人教版八年级数学下册19.1.1变量与函数(第1课时)-同步练习(2).docx
- 格式:docx
- 大小:28.26 KB
- 文档页数:3
人教版数学八年级下册19.1.1 《变量与函数》同步练习一、选择题1.下面说法中正确的是( )A.两个变量间的关系只能用关系式表示B.图象不能直观的表示两个变量间的数量关系C.借助表格可以表示出因变量随自变量的变化情况D.以上说法都不对2.在圆的面积计算公式S=πR2中,变量是( )A.SB.RC.π,RD.S,R3.在圆的周长C=2πr中,常量与变量分别是( )A.2是常量,C、π、r是变量B.2是常量,C、r是变量C.C、2是常量,r是变量D.D.2是常量,C、r是变量4.某超市某种商品的单价为60元/件,若买x件该商品的总价为y元,则y=60x,其中常量是( )A.60B.xC.yD.不确定5.某品牌豆浆机成本为70元,销售商对其销量定价的关系进行了调查,结果如下( )A.定价是常量,销量是变量B.定价是变量,销量是不变量C.定价与销售量都是变量,定价是自变量,销量是因变量D.定价与销量都是变量,销量是自变量,定价是因变量6.在国内投寄平信应付邮资如下表:下列表述:①若信件质量为27克,则邮资为2.40元;②若邮资为2.40元,则信件质量为35克;③p是q的函数;④q是p的函数.其中正确的是( )A.①④B.①③C.③④D.①②③④7.在圆的周长C=2πr中,常量与变量分别是( ).A.2是常量,C、π、r是变量B.2是常量,C、r是变量C.C、2是常量,r是变量D.2是常量,C、r是变量8.某科研小组在网上获取了声音在空气中传播的速度与空气温度关系的一些数据(如下表):下列说法错误的是( )A.在这个变化中,自变量是温度,因变量是声速B.温度越高,声速越快C.当空气温度为20℃时,声音5s可以传播1740mD.当温度每升高10℃,声速增加6m/s9.弹簧挂上物体后会伸长,测得一弹簧的长度y (cm)与所挂的物体的质量x(kg)之间有下面的关系,下列说法不正确的是( )A.弹簧不挂重物时的长度为0cmB.x与y都是变量,且x是自变量,y是因变量C.物体质量每增加1 kg,弹簧长度y增加0.5cmD.所挂物体质量为7 kg时,弹簧长度为23.5cm10.下表反映的是某地区电的使用量x(千瓦时)与应交电费y(元)之间的关系,下列说法不正确的是( )A.x与y都是变量,且x是自变量,y是函数B.用电量每增加1千瓦时,电费增加0.55元C.若用电量为8千瓦时,则应交电费4.4元D.y是x的反比例函数二、填空题11.在关系式V=30-2t中,V随着t的变化而变化,其中自变量是________,因变量是________,当t=________时,V=0.12.某水果店卖出的香蕉数量(千克)与售价(元)之间的关系如表:上表反映了两个变量之间的关系,其中,自变量是香蕉数量;因变量是售价 .13.完成以下问题:(1)某人持续以a米/分钟的速度t分钟内跑了s米,其中常量是,变量是;(2)在t分钟内,不同的人以不同的速度a米/分钟跑了s米,其中常量是,变量是;(3)s米的路程不同的人以不同的速度a米/分钟各需跑t分钟,其中常量是,变量是;(4)根据以上叙述,写一句关于常量与变量的结论:在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量 .14.一石激起千层浪,一枚石头投入水中,会在水面上激起一圈圈圆形涟漪,如上如图所示(这些圆的圆心相同).(1)在这个变化过程中,自变量是的半径,因变量是的面积(或周长).(2)如果圆的半径为r,面积为S,则S与r之间的关系式是 .(3)当圆的半径由1cm增加到5cm时,面积增加了 .15.随着我国人口增长速度的减慢,小学入学儿童数量有所减少.下表中的数据近似地呈现了某地区入学儿童人数的变化趋势(1)上表中_____是自变量,_____是因变量.(2)你预计该地区从_____年起入学儿童的人数不超过1 000人.三、解答题16.地壳的厚度约为8到40km,在地表以下不太深的地方,温度可按y=3.5x+t算,其中x是深度,t是地球表面温度,y是所达深度的温度.(1)在这个变化过程中,自变量和因变量分别是什么?(2)如果地表温度为2℃,计算当x为5km时地壳的温度.17.下表是某公共电话亭打长途电话的几次收费记录:(1)上表反映了哪两个变量间的关系?哪个是自变量?哪个是因变量?(2)如果用x表示时间,y表示电话费,那么随x的变化,y的变化趋势是什么?(3)丽丽打了5分钟电话,那么电话费需付多少元?18.心理学家发现,学生对概念的接受能力y与提出概念所用的时间x(单位:分)之间有如下关系(其中0≤x≤30).(1)上表中反映了哪两个变量之间的关系?那个是自变量?哪个是因变量?(2)根据表格中的数据,你认为提出概念所用时间为几分钟时,学生的接受能力最强?(3)从表格中可知,当提出概念所用时间x在什么范围内,学生的接受能力逐步增强?当提出概念所用时间x在什么范围内,学生的接受能力逐步降低?(4)根据表格大致估计当提出概念所用时间为23分钟时,学生对概念的接受能力是多少.19.科学家研究发现,声音在空气中传播的速度y(米/秒)与气温x(℃)有关,当气温是0 ℃时,音速是331米/秒;当气温是5 ℃时,音速是334米/秒;当气温是10 ℃时,音速是337米/秒;当气温是15 ℃时,音速是340米/秒;当气温是20 ℃时,音速是343米/秒;当气温是25 ℃时,音速是346米/秒;当气温是30 ℃时,音速是349米/秒.(1)请你用表格表示气温与音速之间的关系;(2)表格反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(3)当气温是35 ℃时,估计音速y可能是多少?(4)能否用一个式子来表示两个变量之间的关系?参考答案1.答案为:C2.答案为:D3.答案为:B4.答案为:A5.答案为:C6.答案为:A7.答案为:B8.答案为:C9.答案为:A10.D11.答案为:t V 1512.答案为:两;香蕉数量;售价.13.答案为:(1)a;t、s;(2)a;t、s;(3)s;a、t.14.答案为:圆的半径、圆的面积(或周长);s=πr²;24π.15.答案为:(1)年份,入学儿童人数;(2)2021;16.解:(1)x,t;y;(2)19.5.17.解:(1)反映的是时间和电话费两个变量之间的关系,时间是自变量,电话费是因变量;(2)根据表格中的数据得出:每增加1分钟,电话费增加0.6元;(3)由表格中的数据直接得出:丽丽打了5分钟电话,电话费需付3元.18.解:(1)反映了提出概念所用的时间x和对概念接受能力y两个变量之间的关系;其中x是自变量,y是因变量.(2)提出概念所用的时间为13分钟时,学生的接受能力最强.(3)当x在2分钟至13分钟的范围内,学生的接受能力逐步增强.当x在13分钟至20分钟的范围内,学生的接受能力逐步降低.(4)估计当提出概念所用的时间为23分钟时,学生的接受能力为49.9.19.解:(1)列表如下:(2)两个变量是:传播的速度和温度;温度是自变量,传播的速度是因变量.(3)当气温是35 ℃时,估计音速y可能是352米/秒.(4)两个变量之间的关系为y=331+0.6x.。
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!人教版八年级数学下册第十九章一次函数《19.1.1变量与函数》课时练一、选择题(共30分)1.(本题3分)下列关系式中,y 不是x 的函数的是()A .1y x =+B .22y x =C .y x =D .22y x =-2.(本题3分)设min (x ,y )表示x ,y 二个数中的最小值.例如min {0,2}=0,min {12,8}=8,则关于x 的函数y =min {3x ,-x +4}可以表示为()A .y =()3(1)41x x x x <ìí-+³îB .y =()4(1)31x x x x -+<ìí³îC .y =3xD .y =-x +43.(本题3分)如果一盒圆珠笔有12支,售价18元,用y (元)表示圆珠笔的售价,x 表示圆珠笔的支数,那么y 与x 之间的解析式为().A .32y x =B .23y x =C .12y x=D .18=y x 4.(本题3分)从边长为4cm 的正方形中挖去一个半径是x cm 的圆面,剩下的面积是2y cm ,则y 与x 的函数关系是()A .216y x p =-B .()22y x p =-C .()24y x p =+D .216y x p =-+5.(本题3分)在函数y =12x x --中,自变量x 的取值范围是()A .x ≥1B .x ≠2C .x ≥2D .x ≥1且x ≠26.(本题3分)在函数1y x =-中,自变量x 的取值范围是()A .1³xB .1x ¹C .1x >D .1x ³-7.(本题3分)当实数x 的取值使得2x -有意义时,函数y =4x +1中y 的取值范围是()A .y ≥-7B .y ≥9C .y >9D .y ≤98.(本题3分)弹簧挂上物体后会伸长,测得一弹簧的长度y (cm )与所挂的物体的重量x (kg )间有下面的关系:x (kg )012345y (cm )1010.51111.51212.5下列说法不正确的是()A .x 与y 都是变量,且x 是自变量,y 是因变量B .物体质量每增加1kg ,弹簧长度y 增加0.5cmC .所挂物体质量为7kg 时,弹簧长度为13.5cmD .y 与x 的关系表达式是0.5y x=9.(本题3分)从空中落下一个物体,它降落的速度随时间的变化而变化,即落地前的速度随时间的增加而逐渐增大,这个问题中自变量是()A .物体B .速度C .时间D .空气10.(本题3分)根据如图所示的程序计算函数y 的值,若输入x 的值是8,则输出y 的值是﹣3,若输入x 的值是﹣8,则输出y 的值是()A .10B .14C .18D .22二、填空题(共15分)11.(本题3分)下列各项:①2y x =;②21y x =-;③22(0)y x x =³;④3(0)y xx =¹;具有函数关系(自变量为x )的是_____________.(填序号)12.(本题3分)周长为10cm 的等腰三角形,腰长y (cm )与底边长x (cm )之间的函数关系式是_____.13.(本题3分)在函数5x y x-=中,自变量x 的取值范围是______.14.(本题3分)若对于所有的实数x ,都有()()222x x f xf x -+=,则()2f =______.15.(本题3分)一个弹簧,不挂物体时长为10厘米,挂上物体后弹簧会变长,每挂上1千克物体,弹簧就会伸长1.5cm .如果挂上的物体的总质量为x 千克时,弹簧的长度为为ycm ,那么y 与x 的关系可表示为y =______.三、解答题(共75分)16.(本题7分)小明在劳动技术课中要制作一个周长为80cm 的等腰三角形.请你写出底边长y (cm )与腰长x (cm )的函数关系式,并求自变量x 的取值范围.17.(本题8分)为了增强居民的节水意识,某城区水价执行“阶梯式”计费,每月应缴水费y(元)与用水量x(t)之间的函数关系如图所示.若某用户去年5月缴水费18.05元,求该用户当月用水量.18.(本题8分)在等腰△ABC 中,底角为x (单位:度),顶角y (单位:度).(1)写出y 与x 的函数解析式;(2)求自变量x 的取值范围.19.(本题9分)如图,长方形ABCD 中,AB=4,BC=8.点P 在AB 上运动,设PB=x ,图中阴影部分的面积为y.(1)写出阴影部分的面积y 与x 之间的函数解析式和自变量x 的取值范围;(2)点P 在什么位置时,阴影部分的面积等于20?20.(本题10分)为了净化空气,美化校园环境,某学校计划在A ,B 两种树木中选择一种进行种植,已知A 种树木的单价是80元/棵,B 种树木的单价是72元/棵,且购买A 种树木有优惠,优惠方案是:购买超过20棵时,超出部分可以享受八折优惠.设学校准备购买树木x 棵(20x >),购买A 种树木和B 种树木花费的总金额分别为A y (元)和B y (元).(1)分别求出A y 、B y 与x 之间的函数关系式;(2)请你帮助该学校判断选择购买哪种树木更省钱.21.(本题10分)“五一”期间,小明和父母一起开车到距家200km 的景点旅游,出发前,汽车油箱内储油45L ,当行驶150km 时,发现油箱余油量为30L (假设行驶过程中汽车的耗油量是均匀的).(1)这个变化过程中哪个是自变量?哪个是因变量?(2)求该车平均每千米的耗油量,并写出行驶路程()x km 与剩余油量()Q L 的关系式;(3)当280x km =时,求剩余油量Q 的值.22.(本题11分)小亮想了解一根弹簧的长度是如何随所挂物体质量的变化而变化的,他把这根弹簧的上端固定,在其下端悬挂物体,下面是小亮测得的弹簧的长度y 与所挂物体质量x 的几组对应值.所挂物体质量/kg x 012345y303234363840弹簧长度/cm(1)上表所反映的变化过程中的两个变量,___________是自变量,___________是因变量;(请用文字语言描述)(2)请直接写出y与x的关系式;(3)当弹簧长度为100cm(在弹簧承受范围内)时,求所挂重物的质量.23.(本题12分)在一定弹性限度内,弹簧挂上物体后会伸长.现测得一弹簧长度y(cm)与所挂物体质量x(kg)有如下关系:(已知在弹性限度内该弹簧悬挂物体后的最大长度为21cm.)所挂物体质0123456量x/kg弹簧长度1212.51313.51414.515 y/cm(1)有下列说法:①x与y都是变量,且x是自变量,y是x的函数;②所挂物体质量为6kg时,弹簧伸长了3cm;③弹簧不挂重物时的长度为6cm;④物体质量每增加1kg,弹簧长度y增加0.5cm.上述说法中错误的是(填序号)(2)请写出弹簧长度y(cm)与所挂物体质量x(kg)之间的关系式及自变量的取值范围.(3)预测当所挂物体质量为10kg时,弹簧长度是多少?(4)当弹簧长度为20cm时,求所挂物体的质量.参考答案1.B 2.A 3.A 4.D 5.D 6.A 7.B 8.D 9.C 10.C11.①②④12.y=-()15052x x +<<13.0x ¹14.015.10+1.5x16.802,2040y x x =-<<17.9吨18.(1)y=180-2x ;(2)由三角形内角和得0°<x <90°.19.(1)阴影部分的面积为:y=32-4x (0<x≤4);(2)PB=320.(1)()=6432020A y x x +>,()7220B y x x =>;(2)当2040x <<时,学校选择购买B 种树木更省钱;当40x =时,学校选择购买两种树木的花费一样;当40x >时,学校选择购买A 种树木更省钱.21.(1)(1)行驶路程x ,剩余油量Q ;(2)450.1Q x =-;(3)当280x =(千米)时,剩余油量Q 的值为17L22.(1)所挂物体质量,弹簧长度;(2)y =2x +30;(3)35kg 23.(1)③④;(2)y =0.5x +12(0≤x ≤18);(3)弹簧长度是17cm ;(4)所挂物体的质量为16kg .。
初中数学试卷桑水出品八年级下册第十九章19.1.1变量与函数第1课时(练)一、选择题(每小题5分,共20分)1.一辆汽车以50 km/h的速度行驶,则行驶的路程s(km)与行驶的时间t(h)之间的关系式为s=50t,其中变量是()A.50与sB.50与tC.s与tD.三者均为变量【答案】C【解析】此变化过程中保持不变的量是50,变化的量是s与t .故选C考点:常量和变量.2.圆的周长公式为C=2πr,下列说法正确的是()A.常量是2B.变量是C,π,rC.变量是C,rD.常量是2,r【答案】C【解析】此变化过程中保持不变的量是2π,变化的量是C,r .故选C考点:常量和变量.3.下表是某报纸公布的世界人口数据情况:上表中的变量()A.仅有一个,是时间(年份)B.仅有一个,是人口数C.有两个,一个是人口数,另一个是年份D.一个变量也没有【答案】C【解析】此变化过程中变化的量是一个是人口数,另一个是年份, 故选C考点:常量和变量4.自由下落物体下落的高度h与下落的时间t之间的关系为h=gt2(g=9.8m/s2),在这个变化中,变量为()A.h,t B.h,g C.t,g D.t【答案】A【解析】根据在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量进行分析.在这个变化中,变量为h、t.故选:A考点:变量.二、填空题(每小题5分,共20分)5.三角形的一边长为8 cm,它的面积S(cm2)与这边上的高h(cm)之间的关系为________,其中常量是________,变量是________.【答案】S=4h4h,S【解析】试题分析:在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量进行分析.在这个变化中,变量为h、S,不变的量为4.考点:常量和变量,三角形面积.6.已知x,y满足x-3y=1,用y表示x为______,其中变量为________,常量为________.【答案】x=3y+1x,y3,1【解析】试题分析:在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量进行分析.在这个变化中,变量为x,y,不变的量为x,y考点:常量和变量,函数.7.观察下表并填空:y与n【答案】y=2n·(2n-1)n,y【解析】试题分析:在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量进行分析.在这个变化中,y=2n·(2n-1),变量为n,y考点:函数,常量和变量8.如果水的流速是50米/分,那么每分钟的流水量Q(立方米)与所选择的水管半径r(米)之间的关系式是Q =50πr2,其中变量是________,常量是________.【答案】r与Q50与π【解析】试题分析:在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量进行分析.在这个变化中,变量为r与Q, 常量是50与π.考点:常量和变量.三、简答题(每题30分,共60分)9.小刘在过14岁生日的时候,看到了爸爸为他记录的以前各周岁时的体重数值(如下表),你能看出小刘各周岁时的体重是如何变化的吗?在哪一段时间内体重增加最多?周岁1 2 3 4 5 6 7 8 9 10 11 12 13体重(千克)9.3 11.8 13.5 15.4 16.7 18.0 19.6 21.5 23.2 25.0 27.6 30.2 32.5【答案】随着年龄的增大,小刘的体重在增加.在10周岁以后体重增加较快.【解析】试题分析:此变化过程中变化的量是一个是年龄,另一个是体重.由表格得随着年龄的增大,小刘的体重在增加.在10周岁以后体重增加较快.考点:常量和变量.10.如图,长方形ABCD,试指出,当点P在边AD上从A向D移动时,•哪些线段的长度始终保持不变,哪些则发生了变化?哪些三角形的面积始终保持不变,•哪些也发生了变化?试分别举出如上述情况的两条线段与两个三角形.【答案】PA、PB、PC、PD的长度都是变化的,AB、BC、CD•的长度都是不变的;△PAB和△PCD的面积是变化的,△PBC的面积是不变的。
函数第一课时变量与函数练习与答案-数学八年级下第十九章19.1人教版work Information Technology Company.2020YEAR第十九章一次函数11.1 函数第一课时 19.1.1变量与函数测试题基础知识:一、选择题1、某型号的汽车在路面上的制动距离s=,其中变量是()A、s,vB、s,v2C、sD、v2、函数y=自变量x的取值范围是()A、x≥1且x≠3B、x≥1C、x≠3D、x>1且x≠33、根据如图所示程序计算函数值,若输入的x的值为,则输出的函数值为()A、B、C、D、二、填空题4、函数y=中,自变量x的取值范围是。
5、购买一些签字笔,单价3元,总价为y元,签字笔为x支,y随x变化的关系式y=,是自变量,是的函数。
6、某水果批发市场香蕉的价格如表:购买香蕉数(kg) 不超过20kg20kg以上但不超过40kg40kg以上每kg价格8元7元6元若小强购买香蕉xkg(x大于40kg)付了y元,则y关于x的函数解析式为。
(写出自变量的取值范围)三、解答题7、下表给出了橘农王林去年橘子的销售额y(元)随橘子卖出质量x(kg)的变化的有关数据:卖出质量(kg) 1 2 3 4 5 6 7 8 9销售额(元) 2 4 6 8 10 12 14 16 18(1)上表反映了哪两个变量之间的关系?并写出函数的解析式。
(2)哪个是自变量?哪个是自变量的函数?(3)当橘子卖出5kg时,销售额是多少?(4)估计当橘子卖出50kg时,销售额是多少?8、已知一根长为20m的铁丝围成一个长方形,若宽为x,长为y:(1)求出y关于x的函数解析式。
(2)写出自变量x的取值范围。
(3)求当x=4时所对应的函数值。
巩固练习1、在一个变化过程中,数值发生__________的量叫做变量,数值始终__________的量叫做常量。
2、直角三角形两锐角的度数分别为x、y,其关系式为y=90-x,其中变量为__________,常量为__________。
人教版八年级数学下册 第十九章 一次函数 19.1.1 变量与函数 课后练习一、选择题1.函数y =2x -中的自变量x 的取值范围是( ) A .x >1 B .x ≠2C .x >1且x ≠2D .x ≥1且x ≠22.函数y =x 的取值范围是( )A .0x ≥B .0x >C .1≥xD .1x >3.函数y=x中,自变量x 的取值范围是( ) A .x≤0B .x≥0C .x<1且x≠0D .x≤l 且x≠04.某商贩卖某种水果,出售时在进价的基础上加上一定的利润,其销售数量x 与售价y 的关系如下表,王阿姨想买这种水果6千克,她应付款( )A .27元B .24元C .7元D .26.5元5.如图,李大爷用24米长的篱笆靠墙围成一个矩形()ABCD 菜园,若菜园靠墙的一边()AD 长为x (米),那么菜园的面积y (平方米)与x 的关系式为( )A .(12)2x x y -=B .(12)y x x =-C .(24)2x x y -=D .(24)y x x =-6.若以周长为12长方形的长为自变量x ,宽的长度y 为x 的函数,则它的表达式是( ) A .y=-x+6(0<x <6) B .y=-x+6(0<x≤3) C .y=-2x+12(0<x <6) D .y=-x+6(3<x <6)7.下列各式,不能表示y 是x 的函数的是( )A .23y x =B .1y x=C .y =D .31y x8.变量x 与y 之间的关系是y=﹣12x 2+1,当自变量x=2时,因变量y 的值是( ) A .﹣2B .﹣1C .1D .29.矩形ABCD 的边BC 上有一动点E ,连接AE 、DE ,以AE 、DE 为边作平行四边形AEDF ,设BE=x ,平行四边形AEDF 的面积为y ,则y 与x 之间的关系描述正确的是( )A .y 与x 之间是函数关系,且当x 增大时,y 先增大再减小B .y 与x 之间是函数关系,且当x 增大时,y 先减小再增大C .y 与x 之间是函数关系,且当x 增大时,y 一直保持不变D .y 与x 之间不是函数关系10.假设汽车匀速行驶在高速公路上,那么在下列各量中,变量的个数是( )①行驶速度;②行驶时间;③行驶路程;④汽车油箱中的剩余油量 A .1个 B .2个C .3个D .4个二、填空题11.在函数3123x y x +=+中,自变量x 的取值范围是____. 12.长方形的周长为10cm ,其中一边为xcm (其中0x >),另一边为ycm ,则y 关于x 的函数表达式为__________.13.油箱中有油60升,油从管道中匀速流出,一小时流完,则油箱中剩余油量Q (升)与流出时间t (分钟)之间的函数关系为________________________ , 定义域为_____________ ,当Q=10升时, t=___________ 14.用周长为60m 的篱笆围成矩形场地,则矩形面积S ()2m 关于一边长x (m )之间的函数解析式是 _____ ,其中自变量是_____.15.某人摆苹果地摊,其卖出的苹果质量x 与售价y 的关系如下表:则y 与x 的关系式为____________.三、解答题16.根据心理学家研究发现,学生对一个新概念的接受能力y 与提出概念所用的时间x (分钟)之间有如表所示的关系:(1)上表中反映的两个变量之间的关系,哪个是自变量?哪个是因变量? (2)根据表格中的数据,提出概念所用时间是多少分钟时,学生的接受能力最强? (3)学生对一个新概念的接受能力从什么时间开始逐渐减弱? 17.阅读下面材料并填空.当x 分别取0,1,-1,2,-2,……时,求多项式2x --的值.当0x =时,2x --=______. 当1x =时,2x --=______. 当1x =-时,2x --=______. 当2x =时,2x --=______. 当2x =-时,2x --=______.……以上的求解过程中,______和______都是变化的,是______的变化引起了______的变化.18.某烤鸡店,烤制的时间随鸡的质量的变化而变化,并且烤制的时间y (min )与鸡的质量x (kg )的关系可以用y=40x+20来表示(1)在这变化的过程中,自变量、因变量各是什么? (2)若要烤制3.5kg 的鸡,需要烤制时间是多少? (3)若烤制的试卷是180min ,则烤制的鸡的质量是多少? 19.已知水池中有800立方米的水,每小时抽50立方米.(1)写出剩余水的体积Q (立方米)与时间t (时)之间的函数关系式; (2)6小时后池中还有多少水?(3)几小时后,池中还有200立方米的水?20.在等腰三角形ABC 中,底边BC 长为,y 腰长AB 长为x .若三角形ABC 的周长为12,()1求y 关于x 的函数表达式.()2当腰长比底边的2倍多1时,求x 的值.21.空中的气温()T C 与距地面的高度()h km 有关,某地面气温为26C ,且已知离地面距离每升高1km ,气温下降4C . (1)在这个变化过程中, 是自变量, 是因变量; (2)写出该地空中气温()T C 与高度()h km 之间的关系式; (3)求空中气温为6C -处距地面的高度.22.一辆小汽车在告诉公路上从静止到起动10秒内的速度经测量如下表:(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)如果用时间t 表示时间,v 表示速度,那么随着t 的变化,v 的变化趋势是什么? (3)当t 每增加1秒,v 的变化情况相同吗?在哪个时间段内,v 增加的最快?(4)若高速公路上小汽车行驶速度的上限为120千米/小时,试估计大约还需几秒这辆小汽车的速度就将达到这个上限.23.阅读材料:用均值不等式求最值.已知,x y 为非负实数,2220x y +-=+-=≥,x y ∴+≥当且仅当“x y =”时,等号成立,我们把不等式叫做,)00x y x y +≥≥≥均值不等式,利用均值不等式可以求一些函数的最值. 例:己知0x >,求函数22y x x=+的最小值,解:224y x x =+>=,当且仅当22x x =,即1x =时,“=”成立.∴当1x =时,函数有最小值4y =,根据以上材料,解决下列问题: (1)当0x >时,求函数91y x x=++的最小值. (2)若函数()40,0ay x x a x =+>>,当且仅当3x =时取得最小值,求实数a 的值【参考答案】1.D 2.C 3.D 4.A 5.C 6.D 7.C 8.B 9.D 10.C 11.x≠-32. 12.()505y x x =-+<<13.60Q t =- 060t ≤≤ 50 14.()30S x x =- 自变量是x 15.y=2.1x16.(1)“提出概念所用时间”是自变量,“对概念的接受能力”为因变量;(2)13分钟;(3)从第13分钟以后开始逐渐减弱17.x , 2x --;x , 2x --.18.(1)鸡的质量是自变量,烤制的时间是因变量;(2)需要烤制的时间是160min ;(3)则烤制的鸡的质量是4kg . 19.(1)Q =800﹣50t ;(2)500立方米;(3)12 20.(1)212y x =-+;(2)5x =21.(1)高度,气温;(2)264T h =-;(3)8h =22.(1)时间与速度;时间;速度;(2)0到3和4到10,v 随着t 的增大而增大,而3到4,v 随着t 的增大而减小;(3)不相同;第9秒时;(4)1秒.23.(1)当3x =时,有函数的最小值7y =;(2)36.。
19.1.1变量与函数练习题一、单选题1.下列关系式中,y 不是x 的函数的是( )A .31y x =+B .2y x=C .12y x =-D .y x =2.下列关系式中,变量x=-1时,变量y=6的是( ) A .y=3x+3B .y=-3x+3C .y=3x –3D .y=-3x –33.在以x 为自变量, y 为函数的关系式y=5πx 中,常量为( ) A .5B .πC .5πD .πx4.己知两个变量之间的关系满足y=-x+2,则当x=-1时,对应的y 的值( ) A .3B .1C .-1D .-35.长方形的周长是12cm ,期中一条边为x cm(x >0),面积为y cm ²,则这个长方形的面积y 与边长x 的关系可以表示为( ) A .y=(6-x)xB .y=x ²C .y=x(12-x)D .y=2(6-x)6.关于函数y =,下列说法正确的是( ) A .自变量x 的取值范围是5x ≥ B .5x =时, 函数y 的值是0 C .当5x >时,函数y 的值大于0D .A 、B 、C 都不对7.设路程()s km ,速度(/)v km h ,时间t(h),当s 50=时,50t v=.在这个函数关系中( ) A .路程是常量,t 是s 的函数 B .路程是常量,t 是v 的函数 C .路程是常量,v 是t 的函数D .路程是常量,t 是v 的函数8.弹簧挂上物体后会伸长,若一弹簧长度(cm)与所挂物体质量(kg)之间的关系如下表:则下列说法错误..的是( ) A .弹簧长度随物体的质量的变化而变化,物体的质量是自变量,弹簧的长度是因变量B .如果物体的质量为x kg ,那么弹簧的长度y cm 可以表示为y=12+0.5xC .在弹簧能承受的范围内,当物体的质量为7kg 时,弹簧的长度为16cmD .在没挂物体时,弹簧的长度为12cm9.如果一盒圆珠笔有12支,售价18元,用y (元)表示圆珠笔的售价,x 表示圆珠笔的支数,那么y 与x 之间的解析式为( ). A .32y x =B .23y x =C .12y x =D .18=y x10.弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂重物的质量x(kg)有下面的关系,那么弹簧总长y(cm)与所挂重物x(kg)之间的关系式为( )A .y =x +12B .y =0.5x +12C .y =0.5x +10D .y =x +10.5 二、填空题11.在函数y =中, 自变量x 的取值范围是 .12.某等腰三角形的周长是50cm ,底边长是xcm ,腰长是ycm ,则y 与x 之间的关系式是________________.13.函数y=11-+x x 中自变量x 的取值范围是 14.变量y 与x 之间的函数关系式是2112y x =-,则当自变量2x =-时,函数y =_____________. 15.将长为20cm 、宽为8cm 的长方形白纸,按如图所示的方法粘合起来,粘合部分的宽为3cm ,设x 张白纸粘合后的总长度为ycm ,y 与x 之间的关系式为_______.16.小明应用计算机设计了一个计算程序,输入和输出的数据如下表:当输入数据是时,输出的数据是_____.17.汽车开始行驶时,油箱中有油30升,如果每小时耗油4升,那么油箱中的剩余油量y(升)和工作时间x (时)之间的函数关系式是____________;18.若函数y=⎩⎨⎧≤+),2(2),2(22>x x x x 则当函数值y=8时,自变量x 的值等于________.三、解答题19.某公交车每月的支出费用为4000元,每月的乘车人数x(人)与每月利润(利润=收入费用﹣支出费用)y(元)的变化关系如下表所示(每位乘客的公交票价是固定不变的):(1)在这个变化过程中,______是自变量,______是因变量;(2)观察表中数据可知,每月乘客量达到_______人以上时,该公交车才不会亏损; (3)请你估计当每月乘车人数为3500人时,每月利润为多少元?20.在一次实验中,小英把一根弹簧的上端固定,在其下端悬挂物体,下面是弹簧长度y 与所挂物体质量x 的一组对应值(以下情况均在弹簧所允许范围内)(1)在这个变化过程中,自变量是 ______ ,因变量是 ______ ;(2)当所挂物体重量为3 千克时,弹簧长度为 ______ cm ;不挂重物时,弹簧长度为 ______ cm ; (3)请写出y 与x 的关系式,若所挂重物为7 千克时,弹簧长度是多长?21.为了加强公民的节水意识,某市制定了如下用水收费标准:每户每月的用水不超过10吨时,水价为每吨1.2元;超过10吨时,超过部分按每吨1.8元收费,该市某户居民5月份用水吨,应x (10)x >缴水费元.(1)写出与之间的关系式;(2)某户居民若5月份用水16吨,应缴水费多少元?y y x19.1.1变量与函数练习题答案一、单选题1.D 2.B 3.C 4.A 5.A 6.C 7.B 8.C 9.A 10.B 二、填空题11.4x ≥- 12.y =502x-(0<x <25) 13.x ≥-1且x ≠1 14.1 15.y=17x+3 16.55117.y=30-4x 18.-6或4 19.(1)x , y ;(2)观察表中数据可知,每月乘客量达到2000;(3)每月乘车人数为3500人时,每月利润为3000元. 20.(1)自变量是所挂物体的质量,因变量是弹簧的长度;(2)当所挂物体重量为3千克时,弹簧长度为24cm ;不挂重物时,弹簧长度为18cm ;(3)y=2x+18,32 21.(1)依题意有y =1.2×10+(x –10)×1.8=1.8x –6. 所以y 关于x 的函数关系式是y =1.8x –6(x >10);(2)用水16吨,即x =16,代入(1)种关系式可得应缴水费y =1.816–6=22.8.⨯。
精品基础教育教学资料,仅供参考,需要可下载使用!19.1.1 变量与函数知识要点:1. 一般地,如果在一个变化过程中有两个变量x 与y ,如果对于x 的每一个值,y 都有唯一的值与它对应,那么就说x 是自变量,y 是x 的函数.2.常量:其值在变化过程中始终保持不变的量叫常量.3.变量:其值在变化过程中会发生变化的量叫变量 一、单选题1.对圆的周长公式2C r π=的说法正确的是( ) A .π,r 是变量,2是常量 B .C ,r 是变量,π,2是常量 C .r 是变量,2,π,C 是常量D .C 是变量,2,π,r 是常量2.一辆汽车以50 km/h 的速度行驶,行驶的路程s km 与行驶的时间t h 之间的关系式为s =50 t ,其中变量是( ) A .速度与路程B .速度与时间C .路程与时间D .三者均为变量3.下列各曲线表示的y 与x 之间的关系中,y 不是x 的函数的是( )A .B .C .D .4.某商店售货时,在进货价的基础上加一定的利润,其数量x 与售价y 如下表示,根据表中所提供的信息,售价y 与售货数量x 的函数解析式为( ) 数量x(千克 )1 2 3 4 ··· 售价y(元)8+0.416+0.824+1.232+1.6··· A .y=8.4xB .y=8x+0.4C .y=0.4x+8D .y=8x5.矩形的周长为18cm ,则它的面积S (2cm )与它的一边长x (cm )之间的函数关系式是( )A .S=x(9-x)(0<x<9)B .S=x(9+x)(0<x≤9)C .S=x(18-x)(0<x≤9)D .S=x(18+x)(0<x<9)6.变量x 与y 之间的关系式y =12x 2﹣2,当自变量x =2时,因变量y 的值是( ) A .﹣2 B .﹣1C .0D .17.函数y=12x -的自变量x 的取值范围是( ) A .x≠2B .x <2C .x≥2D .x >28.一辆汽车以50/km h 的速度行驶,行驶的路程()s km 与行驶的时间t(h)之间的关系式为50s t =,其中变量是( ) A .速度与路程 B .速度与时间C .路程与时间D .速度9.函数2015y x= 中,自变量x 的取值范围是( ) A .x >0B .x <0C .x ≠0的一切实数D .x 取任意实数10.根据图示的程序计算计算函数值,若输入的x 值为3/2,则输出的结果为( )A .7/2B .9/4C .1/2D .9/2二、填空题11.图书馆现有1500本图书供学生借阅,如果每个学生一次借3本,则剩下的数y (本)和借书学生人数x (人)之间的函数关系式是_____________.12.圆的面积公式2S R π=中,变量是________ ,常量是________.13.齿轮每分钟转120转,如果用n 表示转数,t(min)表示时间,那么用t 表示n 的关系式为n =________. 14.长方形的周长为24cm ,其中一边长为()x cm ,面积为()2y cm ,则y 与x 的关系可表示为___.三、解答题15.在一次实验中,小明把一根弹簧的上端固定、在其下端悬挂物体,下面是测得的弹簧的长度y 与所挂物体质量x 的一组对应值. 所挂物体质量x/kg0 1 2 3 4 5弹簧长度y/cm18 20 22 24 26 28①上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?②当所挂物体重量为3千克时,弹簧多长?不挂重物时呢?③若所挂重物为7千克时(在允许范围内),你能说出此时的弹簧长度吗?16.已知池中有600m3的水,每小时抽50m3.(1)写出剩余水的体积Vm3与时间th之间的函数表达式;(2)写出自变量t的取值范围;(3)8h后,池中还剩多少水?(4)多长时间后,池中剩余100m3的水?17.求出下列函数中自变量x的取值范围(1)114y x=+(2)31xyx+=+(3)21y x=+(4)531yx-=-18.“十一”期间,小华约同学一起开车到距家100千米的景点旅游,出发前,汽车油箱内储油35升,当行驶80千米时,发现油箱余油量为25升(假设行驶过程中汽车的耗油量是均匀的).(1)求该车平均每干米的耗油量,并写出行驶路程x(千米)与剩余油量Q(升)的关系式;(2)当x=60(千米)时,求剩余油量Q的值;(3)当油箱中剩余油量低于3升时,汽车将自动报警,如果往返途中不加油,他们能否在汽车报警前回到家?请说明理由.19.如图所示,正方形ABCD的边长为4 ,E、F分别是BC、DC边上一动点,E、F同时从点C 均以1 的速度分别向点B、点D运动,当点E与点B重合时,运动停止.设运动时间为(),运动过程中△AEF的面积为,请写出用表示的函数关系式,并写出自变量的取值范围.答案1.B2.C3.C4.A5.A6.C7.D8.C9.C 10.C 11.y=1500-3x 12.S 、R π 13.120t14.()12y x x =-15.(1)上表反映了弹簧长度与所挂物体质量之间的关系; 其中所挂物体质量是自变量;(2)当所挂物体重量为3千克时,弹簧长24厘米; 当不挂重物时,弹簧长18厘米;(3)根据上表可知所挂重物为7千克时(在允许范围内)时的弹簧长度=18+2×7=32(厘米). 16.解:(1)由已知条件知,每小时抽50立方米水, 则t 小时后放水50t 立方米, 而水池中总共有600立方米的水, 那么经过t 时后,剩余的水为600﹣50t ,故剩余水的体积V 立方米与时间t (时)之间的函数关系式为:V=600﹣50t ; (2)由于t 为时间变量,所以 t≥0 又因为当t=12时将水池的水全部抽完了. 故自变量t 的取值范围为:0≤t≤12; (3)根据(1)式,当t=8时,V=200 故8小时后,池中还剩200立方米水; (4)当V=100时,根据(1)式解得 t=10. 故10小时后,池中还有100立方米的水. 17.(1)114y x =+, 自变量x 的取值范围是全体实数;(2)y 根据题意得,3010x x +≥⎧⎨+≠⎩∴3x ≥-,且1x ≠-.∴自变量x 的取值范围是3x ≥-,且1x ≠-.(3)y =根据题意得,2x+1≥0,解得,21x ≥-; ∴自变量x 的取值范围是21x ≥-; (4)531y x -=- 根据题意得,310x -≠, ∴13x ≠, ∴自变量x 的取值范围是13x ≠. 18.解:(1)该汽车平均每千米的耗油量为(35﹣25)÷80=0.125(升/千米), ∴行驶路程x (千米)与剩余油量Q (升)的关系式为Q=35﹣0.125x ; (2)当x=60时,Q=35﹣0.125×60=27.5(升), 答:当x=60(千米)时,剩余油量Q 的值为27.5升; (3)他们能在汽车报警前回到家, (35﹣3)÷0.125=256(千米),由256>200知他们能在汽车报警前回到家. 19.设运动时间为x (s ),∵点E ,F 同时从点C 出发,以每秒21cm 的速度分别向点B ,D 运动, ∴CE=x ,CF=x ,BE=4-x ,DF=4-x ,∴△AEF 的面积=正方形ABCD 的面积-△ABE 的面积-△ADF 的面积-△ECF 的面积, 即:y=16-•AB•BE -•AD•DF -•EC•FC=16-•4•(4-x )-•4•(4-x )-•x•x =.。
19.1.1《变量与函数》2一、选择题1. 圆的周长公式是,以下关于变量和常量的说法正确的是()A.是常量,,,是变量B.是常量,,是变量C.是常量,是变量D.是常量,,是变量2. 一蓄水池中有水,如果每分钟放出的水,水池里的水量与放水时间有如下关系:下列数据中满足此表格的是( )A.放水时间分钟,水池中水量B.放水时间分钟,水池中水量C.放水时间分钟,水池中水量D.放水时间分钟,水池中水量3. 在关系式中,当自变量时,因变量的值为()A. B. C. D.4. 弹簧挂上物体后伸长,已知一弹簧的长度与所挂物体的质量之间的关系如下表:所挂物体的质量弹簧的长度下列说法错误的是()A.在没挂物体时,弹簧的长度为B.弹簧的长度随所挂物体的质量的变化而变化,弹簧的长度是自变量,所挂物体的质量是因变量C.弹簧的长度与所挂物体的质量之间的关系可用关系式=来表示D.在弹簧能承受的范围内,当所挂物体的质量为时,弹簧的长度为5. 若二次函数的函数值为,则自变量的值应为( )A. B. C. D.6. 定义:函数的零点是指使函数值等于零的自变量的值,则下列函数中零点为的是( )A. B. C. D.二、填空题7. 已知函数,如果,那么________.8. 如果记,并且表示当=时的值,即,那么=________.9. 若,则________.10. 据如图的程序,计算当输入时,输出的结果________.11. 油箱中有油,油从管道中匀速流出,小时流完,求油箱中剩余油量与流出时间(分钟)间的函数关系式为________,自变量的范围是________.当时,________.12. 某地的电话月租费元,通话费每分钟元,则每月话费(元)与通话时间(分钟)之间的关系式是________,某居民某月的电话费是元,则通话时间是________分钟,若通话时间分钟,则电话费为________元.三、解答题13. 已知函数.求:(1)当,时的函数值;(2)当为何值时,函数等于,.14. 已知无论取何正值,都比大,求的取值范围.。
19.1 函 数 19.1.1 变量与函数基础闯关全练1.一辆汽车以50 km/h 的速度行驶,行驶的路程s(km)与行驶的时间t(h)之间的关系式为s=50t ,其中变量是 ( )A .速度与路程B .速度与时间C .路程与时间D .三者均为变量 2.圆锥的底面半径r=2 cm ,当圆锥的高h 由小到大变化时,圆锥的体积V 也随之发生了变化,在这个变化过程中,变量是______.(圆锥的体积公式:V=31πr ²h ) 3.下列各关系中,不是函数关系的是 ( ) A .y=-x(x ≤0) B .y=±x (x ≥0)C .y=x (x ≥0)D .y=-x (x ≥O )4.某地海拔高度h 与温度T 之间的关系可用T=21-6h 来表示(温度单位:℃,海拔高度单位:km ),则该地区某海拔高度为2 km 的山顶上的温度为 ( )A .15℃B .9℃C .3℃D .7℃5.在函数y=3x+4中,当x=1时,函数值为_______,当x=_______时,函数值为10.6.函数y=11-x 中,自变量x 的取值范围是 ( )A .x ≠0B .x <1C .x >1D .x ≠1 7.下列函数中,自变量x 的取值范围是x >3的是 ( ) A .y=x-3 B .y=31-x C .y=3-x D .y=31-x 能力提升全练1.如图19-1-1-1所示,圆柱的高是3 cm ,当圆柱的底面半径由小到大变化时,圆柱的体积也随之发生了变化.(1)在这个变化中,自变量是________,因变量是____;(2)当底面半径由1 cm 变化到10 cm 时,圆柱的体积增加了____cm³.2.若函数y=⎩⎨⎧≤+),2(2),2(22>x x x x 则当函数值y=8时,自变量x 的值等于________.3.某剧院的观众席的座位分布呈扇形,且按下列方式设置:(1)按照上表所示的规律,当x 每增加1时,y 如何变化:(2)写出座位数y 与排数x 之间的关系式;(3)按照上表所示的规律,某一排可能有90个座位吗?说出你的理由.三年模拟全练一、选择题1.下列关于变量x,y的关系:①y=x;②y²=X;③2x²=y,其中y是x的函数的有( )A.3个 B.2个 C.1个 D.O个2.下表反映的是某地区用电量x(千瓦时)与应交电费)y(元)之间的关系,下列说法不正确的是 ( )A.x与y都是变量,且x是自变量,y是x的函数B.用电量每增加1千瓦时,电费增加0.55元C.若用电量为8千瓦时,则应交电费4.4元D.y不是x的函数二、填空题3.在函数y=1-x中,自变量x的取值范围是_______________________.4.声音在空气中传播的速度y(m/s)与气温x(℃)之间存在如下关系:y=x53+331.当气温x=22℃时,某人看到闪电5s后才听到雷声(光传播的时间忽略不计).则此人与闪电发生地相距____________m.五年中考全练一、选择题1.函数y=11-+xx中自变量x的取值范围是 ( )A.x≥-1且x≠1 B.x≥-1 C.x≠1 D.-1≤x<1 2.根据如图19-1-1-2所示的程序计算函数y的值,当输入x的值是4或7时,输出的y的值相等,则6等于 ( )A.9 B.7 C.-9 D.-73.一名司机驾驶汽车从甲地去往乙地,他以80千米/小时的平均速度用了4小时到达乙地,当他按原路匀速返回时,汽车的速度v(千米/小时)与时间t(小时)的函数关系是 ( )A.v=320t B.v=t320 C.v=20t D.v=t20二、填空题4.函数y=11+x中自变量x的取值范围是__________.核心素养全练1.已知函数ƒ(x)=1+x2,其中ƒ(a)表示x=a时的函数值,如ƒ(1)=1+12,ƒ(2)=1+22,ƒ(a)=1+a2,则ƒ(1)•ƒ(2)•ƒ(3)•…•ƒ(100)=______.2.将一张长方形的纸对折,如图19-1-1-3①,可得到一条折痕,继续对折,对折时每条折痕与上次的折痕保持平行,如图19-1-1-3②,连续对折三次后,可以得到7条折痕,如图19-1-1-3③.回答下列问题:(1)对折四次可以得到_______条折痕:(2)写出折痕的条数y与对折次数x之间的函数关系式:(3)求出对折10次后的折痕条数. 第十九章一次函数19.1 函数19.1.1 变量与函数1.C在s=50t中路程随时间的变化而变化,所以行驶时间是自变量,行驶路程是因变量,速度为50 km/h,是常量.故选C.2.答案V,h解析在变化过程中,底面半径r=2 cm,不发生改变,是常量,体积V随高度h的变化而变化,故V,h为变量.3.B B选项,当x取正值时,y有两个对应值,故B选项中的关系不是函数关系.4.B把h=2代入T=21-6h,得T=21-6×2=9.故选B.5.答案7;2解析当x=1时,y=3x+4=3×1+4=7.当函数值为10时,3x+4=10.解得x=2.6.D根据分式有意义的条件得x-1≠0,解得x≠1.故选D.7.D A.x的取值范围是一切实数;B.x的取值范围是x≠3;C.x的取值范围是x ≥3;D.x的取值范围是x>3.1.答案(1)底面半径;体积(2)297π解析(1)根据函数的定义可知,对于底面半径的每个值,都有一个确定的体积的值按照一定的法则与之相对应,所以自变量是底面半径,因变量是体积.(2)体积增加了(π×10²-π×1²)×3=297πcm³.2.答案4或-6解析①当x≤2时,x²+2=8,解得x=-6;②当x >2时,2x=8,解得x=4. 综上,x 为-6或4.3.解析(1)由题表中的数据,可知当x 每增加1时,y 增加3. (2)由题意可得y=50+3(x-1)=3x+47(x 为正整数). (3)某一排不可能有90个座位. 理由:当y=3x+47=90时,解得x=343.因为x 是正整数,而343不是正整数,故某一排不可能有90个座位,一、选择题1.B 对于x 的每一个取值,y 都有唯一确定的值与之对应,则y 是x 的函数,对于①y=x ,③2x ²=y ,当x 每取一个值时,y 都有唯一确定的值与之对应,故选B .2.D .∵对于x 的每一个取值,y 都有唯一确定的值和它对应,∴y 是x 的函数,选项D 不正确,故选D . 二、填空题 3.答案x ≥1解析根据题意得x-1≥0,解得x ≥1.4.答案1721解析∵y=53x+331,∴当x=22时,y=53×22+331=344.2.∵某人看到闪电5 s 后才听到雷声,∴根据“路程=时间×速度”可得,路程s=5×344.2=1721 m .一、选择题1.A 由二次根式的定义,可知x+1≥0,即x ≥-1;由分式的分母不为零可得x-1≠0,即x ≠1,所以自变量x 的取值范围是x ≥-1且x ≠1,故选A .2.C ∵当x=7时,y=6-7=-1,∴当x=4时,y=2×4+b=-1,解得b=-9.故选C . 3.B 根据公式“路程=速度×时间”可算得甲、乙两地之间的距离为320千米,再根据公式“速度=时间路程”可得v=t320, 二、填空题 4.答案x >-1解析由二次根式的定义可知,x+1≥0,由分式的分母不为零可知,1+x ≠0,故可得x >-1.1.答案5151解析∵ƒ(1)=1+xx x 22+=, ∴ƒ(1)•ƒ(2)•ƒ(3)•…•ƒ(100)=211021011001029910198100352413⨯⨯=⨯⨯⨯⋅⋅⋅⨯⨯⨯=5151. 2.解析(1)第一次对折:1=2-1.第二次对折:3=2²-1.第三次对折:7=2³-1.第四次对折:15=2⁴-1.所以对折四次可以得到15条折痕. (2)根据(1)可得到y=2ˣ-1(x 为正整数). (3)当x=10时,y=2¹⁰-1=1023,所以对折10次后的折痕条数为1023.。
19.1.1《变量与函数》精选练习一、选择题1.小军用50元钱买单价为8元的笔记本,他剩余的钱数Q(元)与他买这种笔记本的本数x之间的关系式为Q=50-8x,则下列说法正确的是( )A.Q和x是变量B.Q是自变量C.50和x是常量D.x是Q的函数2.函数中自变量的取值范围是()A. B. C. D.3.函数y=+x-2的自变量x的取值范围是( )A.x≥2B.x>2C.x≠2D.x≤24.根据科学研究表明,在弹簧的承受范围内,弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂的物体的重量x(kg)间有下表的关系:下列说法不正确的是( )A.弹簧不挂重物时的长度为0cmB.x与y都是变量,且x是自变量,y是因变量C.随着所挂物体的重量增加,弹簧长度逐渐边长D.所挂物体的重量每增加1kg,弹簧长度增加0.5cm5.弹簧挂上物体后会伸长,测得一弹簧的长度y (cm)与所挂的物体的质量x(kg)之间有下面的关系,下列说法不正确的是()A.弹簧不挂重物时的长度为0cmB.x与y都是变量,且x是自变量,y是因变量C.物体质量每增加1 kg,弹簧长度y增加0.5cmD.所挂物体质量为7 kg时,弹簧长度为23.5cm6.在实验课上,小亮利用同一块木板测得小车从不同高度(h)与下滑的时间(t)的关系如下表:以下结论错误的是()A.当h=40时,t约2.66秒B.随高度增加,下滑时间越来越短C.估计当h=80cm时,t一定小于2.56秒D.高度每增加了10cm,时间就会减少0.24秒7.弹簧挂上物体后会伸长,测得一弹簧的长度y (cm)与所挂的物体的质量x(kg)之间有下面的关系:下列说法不正确的是()A.x与y都是变量,且x是自变量,y是因变量B.弹簧不挂重物时的长度为0 cmC.物体质量每增加1 kg,弹簧长度y增加0.5 cmD.所挂物体质量为7 kg时,弹簧长度为13.5 cm8.如图,某工厂有甲、乙两个大小相同的蓄水池,且中间有管道连通,现要向甲池中注水,若单位时间内的注水量不变,那么从注水开始,乙水池水面上升的高度h与注水时间t之间的函数关系图象可能是( )A. B. C. D.9.火车匀速通过隧道时,火车在隧道内的长度y(米)与火车行驶时间x(秒)之间的关系用图象描述如图所示,有下列结论:①火车的长度为120米;②火车的速度为30米/秒;③火车整体都在隧道内的时间为25秒;④隧道长度为750米.其中正确的结论是( )A.①②B.③④C.②③D.①④10.某蓄水池的横断面示意图如图,如果这个注满水的蓄水池以固定的流量把水全部放出.下面的图象能大致表示水的深度h和放水时间t之间的关系的是()A. B. C. D.11.小芳在本学期的体育测试中,1分钟跳绳获得了满分,她的“满分秘籍”如下:前20秒由于体力好,小芳速度均匀增加,20秒至50秒保持跳绳速度不变,后10秒进行冲刺,速度再次均匀增加,最终获得满分,反映小芳1分钟内跳绳速度y(个/秒)与时间t(秒)关系的函数图象大致为()A. B.C. D.12.星期六早晨蕊蕊妈妈从家里出发去观山湖公园锻炼,她连续、匀速走了60min后回家,图中的折线段OA﹣AB﹣BC是她出发后所在位置离家的距离s(km)与行走时间t(min)之间的函数关系,则下列图形中可以大致描述蕊蕊妈妈行走的路线是()A. B. C. D.二、填空题13.某水果店卖出的香蕉数量(千克)与售价(元)之间的关系如表:上表反映了两个变量之间的关系,其中,自变量是香蕉数量;因变量是售价 .14.直角三角形两锐角的度数分别为x,y,其表达式为y=90-x,其中变量为__________,常量为__________.15.使式子有意义的x的取值范围是_____.16.已知函数y=x2-9,当x=5时,y=_______;反之,当y=16时,x=______.17.某商店进了一批货,每件3元,出售时每件加价0.5元,如售出x件应收入货款y元,那么y(元)与x(件)的函数表达式是_________________.18.关于x,y的关系式:(1)y-x=0;(2)x=2y;(3)y2=2x;(4)y-x2=x,其中y是x的函数的是 .三、解答题19.如图表示一辆汽车在行驶途中的速度v(千米/时)随时间t(分)的变化示意图:(1)从点A到点B、点E到点F、点G到点H分别表明汽车在什么状态?(2)分段描述汽车在第0分种到第28分钟的行驶情况;(3)汽车在点A的速度是多少?在点C呢?20.如图表示的是汽车在行驶的过程中,速度随时间变化而变化的情况.(1)汽车从出发到最后停止共经过了多少时间?它的最高时速是多少?(2)汽车在那些时间段保持匀速行驶?时速分别是多少?(3)出发后8分到10分之间可能发生了什么情况?(4)用自己的语言大致描述这辆汽车的行驶情况.21.小玲和弟弟小东分别从家和图书馆同时出发,沿同一条路相向而行,小玲开始跑步中途改为步行,到达图书馆恰好用30min.小东骑自行车以300m/min的速度直接回家,两人离家的路程y (m)与各自离开出发地的时间x(min)之间的函数图象如图所示(1)家与图书馆之间的路程为多少m,小玲步行的速度为多少m/min;(2)求小东离家的路程y关于x的函数解析式,并写出自变量的取值范围;(3)求两人相遇的时间.22.在如图所示的三个函数图象中,有两个函数图象能近似地刻画如下a,b两个情境:情境a:小芳离开家不久,发现把作业本忘在家里,于是返回了家里找到了作业本再去学校;情境b:小芳从家出发,走了一段路程后,为了赶时间,以更快的速度前进.(1)情境a,b所对应的函数图象分别是、(填写序号);(2)请你为剩下的函数图象写出一个适合的情境.23.心理学家发现,学生对概念的接受能力y与提出概念所用的时间x(单位:分)之间有如下关系(其中0≤x≤30).(1)上表中反映了哪两个变量之间的关系?那个是自变量?哪个是因变量?(2)根据表格中的数据,你认为提出概念所用时间为几分钟时,学生的接受能力最强?(3)从表格中可知,当提出概念所用时间x在什么范围内,学生的接受能力逐步增强?当提出概念所用时间x在什么范围内,学生的接受能力逐步降低?(4)根据表格大致估计当提出概念所用时间为23分钟时,学生对概念的接受能力是多少. 24.父亲告诉小明:“距离地面越高,温度越低,”并给小明出示了下面的表格。
19.1.1 变量与函数(2)同步练习班级__________姓名____________总分___________本节应掌握和应用的知识点1.在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数.2.如果当x=a时y=b,那么b叫做当自变量的值为a时的函数值.3.确定自变量的取值范围时,既要考虑函数关系式有意义,还要注意问题的实际意义.基础知识和能力拓展精练一、选择题1.下列曲线中表示y是x的函数的是()A. B. C. D.2.下列对函数的认识正确的是()A. 若y是x的函数,那么x也是y的函数B. 两个变量之间的函数关系一定能用数学式子表达C. 若y是x的函数,则当y取一个值时,一定有唯一的x值与它对应D. 一个人的身高也可以看作他年龄的函数3.下列函数中,自变量x的取值范围为1x<的是()A.11yx=-B.11yx=- C. 1y x=- D.11yx=-4.下列式子中的y不是x的函数的是()A. y=-2x-3B. y=-C. y=±D. y=x+15.如图,数轴上表示的是某个函数自变量的取值范围,则这个函数解析式为()A. y =x +2B. y =x 2+2 C. y =D. y =6.函数y=1x -中,自变量x 的取值范围是( ) A. x≥1 B. x≤1 C. x >1 D. x≠1 7.已知函数2x 1y x 2-=+,当x 3=时,y 的值为() A. 1 B. 1- C. 2- D. 3-8.根据如图的程序,计算当输入x=3时,输出的结果y=()A. 2B. 3C. 4D. 59.一个长方体的体积为12 cm 3,当底面积不变,高增大时,长方体的体积发生变化,若底面积不变,高变为原来的3倍,则体积变为( ) A. 12 cm 3B. 24 cm 3C. 36 cm 3D. 48 cm 3二、填空题10.下列是关于变量 x 与 y 的八个关系式:① y = x ;② y2 = x ;③ 2x2 − y = 0;④ 2x − y2 = 0;⑤ y = x3 ;⑥ y = ∣x ∣;⑦ x = ∣y ∣;⑧ x =.其中 y 不是 x 的函数的有___________________________.(填序号)11.关于x ,y 的关系式:(1)y-x=0;(2)x=2y ;(3)y 2=2x ;(4)y-x 2=x ,其中y 是x 的函数的是_____________________12.如图是济南市8月2日的气温随时间变化的图象,根据图象可知:在这一天中,气温T(℃)____(填“是”或“不是”)时间t (时)的函数.13.等腰三角形的顶角y 与底角x 之间是函数关系吗?_________(是或不是中选择)14.在函数y=+中,自变量x的取值范围是_______.15.已知函数y=x2-x+2,当x=2时,函数值y=_____;已知函数y=3x2,当x=______时,函数值y=12.16.某人乘雪橇沿如图所示的斜坡笔直下滑,滑下的距离s(m)与时间t(s)之间的关系式是s =t2+10t.若下滑的时间为2s,则此人下滑的高度是_______m.三、解答题17.如图,下列各曲线中哪些能够表示y是x的函数?你能说出其中的道理吗?18.在等腰△ABC中,底角x为(单位:度),顶角y(单位:度).(1)写出y与x的函数解析式;(2)求自变量x的取值范围.19.在国内投寄平信应付邮资如下表:信件质量x(克)0<x≤200<x≤400<x≤60邮资y(元)0.80 1.60 2.40①y是x的函数吗?为什么?②分别求当x=5,10,30,50时的函数值.20.下表是丽丽往姥姥家打长途电话的几次收费记录:时间(分) 1 2 3 4 5 6 7电话费(元) 0.6 1.2 1.8 2.4 3.0 3.6 4.2(1)如果用x表示时间,y表示电话费,上表反映了哪两个变量之间的关系?哪个是自变量?哪个是函数,请用式子表示它们的关系;(2)随x的变化,y的变化趋势是什么?(3)丽丽打了5分钟电话,那么电话费需付多少元?(4)你能帮丽丽预测一下,如果打10分钟的电话,需付多少元话费?21.下列关系哪些表示函数关系?(1)在一定的时间t内,匀速运动所走的路程s和速度v;(2)在平静的湖面上,投入一粒石子,泛起的波纹的周长L与半径r;(3)正方形的面积S和梯形的面积S′;(4)圆的面积S和它的周长C.答案与解析1.C【解析】函数表示一个变化过程中两个变量的对应关系,对于自变量x的每个值,函数y都有唯一的值与它对应,由此可得B是正确的.故答案为:C.点睛:本题是函数的概念、函数的图象、反比例函数的意义的考查,根据函数的意义可知,函数表示一个变化过程中两个变量的对应关系,对于自变量x的每个值,函数y都有唯一的值与它对应,由此可得结果.2.D【解析】满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故D正确;所以D选项是正确的.点睛:根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可确定函数的个数.3.D【解析】A项,因为1-x位于分母上,则1-x≠0,则该函数自变量x的取值范围为x≠1。
人教版八年级数学下册第十九章19.1.1变量与函数同步练习题一、选择题1.在圆的面积公式S =πr 2中,常量是(B )A .SB .πC .rD .S 和r2.小王计划用100元钱买乒乓球,所购买乒乓球的个数W(单位:个)与单价n(单位:元/个)的关系式W =100n 中(A )A .100是常量,W ,n 是变量B .100,W 是常量,n 是变量C .100,n 是常量,W 是变量D .无法确定3.小邢到单位附近的加油站加油,如图是小邢所用的加油机上的数据显示牌,则数据中的变量是(D )A .金额B .数量C .单价D .金额和数量4.一个长方形的面积是10 cm 2,其长是a cm 2,宽是b cm 2,下列判断错误的是(B )A .10是常量B .10是变量C .b 是变量D .a 是变量5.下列关系式中,y 是x 的函数的是(B )A .2x =y 2B .y =3x -1C .||y =23xD .y 2=3x -56.下列变量间的关系不是函数关系的是(C )A.长方形的宽一定,其长与面积B.正方形的周长与面积C.等腰三角形的底边长与面积D.圆的周长与半径7.已知两个变量之间的函数关系式为y=-x+2,则当x=-1时,对应的y的值为(B)A.1 B.3C.-1 D.-38.在函数y=1x+3+4-x中,自变量x的取值范围是(D)A.x<4 B.x≥4且x≠-3C.x>4 D.x≤4且x≠-39.若等腰三角形的周长为60 cm,底边长为x cm,一腰长为y cm,则y关于x的函数解析式及自变量x的取值范围是(D)A.y=60-2x(0<x<60)B.y=60-2x(0<x<30)C.y=12(60-x)(0<x<60)D.y=12(60-x)(0<x<30)10.根据如图所示的程序计算函数y的值,若输入x的值是7,则输出y的值是-2,若输入x的值是-8,则输出y的值是(C)A .5B .10C .19D .2111.函数y =2x -4的自变量x 的取值范围是(D )A .x <2B .x ≤2C .x >2D .x ≥2二、填空题12.如图,圆锥的底面半径r =2 cm ,当圆锥的高h 由小到大变化时,圆锥的体积V 也随之发生了变化,在这个变化过程中,变量是V ,h(圆锥体积公式:V =13πr 2h).13.某地某一时刻的地面温度为10 ℃,高度每增加1 km ,温度下降4 ℃,则有下列说法:①10 ℃是常量;②高度是变量;③温度是变量;④该地某一高度这一时刻的温度y(℃)与高度x(km )的关系式为y =10-4x.其中正确的是(D )A .①②③B .②③④C .①③④D .①②③④14.n 边形的内角和α°的公式是α=(n -2)·180,其中变量是n ,α,常量是2,180.15.用黑、白两种颜色的正六边形地板砖镶嵌成若干图案(如图),则第n 个图案中白色地板砖的总块数N(块)与n 之间的关系式是N =4n +2,其中常量是4,2,变量是N ,n .16.若92号汽油的售价为6.8元/升,则付款金额y(元)随加油数量x(升)的变化而变化,其中,x是自变量,y是x的函数,其解析式为y=6.8x.17.函数y=1x-6中,自变量x的取值范围是x≠6.18.某公交车每月的利润y(元)与乘客人数x(人)之间的函数关系式为y=2.5x -6 000,该公交车为使每月不亏损,则每月乘客量x应满足的条件是x≥2__400且x为整数.19.对于函数y=6xx+3,当y=2时,x=32.20.若物体运动的路程s(米)与时间t(秒)的函数关系式为s=3t2+2t+1,则当t=4秒时,该物体运动的路程为57米.21.函数y=x+2x中,自变量x的取值范围是x≥-2且x≠0.22.函数y=x-2+(x-3)0中,自变量x的取值范围是x≥2且x≠3.三、解答题23.写出下列问题中的变量和常量:(1)购买单价为5元的钢笔n支,共花去y元;(2)全班50名同学,有a名男同学,b名女同学;(3)汽车以60 km/h的速度行驶了t h,所走过的路程为s km.解:(1)y,n是变量,5是常量.(2)a,b是变量,50是常量.(3)s,t是变量,60是常量.24.如图,已知m∥n,直线m,n之间的距离是3,△ABC的顶点A在直线m上,边BC在直线n上,设BC边的长为x,△ABC的面积为S,请用含x的式子表示S,并指出式子中的常量与变量.解:S=12×3x=32x.常量:3 2;变量:S,x.25.已知水池中有800立方米的水,每小时抽水50立方米.(1)写出剩余水的体积Q(立方米)与时间t(小时)之间的函数解析式;(2)写出自变量t的取值范围;(3)10小时后,池中还有多少水?解:(1)Q=800-50t.(2)令y=0,则0=800-50t,解得t=16.∴0≤t≤16.(3)当t=10时,Q=800-50×10=300.答:10小时后,池中还有300立方米水.。
第十九章 一次函数19.1.1 变量与函数一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. 1.对于圆的面积公式S =πR 2,下列说法中,正确的为 A .π是自变量 B .R 2是自变量 C .R 是自变量D .πR 2是自变量【答案】C【解析】因为在2πS R =中,π是圆周率,故π是常数,S 与R 是变量,其中R 是自变量,故选C . 2.长方形的周长为24 cm ,其中一边长为x cm (其中x >0),面积为y cm 2,则y 与x 的关系式为 A .2y x =B .(24)y x x =-C .2(12)y x =-D .(12)y x x =-【答案】D【解析】长方形的一边是x cm ,则另一边长是(12-x )cm .则y 与x 的关系式为y =(12-x )x .故选D . 3.下列图象中,表示y 是x 的函数的有A .1个B .2个C .3个D .4个【答案】B【解析】第一个图象,对每一个x 的值,都有唯一确定的y 值与之对应,是函数; 第二个图象,对每一个x 的值,都有唯一确定的y 值与之对应,是函数; 第三个图象,对给定的x 的值,有两个y 值与之对应,不是函数;第四个图象,对给定的x 的值,有两个y 值与之对应,不是函数.综上所述,表示y 是x 的函数的有第一个、第二个,共2个.故选B . 4.下列变量之间的关系不是函数关系的是 A .长方形的宽一定,其长与面积B .正方形的周长与面积C .等腰三角形的底边与面积D .球的体积与球的半径【答案】C【解析】A 项中,长方形的宽一定,是常量,而面积=长×宽,长与面积是两个变量,若长改变,则面积也变,是函数关系;B 项中,正方形的周长与面积是两个变量,给出一个周长的值C ,边长即为4C,相应地面积为2()4C S ==216C ,是函数关系; C 项中,底边与面积虽是两个变量,但面积公式中底边上的高也是变量,即存在三个变量,不是函数关系;D 项中,球的体积与其半径是函数关系,故选C .5.物体从足够高的地方做自由落体运动,下降的高度h 与时间t 满足关系式h =12gt 2,则3秒后物体下落的高度是(g 取10) A .15米B .45米D .60米【答案】C【解析】把t =3代入函数关系式得:=45(米),故选C . 6.设路程s ,速度v ,时间t ,在关系式中,说法正确的是 A .当s 一定时,v 是常量,.当v 一定时,t 是常量,s 是变量 C .当t 一定时,t 是常量,.当t 一定时,s 是常量,v 是变量【答案】C【解析】A 、当s 一定时,s 是常量,v 、t 是变量,故原题说法错误; B 、当v 一定时,v 是常量,t 、s 是变量,故原题说法错误; C 、当t 一定时,t 是常量,s ,v 是变量,说法正确;D 、当t 一定时,t 是常量,v 、s 是变量,故原题说法错误,故选C . 二、填空题:请将答案填在题中横线上.7.饮食店里快餐每盒5元,买n 盒需付S 元,则其中常量是__________,变量是__________. 【答案】5;n ,S【解析】由题意可知,在上述问题中,常量是:5;变量是:n 、S ,故答案为:5;n 、S .8.随着我国人口增长速度的减慢,小学入学儿童数量有所减少,下表中的数据近似地呈现了某地区入学儿童人数的变化趋势:(1)上表中__________是自变量,__________是因变量;(2)你预计该地区从__________年起入学儿童的人数不超过2000人.【答案】(1)年份,入学儿童人数;(2)2019【解析】(1)因为该表格中的数据近似地呈现了某地区入学儿童人数随年份的变化趋势,所以年份是自变量,入学儿童人数是因变量,故答案为:年份,入学儿童人数.(2)因为每年的入学儿童人数都比上一年减少190人,≈,2016+3=2019(年).∴(2520-2000)÷1903所以2019年起入学儿童的人数不超过2000人.故答案为:2019.三、解答题:解答应写出文字说明、证明过程或演算步骤.9的取值范围.(1(2(3(4)y=.【解析】(1)x为全体实数.≠,所以x<4.(2)被开方数4-x≥00(3)被开方数x+2≥0,所以x≥-2.(4)由被开方数5-x≥0,得x≤5.由分母x-3≠0,得x≠3,所以x≤5且x≠3.10.已知函数y=2x-3.(1)求当x=-4时的函数值;(2)当x为何值时,函数值为0?【解析】(1)当x=-4时,y=2x-3=2×(-4)-3=-11,即当x=-4时的函数值为-11.(2)当y=0时,0=2x-3,解得32x=,即当32x=时,函数值为0.11.写出下列各问题所满足的关系式,并指出各个关系式中,哪些是常量,哪些是变量.(1)每本练习本0.6元,购买练习本所需的钱数m(元)与购买的本数n(本)之间的关系式;(2)用总长度为27 m的篱笆刚好围成一个矩形场地,矩形的面积S(m2)与一边长x(m)之间的关系式;(3)某种饮水机盛满20升水,打开阀门每分钟可流出0.2升水,饮水机中剩余水量y(升)与放水时间x(分钟)之间的关系式.【解析】(1)m=0.6n;0.6是常量,m,n是变量.(是常量,S,x是变量.(是常量,x,y是变量.12.一个小球由静止开始在一个斜坡上向下滚动,其速度每秒增加2 m,到达坡底时,小球速度达到40 m/s.()与时间t(s)之间的函数关系式;((时小球的速度;(4)当t为何值时,小球的速度为16 m/s?【解析】(1)小球由静止开始在斜坡上向下滚动,滚动时间为1 s时,速度v=2×1=2(m/s);滚动时间为2 s时,速度v=2×2=4(m/s)……,滚动时间为t s时,速度v=2t(m/s),∴v与t之间的函数关系式为v=2t.(2)根据已知条件分析可知,小球的速度v的最小值为0 m/s,最大值为40 m/s,即0≤v≤40,用2t代替v,得0≤2t≤40,即0≤t≤20.(3)求3.5 s时小球的速度,实质是求t=3.5时的函数值.(4)当v=16时,求自变量t的值,解方程即可.。
第十九章 一次函数19.1.1 变量与函数(第1课时)基础导练1.下列关系式中,变量x= -1时,变量y=6的是( )A.y= 3x+3B.y= -3x+3C.y=3x – 3D.y= - 3x – 32.球的体积公式:V=34πr 3,r 表示球的半径,V 表示球的体积.当r=3时,V 的值为( )A.4 πB.12πC.36πD.π3.某商店售货时,在进货价的基础上加一定的利润,其数量x 与售价y 如下表示,根据表中所提供的信息,售价y 与售货数量x 的函数解析式为( ) 数量x(千克 )1 2 3 4 ··· 售价y(元) 8+0.4 16+0.8 24+1.2 32+1.6··· A.y=8.4x B.y= 8x +0.4 C.y=0.4x +8 D.y=8x4.正方体的棱长是a ,表面积为S ,那么S 与a 之间的函数解析式是( )A.S=4a 2B.S=a 3C.S=6a 2D.S=8a 25.一台机器开始工作时油箱中储油4升,如果每小时耗油0.5升,那么油箱中所剩油y (升)与它工作时间t(小时)之间的函数关系式是 .A.y=0.5tB.y= 4-0.5tC.y=4+0.5tD.y= 4/t6.在圆的周长和半径之间的关系式C=2πr 中,其中,_______是常量,_______是变量.7.有一棵树苗,刚栽下去时树高1.2米,以后每年长高0.2米,设x 年后树高为y 米,那么y 与x 之间的函数解析式为_______.8.某弹簧的自然长度为3cm ,在弹性限度内,所挂物体的质量x 每增加某1千克,弹簧长度y 增加0.5厘米. 则y=_______,其中的变量_______,常量_______.能力提升9.长方形的周长为18cm,长为ycm,宽为xcm.求y与x之间的函数解析式,并写出自变量x的取值范围.参考答案1.B2.C3.A4.C5.B6.2π r7.y=1.2+0.2x8.y=3+0.5x9.y=9-x x的取值范围为:0<x<9。
初中数学试卷变量与函数(2)◆随堂检测1、函数自变量的取值范围既要满足关系式又要满足实际问题2、在判断变量之间的关系是不是函数关系时,应满足两个特征:①必须有个变量,②给定其中一个变量(自变量)的值,另一个变量(因变量)都有与其相对应。
3. 设地面气温是20°C,如果每升高1km,气温下降6°C,则气温t(°C)与高度h(km)的关系是__________________,其中常量是,变量是。
对于每一个确定的h值都有的t 值与其对应;所以自变量,是因变量,是的函数4、购买单价是0.4元的铅笔,总金额y(元),与铅笔数n(个)的函数关系是___________.5、等腰三角形的顶角的度数y与底角的度数x的函数关系式是_______________.◆典例分析例题:如图是一天中一段时间内气温c(摄氏度)随时间t(小时)变化而变化的情况,请问;c是t的函数吗?t是c的函数吗?分析:函数不是数函数是关系函数是变量之间的关系函数是两个变量之间的关系函数是两个变量之间一种特殊的对应关系这种特殊的对应关系:一个自变量的值对应唯一的因变量的值也可以这样理解,如果一个自变量的值对应两个或更多的因变量的值,那么这种变量间的对应关系就不称做函数了。
解:①当t 是自变量,c 是因变量时,一个t 的值只对应一个c 的值,所以c 是t 的函数②当c 是自变量,t 是因变量时,一个c 的值可能对应两个c 的值,(如c=15时,t=1或5)所以t 不是c 的函数◆课下作业●拓展提高1、周长为10 cm 的等腰三角形,腰长y(cm)与底边长x(cm)的函数关系为__________________.2、函数1-=x y 中,自变量x 的取值范围是______________;函数11+=x y 中,自变量x 的取值范围是______________3、一弹簧,不挂重物时,长6cm ,挂上重物后,重物每增加1kg ,弹簧就伸长0.25cm ,但所挂重物不能超过10kg ,则弹簧总长y (cm )与重物质量x (kg )之间的函数关系式为__________ _。
人教版八年级下册数学19.1.1变量与函数 同步练习一、选择题1. 函数y =√x−2x 中,自变量x 的取值范围是( )A. x ≠0B. x ≥2C. x >2且x ≠0D. x ≥2且x ≠02. 在球的体积公式V=43πr 3中,下列说法正确的是 ( )A. V,r 是变量,43,π是常量B. V,r 是变量,43是常量C. V,π,r 是变量,43是常量D. 以上都不对3. 下列各曲线中表示y 是x 的函数的是( ) A. B. C. D.4. 若函数y ={x 2+2(x ≤2),2x(x >2),则当函数值y=8时,自变量x 的值是( ) A. ±√6 B. 4 C. ±√6或4 D. 4或−√65. 如图是某市某天的温度随时间变化的图象,通过观察可知,下列说法中,错误的是( )A. 这天15时温度最高B. 这天21时温度是30℃C. 这天最高温度与最低温度的差是13℃D. 这天3时温度最低6.琪琪在电脑上打字录入文稿,录入一段时间后因事暂停,过了一小会,琪琪继续录入并加快了录入速度,直至录入完成.设从录入文稿开始所经过的时间为x ,录入字数为y ,下面能反映y 与x 的函数关系的大致图象是( )A. AB. BC. CD. D7. 琪琪从家出发,外出散步,到一个公共阅报栏前看了一会报后,继续散步了一段时间,然后回家,如图描述了琪琪在散步过程中离家的距离s(米)与散步所用时间t(分钟)之间的函数关系,根据图象,下列信息错误的是( )A. 琪琪看报用时8分钟B. 公共阅报栏距琪琪家200米C. 琪琪离家最远的距离为400米D. 琪琪从出发到回家共用时16分钟二、填空题8. 已知函数y =3x 2+1,那么x =√2时的函数值为________.9. 给出下列关于变量x,y 的关系式:①3x-y=6; ②y =2|x|; ③4x −3=y 2.其中,y 是x 的函数的是________.(填序号)10. 已知2x-y=1,把它写成y 是x 的函数形式是________.11. 某种储蓄的月利率为m%,存入1000元本金后,本息和y(元)与所存的月数x 之间的函数关系式为________.12. 一个正方形的边长为5 cm,它的边长减少x cm后得到的新正方形的周长为y cm,y与x的关系式为,自变量的取值范围为.13. 已知等腰三角形的周长是20,则腰长y与底边长x之间的函数关系式为,自变量x的取值范围是.14.某水库的水位在5小时内持续上涨,初始的水位高度为6米,水位以每小时0.3米的速度匀速上升,则水库的水位高度y米与时间x小时(0≤x≤5)的函数关系式为.三、解答题15. 求下列函数的自变量x的取值范围:(1)y=4; (2) y=x2−3x+2; (3)y=√2x−5.3x−216. 已知y与x之间的函数关系为y=2x-1.(1)求x=5时的函数值; (2)求y=5时对应的自变量x的值.17. 一盛满10吨水的水箱,每时流出0.5吨水.水箱中水量y(吨)与时间x(时)之间有什么函数关系?写出x的取值范围.18. 写出下列各问题所满足的关系式,并指出各个关系式中,哪些是常量,哪些是变量.(1)每本练习本0.6元,购买练习本所需的钱数m(元)与购买的本数n(本)之间的关系式;(2)用总长度为27 m的篱笆刚好围成一个矩形场地,矩形的面积S(m2)与一边长x(m)之间的关系式;(3)某种饮水机盛满20升水,打开阀门每分钟可流出0.2升水,饮水机中剩余水量y(升)与放水时间x(分钟)之间的关系式.19. 一个小球沿着一个斜坡向下滚动,其速度每秒增加2米,到达坡底时,小球的速度达到40米/秒.(1)求小球速度v(米/秒)与时间t(秒)的函数关系式,并求t的取值范围;(2)几秒时,小球的速度变为16米/秒?20. 从A地向B地打长途电话的收费标准为:3分钟内收取2.4元(包含3分钟),每超过一分钟多收1元.(1)写出应收电话费y(元)与打电话时间x(分钟)之间的函数关系式;(2)某人打5分钟电话应付多少钱?(3)某人付电话费8.4元,他打了多少分钟电话?21. 如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,设D为BC上任意一点,点D不与B,C重合,且DC=x,若三角形ABD的面积为y.(1)请求出y与x之间的函数关系式,并写出自变量x的取值范围;(2)当x=6时,求三角形ABD的面积y.22. 如图是琪琪上学骑车途中速度与时间的关系.(1)他去上学共用了多长时间?最大速度是多少?(2)出发后的前10分钟,他的速度有什么变化?哪段时间匀速行驶?最后10分钟呢?。
初中数学试卷 马鸣风萧萧
变量与函数(2)
◆随堂检测
1、函数自变量的取值范围既要满足关系式 又要满足实际问题
2、在判断变量之间的关系是不是函数关系时,应满足两个特征:①必须有 个变量,②给定其中一个变量(自变量)的值,另一个变量(因变量)都有 与其相对应。
3. 设地面气温是20°C,如果每升高1km,气温下降6°C,则气温t(°C)与高度h(km)的关系是
__________________,其中常量是 ,变量是 。
对于每一个确定的h 值都有 的t 值与其对应;所以 自变量, 是因变量, 是 的函数
4、购买单价是0.4元的铅笔,总金额y(元),与铅笔数n(个)的函数关系是___________.
5、 等腰三角形的顶角的度数y 与底角的度数x 的函数关系式是_______________.
◆典例分析
例题: 时间t 0 1 2 3
4 5 6 7 8 温度ºc 16 15 14 12.
5
14 15 16 18 21
如图是一天中一段时间内气温c (摄氏度)随时间t (小时)
变化而变化的情况,请问;c 是t 的函数吗?t 是c 的函数吗?
分析:函数不是数
函数是关系
函数是变量之间的关系
函数是两个变量之间的关系
函数是两个变量之间一种特殊的对应关系
这种特殊的对应关系:一个自变量的值对应唯一的因变量的值
也可以这样理解,如果一个自变量的值对应两个或更多的因变量的值,那么这种变量间的对应关系就不称做函数了。
解:①当t 是自变量,c 是因变量时,一个t 的值只对应一个c 的值,所以c 是t 的函数
0 16 3 温度 时间
②当c 是自变量,t 是因变量时,一个c 的值可能对应两个c 的值,(如c=15时,t=1或5)所以t 不是c 的函数
◆课下作业
●拓展提高
1、周长为10 cm 的等腰三角形,腰长y(cm)与底边长x(cm)的函数关系为__________________.
2、函数1-=x y 中,自变量x 的取值范围是______________;函数1
1+=x y 中,自变量x 的取值范围是______________
3、一弹簧,不挂重物时,长6cm ,挂上重物后,重物每增加1kg ,弹簧就伸长0.25cm ,但所挂重物不能超过10kg ,则弹簧总长y (cm )与重物质量x (kg )之间的函数关系式为__________ _。
(注明自变量的取值范围)
4、下列变量之间的关系中,不是函数关系的是( )
A.长方形的宽一定,其长与面积
B.正方形的周长与面积
C.等腰三角形的底边和面积
D.球的体积和球的半径
5、游泳池内有清水12m 3,现以每分钟2 m 3的流量往池里注水,2小时可将池灌满.
(1) 求池内水量A(m 3)与注水时间t(分)之间的函数关系式,并指出自变量t 的取值范围;
(2) 当游泳池水注满后,以每分钟4 m 3的流量放出废水,求池内剩余量B(m 3)与放水时间x(分)之间的函数关系式,并指出自变量的取值范围.
6、汽车行驶前,油箱中有油55升,已知每百公里汽车耗油10公斤,求油箱中的余油量Q(公升)与它行驶的距离s(百公里)之间的函数关系式,写出自变量的取值范围。
●体验中考
1、(2009 黑龙江大兴安岭)函数1
-=x x y 中,自变量x 的取值范围是 . 2、(2009新疆喀什)A,B 两地相距30千米,小飞以每小时6千米的速度从A 地步行到B 地,若设他与B 地
的距离为y 千米,步行的时间为x 小时,则y 与x 之间的关系式为________
参考答案:
◆随堂检测
1、有意义,有意义
2、两,唯一的值
3. t=20-6h , 20、6, t 、h , 唯一, h , t , t 、h
4、y=0.4n
5、y=180-2x
◆课下作业
●拓展提高 1 2
10x y -= 2、因为被开方数非负,所以x≥l ;因为分母不能等于0,所以x≠-1
3、y=6+0.25x (x ≤10)
4、等腰三角形的底边乘以高等于面积有底边长、高、面积三个变量,所以不是函数,故选C
5、解:(1) A=12+2t (0≤t≤120) (2)B=252-4t (0≤t≤63)
6、解:Q=55-10s (0≤s≤5.5)
●体验中考
1、因为被开方数非负,分母不能等于0,所以0≥x 且1≠x
2、y=30-6x (0≤x≤5)。