD ∠∠==︒,∵OF 平分AOE ∠,∴122.52AOF AOE ∠∠==︒,∴18022.5157.5BOF ∠=︒-︒=︒.23.解:根据题意,得817a +=,3136a b +-=解得9a =,10b =∴4941094049a b +=+⨯=+=.∴4a b +的平方根是7±.24.证明:∵AD BC ⊥,EF BC ⊥(已知).∴90ADB EFB ∠∠==︒(垂直的定义),∴EF AD ∥(同位角相等,两直线平行).∴1∠2180+∠=︒(两直线平行,同旁内角互补)又∵23180∠∠+=︒(已知).∴1∠3∠=(同角的补角相等).∴AB ∥DG (内错角相等,两直线平行)∴GDC B ∠∠=(两直线平行,同位角相等)25.解:(1)根据题意设长方形的长为3x cm ,宽为x cm ,则375x x ⋅=.即225x =,∵0x >,∴5x =,∴315x =.答:长方形的长为15cm ,宽为5cm(2)设正方形的边长为y cm ,根据题意可得275y =,∵0y >.∴75y =∵原来长方形的宽为5cm ∴她用这根绳子围成的正方形的边长比原来长方形的宽长)755cm26.(1)证明:∵AH BM ∥.∴BCA CAH ∠∠=.∵CAE BCA AEG ∠∠∠=+,即CAH EAH BCA AEG ∠∠∠∠+=+,∴GEA HAE ∠∠=,∴AH GN ∥,∴BM GN ∥.(2)解:2DEA CEA ∠∠=.理由如下:∵AC EF ∥.∴180CAE AEF ∠∠+=︒.∵60CAE ∠=︒,∴120AEF ∠=︒.设BCA ∠α=,则2DEF ∠α=,∴1202AED ∠α=︒-.∵CAE BCA AEG ∠∠∠=+.∴60AEG ∠α=︒-,∴2AED AEG ∠∠=.(3)解:∵CAE BCA AEG ∠∠∠=+,85CAE ∠=︒,95BCA ∠=︒.∴50AEG ∠=︒,∴130AEN ∠︒=,∵EF 、EP 分别平分AEQ ∠,NEQ ∠.∴12FEQ AEQ ∠∠=,12PEQ NEQ ∠∠=.()116522FEP FEQ PEQ AEQ NEQ AEN ∠∠∠∠∠∠=-=-==︒.。
2019学年广东省七年级下学期第一次月考数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、单选题1. 下列各题中计算错误的是()A. B.C. D.2. 化简x(y-x)-y(x-y)得()A. x2-y2B. y2-x2C. 2xyD. -2xy3. 计算的结果是()A. B. - C. D. -4. 是一个完全平方式,则a的值为()A. 4B. 8C. 4或-4D. 8或-85. 三个数中,最大的是()A. B. C. D. 不能确定6. 化简(a+b+c)-(a-b+c)的结果为()A. 4ab+4bcB. 4acC. 2acD. 4ab-4bc7. 已知,,,则、、的大小关系是()A. >>B. >>C. <<D. >>8. 若,,则等于()A. -5B. -3C. -1D. 19. 边长为a的正方形,边长减少b以后所得较小正方形的面积比原来正方形的面积减少了()A. B. +2ab C. 2ab D. b(2a—b)10. 多项式的最小值为()A. 4B. 5C. 16D. 25二、填空题11. 是_____次_____项式,常数项是_____,最高次项是_____.12. (1)=(______)³(2)______13. (1)______(2)______14. 已知是关于的完全平方式,则=________;15. 若m2+n2-6n+4m+13=0,m2-n2=_______;16. 如果时,代数式的值为2008,则当时,代数式的值是________三、判断题17. ;18. ;四、解答题19.20.21.22. 已知,求的值。
(先化简再求值)23. 简便计算:(1)123452﹣12344×12346.(2)3.76542+0.4692×3.7654+0.23462.24. 已知,,,求代数式的值;五、判断题25. 若4m2+n2-6n+4m+10=0,求的值;26. 若的积中不含与项,(1)求、的值;(2)求代数式的值;参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】第21题【答案】第22题【答案】第23题【答案】第24题【答案】第25题【答案】第26题【答案】。
人教版七年级下学期数学第一次月考试卷A卷一、单选题 (共8题;共16分)1. (2分) (2019七上·香坊期末) 下列方程是一元一次方程的是()A . 2x﹣y=0B . x2﹣x=1C . xy﹣3=5D . x+1=22. (2分) (2017七上·兴城期中) 方程的解是().A .B .C .D .3. (2分) (2019七下·长兴月考) 若(a+b)9=-1,(a-b)10=1,则a19+b19的值是()A . 2B . 0C . -1D . 0或-14. (2分)已知3是关于x的方程2x﹣a=1的解,则a的值为()A . -5B . 5C . 7D . -75. (2分)关于x、y的方程组的解x、y的和为12,则k的值为()A . 14B . 10C . 0D . ﹣146. (2分) (2019七上·兴业期末) 若代数式3a4b2x与0.2a4b3x﹣1是同类项,则x 的值是()A .B . 1C .D . 07. (2分)(2019·桂林模拟) 下列说法:①平方等于其本身的数有0,±1;②32xy3是4次单项式;③将方程 =1.2中的分母化为整数,得 =12;④平面内有4个点,过每两点画直线,可画6条.其中正确的有()A . 1个B . 2个C . 3个D . 4个8. (2分)某课外活动小组的学生准备分组外出活动,若每组7人,则余下3人;若每组8人,则少5人.求课外活动小组的人数x和应分成的组数y,依题意得方程组为()A .B .C .D .二、填空题 (共6题;共6分)9. (1分)(2019·沈阳) 二元一次方程组的解是________.10. (1分) (2018七上·咸安期末) 如果x=2是方程mx+1=9的解,那么m=________11. (1分) (2019七下·桂林期末) 已知是方程x-ky=1的解,那么k= ________。
最新人教版七年级下学期数学第一次月考考试试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分30分)1、下列各数中是无理数的是()A.B.C.D.3.142、在平面直角坐标系中.点P(1,﹣2)关于x轴对称的点的坐标是()A.(1,2)B.(﹣1,﹣2)C.(﹣1,2)D.(﹣2,1)3、设a=+2.则()A.2<a<3B.3<a<4C.4<a<5D.5<a<64、下列命题中,真命题是()A.的算术平方根是7B.若a2=b2,则a=bC.平行于同一直线的两条直线互相平行D.一个锐角的余角一定大于这个锐角5、如图所示,点E是AD延长线上一点,如果添加一个条件,使BC∥AD,则可添加的条件为()A.∠C+∠ADC=180°B.∠A+∠ABD=180°C.∠CBD=∠ADC D.∠C=∠CDA6、如图所示,DE∥BC,CD平分∠BCA,∠2=30°,则∠1的度数是()A.30°B.40°C.50°D.60°7、已知,则()A.4.496B.1.422C.449.6D.142.28、如图,一条公路修到湖边时,需拐弯绕湖而过,如果第一次拐的角∠A是120°,第二次拐的角∠B是150°,第三次拐的角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,则∠C的大小是()A.150°B.130°C.140°D.120°第5题图第6题图第8题图9、如图,一个粒子在第一象限内及x轴、y轴上运动,在第一分钟,它从原点运动到点(1,0),第二分钟,它从点(1,0)运动到点(1,1),而后它接着按图中箭头所示在与x轴,y轴平行的方向上来回运动,且每分钟移动1个单位长度,那么在第2022分钟时,这个粒子所在位置的坐标是()A.(44,4)B.(44,3)C.(44,2)D.(44,1)10、设S1=1,S2=1,S3=1,…,S n=1,则的值为()A.B.C.D.二、填空题(每小题3分,满分18分)11、若,则=.12、若一个正数的平方根是﹣a+2和2a﹣1,则a=.13、的算术平方根是.14、在平面直角坐标系中,线段AB平行于x轴,且AB=4.若点A的坐标为(﹣1,2),点B的坐标为(a,b),则a+b=.15、已知﹣2x﹣1=0,则x=.16、如图,将长方形纸片ABCD折叠,使点D与点B重合,点C落在点C'处,折痕为EF,若∠ABE=30°,则∠EFC'的度数为°.最新人教版七年级下学期数学第一次月考试试卷(答卷)考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________一、选择题题号12345678910答案二、填空题11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、计算:.18、表示实数a,b的点在数轴上的位置如图所示,化简代数式的值.19、解方程:(1)9(x﹣2)2﹣1=24;(2)27(x﹣1)3+125=0.20、已知一个正数的平方根是a﹣2和7﹣2a,3b+1的立方根是﹣2,c是的整数部分,d的平方根是它本身.(1)求a,b,c,d的值;(2)求5a+2b﹣c﹣11d的算术平方根.21、已知点P(a﹣2,2a+8),分别根据下列条件求出a的值.(1)点P在y轴上;(2)点Q的坐标为(1,﹣2),直线PQ∥x轴;(3)点P到x轴、y轴的距离相等.22、如图,已知∠BAD=∠C,AB∥CD,E为射线CB上一点,DE平分∠ADC.(1)如图1,当点E在线段CB上时,求证:AD∥BC;(2)如图2,当点E在线段CB延长线上时,求证:∠DEC=∠EDC;(3)如图2,当点E在线段CB延长线上时,若∠DAE=5∠BAE,∠AED=45°,求∠DEC的度数.23、如图,△ABC的三个顶点坐标分别为A(0,2),B(﹣3,1),C(﹣2,﹣2).(1)将△ABC向右平移3个单位,作出△A′B′C′;(2)写出△A′B′C′的面积;(3)在y轴上是否存在点P,使得△APC的面积与△ABC的面积相等,若存在,求出P点的坐标;若不存在,说明理由.24、的双重非负性是指被开方数a≥0,其化简的结果.请利用的双重非负性解决以下问题:(1)已知,求b2﹣2b+2a的值;(2)若a,b为实数,且,求a+b的值;(3)已知实数a,b满足,求a+b的值.25、已知,如图1,射线PE分别与直线AB、CD相交于E、F两点,∠PFD的平分线与直线AB相交于点M,射线PM交CD于点N,设∠PFM=α,∠EMF =β,且+|β﹣30|=0.(1)α=°,β=°;直线AB与CD的位置关系是;(2)如图2,若点G是射线MA上任意一点,且∠MGH=∠PNF,试找出∠FMN与∠GHF之间存在的数量关系,并证明你的结论;(3)若将图中的射线PM绕着端点P逆时针方向旋转(如图3),分别与AB、CD相交于点M1和点N1时,作∠PM1B的角平分线M1Q与射线FM相交于点Q,问在旋转的过程中的值变不变?若不变,请求出其值;若变化,请说明理由.。
石山初级中学2021-2021学年七年级数学下学期第一次月考试题〔无答案〕 新人教版时间是90分钟,满分是100分题号 一 二 三 四 总分 得分一、 选择题〔每一小题2分,一共16分〕1、以下计算正确的选项是 〔 〕A . B. C. D.2、的值是 〔 〕C.-43、以下算式正确的选项是 〔 〕班级时间: 2022.4.12 单位: ……***创编者:十乙州姓名 考号A. B.C. D.4、等于〔〕A. B. C. D.5、可以运用平方差公式运算的有〔〕个①②③④A.1 B.2 C.3 D.06、在式子①②③④⑤中相等的是〔〕A.①④B.②③C.①⑤D.②④7、以下计算正确的选项是 ( )A、(-1)0=-1B、(-1)-1=1C、2a-3=D、.(-a3)÷(-a)7=8、对于任意正整数n ,按照平方答案程序计算,应输出之答案是 〔 〕A .B .C .D .1二、填空题〔每一小题3分,一共24分〕9、假设与是同类项,那么=_________.10、 .11、假设,那么 .12、假设=+==+2255b a ,,ab b a 则 ,13、某正方形的边长为acm ,假设把这个正方形的边长减少3cm ,那么面积减少了cm 214、.15、一种电子计算机每秒可做108次计算,用科学记数法表示它8分钟可做___________次运算;16、以下图是某同学在沙滩上用石于摆成的小房子:观察图形的变化规律,写出第n个小房子用了块石子.三、计算题〔每一小题4分,一共40分〕1、〔2、3、4、5、223333⎪⎭⎫⎝⎛--⎪⎭⎫⎝⎛+xx6、 (2x-5)(2x+5)-(2x+1)(2x-3)7、〔a+b+3〕〔a+b -3〕 8、20212-2021×20219、()()2234232-+--x xx x 10、()()()212113+---+-a a a四、解答题. (每一小题5分,一共20分)1、解方程:()()()152212=-+-+x x x2、先化简,再求值其中.3、计算以下图阴影局部面积〔单位:cm〕4、〔1〕观察:4×6=24 14×16=22424×26=624 34×36=1224······你发现其中的规律了吗?你能用代数式表示这一规律吗?〔2〕利用〔1〕中的规律计算124×126。
(A )D C B A (B )D
C B A (C )
D C B A
(D )
D C
B A
2019-2020年七年级数学下学期第一次月考试题 新人教版 (I)
一、选择题(每题3分,共24分) 1、下列计算中正确的是( )
A.5322a a a =+
B.532a a a =∙
C.32a a ∙=6a
D.532a a a =+ 2、已知:2×2x
=212
,则x 的值为( )
A 、5
B 、10
C 、11
D 、12 3、以下列各组线段长为边,能组成三角形的是( )
A .1cm ,2cm ,4 cm
B .8 crn ,6cm ,4cm
C .12 cm ,5 cm ,6 cm
D .2 cm ,3 cm ,6 cm
4、下列多项式相乘的结果是a 2
-a-6的是( )
A .(a-2)(a+3)
B .(a+2)(a-3)
C .(a-6)(a+1)
D .(a+6)(a-1)
5、下列运算,结果正确的是 ( ) A .
B .
C .
D .
6、下列各式是完全平方式的是( ) A .
B .
C .
D .
7、在下列各图的△ABC 中,正确画出AC 边上的高的图形是( )
8、如图,长方形的长为a ,宽为b ,横向阴影部分为长方形,另一阴影
部分为平行四边形,它们的宽都为c,则空白部分的面积是 ( )
A. ab -bc +ac -c 2
B. ab -bc -ac +c 2
C.ab -ac -bc
D.ab -ac -bc -c 2
二、填空题(每题3分,共30分)
9、氢原子中电子和原子核之间的距离为0.00000000529cm ,用科学记数法表示这个距离是 cm. 10、若8x
=4x+2
,则x=______
11、若计算(x+m )(x+2)的结果不含关于字母x 的一次项,则m=_______
12、化简a 4b 3
÷(ab )3
的结果是_______。
13、写出下列用科学记数法表示的数的原来的数:2.35×102
-=
14、从边长为的大正方形纸板中挖去一个边长为
的小正方形后,将其裁成四个相同的等
腰梯形(如图甲),然后拼成一个平行四边形(如图乙).那么通过计算阴影部分的面积可以验证公式_________
15、当x =___________________时,多项式取得最小值.
16、如果16a 2 + Mab +9 b 2
是一个完全平方式,则M=_______
17、观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28
=256,…,
则89
的个位数字是__________________
18、已知: ,
=+,,154
41544833833322322222⨯⨯=+⨯=+
··· , 若b
a b a ⨯=2
1010+(b a 、为正整数),则 =+b a .
三、解答题(本大题共有10小题,共96分.解答时请写出必要的过程) 19.计算(每小题5分,共30分) (1)
(2)(﹣2a )3
﹣(﹣a )•(3a )2
(3)(x+2)2﹣(x ﹣1)(x ﹣2) (4)(a+b )2(a ﹣b )2
(5)(a ﹣3)(a+3)(a 2
+9) (6)(m ﹣2n+3)(m+2n ﹣3)
20先化简再求值(8分)
023),6)(2()3)(2(2
=-+-+---+b a b a b a b a b a )其中(
21.已知:26=a 2=4b , 求a+b 的值.(8分)
22..已知: ()1=2-4
-2
x x ,求x 的值.(8分)
23.(10分)我们规定一种运算:
b c d
a ad bc =-,例如
3 536452
4 6
=⨯-⨯=-,
-3462 4
x x =+.按照这种运算规定,当x 等于多少时,
1 x 30x-
2 x-1
x ++=
24. (10分)如图1是一个长为4a 、宽为b 的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成的一个“回形”正方形(如图2).
(1)图2中的阴影部分的面积为_______________;(用a 、b 的代数式表示)(4分)
(2)观察图2请你写出 (a +b ) 2、(a -b ) 2
、ab 之间的等量关系是_____________________;
(2分) (3)根据(2)中的结论,若4
9
,5=
⋅=+y x y x , 则=-y x ;(2分) (4)实际上通过计算图形的面积可以探求相应的等式.
如图3,你有什么发现? .(2分)
图1 图2 图3
25. (本题10分)李叔叔刚分到一套新房,其结构如图所示(单位:m),他打算除卧室外,其余部分铺地砖. (1)至少需要多少平方米地砖? (5分)
(2)如果铺的这种地砖的价格为每平方米75元,那么李叔叔至少需要花多少元钱?(5分)
26.(本题12分)阅读下列材料:
一般地,n个相同的因数a相乘记为a n,记为a n.如2×2×2=23=8,此时,3叫做
以2为底8的对数,记为log28(即log28=3).一般地,若a n=b(a>0且a≠1,b>0),则n叫做以a为底b的对数,记为log a b(即log a b=n).如34=81,则4叫做以3为底81的对数,记为log381(即log381=4).
(1)计算以下各对数的值:
log24= ,log216= ,log264= .(每空1分)
(2)观察(1)中三数4、16、64之间满足怎样的关系式,log24、log216、log264之间又满足怎样的关系式。
(3分)
(3)由(2)的结果,你能归纳出一个一般性的结论吗?
log a M+log a N= ;(a>0且a≠1,M>0,N>0)(3分)
(4)根据幂的运算法则:a n•a m=a n+m以及对数的含义证明上述结论.(3分)
1-8 BCBB BACB
19.(1)原式=﹣4+1﹣(﹣2)=﹣1;
(2)原式=﹣8a3+9a3=a3;
(3)原式=x2+4x+4﹣(x2﹣3x+2)=x2+4x+4﹣x2+3x﹣27x+2;(4)原式=(a2﹣b2)2=a4﹣2a2b2+b4;
(5)原式=(a2﹣9)(a2+9)=a4﹣81;
(6)原式=m2﹣(2n﹣3)2=m2﹣4n2+12n﹣9.
26.解:(1)log24=2,log216=4,log264=6;
(2)4×16=64,log24+log216=log264;
(3)log a M+log a N=log a(MN);
(4)证明:设log a M=b1,log a N=b2,
则=M,=N,
∴MN=,
∴b1+b2=log a(MN)即log a M+log a N=log a(MN).。