初三奥数题
- 格式:doc
- 大小:62.50 KB
- 文档页数:3
数学初三奥赛试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 0.1010010001…(每两个1之间0的个数逐次增加)B. √2C. 0.33333…D. 1/7答案:B2. 如果一个等腰三角形的底边长为6,腰长为5,那么它的面积是多少?A. 12B. 15C. 18D. 20答案:B3. 一个数列的前四项为1, 4, 9, 16,这个数列的通项公式是什么?A. \(n^2\)B. \(2n\)C. \(2^n\)D. \(n(n+1)\)答案:A4. 一个圆的直径为10,那么它的面积是多少?A. 25πB. 50πC. 100πD. 200π答案:B5. 计算下列表达式的值:\((2x + 3)(2x - 3)\)A. \(4x^2 - 9\)B. \(4x^2 + 9\)C. \(9 - 4x^2\)D. \(-4x^2 + 9\)答案:A6. 一个数的相反数是-5,那么这个数是:A. 5B. -5C. 0D. 10答案:A7. 一个数的绝对值是5,那么这个数可以是:A. 5B. -5C. 5或-5D. 以上都不是答案:C8. 一个长方体的长、宽、高分别为2, 3, 4,那么它的体积是多少?A. 24B. 26C. 28D. 30答案:A9. 下列哪个选项是方程\(x^2 - 5x + 6 = 0\)的解?A. 2B. 3C. 1和2D. 2和3答案:C10. 一个等差数列的前三项为2, 5, 8,那么它的第五项是多少?A. 11B. 12C. 15D. 18答案:A二、填空题(每题4分,共20分)1. 一个数的平方等于它的相反数,这个数是______。
答案:0或12. 如果一个数的立方等于它本身,那么这个数可以是______。
答案:-1, 0, 13. 一个等比数列的前三项为2, 6, 18,那么它的公比是______。
答案:34. 一个圆的周长为44π,那么它的半径是______。
初三奥数经典的训练题初三奥数经典的训练题篇一1.文教印刷厂装订一批复习资料。
师傅9天可装订3/4,徒弟20天可装订5/6。
师徒两人合作,几天可以装订完?2.有—项工程。
甲、乙两队合做12天完成,丙、乙两队合做20天完成,甲、丙两队合做15天完成。
甲、乙、丙三队合做需多少天完成?3.一条公路,如果由甲队独修需30天完成,由乙队独修5天完成这条公路的1/4。
甲、乙两队合修3天后,余下的由乙独做,还需要几天才能修完?4.一项工程,甲独做9天完成,乙独做6天完成。
甲独做4天后,乙与甲合做。
还要多少天才能完成?5.一项工程,甲、乙合做10天可完成,甲、乙合做8天后,乙又单独做了5天才完成。
若由乙单独做这项工程,需要多少天?初三奥数经典的训练题篇二1.甲,乙两队开挖一条水渠.甲队单独挖要8天完成,乙队单独挖要12天完成.现在两队同时挖了几天后,乙队调走,余下的甲队在3天内完成.乙队挖了多少天?2.加工一批零件,甲单独做20天可以完工,乙单独做30天可以完工.现两队合作来完成这个任务,合作中甲休息了2.5天,乙休息了若干天,这样共14天完工.乙休息了几天?3.一池水,甲,乙两管同时开,5小时灌满,乙,丙两管同时开,4小时灌满.现在先开乙管6小时,还需甲,丙两管同时开2小时才能灌满.乙单独开几小时可以灌满?4.某工程,甲,乙合作1天可以完成全工程的.如果这项工程由甲队单独做2天,再由乙队单独做3天,能完成全工程的.甲,乙两队单独完成这项工程各需要几天?5.一项工程,甲先单独做2天,然后与乙合做7天,这样才能完成全工程的一半.已知甲,乙工效的比是2:3.如果这项工程由乙单独做,需要多少天才能完成?初三奥数经典的训练题篇三1.巧克力每盒9块,软糖每盒11块。
要把这两种糖分发给一些小朋友,每样每人一块。
由于又来了一位小朋友,软糖就要增加一盒,两种糖发的盒数就一样多。
现在又来了一位小朋友,巧克力还要增加一盒。
最后共有小朋友多少位?2.前五次考试的总分是428分,第六次至第九次的平均分,比前五次平均分多1.4分,现在要进行第十次考试,要使后五次的平均分高于所有十次至少要考几分?3.有47位小朋友,老师要给每人发一支红笔和一支蓝笔。
一、选择题(每题5分,共25分)1. 若方程x^2 - 3x + 2 = 0的解为x1和x2,则x1 + x2的值为()A. 2B. 3C. 1D. 0答案:B解析:根据一元二次方程的根与系数的关系,x1 + x2 = -b/a。
将a = 1,b = -3代入,得到x1 + x2 = 3。
2. 已知函数f(x) = 2x - 3,若f(x)的图像关于点(2, -1)对称,则函数的解析式为()A. f(x) = 2x - 5B. f(x) = 2x - 1C. f(x) = 2x + 5D. f(x) = 2x + 1答案:A解析:由于函数图像关于点(2, -1)对称,设对称点为(x, y),则有x = 2 2 - (x - 2) = 4 - x,y = 2 (-1) - (y + 1) = -2 - y - 1 = -3 - y。
由于y =2x - 3,代入得-3 - y = 2(4 - x) - 3,解得y = 2x - 5。
3. 在直角坐标系中,点A(1, 2),点B(-2, 3),点C(-1, -2),则△ABC的面积是()A. 5B. 6C. 7D. 8答案:A解析:使用向量叉积求三角形面积公式S = |AB × AC|/2。
向量AB = (-2 - 1, 3 - 2) = (-3, 1),向量AC = (-1 - 1, -2 - 2) = (-2, -4)。
计算叉积得|-3 (-4) - 1 (-2)|/2 = |12 + 2|/2 = 14/2 = 7。
4. 若正方形的边长为a,则其对角线长度为()A. aB. √2aC. 2aD. a√2答案:B解析:正方形的对角线长度可以通过勾股定理计算。
设对角线长度为d,则有d^2 = a^2 + a^2 = 2a^2,所以d = √2a。
5. 若一个数的平方等于它本身,则这个数是()A. 0或1B. 0或-1C. 1或-1D. 0答案:A解析:设这个数为x,则x^2 = x。
一、选择题(每题5分,共50分)1. 已知等差数列{an}的前n项和为Sn,且S10=55,S20=165,则第15项a15的值为:A. 5B. 10C. 15D. 202. 在△ABC中,AB=AC,∠BAC=60°,则△ABC的周长与面积之比为:A. 2√3B. √3C. 2D. 13. 若等比数列{an}的公比q≠1,且a1+a2+a3=27,a1+a3+a5=81,则a2+a4+a6的值为:A. 36B. 48C. 54D. 634. 下列函数中,在其定义域内为单调递增函数的是:A. f(x) = -2x + 1B. f(x) = 2x - 1C. f(x) = x^2 - 1D. f(x) = √x5. 已知二次函数y = ax^2 + bx + c(a≠0)的图像与x轴的交点为A、B,且A、B关于原点对称,则该函数的图像的对称轴为:A. x = 0B. y = 0C. x = -b/2aD. y = c/2a6. 在直角坐标系中,点P(2,3)关于直线y=x的对称点为Q,则Q的坐标为:A. (3, 2)B. (2, 3)C. (3, 3)D. (2, 2)7. 若x、y是方程x^2 - 4x + 4 = 0的两个实数根,则x + y的值为:A. 4B. 2C. 0D. -48. 在平面直角坐标系中,若点A(2,3)到直线3x - 4y + 5 = 0的距离为:A. 1B. 2C. 3D. 49. 已知函数f(x) = kx^2 + 2x + 1(k≠0)的图像开口向上,且与x轴有两个交点,则k的取值范围为:A. k > 0B. k < 0C. k ≠ 0D. k > 110. 在△ABC中,AB=AC,AD是BC边上的高,且BD=DC,则∠ADB与∠ADC的大小关系为:A. ∠ADB > ∠ADCB. ∠ADB = ∠ADCC. ∠ADB < ∠ADCD. 无法确定二、填空题(每题5分,共50分)1. 若等差数列{an}的首项为2,公差为3,则第10项a10的值为______。
初三奥数题及答案题目一:几何问题已知一个圆的半径为5厘米,圆内接一个等腰三角形,三角形的底边恰好是圆的直径。
求三角形的高。
解答:设等腰三角形的底边为AB,高为CD,其中A、B是圆上的两点,C是三角形的顶点。
由于AB是圆的直径,所以AB=10厘米。
设圆心为O,根据勾股定理,我们可以计算出OC的长度。
由于三角形AOC是直角三角形(因为OC是高,且AO是半径),我们有:\[ OC^2 + AC^2 = AO^2 \]\[ OC^2 + (5)^2 = (5\sqrt{2})^2 \]\[ OC^2 + 25 = 50 \]\[ OC^2 = 25 \]\[ OC = 5 \]由于三角形ABC是等腰三角形,所以AC=BC,我们可以设AC=BC=x厘米。
根据勾股定理,我们有:\[ x^2 = 5^2 + (10/2 - x)^2 \]\[ x^2 = 25 + (5 - x)^2 \]\[ x^2 = 25 + 25 - 10x + x^2 \]\[ 10x = 50 \]\[ x = 5 \]所以,三角形的高CD等于OC,即5厘米。
题目二:数列问题一个数列的前三项为1, 1, 2,从第四项开始,每一项都是其前三项的和。
求这个数列的前10项。
解答:已知数列的前三项为a_1=1, a_2=1, a_3=2。
根据题意,我们可以计算出后续项:- 第四项:a_4 = a_1 + a_2 + a_3 = 1 + 1 + 2 = 4- 第五项:a_5 = a_2 + a_3 + a_4 = 1 + 2 + 4 = 7- 第六项:a_6 = a_3 + a_4 + a_5 = 2 + 4 + 7 = 13- 以此类推,我们可以继续计算出后续项。
数列的前10项为:1, 1, 2, 4, 7, 13, 24, 44, 81, 149。
题目三:组合问题有5个不同的球和3个不同的盒子,每个盒子至少放一个球,求所有可能的放球方式。
初三数学奥数试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. 2D. -12. 如果一个数的立方等于它本身,那么这个数可以是:A. 1B. -1C. 0D. A、B、C都正确3. 一个长方体的长、宽、高分别是8cm、6cm和5cm,那么它的表面积是多少平方厘米?A. 236B. 236.8C. 236.08D. 236.64. 一个数除以真分数的商一定大于这个数,除了哪种情况?A. 分数等于1B. 分数小于1C. 分数大于1D. 分数等于05. 一个数的1/3加上这个数的1/4,和是多少?B. 1C. 3/4D. 1 1/126. 下列哪个数是无理数?A. 3.14B. √2C. 1/3D. 2.718287. 一个数的2/3加上它的1/2,和是多少?A. 7/6B. 5/6C. 1D. 11/68. 一个数的平方根是3,那么这个数的立方根是多少?A. 3B. 27C. 9D. √279. 如果一个等差数列的首项是3,公差是2,那么第10项是多少?A. 23B. 21C. 19D. 1710. 下列哪个数是质数?A. 2C. 15D. 21二、填空题(每题4分,共20分)11. 一个数的3/4加上它的1/2,和是______。
12. 如果一个数的5倍加上3等于这个数的7倍减去2,那么这个数是______。
13. 一个长方体的体积是120立方厘米,长是10厘米,宽是6厘米,那么它的高是______厘米。
14. 一个数的倒数是1/4,那么这个数是______。
15. 如果一个等比数列的首项是2,公比是3,那么第5项是______。
三、解答题(共50分)16. (10分)证明勾股定理。
17. (15分)解方程组:\[\begin{cases}x + y = 9 \\2x - y = 1\end{cases}\]18. (15分)一个长方体的长、宽、高分别是15cm、12cm和8cm,求它的外接球的体积。
初三数学奥数练习题一、选择题1. 对于方程2x - 5 = 7,以下哪个解是正确的?A. x = 1B. x = 3C. x = 6D. x = 22. 如果α,β是一元二次方程x^2 + 2x− 3 = 0的两个根,求x^2 +β^2的值。
A. 7B. 4C. 1D. 63. 若a + b = 8,且a^2 + b^2 = 40,求a^3 + b^3的值。
A. 256B. 484C. 504D. 5124. 一辆客车从A地驶向B地,途中以60km/h的速度行驶了2小时后因故停车,停车时间为0.5小时,然后以80km/h的速度行驶了1小时到达B地。
求这段路程的长度。
A. 80kmB. 100kmC. 120kmD. 140km5. 若x+x=4,且2x+4x=14,求x和x的值。
A. x = 4, y = 0B. x = 2, y = 2C. x = 1, y = 3D. x = 3, y = 1二、填空题1. 已知正整数x和y满足x/y = 4/7,且x + y = 231,求x和y的值。
2. 一个正整数加上它的倒数等于34/5,求这个正整数。
3. 一个四位数,个位数是0,十位数是百位数的2倍,千位数是百位数的4倍,求这个四位数。
4. 甲车和乙车同时从A地出发,乙车比甲车晚2小时到达B地,乙车比甲车快60km/h,两车相遇时,乙车比甲车多行驶了870km。
求两车相遇时甲车和乙车各自行驶的距离。
5. 若直线xx + xx + x = 0平行于x轴,则系数x的值为多少?三、解答题1. 解方程:4x + 7 = 19 - 3x2. 若x^2 + 2x^2 = 50,且x + x = 10,求x和x的值。
3. 在平面直角坐标系中,点A(3, 2)为⊙O的切点,且A点在y轴上方。
点B(x, y)在圆上,与点A所在的直线的斜率为-2/3。
求点B的坐标。
4. 一家商场里有两台电视,甲台电视原价比乙台电视多900元,商场在打折时甲台电视降价后的价格比乙台电视的价格少160元,现已知甲台电视降价后的价格为6000元,求甲台电视和乙台电视的原价。
九年级奥数题五篇1.九年级奥数题篇一1.甲、乙两船分别在一条河的A、B两地同时相向而行,甲顺流而下,乙逆流而上。
相遇时,甲乙两船行了相等的航程,相遇后继续前进。
甲到达B,乙到达A 后,都按照原路返航,两船第二次相遇时,甲船比乙船少行1000米。
如果从第一次相遇到第二次相遇时间间隔1小时20分,则河水的流速是多少?2.甲、乙两港间的水路长208千米,一只船从甲港开往乙港,顺水8小时到达,从乙港返回甲港,逆水13小时到达,求船在静水中的速度和水流速度。
3.某船在静水中的速度是每小时15千米,它从上游甲地开往下游乙地共花去了8小时,水速每小时3千米,问从乙地返回甲地需要多少时间?4.一只小船静水中速度为每小时30千米,在176千米长河中逆水而行用了11个小时,求返回原外需要几个小时?5.一只船在河里航行,顺流而下每小时行18千米,已知这只船下行2小时恰好与上行3小时所行的路程相等,求船速和水速。
2.九年级奥数题篇二1、在一块底边长8m,高6.5m的平行四边形菜地里种萝卜。
如果每平方米收萝卜7.5kg,这块地可收萝卜多少kg?2、一块三角形钢板,底边长3.6dm,高1.5dm。
这种钢板每平方分米重1.8kg,这块钢板重多少kg?3、有一块梯形的麦田,上底136米,下底158米高62米,共收小麦19.8吨。
这块麦田有多少公顷?平均每公顷收小麦多少千克?4、一种微风吊扇的叶片是由三块梯形的塑料片组成的,已知每块塑料片上底3厘米,下底4厘米,高10厘米,做这个吊扇的三块叶片共需塑料片多少平方厘米?5、一个三角形和一个平行四边形面积相等。
已知三角形底是6厘米,高是5厘米,平行四边形底是15厘米,高是多少厘米?6、一个三角形的面积是4.5平方分米,底是5分米,高是多少平方分米?7、一个等边三角形的周长是18厘米,高是3.6厘米,它的面积是多少平方厘米?3.九年级奥数题篇三1、甲乙两队学生从相隔18千米的两地同时出发相向而行。
全国初三奥数试题及答案试题一:代数问题题目:若\( x \)和\( y \)满足\( x^2 - 5xy + 6y^2 = 0 \),求\( x \)和\( y \)的值。
解答:首先将方程分解为\( (x - 2y)(x - 3y) = 0 \),从而得到\( x = 2y \)或\( x = 3y \)。
将\( x = 2y \)代入原方程,得到\( y = 0 \),进而\( x = 0 \)。
将\( x = 3y \)代入原方程,得到\( y = 0 \)或\( y = 1 \),对应\( x = 3 \)。
所以,\( x \)和\( y \)的值可以是\( (0, 0) \)或\( (3, 1) \)。
试题二:几何问题题目:在一个直角三角形中,已知直角边长分别为3和4,求斜边的长度。
解答:根据勾股定理,直角三角形的斜边长度可以通过计算\( \sqrt{3^2 + 4^2} \)得到。
计算结果为\( \sqrt{9 + 16} =\sqrt{25} = 5 \)。
所以,斜边的长度是5。
试题三:组合问题题目:有5个不同的球和3个不同的盒子,将球放入盒子中,每个盒子至少有一个球,有多少种不同的放法?解答:首先,我们需要将5个球分成3组,每组至少有一个球。
这可以通过组合数\( C(5, 2) \)来计算,即从5个球中选择2个球组成一组的方法数。
计算得到\( C(5, 2) = 10 \)种分组方法。
然后,将这3组球分配到3个盒子中,有\( 3! \)种分配方法。
所以,总的放法数为\( 10 \times 3! = 60 \)种。
试题四:数列问题题目:一个等差数列的第3项是5,第5项是15,求这个数列的首项和公差。
解答:设等差数列的首项为\( a \),公差为\( d \)。
根据等差数列的性质,我们有\( a + 2d = 5 \)和\( a + 4d = 15 \)。
解这个方程组,我们得到\( a = -5 \)和\( d = 5 \)。
简单初三奥数题大全(五篇)1.简单初三奥数题大全篇一1.哥哥和妹妹同时从甲到相距540米远的学校上学,哥哥每分钟走60米,妹妹每分钟走48米,哥哥到达学校后发现忘了拿铅笔,立即返回家去取,在途中遇到妹妹。
从开始上学到两人再相遇共有多少分钟?2.甲乙两队学生从相距2700米的两地同时出发,相向而行,一个同学骑自行车以每分钟150的速度在两队之间不停地往返联络,甲队每分钟行25米,乙队每分钟行20米,两队相遇时,骑自行车的同学共行了多少米?3.AB两人同时从相距3000米的家里相向而行,A每分钟行70米,B每分钟行80米,一只大狗与他同时出发,每分钟行100米,狗与B相遇后立即掉头向A跑去,遇到A后又向B跑去,直到AB两人相遇。
这只狗一共跑了多少米?4.家离图书馆4.8千米,弟弟从家出发以60米/分速度步行去图书馆。
15分钟后,哥哥骑自行车从家出发去追赶弟弟,自行车的速度是240米/分。
问:(1)哥哥在离家多远处追上弟弟?(2)哥哥追上弟弟后不久到达图书馆,又马上折回,过不久与弟弟相遇,那么相遇处离图书馆多少千米?5.小张和小王各自以一定的速度在周长为500米的跑道上跑步。
小王每分跑1 80米。
①小张和小王同时从一个地点出发,反向而行,75秒钟后两人相遇,求小张的速度。
②小张和小王同时从一个地点出发,沿同一方向跑步,经过多少分钟两人第一次相遇?2.简单初三奥数题大全篇二1、甲、乙两地是电车始发站,每隔一定时间两地同时各发出一辆电车。
小张和小王分别骑车从甲、乙两地出发,相向而行。
每辆电车都隔4分钟遇到迎面开来的一辆电车;小张每隔5分钟遇到迎面开来的一辆电车;小王每隔6分钟遇到迎面开来的一辆电车。
已知电车行驶全程是56分钟,那么小张与小王在途中相遇时他们已行走了多少分钟?2、两辆汽车同时从相距360千米的两地相对开出,甲车每小时行33千米,乙车每小时比甲车少行6千米。
两车在途中相遇时,乙车比甲车多行多少千米?3、AB两地相距280千米,甲乙两辆汽车同时从两地相向而行,经过4小时相遇,甲车平均每小时行36千米,乙车每小时行多少千米?4、甲乙两车同时从A地去B地,甲车每小时行64千米,5小时后,甲车在乙车前面78千米,乙车每小时行多少千米?5、甲乙两辆汽车分别从AB两地出发,相向而行,当甲车行至距B地2/3处时,乙车超过中点30千米,这时甲车比乙车多行了45千米,AB两地相距多少千米?3.简单初三奥数题大全篇三1、小淘气看一本科技书,第一天看了全书的,第二天看了42页,这时看了的页数与剩下的页数比是2:5,这本科技书一共有多少页?2、把长35厘米的圆柱体按3∶2截成了一长一短两个小圆柱体后,表面积总和增加了30平方厘米。
初三数学奥数题及答案题目一:数列问题题目描述:已知数列 {a_n} 的前几项为 a_1 = 1, a_2 = 3, a_3 = 6, a_4 = 10, ... 求 a_5 的值以及数列的通项公式。
解题思路:观察数列的前几项,可以发现每一项与前一项的差值依次为 2, 3, 4, ... 这是一个等差数列的差值,差值为 1, 2, 3, ...。
因此,可以推断出数列 {a_n} 的通项公式为 a_n = 1 + n * (n - 1) / 2。
答案:根据通项公式,a_5 = 1 + 5 * (5 - 1) / 2 = 1 + 20 / 2 = 11。
题目二:几何问题题目描述:在三角形 ABC 中,已知 AB = 5, AC = 7, BC = 6。
求三角形 ABC 的面积。
解题思路:利用海伦公式,首先计算半周长 s = (AB + AC + BC) / 2 = (5 + 7 + 6) / 2 = 9。
然后根据海伦公式S = √(s * (s - AB) * (s - AC) * (s - BC)) 计算面积。
答案:S = √(9 * (9 - 5) * (9 - 7) * (9 - 6)) = √(9 * 4 * 2* 3) = 6√6。
题目三:组合问题题目描述:有 10 个不同的球,要将它们放入 3 个不同的盒子中,每个盒子至少放一个球。
求不同的放法总数。
解题思路:首先,将 10 个球分成 3 组,其中两组有 3 个球,另一组有 4 个球。
使用组合公式 C(n, k) 计算分组的方法数,然后将分组的结果分配到 3 个盒子中。
答案:首先计算分组的方法数,C(10, 3) = 120。
然后将 3 组分配到3 个盒子中,有 3! = 6 种方法。
因此,总的放法数为 120 * 6 = 720。
题目四:函数问题题目描述:已知函数 f(x) = x^2 - 6x + 8,求 f(x) 的最小值。
解题思路:观察函数 f(x),可以看出它是一个开口向上的二次函数。
初三奥数练习题附答案初三奥数练习题附答案问题1某建筑物地基是一个边长为30米的正六边形,要环绕地基开辟绿化带,是绿化带的面积和地基面积相等,求绿化带的边长多少?(列方程解决)答案绿化带的边长为x,x^2/30^2=2,x=30√2=42.43绿化带的边长是42.43米问题2 .一个三角形的三条边分别是13,14,15,则这个三角形的.面积等于多少?答案由海伦公式得:p=(13+14+15)/2=21S=√p(p-a)(p-b)(p-c)=√[21(21-13)(21-14)(21-15)]=84问题3 .在四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,则四边形ABCD的面积是多少?答案AC=5,又得到三角形ADC为直角三角形,所以面积为:3*4/2+5*12/2=36问题4 .问X为何值时,方程9x^2 +23x-2的值是两个连续偶数的乘积答案 x = {-23 +- [601 + 144k(k+1) ]^(1/2)} / 18其中 k = 0,1,2,3,4,......特别是 k=4时x = (-23 +- 59)/18 = 2 或者 -41/9问题5问X为何值时,方程9x^2 +23x-2的值是两个连续偶数的乘积解:方程9x^2 +23x-2的值是两个连续偶数的乘积,所以方程式 9x^2 +23x-2 = 0 有两个连续偶数解假设这两个偶数是 2k 和 2(k+1), k>=0, k为整数9x^2 + 23x - 2 = 2k*2(k+1)9x^2 + 23x - (2 + 2k*2(k+1) ) = 0判别式23^2 + 4*9*(2 + 2k*2(k+1) )= 23^2 + 72(1 + 2k(k+1) )= 23^2 + 72 + 144k(k+1)= 601 + 144k(k+1) >= 0k^2 + k + 601/144 >=0(k + 1/2)^2 - 1/4 + 601/144 >=0601/144 - 1/4 〉0所以 k 为任意整数时 601 + 144k(k+1) >= 0 都成立! 所以 x = {-23 +- [601 + 144k(k+1) ]^(1/2)} / 18其中 k = 0,1,2,3,4,......特别是 k=4时。
初三数学奥数试题及答案试题一:几何问题题目:在一个圆中,有一条弦AB,弦AB的长度为10厘米。
弦AB上的圆心角为30度。
求弦AB所对的圆心角的度数。
解答:根据圆的性质,弦AB所对的圆心角是弦AB上的圆心角的两倍。
因此,弦AB所对的圆心角为30°×2=60°。
试题二:代数问题题目:若x^2 - 5x + 6 = 0,求x的值。
解答:这是一个二次方程,可以通过因式分解来求解。
将方程分解为(x-2)(x-3)=0,得到x的两个解:x=2或x=3。
试题三:数列问题题目:一个等差数列的前三项分别为2, 5, 8,求这个数列的第20项。
解答:首先确定等差数列的公差d。
由于第二项减去第一项等于第三项减去第二项,所以d=5-2=3。
使用等差数列的通项公式a_n=a_1+(n-1)d,其中a_1是首项,n是项数。
将已知值代入公式,得到a_20=2+(20-1)×3=2+57=59。
试题四:组合问题题目:有5个不同的球和3个不同的盒子,每个盒子至少放一个球,有多少种不同的放法?解答:首先,将5个球分为3组,有C(5,2)种分法。
然后,将分好的3组球放入3个不同的盒子中,有A(3,3)种放法。
根据乘法原理,总的放法为C(5,2)×A(3,3)=10×6=60种。
试题五:概率问题题目:一个袋子里有3个红球和2个蓝球,随机取出2个球,求取出的两个球都是红球的概率。
解答:首先计算总共的取球方式,即从5个球中取出2个球的组合数,C(5,2)=10。
然后计算取出两个红球的方式,即从3个红球中取出2个球的组合数,C(3,2)=3。
所以,取出两个红球的概率为3/10。
结束语:以上就是初三数学奥数试题及答案的全部内容。
奥数题目往往需要学生具备较强的逻辑思维能力和数学基础,希望这些题目能够帮助学生在数学学习上取得更好的成绩。
初三奥数经典的练习题【三篇】初三奥数经典的练习题篇一1.抄一份书稿,甲每天的工作效率等于乙、丙二人每天的工作效率的和;丙的工作效率相当甲、乙每天工作效率和的.如果3人合抄只需8天就完成了,那么乙一人单独抄需要多少天才能完成?2.游泳池有甲、乙、丙三个注水管.如果单开甲管需要20小时注满水池;甲、乙两管合开需要8小时注满水池;乙、丙两管合开需要6小时注满水池.那么,单开丙管需要多少小时注满水池?3.一件工程,甲、乙两人合作8天能够完成,乙、丙两人合作6天能够完成,丙、丁两人合作12天能够完成.那么甲、丁两人合作多少天能够完成?4.一项工作,甲、乙两人合做8天完成,乙、丙两人合做9天完成,丙、甲两人合做18天完成.那么丙一个人来做,完成这项工作需要多少天?5.某工程如果由第1、2、3小队合干需要12天才能完成;如果由第1、3、5小队合干需要7天才能完成;如果由第2、4、5小队合干需要8天才能完成;如果由第1、3、4小队合干需要42天才能完成.那么这5个小队一起合干需要多少天才能完成这项工程?初三奥数经典的练习题篇二1、小明和小华从甲乙两地同时出发,相向而行。
小明步行每分钟走60米,小华骑自行车没分中走190米,几分钟后两人在距中点650米处相遇?2、A、B两地相距300千米,两两汽车同时从两地出发,相向而行,各自达到目的地后有立即返回,经过8小时他们第二次相遇,已知甲车每小时行45千米,乙车每小时行多少千米?3、钟敏家有一个闹钟,每小时比标准时间快2分钟.星期天早晨7点整时,钟敏对准了闹钟,然后定上铃,想让闹钟在11点30分闹铃,提醒她协助妈妈做饭.钟敏理应将闹钟的铃定在几点几分上?4、小明晚上8点将手表对准,到第二天下午4点发现手表慢了3分钟.小明的手表一天慢几分几秒?5、有一个钟每小时快15秒,它在7月1日中午12点时准确,下一次准确的时间是什么时候?初三奥数经典的练习题篇三1.甲、乙两班实行越野行军比赛,甲班以4.5千米/时的速度走了路程的一半,又以5.5千米/时的速度走完了另一半;乙班在比赛过程中,一半时间以4.5千米/时的速度行进,另一半时间以5.5千米/时的速度行进。
二次函数的应用
A 组题:
1.求直线225-=x y 与抛物线x x y 2
12-=的交点坐标。
2.求二次函数y=(x+1)(x-3),则图象的对称轴。
3.如果二次函数m x x y +-=62的最小值是1,求m 的值.
4.已知直线12-=x y 与抛物线k x y +=25交点的横坐标为2,求k 的值和交点坐标.
5.二次函数)0(2≠++=a c bx ax y 的图像与x 轴交点横坐标为-2,b ,图像与y 轴交点到原点距离为3,求该二次函数的解析式。
6. 某蔬菜种植基地,种植一种蔬菜,销售员根据往年的销售情况对今
年蔬菜的销售价格进行了预测,预测情况如图,途中的抛物线表示这种蔬菜销售价与月份之间的关系。
观察图象,你能得到关于这种蔬菜销售情况的哪些信息(至少写出四条)。
B 组题
1.“健益”超市购进一批20元/千克的绿色食品,如果以30•元/千克销售,那么每天可售出
400千克.由销售经验知,每天销售量y (千克)•与销售单价x (元)(x ≥30)存在如下图所示的一次函数关系式.
(1)试求出y 与x 的函数关系式;
(2)设“健益”超市销售该绿色食品每天获得利润P 元,当销售单价为
何值时,每天可获得最大利润?最大利润是多少?
月份0 2 7 0.5 3.5 千克销售价
(3)根据市场调查,该绿色食品每天可获利润不超过4480元,•现该超市经理要求每天利润不得低于4180元,请你帮助该超市确定绿色食品销售单价x 的范围(•直接写出答案).
2. 已知二次函数22-++=a ax x y .(1)求证:不论a 为何实数,此函数图象与x 轴总有两个交点.
(2)设a<0,当此函数图象与x 轴的两个交点的距离为13时,求出此二次函数的解析式.
(3)若此二次函数图象与x 轴交于A 、B 两点,在函数图象上是否存在点P ,使得△PAB 的面积为
2133,若存在求出P 点坐标,若不存在请说明理由.
3. 已知抛物线2(5)5(0)y mx m x m =--->与x 轴交于两点1(,0)A x 、2(,0)B x
12()x x <,与y 轴交于点C ,且AB =6.
(1)求抛物线和直线BC 的解析式.
(2)在直角坐标系中画出抛物线和直线BC .
(3)抛物线上是否存在点M ,过点M 作MN x ⊥轴于点N ,使MBN ∆被直线BC 分成面积比为
13:的两部分?若存在,请求出点M 的坐标;若不存在,请说明理由.
4.如图,抛物线与直线y=k(x-4)都经过坐标轴的正半轴上A ,B 两点,该抛物线的对称轴x=-1与x 轴相交于点C ,且∠ABC=90°,求:(1)直线AB 的解析式;(2)抛物线的解析式.
5.已知二次函数1222+-+=b ax x y 和1)3(22-+-+-=b x a x y 的图象都经过x 轴上两上不同的点M ,N ,求a ,b 的值.
6. 已知△ABC 是边长为4的等边三角形,BC 在x 轴上,点D 为BC 的中点,点A 在第一象限
内,AB 与y 轴的正半轴相交于点E ,点B (-1,0),P 是AC A 、C
不重合)
(1)求点A 、E 的坐标;
(2)若y=c bx x 7
362++-过点A 、E ,求抛物线的解析式。
(3)连结PB 、PD ,设L 为△PBD 的周长,当L 取最小值时, 求点P 的坐标及L 的最小值,并判断此时点P 是否在(2)中所 求的抛物线上,请充分说明你的判断理由。