(完整word版)最新重点小学全部奥数题及答案-经典奥数题目
- 格式:doc
- 大小:979.50 KB
- 文档页数:26
小学数学奥数题100题(附答案)1.765×213÷27+765×327÷27解:原式=765÷27×(213+327)= 765÷27×540=765×20=153002.(9999+9997+...+9001)-(1+3+ (999)解:原式=(9999-999)+(9997-997)+(9995-995)+……+(9001-1)=9000+9000+…….+9000(500个9000)=45000003.19981999×19991998-19981998×19991999解:(19981998+1)×19991998-19981998×19991999 =19981998×19991998-19981998×19991999+19991998=19991998-19981998=100004.(873×477-198)÷(476×874+199)解:873×477-198=476×874+199因此原式=15.2000×1999-1999×1998+1998×1997-1997×1996+…+2×1解:原式=1999×(2000-1998)+1997×(1998-1996)+…+3×(4-2)+2×1=(1999+1997+…+3+1)×2=2000000。
6.297+293+289+…+209解:(209+297)*23/2=58197.计算:解:原式=(3/2)*(4/3)*(5/4)*…*(100/99)*(1/2)*(2/3)*(3/4)*…*(98/99)=50*(1/99)=50/998.解:原式=(1*2*3)/(2*3*4)=1/49.有7个数,它们的平均数是18。
小学五年级数学奥数题100道及答案(完整版)题目1:计算:1 + 2 + 3 + 4 + 5 + …+ 99 + 100答案:5050解析:这是一个等差数列求和,公式为(首项+ 末项)×项数÷ 2 ,即(1 + 100)×100 ÷2 = 5050题目2:有三个连续自然数,它们的乘积是60,求这三个数。
答案:3、4、5解析:将60 分解质因数60 = 2×2×3×5 = 3×4×5题目3:一个数除以5 余3,除以6 余4,除以7 余5,这个数最小是多少?答案:208解析:这个数加上 2 就能被5、6、7 整除,5、6、7 的最小公倍数是210,所以这个数是210 - 2 = 208题目4:甲、乙两车同时从A、B 两地相向而行,在距A 地60 千米处第一次相遇。
各自到达对方出发地后立即返回,途中又在距A 地40 千米处相遇。
A、B 两地相距多少千米?答案:110 千米解析:第一次相遇时,两车共行了一个全程,甲行了60 千米。
第二次相遇时,两车共行了三个全程,甲行了60×3 = 180 千米。
此时甲距离 A 地40 千米,所以两个全程是180 + 40 = 220 千米,全程为110 千米。
题目5:鸡兔同笼,共有头48 个,脚132 只,鸡和兔各有多少只?答案:鸡30 只,兔18 只解析:假设全是鸡,有脚48×2 = 96 只,少了132 - 96 = 36 只脚。
每把一只鸡换成一只兔,脚多4 - 2 = 2 只,所以兔有36÷2 = 18 只,鸡有48 - 18 = 30 只。
题目6:小明从一楼到三楼用了18 秒,照这样计算,他从一楼到六楼需要多少秒?答案:45 秒解析:一楼到三楼走了 2 层楼梯,每层用时18÷2 = 9 秒。
一楼到六楼走5 层楼梯,用时5×9 = 45 秒。
(完整)小学一年级奥数题100道带答案有解题过程姓名:__________ 班级:__________ 学号:__________ 1.有3只小猫,又来了2只小猫,现在一共有几只小猫?解:3+2=5(只),思路:原来的3只加上新来的2只就是总共的小猫数量。
2.小明有4个气球,飞走了1个,还剩几个气球?解:4-1=3(个),思路:从总数4个里面去掉飞走的1个,剩下的就是剩余气球数量。
3.花园里有5朵红花,3朵黄花,红花和黄花一共有几朵?解:5+3=8(朵),思路:将红花的数量和黄花的数量相加得到总数。
4.妈妈买了6个苹果,小明吃了2个,还剩下几个苹果?解:6-2=4(个),思路:用总数减去吃掉的数量就是剩余的数量。
5.有2只小鸟在树上,又飞来了3只,现在树上有几只小鸟?解:2+3=5(只),思路:原来的小鸟数量加上飞来的小鸟数量就是现在的总数。
6.教室里有7个小朋友在画画,走了3个,还剩下几个小朋友?解:7-3=4(个),思路:从原有的小朋友数量中减去离开的数量。
7.小红有3颗糖,妈妈又给了她2颗,小红现在有几颗糖?解:3+2=5(颗),思路:原来有的糖加上新得到的糖。
8.盘子里有4个苹果,妈妈又放进去1个,现在盘子里有几个苹果?解:4+1=5(个),思路:原有的苹果数加上新放进去的苹果数。
9.有5只蝴蝶,飞走了2只,又飞来了1只,现在有几只蝴蝶?解:5-2+1=4(只),思路:先减去飞走的,再加上飞来的。
10.小明有2本书,小红有3本书,他们一共有几本书?解:2+3=5(本),思路:将两人的书的数量相加。
11.草地上有4只白兔,3只黑兔,白兔和黑兔一共有几只?解:4+3=7(只),思路:把白兔和黑兔的数量合起来。
12.树上有6个果子,被小鸟吃了3个,还剩下几个果子?解:6-3=3(个),思路:从总数中减去被吃掉的数量。
13.有3朵红花,2朵黄花,1朵蓝花,一共有几朵花?解:3+2+1=6(朵),思路:把三种颜色花的数量相加。
小学数学经典奥数应用题100道及答案(完整版)1. 甲、乙两车同时从A、B 两地相向而行,在距A 地60 千米处第一次相遇。
各自到达对方出发地后立即返回,途中又在距A 地40 千米处相遇。
A、B 两地相距多少千米?答案:(60×3 + 40)÷2 = 110(千米)2. 一个圆形花坛的周长是60 米,沿圆周每隔4 米放一盆红花,每两盆红花之间放3 盆黄花。
花坛周围一共放了多少盆花?答案:60÷4 = 15(盆)红花,15×3 = 45(盆)黄花,共15 + 45 = 60(盆)3. 一列火车通过530 米的桥需40 秒钟,以同样的速度穿过380 米的山洞需30 秒钟。
求这列火车的速度是每秒多少米?车长多少米?答案:速度:(530 - 380)÷(40 - 30) = 15(米/秒),车长:40×15 - 530 = 70(米)4. 用绳子测井深,把绳子三折来量,井外余16 分米,把绳子四折来量,井外余4 分米。
求井深和绳长。
答案:井深:(16×3 - 4×4)÷(4 - 3) = 32(分米),绳长:(32 + 16)×3 = 144(分米)5. 有一堆棋子,把它四等分后剩下一枚,取走三份又一枚;剩下的再四等分又剩一枚,再取走三份又一枚;剩下的再四等分又剩一枚。
问:原来至少有多少枚棋子?答案:从最后的情况倒推,最后至少有5 枚棋子。
则之前有(5×4 + 1)×4 + 1 = 85(枚)6. 甲、乙、丙三人共有人民币168 元,第一次甲拿出与乙相同的钱数给乙;第二次乙拿出与丙相同的钱数给丙;第三次丙拿出与这时甲相同的钱数给甲。
这样,甲、乙、丙三人的钱数相等,原来甲比乙多多少元钱?答案:168÷3 = 56(元),倒推得出原来甲有77 元,乙有49 元,甲比乙多28 元。
小学经典奥数题及答案小学奥数题通常旨在培养学生的逻辑思维能力、数学兴趣和解决问题的技巧。
以下是一些经典的小学奥数题目及其答案:1. 题目:一个数列的前三项是2,3,5,从第四项开始,每一项都是前三项的和。
求这个数列的第10项是多少?答案:数列是2, 3, 5, 10, 18, 46, 110, 290, 784, 2178。
第10项是2178。
2. 题目:一个长方形的长和宽的比是4:3,如果长增加10厘米,宽增加5厘米,面积就增加了95平方厘米。
求原来长方形的长和宽。
答案:设原来长方形的长为4x厘米,宽为3x厘米。
根据题意,(4x+10)(3x+5) - 4x*3x = 95。
解得x=5,所以原来长方形的长为20厘米,宽为15厘米。
3. 题目:小明有一些糖果,他给了弟弟一半加上2块,然后自己还剩下10块。
小明原来有多少块糖果?答案:设小明原来有x块糖果。
根据题意,x/2 - 2 + 10 = x/2,解得x=20。
所以小明原来有20块糖果。
4. 题目:一个数的三倍加上这个数的两倍等于这个数的五倍,求这个数。
答案:设这个数为x,根据题意,3x + 2x = 5x。
解得x=0。
5. 题目:一个班级有40名学生,其中1/4喜欢数学,1/3喜欢英语,剩下的学生喜欢科学。
求喜欢科学的学生的人数。
答案:喜欢数学的学生有40 * 1/4 = 10人,喜欢英语的学生有40 * 1/3 ≈ 13.33,取整数为13人。
所以喜欢科学的学生的人数为40 -10 - 13 = 17人。
6. 题目:一个水池有一个进水管和一个出水管。
单独打开进水管,可以在2小时内注满水池;单独打开出水管,可以在3小时内放空满池的水。
如果同时打开进水管和出水管,需要多少时间才能注满水池?答案:设同时打开时需要x小时注满水池。
根据题意,1/2 - 1/3 = (1 - 0)/x,解得x=6。
所以需要6小时才能注满水池。
7. 题目:一个数列的前三项是1,1,2,从第四项开始,每一项都是前三项的平均数。
小学一二年级奥数题100道及答案(完整版)题目1:小明有10 个苹果,小红有8 个苹果,小明给小红几个苹果后,两人的苹果一样多?答案:小明比小红多10 - 8 = 2 个苹果,所以小明给小红1 个苹果后,两人的苹果一样多。
题目2:哥哥有15 支铅笔,弟弟有9 支铅笔,哥哥给弟弟几支铅笔,两人的铅笔就一样多?答案:哥哥比弟弟多15 - 9 = 6 支铅笔,6 ÷2 = 3 ,哥哥给弟弟3 支铅笔,两人的铅笔就一样多。
题目3:有18 个小朋友排成一队,从左往右数小明是第8 个,从右往左数小红是第5 个,小明和小红之间有几个小朋友?答案:总共有18 个小朋友,从左往右数小明是第8 个,那么小明右边有18 - 8 = 10 个小朋友。
从右往左数小红是第 5 个,所以小明和小红之间有10 - 5 = 5 个小朋友。
题目4:树上有20 只鸟,飞走了5 只,又飞来了8 只,现在树上有多少只鸟?答案:20 - 5 + 8 = 23 只题目5:妈妈买了12 个苹果,吃了3 个,又买了5 个,现在有几个苹果?答案:12 - 3 + 5 = 14 个题目6:停车场原来有16 辆车,开走了7 辆,又开来了4 辆,现在停车场有多少辆车?答案:16 - 7 + 4 = 13 辆题目7:同学们排队做操,小明前面有8 个人,后面有7 个人,这一排一共有多少人?答案:8 + 7 + 1 = 16 人题目8:小红做了10 朵花,小兰做了8 朵花,她们一共做了多少朵花?答案:10 + 8 = 18 朵题目9:有13 只小鸡在吃米,跑走了5 只,又跑来了2 只,现在有几只小鸡在吃米?答案:13 - 5 + 2 = 10 只题目10:教室里有9 个男生,8 个女生,又来了5 个女生,现在教室里一共有多少人?答案:9 + 8 + 5 = 22 人题目11:小明有8 本书,小红的书比小明多5 本,他们两人一共有多少本书?答案:小红有8 + 5 = 13 本书,两人一共有8 + 13 = 21 本书。
小学奥数题库全部题型100道及答案(完整版)题目1:有一串数1,4,7,10,…,301,求这串数的平均数。
答案:这是一个等差数列,公差为3,首项为1,末项为301。
项数= (301 - 1)÷3 + 1 = 101 。
总和= (1 + 301)×101÷2 = 15251 ,平均数= 15251÷101 = 151 。
题目2:在一个减法算式里,被减数、减数与差的和等于120,而减数是差的 3 倍,那么差等于多少?答案:因为被减数= 减数+ 差,所以被减数+ 减数+ 差= 2×被减数= 120,被减数= 60。
又因为减数是差的3 倍,所以差= 60÷(3 + 1)= 15 。
题目3:两个数的和是682,其中一个加数的个位是0,如果把这个0 去掉,就得到另一个加数。
这两个加数各是多少?答案:一个加数是另一个加数的10 倍。
较小的加数= 682÷(10 + 1)= 62 ,较大的加数= 62×10 = 620 。
题目4:一桶油连桶重16 千克,用去一半后,连桶重9 千克,桶重多少千克?答案:油重= (16 - 9)× 2 = 14 千克,桶重= 16 - 14 = 2 千克。
题目5:某班有40 名学生,其中有15 人参加数学小组,18 人参加航模小组,有10 人两个小组都参加。
那么有多少人两个小组都不参加?答案:参加了至少一个小组的人数= 15 + 18 - 10 = 23 人,两个小组都不参加的人数= 40 - 23 = 17 人。
题目6:有一根木材长8 米,要把它锯成8 段,每锯一段要用3 分钟,共锯了多少分钟?答案:锯成8 段需要锯7 次,共锯了7×3 = 21 分钟。
题目7:已知9 个数的平均数是72,去掉一个数后,余下的数平均数为78,去掉的数是多少?答案:9 个数的总和= 9×72 = 648 ,余下8 个数的总和= 8×78 = 624 ,去掉的数= 648 - 624 = 24 。
小升初数学必考奥数题100道附答案(完整版)题目1:有四个小朋友,他们的年龄一个比一个大一岁,四个人的年龄乘积是360。
他们中年龄最大的是多少岁?答案:将360 分解因数,360 = 2×2×2×3×3×5 = 3×4×5×6,所以年龄最大的是6 岁。
题目2:计算:1 + 2 - 3 - 4 + 5 + 6 - 7 - 8 + 9 +…+ 2014 - 2015 - 2016 + 2017 + 2018答案:原式= (1 + 2 - 3 - 4) + (5 + 6 - 7 - 8) +…+ (2013 + 2014 - 2015 - 2016) + 2017 + 2018 = 2017 + 2018 = 4035题目3:一项工程,甲单独做10 天完成,乙单独做15 天完成。
甲乙合作,几天可以完成?答案:甲每天完成工程的1/10,乙每天完成工程的1/15,两人合作每天完成1/10 + 1/15 = 1/6,所以合作需要6 天完成。
题目4:在一个比例中,两个外项互为倒数,其中一个内项是2.5,另一个内项是多少?答案:两个外项互为倒数,乘积为1。
根据比例的性质,两个内项的积也为1,所以另一个内项是1÷2.5 = 0.4题目5:一个数除以8 余5,除以9 余6,这个数最小是多少?答案:这个数加上3 就能被8 和9 整除,8 和9 的最小公倍数是72,所以这个数最小是72 - 3 = 69题目6:一个圆形花坛的周长是25.12 米,在它的周围加宽1 米,加宽后的面积比原来增加了多少平方米?答案:原来花坛的半径为25.12÷3.14÷2 = 4 米,加宽后的半径为5 米。
增加的面积为3.14×(5²- 4²) = 28.26 平方米题目7:一个长方体的棱长总和是120 厘米,长、宽、高的比是3:2:1,这个长方体的体积是多少立方厘米?答案:120÷4 = 30 厘米,3 + 2 + 1 = 6,长为15 厘米,宽为10 厘米,高为5 厘米,体积为750 立方厘米题目8:甲乙两车同时从A、B 两地相对开出,4 小时后相遇。
六年级奥数题及答案1、电影票原价每张若干元,现在每张降低3元出售,观众增加一半,收入增加五分之一,一张电影票原价多少元?2、甲乙在银行存款共9600元,如果两人分别取出自己存款的40%,再从甲存款中提120元给乙。
这时两人钱相等,求乙的存款3、由奶糖和巧克力糖混合成一堆糖,如果增加10颗奶糖后,巧克力糖占总数的60%。
再增加30颗巧克力糖后,巧克力糖占总数的75%,那么原混合糖中有奶糖多少颗?巧克力糖多少颗?4、小明和小亮各有一些玻璃球,小明说:“你有球的个数比我少1/4!”小亮说:“你要是能给我你的1/6,我就比你多2个了。
”小明原有玻璃球多少个?5、搬运一个仓库的货物,甲需要10小时,乙需要12小时,丙需要15小时.有同样的仓库A和B,甲在A仓库、乙在B仓库同时开始搬运货物,丙开始帮助甲搬运,中途又转向帮助乙搬运.最后两个仓库货物同时搬完.问丙帮助甲、乙各多少时间?6、一件工作,若由甲单独做72天完成,现在甲做1天后,乙加入一起工作,合作2天后,丙也一起工作,三人再一起工作4天,完成全部工作的1/3,又过了8天,完成了全部工作的5/6,若余下的工作由丙单独完成,还需要几天?7、股票交易中,每买进或卖出一种股票都必须按成交易额的1%和2%分别交纳印花税和佣金(通常所说的手续费)。
老王10月8日以股票10.65元的价格买进一种科技股票3000股,6月26日以每月13.86元的价格将这些股票全部卖出,老王卖出这种股票一共赚了多少钱?8、某书店老板去图书批发市场购买某种图书,第一次购书用100元,按该书定价2.8元出售,很快售完。
第二次购书时,每本的批发价比第一次增多了0.5元,用去150元,所购数量比第一次多10本,当这批书售出4/5时出现滞销,便以定价的5折售完剩余图书。
试问该老板第二次售书是赔钱还是赚钱,若赔,赔多少,若赚,赚多少9、一件工程原计划40人做,15天完成.如果要提前3天完成,需要增加多少人10、育才小学原来体育达标人数与未达标人数比是3:5,后来又有60名同学达标,这时达标人数是未达标人数的9/11,育才小学共有学生多少人?11、小王,小李,小张三人做数学练习题,小王做的题数的一半等于小李的1/3,等于小张的1/8,而且小张比小王多做了72道,小王,小张,小李各做多少道?12、甲乙二人共同完成242个机器零件。
可编辑修改精选全文完整版(完整)小学四年级奥数题及答案50题小学四年级奥数题及答案50题1.学校买来5盒羽毛球,每盒12只。
用去20只,还剩下多少只?2、学校买来3个篮球,共花了96元;又买来一具脚球,花了40元。
买一具篮球和一具脚球需要多少元?两种球的单价相差多少元?3、王霞买来一本140页的故事书,差不多看了86页。
剩下的打算6天看完,每天要看多少页?4、一把椅子的价钞票是25元,一张桌子的价钞票是一把椅子的3倍。
买一把椅子和一张桌子共用多少元?5、班里图书角有58本故事书、34本科普读物。
要放在一具4层的书架上,平均每层要放多少本书?6、李丽和王敏并且做纸鹤,李丽每小时做12只,王敏每小时做14只,做了3小时,两个人一共做了多少只纸鹤?7、同学们参加爬山竞赛,女同学分成了4组,每组有15人。
参赛的男同学有76名,一共有多少名同学参加爬山竞赛?8、王大伯进县城卖了9只兔子,每只22元。
还卖1只羊,得160元。
(1)王大伯的兔子和羊一共卖了多少钞票?(2)王大伯用卖兔子和羊的钞票买了4瓶农药,每瓶13元。
王大伯还剩多少钞票?9、一桶3Kg的油42元,一桶5Kg的油65元,哪种瓶装的油廉价?10、一件上衣65元,一条裤子28元。
(1)买4件上衣比4条裤子多花多少钞票?(2)用150元钞票买2套衣服,够吗?11、有两根铁丝,第一根长35米,第二根的长度比第一根的4倍多2米。
第二根长多少米?12、一具长方形的操场周长是400米,长是宽的3倍,那个操场的长和宽各是多少米?13、有两个同样的长方形,长是8分米,宽是4分米。
假如把它们拼成一具长方形,那个长方形的周长是多少分米?假如拼成一具正方形,那个正方形的周长是多少分米?14、冬冬借了一本科技书有40页,一周后归还,他每天预备看6页,能按时归还吗?15、三(2)班有44人,老师预备分成8个小组讨论,每组可分几人,还剩几人?16、用一段长4米的布料能够裁5件同样大小的背心。
(完整word版)最新重点小学全部奥数题及答案-经典奥数题目亲爱的读者:本文内容由我和我的同事精心收集整理后编辑发布到文库,发布之前我们对文中内容进行详细的校对,但难免会有错误的地方,如果有错误的地方请您评论区留言,我们予以纠正,如果本文档对您有帮助,请您下载收藏以便随时调用。
下面是本文详细内容。
最后最您生活愉快 ~O(∩_∩)O ~六年级奥数题及答案1、电影票原价每张若干元,现在每张降低3元出售,观众增加一半,收入增加五分之一,一张电影票原价多少元?2、甲乙在银行存款共9600元,如果两人分别取出自己存款的40%,再从甲存款中提120元给乙。
这时两人钱相等,求乙的存款3、由奶糖和巧克力糖混合成一堆糖,如果增加10颗奶糖后,巧克力糖占总数的60%。
再增加30颗巧克力糖后,巧克力糖占总数的75%,那么原混合糖中有奶糖多少颗?巧克力糖多少颗?4、小明和小亮各有一些玻璃球,小明说:“你有球的个数比我少1/4!”小亮说:“你要是能给我你的1/6,我就比你多2个了。
”小明原有玻璃球多少个?5、搬运一个仓库的货物,甲需要10小时,乙需要12小时,丙需要15小时.有同样的仓库A和B,甲在A仓库、乙在B仓库同时开始搬运货物,丙开始帮助甲搬运,中途又转向帮助乙搬运.最后两个仓库货物同时搬完.问丙帮助甲、乙各多少时间?6、一件工作,若由甲单独做72天完成,现在甲做1天后,乙加入一起工作,合作2天后,丙也一起工作,三人再一起工作4天,完成全部工作的1/3,又过了8天,完成了全部工作的5/6,若余下的工作由丙单独完成,还需要几天?7、股票交易中,每买进或卖出一种股票都必须按成交易额的1%和2%分别交纳印花税和佣金(通常所说的手续费)。
老王10月8日以股票10.65元的价格买进一种科技股票3000股,6月26日以每月13.86元的价格将这些股票全部卖出,老王卖出这种股票一共赚了多少钱?8、某书店老板去图书批发市场购买某种图书,第一次购书用100元,按该书定价2.8元出售,很快售完。
第二次购书时,每本的批发价比第一次增多了0.5元,用去150元,所购数量比第一次多10本,当这批书售出4/5时出现滞销,便以定价的5折售完剩余图书。
试问该老板第二次售书是赔钱还是赚钱,若赔,赔多少,若赚,赚多少9、一件工程原计划40人做,15天完成.如果要提前3天完成,需要增加多少人10、育才小学原来体育达标人数与未达标人数比是3:5,后来又有60名同学达标,这时达标人数是未达标人数的9/11,育才小学共有学生多少人?11、小王,小李,小张三人做数学练习题,小王做的题数的一半等于小李的1/3,等于小张的1/8,而且小张比小王多做了72道,小王,小张,小李各做多少道?12、甲乙二人共同完成242个机器零件。
甲做一个零件要6分钟,乙做一个零件要5分钟。
完成这批零件时,两人各做了多少个零件?13、某工会男女会员的人数之比是3:2,分为甲乙丙三组,已知甲乙丙三组人数之比是10:8:7,甲组中男女比是3:1,乙组中男女比是5:3。
求丙组男女人数之比14、甲乙丙三个村合修一条水渠,修完后,甲乙丙村可灌溉的面积比是8:7:5原来三个村计划按可灌溉的面积比派出劳力,后来因为丙村抽不出劳力,经协商,丙村应抽出的劳力由甲乙两村分担,丙村付给甲乙两村工钱1350元,结果,甲村共派出60人,乙村共派出40人,问甲乙两村各应分得工钱多少元?15、李明的爸爸经营已个水果店,按开始的定价,每买出1千克水果,可获利0.2元。
后来李明建议爸爸降价销售,结果降价后每天的销量增加了1倍,每天获利比原来增加了50%。
问:每千克水果降价多少元?16、.哈利.波特参加数学竞赛,他一共得了68分。
评分的标准是:每做对一道得20分,每做错一道倒扣6分。
已知他做对题的数量是做错题的两倍,并且所有的题他都做了,请问这套试卷共有多少道题?17、爸爸妈妈和奶奶乘飞机去旅行,三人所带行李的质量都超过了可免费携带行李的质量,要另付行李费,三人共付了4元,而三人行李共重150千克,如果这些行李让一个人带,那么除了免费部分,应另付行李费8元,求每人可免费携带行李的质量。
18、一队少先队员乘船过河,如果每船坐15人,还剩9人,如果每船坐18人,刚好剩余1只船,求有多少只船?19、建筑工地有两堆沙子,一堆比2堆多85吨,两堆沙子各用去30吨后,一堆剩的是2堆的2倍,两堆沙子原来各有多少吨?20、自然数1-100排列,用长方形框出二行六个数,六个数和为432,问这六个数最小的是几21、甲乙两地相距420千米,其中一段路面铺了柏油,另一段是泥土路.一辆汽车从甲地驶到乙地用了8小时,已知在柏油路上行驶的速度是每小时60千米,而在泥土路上的行驶速度是每小时40千米.泥土路长多少千米?22、一少先队中队去野营,炊事员问多少人,中队长答: 一个人一个碗,两个人一只菜碗,三个人一只汤碗,放在你这儿有55只碗,你算算有多少人?23、学校购买840本图书分给高、中、低三个年级段,高年级段分的是低年级段的2倍,中年级段分的是低年级段的3倍少120本。
三个年级段各分得多少本图书?24、学校田径组原来女生人数占1/3,后来又有6名女生参加进来,这样女生就占田径组总人数的4/9。
现在田径组有女生多少人?25、小华有连环画本数是小明6倍如果两人各再买2本那么小华所有本数是小明4倍两人原来各有连环画多少本?26、小春一家四口人今年的年龄之和为147岁,爷爷比爸爸大38岁,妈妈比小春大27岁,爷爷的年龄是小春与妈妈年龄之和的2倍。
小春一家四口人的年龄各是多少?27、甲乙两校共有22人参加竞赛,甲校参加人数的5分之1比乙校参加人数的4分之1少1人,甲乙两校各多少人参赛?28、在浓度为40%的盐水中加入千克水,浓度变为30%,再加入多千克盐,浓度变为50%?29、某人到商店买红蓝两种钢笔,红钢笔定价5元,蓝钢笔定价9元,由于购买量较多,商店给予优惠,红钢笔八五折,蓝钢笔八折,结果此人付的钱比原来节省的18%,已知他买了蓝钢笔30枝,那么。
他买了几支红钢笔?30、甲说:“我乙丙共有100元。
”乙说:“如果甲的钱是现有的6倍,我的钱是现有的1/3,丙的钱不变,我们仍有钱100元。
”丙说:“我的钱都没有30元。
”三人原来各有多少钱?31、某厂向银行申请甲乙两种贷款共30万,每年需支付利息4万元,甲种贷款年利率为12%,乙种贷款年利率为14%,该厂申请甲乙两种贷款金额各多少元?32、某书店对顾客有一项优惠,凡购买同一种书100本以上,就按书价的90%收款。
某学校到书店购买甲、乙两种书,其中乙种书的册数是甲种书册数的3/5只有甲种书得到了90%的优惠。
其中买甲种书所付的钱数是买乙种书所付钱数的2倍。
已知乙种书每本1.5元,那么甲种书每本定价多少元?33、两支成分不同的蜡烛,其中1支以均匀速度燃烧,2小时烧完,另一支可以燃烧3小时,傍晚6时半同时点燃蜡烛,到什么1支剩余部分正好是另一支剩余的2倍?34、学校组织春游,同学们下午1点从学校出发,走了一段平路,爬了一座山后按原路返回,下午七点回到学校。
已知他们的步行速度平路4Km/小时,爬山3Km/小时,下山为6Km/小时,返回时间为2.5时。
问:他们一共行了多少路六年级奥数题及答案1、电影票原价每张若干元,现在每张降低3元出售,观众增加一半,收入增加五分之一,一张电影票原价多少元?解:设一张电影票价x元(x-3)×(1+1/2)=(1+1/5)x(1+1/5)x这一步是什么意思,为什么这么做(x-3){现在电影票的单价}×(1+1/2){假如原来观众总数为整体1,则现在的观众人数为(1+2/1)}左边算式求出了总收入(1+1/5)x{其实这个算式应该是:1x*(1+5/1)把原观众人数看成整体1,则原来应收入1x元,而现在增加了原来的五分之一,就应该再*(1+5/1),减缩后得到(1+1/5x)}如此计算后得到总收入,使方程左右相等2、甲乙在银行存款共9600元,如果两人分别取出自己存款的40%,再从甲存款中提120元给乙。
这时两人钱相等,求乙的存款答案取40%后,存款有9600×(1-40%)=5760(元)这时,乙有:5760÷2+120=3000(元)乙原来有:3000÷(1-40%)=5000(元)3、由奶糖和巧克力糖混合成一堆糖,如果增加10颗奶糖后,巧克力糖占总数的60%。
再增加30颗巧克力糖后,巧克力糖占总数的75%,那么原混合糖中有奶糖多少颗?巧克力糖多少颗?答案加10颗奶糖,巧克力占总数的60%,说明此时奶糖占40%,巧克力是奶糖的60/40=1。
5倍再增加30颗巧克力,巧克力占75%,奶糖占25%,巧克力是奶糖的3倍增加了3-1.5=1.5倍,说明30颗占1.5倍奶糖=30/1.5=20颗巧克力=1.5*20=30颗奶糖=20-10=10颗4、小明和小亮各有一些玻璃球,小明说:“你有球的个数比我少1/4!”小亮说:“你要是能给我你的1/6,我就比你多2个了。
”小明原有玻璃球多少个?答案小明说:“你有球的个数比我少1/4!”,则想成小明的球的个数为4份,则小亮的球的个数为3份4*1/6=2/3 (小明要给小亮2/3份玻璃球)小明还剩:4-2/3=3又1/3(份)小亮现有:3+2/3=3又2/3(份)这多出来的1/3份对应的量为2,则一份里有:3*2=6(个)小明原有4份玻璃球,又知每份玻璃球为6个,则小明原有玻璃球4*6=24(个)5、搬运一个仓库的货物,甲需要10小时,乙需要12小时,丙需要15小时.有同样的仓库A和B,甲在A仓库、乙在B仓库同时开始搬运货物,丙开始帮助甲搬运,中途又转向帮助乙搬运.最后两个仓库货物同时搬完.问丙帮助甲、乙各多少时间?解:设搬运一个仓库的货物的工作量是1.现在相当于三人共同完成工作量2,所需时间是答:丙帮助甲搬运3小时,帮助乙搬运5小时解本题的关键,是先算出三人共同搬运两个仓库的时间.本题计算当然也可以整数化,设搬运一个仓库全部工作量为 60.甲每小时搬运 6,乙每小时搬运 5,丙每小时搬运4三人共同搬完,需要60 × 2÷(6+ 5+ 4)= 8(小时)甲需丙帮助搬运(60- 6× 8)÷ 4= 3(小时)乙需丙帮助搬运(60- 5× 8)÷4= 5(小时)6、一件工作,若由甲单独做72天完成,现在甲做1天后,乙加入一起工作,合作2天后,丙也一起工作,三人再一起工作4天,完成全部工作的1/3,又过了8天,完成了全部工作的5/6,若余下的工作由丙单独完成,还需要几天?答案甲乙丙3人8天完成:5/6-1/3=1/2甲乙丙3人每天完成:1/2÷8=1/16,甲乙丙3人4天完成:1/16×4=1/4则甲做一天后乙做2天要做:1/3-1/4=1/124/5时出现滞销,便以定价的5折售完剩余图书。