排列组合等计数题型的解题技巧
- 格式:docx
- 大小:1.64 MB
- 文档页数:15
高考数学排列组合问题解题技巧随着时代的发展,高考数学的题型越来越多样化,而排列组合作为其中的一种重要题型,势必会在高考中频繁出现。
本文将介绍一些高考数学排列组合问题解题技巧,以供广大考生参考。
一、排列组合的基本概念排列数是指从n 个不同的元素中取出m 个元素,按顺序排列出所有可能情况的个数。
用符号 A m^n 表示。
组合数是指从n 个不同的元素中取出m 个元素,所有不考虑顺序的情况下,所有可能的情况个数。
用符号 C m^n 表示。
二、排列组合的解题方法1.全排列法当出现一道排列数的题目时,可以使用全排列法。
全排列可以采用迭代或递归的方式进行解答,迭代代码如下:void permutation(string str, int start, vector<string>& result) { if (start == str.length() - 1){ result.push_back(str); } else { for (int i = start; i < str.length(); i++) { swap(str[start], str[i]); permutation(str, start + 1, result); swap(str[start], str[i]); } }}递归代码如下:void permutation(string str, string result) { if (str == "") { cout << result << endl; } else { for (int i = 0;i < str.length(); i++) { string s = str.substr(0, i) +str.substr(i + 1); permutation(s, result +str[i]); } }}2.逆推法当出现一道组合数的题目时,可以使用逆推法。
奥数数字排列组合解题技巧在奥数(奥林匹克数学竞赛)中,数字排列组合是一个常见的考查点,涉及到的技巧和方法有很多。
以下是一些常见的解题技巧:1. 全排列与重复排列:-全排列:n个元素的全排列有n!种情况,其中n!表示n的阶乘。
-重复排列:有重复元素时,全排列的总数要除以重复元素的阶乘。
2. 循环置换:-对于n个元素的排列,可以通过循环置换的方式进行计算。
循环置换的计算可以借助循环节的长度和总元素个数。
3. 组合公式:-对于从n个元素中选取m个元素的组合数,使用二项式系数的组合公式:C(n, m) = n! / (m! * (n-m)!)4. 二项式定理:-利用二项式定理展开多项式,特别是在计算特殊值时,如计算(x+y)^n的展开式。
5. 递推关系:-有时候可以通过递推关系,找到某一项与前面项之间的关系,从而简化计算。
6. 逆向思维:-有时候可以从目标结果出发,逆向思考,找到排列组合的解。
7. 利用对称性:-利用对称性质,减少计算量。
例如,当问题中存在对称性时,可以利用对称性简化问题。
8. 鸽巢原理:-当分配的对象多于容器的个数时,至少有一个容器中含有两个或两个以上的对象。
这个原理在一些排列组合问题中经常被使用。
9. 图论中的排列组合:-在一些图论问题中,可以利用排列组合的知识,特别是在解决路径计数等问题时。
10. 二叉树与组合数学的关系:-一些问题可以通过构建二叉树的方式来求解,从而转化为组合数学的问题。
总的来说,对于奥数中的数字排列组合问题,关键是灵活运用数学知识,善于发现问题中的规律,并通过巧妙的思考和计算得到正确的结果。
高考数学必考摆列组合题型及解题方法(上)摆列组合问题联系实质生动风趣,但题型多样,思路灵活,所以解决摆列组合问题,第一要仔细审题,弄清楚是排列问题、组合问题仍是摆列与组合综合问题;其次要抓住问题的实质特点,采纳合理适合的方法来办理。
1.分类计数原理 (加法原理 )达成一件事,有类方法,在第 1 类方法中有种不一样的方法,在第 2 类方法中有种不一样的方法,,在第类方法中有种不同的方法,那么达成这件事共有:种不一样的方法.2.分步计数原理(乘法原理)达成一件事,需要分红个步骤,做第 1 步有种不一样的方法,做第 2 步有种不一样的方法,,做第步有种不一样的方法,那么达成这件事共有:种不一样的方法.分类计数原理分步计数原理差别分类计数原理方法互相独立,任何一种方法都能够独立地成这件事。
分步计数原理各步互相依存,每步中的方法达成事件的一阶段,不可以达成整个事件.决摆列组合综合性问题的一般过程以下 :仔细审题弄清要做什么事如何做才能达成所要做的事,即采取分步仍是分类,或是分步与分类同时进行,确立分多少步及多少类。
确立每一步或每一类是摆列问题(有序 )仍是组合 ( 无序)题,元素总数是多少及拿出多少个元素 .解决摆列组合综合性问题,常常类与步交错,所以一定掌一些常用的解题策略特别元素和特别地点优先策略1.由 0,1,2,3,4,5 能够构成多少个没有重复数字五位奇.:因为末位和首位有特别要求,应当优先安排,免得不合要的元素占了这两个地点 .先排末位共有而后排首位共有最后排其余地点共有由分步计数原理得习题 :7 种不一样的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两头的花盆里,问有多少不一样的种法?.相邻元素捆绑策略2.7 人站成一排 ,此中甲乙相邻且丙丁相邻 , 共有多少不一样的排法 .:可先将甲乙两元素捆绑成整体并当作一个复合元素,同时丙丁也当作一个复合元素,再与其余元素进行摆列,同时对相邻元素内部进行自排。
银行校招笔试行测数量关系:排列组合解题技巧
一、计数原理
1.加法原理:分类要相加;
2.乘法原理:分步要相乘。
对于排列组合的题目,我们首先需要考虑的就是计数原理,即完成这件事需要分类还是分步。
【例1】某班有5个男生4个女生,现要从中选出两人,如果要求恰好一男一女,有多少种不同的选法?
答案:20种。
要想完成选出一男一女这件事情,可以分成两步,一步选男生,一步选女生。
首先从5个男生中选出1个男生有5种选法,其次从4个女生中选出1个女生有4种选法,分步要相乘,则共有种选法。
二、计数方法
排列和组合是在计数原理的基础之上来使用的,即在分类分步的基础之上,遇到复杂计数,如果任取的元素有顺序要求,用排列来计数;如果没有顺序要求,则用组合来计数。
【例2】某班有5个男生4个女生,现要从中选出5人,如果要求3个男生2个女生,则有多少种不同的选法?
【例3】某班有5个男生4个女生,现要从中选出两人,如果要求至少有1个女生,则有多少种不同的选法?。
排列组合是数学中重要的概念,用于计算对象的不同排列或组合的数量。
以下是一些排列组合解题的常见技巧:
理解排列和组合的定义:排列是指从一组对象中选择若干个对象进行有序排列的方式,组合是指从一组对象中选择若干个对象进行无序组合的方式。
确定问题的性质:确定问题是涉及排列还是组合,这将有助于选择适当的计算方法。
使用排列和组合的公式:排列的计算公式是P(n, r) = n! / (n - r)!,组合的计算公式是C(n, r) = n! / (r! * (n - r)!),其中n表示总数,r表示选择的个数,"!"表示阶乘。
确定问题中的变量:确定问题中的各个变量,如总数n、选择的个数r等。
应用公式进行计算:根据问题中给出的条件,将变量代入排列或组合的公式,并进行计算。
注意特殊情况:在解题过程中,要注意处理特殊情况,如当选择的个数为0或等于总数时的情况。
使用辅助方法:有时候,可以使用辅助的方法简化问题的计算,如使用乘法原理、加法原理、容斥原理等。
理解问题的背景:在解题过程中,要理解问题的背景和要求,有时候可能需要考虑重复排列、有限个数的选择等特殊情况。
以上是一些常见的排列组合解题技巧,希望对你有帮助。
数学排列题型解题技巧
数学排列题型是数学中的基本题型之一,主要涉及数字的排列组合,以达到一定的数学目的。
下面是一些排列题型的解题技巧:
1. 观察特征,迅速找到解题关键。
对于排列题型,需要先仔细观察题目特征,理解题意,找到解题关键。
例如,题目中的某个数字或者顺序是关键信息,需要通过它来推导出其他信息。
2. 分类讨论,避免遗漏。
排列题型中常常出现多种不同的排列方式,需要分类讨论,避免遗漏。
例如,对于一组数字的排列,需要考虑全排列、顺序排列、逆序排列等不同的情况。
3. 利用组合,简化计算。
组合数学是排列题型的重要工具,它可以帮助简化计算,降低解题难度。
例如,对于一组数字的排列,可以利用组合数学的知识,计算出其中某一项的概率,或者计算出一组数字中所有可能排列方式的数量。
4. 善于联想,拓宽思路。
排列题型中常常出现一些隐含的条件或者信息,需要善于联想,拓宽思路,从而找到解题的关键。
例如,在排列题型中,需要特别注意题目中的隐含条件,它们可能会对解题产生重要的影响。
5. 多做练习,提高解题能力。
排列题型需要不断的练习才能提高解题能力。
可以通过做更多的排列题型,来加深对排列题型的理解和认识,提高自己的解题能力。
排列组合常见21种解题方法排列组合是高中数学中的重要知识点,也是考试中常见的题型。
在解决排列组合问题时,我们可以运用多种方法来求解,下面将介绍常见的21种解题方法。
1. 直接法,根据排列组合的定义,直接计算排列或组合的个数。
2. 公式法,利用排列组合的公式进行计算,如排列公式P(n,m)=n!/(n-m)!,组合公式C(n,m)=n!/(m!(n-m)!)。
3. 递推法,通过递推关系式求解排列组合问题,如利用排列数的递推关系P(n,m)=P(n-1,m)+P(n-1,m-1)。
4. 分类讨论法,将问题进行分类讨论,分别求解每种情况的排列组合个数,然后合并得出最终结果。
5. 组合数性质法,利用组合数的性质,如C(n,m)=C(n,n-m),C(n,m)=C(n-1,m)+C(n-1,m-1),简化计算过程。
6. 二项式定理法,利用二项式定理展开式子,求解排列组合问题。
7. 二项式系数法,利用二项式系数的性质,如n个不同元素的排列个数为n!,n个相同元素的排列个数为1,简化计算过程。
8. 容斥原理法,利用容斥原理求解排列组合问题,排除重复计算的部分。
9. 对称性法,利用排列组合的对称性质,简化计算过程。
10. 逆向思维法,从问题的逆向思考,求解排列组合问题。
11. 生成函数法,利用生成函数求解排列组合问题,将排列组合问题转化为多项式求解。
12. 构造法,通过构造合适的排列组合模型,求解问题。
13. 图论法,将排列组合问题转化为图论问题,利用图论算法求解。
14. 动态规划法,利用动态规划算法求解排列组合问题,降低时间复杂度。
15. 贪心算法法,利用贪心算法求解排列组合问题,简化计算过程。
16. 模拟法,通过模拟排列组合过程,求解问题。
17. 枚举法,将所有可能的排列组合情况列举出来,求解问题。
18. 穷举法,通过穷举所有可能的情况,求解问题。
19. 数学归纳法,利用数学归纳法证明排列组合的性质,求解问题。
排列组合等计数题型的解题技巧教学目标1.使学生正确理解排列、组合的意义;正确区分排列、组合问题;2.了解排列、排列数和组合数的意义,能根据具体的问题,写出符合要求的排列或组合;3.掌握排列组合的计算公式以及组合数与排列数之间的关系;4.会、分析与数字有关的计数问题,以及与其他专题的综合运用,培养学生的抽象能力和逻辑思维能力;通过本讲的学习,对排列组合的一些计数问题进行归纳总结,重点掌握排列与组合的联系和区别,并掌握一些排列组合技巧,如捆绑法、挡板法等。
5.根据不同题目灵活运用计数方法进行计数。
知识点拨:一、排列一般地,从n 个不同的元素中取出m (m n ≤)个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.根据排列的定义,两个排列相同,指的是两个排列的元素完全相同,并且元素的排列顺序也相同.如果两个排列中,元素不完全相同,它们是不同的排列;如果两个排列中,虽然元素完全相同,但元素的排列顺序不同,它们也是不同的排列.排列的基本问题是计算排列的总个数.从n 个不同的元素中取出m (m n ≤)个元素的所有排列的个数,叫做从n 个不同的元素的排列中取出m 个元素的排列数,我们把它记做m n P .根据排列的定义,做一个m 元素的排列由m 个步骤完成:步骤1:从n 个不同的元素中任取一个元素排在第一位,有n 种方法;步骤2:从剩下的(1n -)个元素中任取一个元素排在第二位,有(1n -)种方法;……步骤m :从剩下的[(1)]n m --个元素中任取一个元素排在第m 个位置,有11n m n m --=-+()(种)方法;由乘法原理,从n 个不同元素中取出m 个元素的排列数是121n n n n m ⋅-⋅-⋅⋅-+()()(),即121m n P n n n n m =---+()()(),这里,m n ≤,且等号右边从n 开始,后面每个因数比前一个因数小1,共有m 个因数相乘。
排列练习题技巧在数学排列组合的学习过程中,排列练习题是常见的一种形式。
掌握排列练习题的解题技巧,不仅可以提高解题速度,还能够增强对排列组合知识的理解。
下面将介绍一些排列练习题的技巧,帮助读者更好地应对这类题目。
一、确定题型在解答排列练习题之前,首先需要准确地确定题型。
排列练习题通常包括有重复和无重复的排列题。
有重复的排列题指的是排列中的元素可以重复使用,例如排列三个数字的所有可能性;无重复的排列题则指的是排列中的元素不能重复使用,例如从五个人中选出三个人进行排队的不同方式。
当我们确定了题型后,就可以根据其特点去寻找解题思路。
二、有重复的排列题技巧1. 确定排列元素的个数:在解答有重复的排列题之前,要明确所涉及元素的个数,以便确定排列的次数。
2. 利用总排列数公式:当排列的元素个数固定时,可以利用总排列数公式来计算。
总排列数公式为:n!/(m1! * m2! * ... * mk!),其中n 表示元素总个数,m1、m2、...、mk表示每个元素的相同个数。
3. 分类讨论:在有重复元素的排列题中,可以通过分类讨论的方式来解决。
即把相同元素看作一组,按照一组一组进行排列。
例如,若有重复元素A、B、C,可以将A、B、C看作一组,然后按照三个元素的排列方式进行计算。
三、无重复的排列题技巧1. 逐个固定位置法:在解决无重复的排列题时,可以考虑逐个固定位置,逐个填入元素的方法。
例如,从1到5依次填入5个位置,每个位置上的数字不能相同。
通过逐个固定位置,可以很好地解决这类题目。
2. 利用递归思想:递归思想是解决无重复排列题的重要思维方式。
可以将问题分解为子问题,通过递归的方式一步一步解决。
例如,从1到5选出3个数字进行排列,可以将问题拆解为从1到5选出2个数字进行排列,再逐步进行递归解决。
四、综合应用技巧有时候,排列练习题会融合了有重复和无重复的排列方式,需要综合应用上述技巧。
1. 分步计算:对于复杂的综合题目,可以分步计算。
排列组合常用方法题型总结【知识内容】1.基本计数原理⑴加法原理分类计数原理:做一件事,完成它有n 类方法,在第一类方法中有1m 种不同的方法,在第二类方法中有2m 种方法,……,在第n 类方法中有n m 种不同的方法.那么完成这件事共有12n N m m m =+++种不同的方法.又称加法原理.⑵乘法原理分步计数原理:做一件事,完成它需要分成n 个子步骤,做第一个步骤有1m 种不同的方法,做第二个步骤有2m 种不同方法,……,做第n 个步骤有n m 种不同的方法.那么完成这件事共有12n N m m m =⨯⨯⨯种不同的方法.又称乘法原理.⑶加法原理与乘法原理的综合运用如果完成一件事的各种方法是相互独立的,那么计算完成这件事的方法数时,使用分类计数原理.如果完成一件事的各个步骤是相互联系的,即各个步骤都必须完成,这件事才告完成,那么计算完成这件事的方法数时,使用分步计数原理.分类计数原理、分步计数原理是推导排列数、组合数公式的理论基础,也是求解排列、组合问题的基本思想方法,这两个原理十分重要必须认真学好,并正确地灵活加以应用.2. 排列与组合⑴排列:一般地,从n 个不同的元素中任取()m m n ≤个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.〔其中被取的对象叫做元素〕排列数:从n 个不同的元素中取出()m m n ≤个元素的所有排列的个数,叫做从n 个不同元素中取出m 个元素的排列数,用符号A m n 表示.排列数公式:A (1)(2)(1)m n n n n n m =---+,m n +∈N ,,并且m n ≤. 全排列:一般地,n 个不同元素全部取出的一个排列,叫做n 个不同元素的一个全排列. n 的阶乘:正整数由1到n 的连乘积,叫作n 的阶乘,用!n 表示.规定:0!1=.⑵组合:一般地,从n 个不同元素中,任意取出m ()m n ≤个元素并成一组,叫做从n 个元素中任取m 个元素的一个组合.组合数:从n 个不同元素中,任意取出m ()m n ≤个元素的所有组合的个数,叫做从n 个不同元素中,任意取出m 个元素的组合数,用符号C m n 表示.组合数公式:(1)(2)(1)!C !!()!m n n n n n m n m m n m ---+==-,,m n +∈N ,并且m n ≤. 组合数的两个性质:性质1:C C m n m n n -=;性质2:11C C C m m m n n n -+=+.〔规定0C 1n =〕⑶排列组合综合问题解排列组合问题,首先要用好两个计数原理和排列组合的定义,即首先弄清是分类还是分步,是排列还是组合,同时要掌握一些常见类型的排列组合问题的解法:1.特殊元素、特殊位置优先法元素优先法:先考虑有限制条件的元素的要求,再考虑其他元素; 位置优先法:先考虑有限制条件的位置的要求,再考虑其他位置;2.分类分步法:对于较复杂的排列组合问题,常需要分类讨论或分步计算,一定要做到分类明确,层次清楚,不重不漏.3.排除法,从总体中排除不符合条件的方法数,这是一种间接解题的方法.4.捆绑法:某些元素必相邻的排列,可以先将相邻的元素“捆成一个”元素,与其它元素进行排列,然后再给那“一捆元素”内部排列.5.插空法:某些元素不相邻的排列,可以先排其它元素,再让不相邻的元素插空.6.插板法:n 个相同元素,分成()m m n ≤组,每组至少一个的分组问题——把n 个元素排成一排,从1n -个空中选1m -个空,各插一个隔板,有11m n C --.7.分组、分配法:分组问题〔分成几堆,无序〕.有等分、不等分、部分等分之别.一般地平均分成n 堆〔组〕,必须除以n !,如果有m 堆〔组〕元素个数相等,必须除以m !8.错位法:编号为1至n 的n 个小球放入编号为1到n 的n 个盒子里,每个盒子放一个小球,要求小球与盒子的编号都不同,这种排列称为错位排列,特别当2n =,3,4,5时的错位数各为1,2,9,44.关于5、6、7个元素的错位排列的计算,可以用剔除法转化为2个、3个、4个元素的错位排列的问题.1.排列与组合应用题,主要考查有附加条件的应用问题,解决此类问题通常有三种途径:①元素分析法:以元素为主,应先满足特殊元素的要求,再考虑其他元素; ②位置分析法:以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置;③间接法:先不考虑附加条件,计算出排列或组合数,再减去不符合要求的排列数或组合数.求解时应注意先把具体问题转化或归结为排列或组合问题;再通过分析确定运用分类计数原理还是分步计数原理;然后分析题目条件,防止“选取”时重复和遗漏;最后列出式子计算作答.2.具体的解题策略有:①对特殊元素进行优先安排;②理解题意后进行合理和准确分类,分类后要验证是否不重不漏; ③对于抽出部分元素进行排列的问题一般是先选后排,以防出现重复; ④对于元素相邻的条件,采取捆绑法;对于元素间隔排列的问题,采取插空法或隔板法; ⑤顺序固定的问题用除法处理;分几排的问题可以转化为直排问题处理; ⑥对于正面考虑太复杂的问题,可以考虑反面.⑦对于一些排列数与组合数的问题,需要构造模型.【排列组合题型总结】直接法1 .特殊元素法例1用1,2,3,4,5,6这6个数字组成无重复的四位数,试求满足以下条件的四位数各有多少个〔1〕数字1不排在个位和千位〔2〕数字1不在个位,数字6不在千位。
排列组合题型及解题方法
排列组合是数学中的一个重要概念,用于计算对象的不同排列或组合的数量。
在解决排列组合问题时,可以使用以下几种常见的方法:
1. 计数法:根据问题的条件,逐步计算出排列或组合的数量。
例如,如果要求从n个不同的元素中选取r个元素进行排列,可以使用计数法计算出排列的数量为n(n-1)(n-2)...(n-r+1)。
2. 公式法:排列组合问题有一些常用的公式,可以直接使用这些公式计算出排列或组合的数量。
例如,排列的数量可以使用阶乘计算,组合的数量可以使用组合公式计算。
3. 递归法:对于一些复杂的排列组合问题,可以使用递归的方法进行求解。
递归法的基本思想是将问题分解为更小的子问题,并通过递归调用解决子问题。
4. 动态规划法:对于一些具有重叠子问题的排列组合问题,可以使用动态规划的方法进行求解。
动态规划法的基本思想是将问题划分为多个阶段,并通过保存中间结果来避免重复计算。
在实际应用中,排列组合问题常常与概率、统计、组合优化等领域相关。
解决排列组合问题需要灵活运用数学知识和方法,同时也需要具
备一定的逻辑思维能力。
理解高中数学中的排列组合问题的解题技巧高中数学是我们学习数学的重要阶段之一。
而排列组合问题作为其中的重要知识点,对于学生的学习也具有非常重要的意义。
在这篇文章中,我将要详细阐述高中数学中的排列组合问题以及如何解决这些问题的技巧。
1.什么是排列组合问题?排列是指在一定条件下,从给定的元素中取出指定个数的元素进行排列的不同情况的个数。
而组合是指在一定条件下,从给定的元素中取出指定个数的元素的不同情况的个数。
举个例子,当从3个不同的球中任选两个时,可以排列成3种不同情况(红球、蓝球;红球、绿球;蓝球、绿球)。
而这些球的组合只有3种情况(红球、蓝球;红球、绿球;蓝球、绿球)。
2.排列组合问题的解题技巧(1)确定问题的类型在解决排列组合问题时,首先需要确定问题的类型。
是排列问题还是组合问题?是从不同颜色的球中选取还是从相同的物品中选取?(2)理解问题的条件在确定问题的类型后,需要仔细分析问题中给出的条件。
比如,从A、B、C、D四个人中选出两个人组成一队时,需要明确选人数、选人条件以及是否考虑顺序等条件。
(3)根据所学知识解决问题在理解问题的条件后,我们需要根据所学的排列组合知识来解决问题。
对于排列问题,可以使用P(n,m)=n!/(n-m)!公式来求解;对于组合问题,可以使用C(n,m)=n!/m!(n-m)!公式来计算。
在实际计算时,我们也可以简化计算步骤,避免冗长的计算过程。
(4)多练习在学习排列组合问题时,我们需要多进行练习,通过不断地练习来熟练掌握解题技巧。
在练习过程中,可以选择不同难度的题目,逐步掌握解决排列组合问题的技巧。
3.总结排列组合问题作为高中数学中的重要知识点,在学习和考试中都具有不可忽视的作用。
在解决排列组合问题时,我们需要确定问题类型、理解问题条件、运用所学知识解决问题、多进行练习等几个方面进行操作。
只有通过不断地学习和练习,我们才能更好地掌握解决排列组合问题的技巧并应用到实际问题中。
高中数学排列组合与多项式展开解题技巧高中数学是一门重要的学科,其中排列组合与多项式展开是考试中常见的题型。
掌握解题技巧对于学生来说至关重要。
本文将介绍一些解题技巧,并举例说明,帮助高中学生提高解题能力。
一、排列组合题型排列组合是高中数学中的一个重要概念,常用于解决计数问题。
在解决排列组合题型时,我们需要注意以下几个方面的技巧。
1. 确定问题类型排列组合问题可以分为排列问题和组合问题。
在解题时,需要根据题目要求确定问题类型,以便选择合适的计算方法。
例如,有一个班级有10个学生,要从中选出3个学生组成一个小组,问有多少种不同的选择方式?这是一个组合问题,因为选出的学生组成的小组是无序的。
2. 确定计数原则在解决排列组合问题时,需要根据题目的具体要求确定计数原则。
常见的计数原则有乘法原则和加法原则。
乘法原则适用于多个独立事件同时发生的情况,计数方式是将每个事件的可能结果数相乘。
例如,有5个人排成一排,问有多少种不同的排列方式?根据乘法原则,第一个位置有5种选择,第二个位置有4种选择,以此类推。
所以总的排列方式数为5×4×3×2×1=120种。
加法原则适用于多个事件中至少发生一个的情况,计数方式是将每个事件的可能结果数相加。
例如,有一个班级有10个男生和8个女生,要从中选出一名班长,问有多少种不同的选择方式?根据加法原则,男生和女生分别都可以选出一名班长,所以总的选择方式数为10+8=18种。
二、多项式展开题型多项式展开是高中数学中的一个重要概念,常用于解决代数式的计算问题。
在解决多项式展开题型时,我们需要注意以下几个方面的技巧。
1. 使用二项式定理二项式定理是解决多项式展开问题的重要工具。
它可以将一个二项式的幂展开成一系列项的和。
例如,展开(x+2)^3。
根据二项式定理,展开结果为x^3+3x^2·2+3x·2^2+2^3,即x^3+6x^2+12x+8。
排列组合题型方法总结排列组合是高中数学中的一个重要概念,是组合数学的一部分。
在实际问题中,排列组合经常用于解决具体的计数问题。
在本文中,我将总结一些常见的排列组合题型及解题方法。
一、排列题型排列是指将一组元素按照一定的顺序进行排列,其中每个元素只能使用一次。
在排列题中常见的有以下几个题型:1. 线性排列:将不同的元素排成一列,求出排列的总数。
解题方法:根据要求确定对应的元素个数,并使用乘法法则计算排列的总数。
2. 圆排列:将不同的元素排成一个圆,求出排列的总数。
解题方法:将圆转成线性排列问题,然后使用相应的公式计算总数。
3. 重复排列:将一组相同的元素排列,求出排列的总数。
解题方法:根据相同元素的个数和元素总数使用组合计数的方法求解。
4. 位置固定:将一组元素排列,其中有一些元素的位置是固定的,求出排列的总数。
解题方法:先将固定位置的元素排列,再将剩余的元素排列,最后将两部分排列的总数相乘。
二、组合题型组合是指从一组元素中选取一部分元素进行组合,其中元素的顺序不重要。
在组合题中常见的有以下几个题型:1. 选取固定元素数量:从一组元素中选取固定数量的元素,求出组合的总数。
解题方法:根据选取数量使用排列计数的方法求解,然后除以固定元素的排列数。
2. 选取至少/至多元素数量:从一组元素中选取至少或至多数量的元素,求出组合的总数。
解题方法:分别计算满足要求的最少元素数量和最多元素数量的组合数,再将两者相加。
3. 选取按顺序:从一组元素中按照一定的顺序选取元素,求出组合的总数。
解题方法:根据顺序确定每个元素的选取范围,然后使用乘法法则计算总数。
4. 选取排除元素:从一组元素中选取一部分元素,其中不能包含某些特定的元素,求出组合的总数。
解题方法:先计算从总元素中选取的组合数,再计算不包含特定元素的组合数,最后将两者相减。
三、应用题在实际问题中,排列组合常常用于解决具体的计数问题。
下面列举几个常见的排列组合应用题:1. 手环问题:将不同颜色的手环依次戴在手上,求出不同戴法的总数。
排列组合解题技巧归纳总结教学内容1.分类计数原理(加法原理)完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有:种不同的方法.2.分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有:种不同的方法.3.分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。
分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。
3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置.先排末位共有13C然后排首位共有14C最后排其它位置共有34A 由分步计数原理得113434288C C A =练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法? 二.相邻元素捆绑策略例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。
由分步计数原理可得共有522522480A A A =种不同的排法练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20 三.不相邻问题插空策略例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种?443解:分两步进行第一步排2个相声和3个独唱共有55A 种,第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种46A 不同的方法,由分步计数原理,节目的不同顺序共有5456A A 种练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 30 四.定序问题倍缩空位插入策略例4.7人排队,其中甲乙丙3人顺序一定共有多少不同的排法解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素之间的全排列数,则共有不同排法种数是:7373/A A(空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有47A 种方法,其余的三个位置甲乙丙共有 1种坐法,则共有47A 种方法。
数学排列组合解题技巧
数学排列组合作为考试中常见的题型,是需要我们平时不断练习并总结经验的。
下面就为大家分享一些数学排列组合解题技巧。
1. 确定题目中给出的条件
首先,我们需要仔细审题,将题目中给出的条件、限制、关键字等重要信息识别出来,并将其记录在草稿纸上。
2. 划分问题类型
根据题目中给出的条件和要求,我们可以将排列组合问题分成以下几种类型:
①求排列数
②求组合数
③求重复排列数
④求重复组合数
对于每种类型的问题,我们需要掌握相应的计算方法。
3. 确定计算公式
针对每种问题类型,我们需要掌握相应的公式。
例如,排列数的计算
公式为A(n,m)=n!/(n-m)!,组合数的计算公式为C(n,m)=n!/[(n-m)!m!],以及重复排列数和重复组合数的计算公式等。
4. 细心计算
在计算过程中,我们需要特别注意数字的大小、符号的加减、乘除的
顺序等问题,避免犯低级错误。
我们需要耐心琢磨,每一步计算都要
仔细检查。
5. 多思路解题
对于一个问题,我们可以尝试多种不同的思路进行解答,选择最为简单、直接的计算方法,并结合个人经验和实际情况,合理选择解题策略。
以上就是数学排列组合解题技巧的一些基本要点。
在实际解题中,我
们还需要灵活运用所学知识,尝试多种计算方法,以便更好地理解和
掌握其中的规律和技巧。
高中排列组合题型及解题方法高中排列组合题型及解题方法排列和组合是高中数学中比较重要的一部分,也是经常会被考到的题型。
排列组合题的解题方法也比较多样,下面我们就来详细讲解一下高中排列组合题型及解题方法。
一、排列排列是指从一定个数中取出一部分进行排序,其顺序不同,则排列也不同。
简单来说,就是“从n个不同元素中取出m个元素进行排列”的问题,排列的计算公式是P(n,m)=n*(n-1)*(n-2)*...*(n-m+1)。
下面就来看一个具体的实例:在有10个人中挑选三个人排队,问有多少种排法?解题思路:从10个人中取出3人进行排列,共有P(10,3)种排列方法,即P(10,3)=10 * 9 * 8 = 720 种方案。
二、组合组合是指从一定个数中取出一部分,其顺序不同,则组合相同。
简单来说,就是“从n个不同元素中取出m个元素”的问题,组合的计算公式是C(n,m)=n!/m!(n-m)!。
下面就来看一个具体的实例:有8个人排成一行,现需从中选出5个人组成小组,请问有多少种组合方式?解题思路:从8个人中选出5人组成小组,共有C(8,5)种组合方法,即C(8,5)=8!/5!3!=56种方案。
三、排列组合计数法排列组合计数法是指通过组合、排列的计算,求解相关方案数的方法。
其中常见的方法有加法原理、乘法原理以及容斥原理。
1. 加法原理加法原理是指,在计算某个事件发生的总次数时,如果该事件可以被分解成m个互不相交的子事件,且每个子事件的发生次数分别为n1,n2,...,nm,则该事件发生的总次数为n1+n2+...+nm。
下面举例说明:一件工作分成两个阶段,第一阶段有4种做法,第二阶段有3种做法,则整个工作的做法有4+3=7种。
2. 乘法原理乘法原理是指,在计算某个事件发生的总次数时,如果该事件可以被分解成m个独立的子事件,且第一子事件有n1种发生方式,第二子事件有n2种发生方式,..., 第m个子事件有nm种发生方式,则该事件发生的总次数为n1*n2*...*nm。
高中数学排列组合的概念及解题技巧在高中数学中,排列组合是一个重要的概念,涉及到许多实际问题的求解。
掌握排列组合的概念和解题技巧,不仅可以帮助我们解决数学问题,还能培养我们的逻辑思维和分析能力。
本文将详细介绍排列组合的概念,并结合具体题目,分析解题技巧,帮助高中学生和他们的父母更好地理解和应用排列组合。
一、排列的概念及解题技巧排列是指从一组元素中按照一定的顺序选取若干个元素的方式。
在排列中,元素的顺序是重要的,不同的顺序会得到不同的排列数。
常见的排列问题包括字母的排列、数字的排列等。
例如,有5个不同的字母A、B、C、D、E,要从中选取3个字母进行排列,求排列的个数。
我们可以使用以下的解题思路:首先,确定排列的个数与选取的元素个数有关,即从5个字母中选取3个字母进行排列。
根据排列的定义,第一个字母有5种选择,第二个字母有4种选择(因为第一个字母已经选取了一个),第三个字母有3种选择(因为前两个字母已经选取了两个)。
所以,排列的个数为5×4×3=60。
除了使用直接计算的方法外,我们还可以使用排列公式进行计算。
排列公式是指当选取的元素个数和总元素个数已知时,计算排列的个数的公式。
对于上述的问题,我们可以使用排列公式进行计算:排列公式为:A(n,m) = n!/(n-m)!其中,n表示总元素个数,m表示选取的元素个数,"!"表示阶乘运算。
根据排列公式,我们可以得到A(5,3) = 5!/(5-3)! = 5×4×3 = 60,与前面的计算结果一致。
二、组合的概念及解题技巧组合是指从一组元素中选取若干个元素的方式,与排列不同的是,组合中元素的顺序并不重要,相同的元素组成的不同顺序的组合被视为同一种组合。
常见的组合问题包括选课组合、人员分组等。
例如,有5个不同的字母A、B、C、D、E,要从中选取3个字母进行组合,求组合的个数。
我们可以使用以下的解题思路:首先,确定组合的个数与选取的元素个数有关,即从5个字母中选取3个字母进行组合。
排列组合等计数题型的解题技巧教学目标1.使学生正确理解排列、组合的意义;正确区分排列、组合问题;2.了解排列、排列数和组合数的意义,能根据具体的问题,写出符合要求的排列或组合;3.掌握排列组合的计算公式以及组合数与排列数之间的关系;4.会、分析与数字有关的计数问题,以及与其他专题的综合运用,培养学生的抽象能力和逻辑思维能力;通过本讲的学习,对排列组合的一些计数问题进行归纳总结,重点掌握排列与组合的联系和区别,并掌握一些排列组合技巧,如捆绑法、挡板法等。
5.根据不同题目灵活运用计数方法进行计数。
知识点拨:一、排列一般地,从n 个不同的元素中取出m (m n ≤)个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.根据排列的定义,两个排列相同,指的是两个排列的元素完全相同,并且元素的排列顺序也相同.如果两个排列中,元素不完全相同,它们是不同的排列;如果两个排列中,虽然元素完全相同,但元素的排列顺序不同,它们也是不同的排列.排列的基本问题是计算排列的总个数.从n 个不同的元素中取出m (m n ≤)个元素的所有排列的个数,叫做从n 个不同的元素的排列中取出m 个元素的排列数,我们把它记做m n P .根据排列的定义,做一个m 元素的排列由m 个步骤完成:步骤1:从n 个不同的元素中任取一个元素排在第一位,有n 种方法;步骤2:从剩下的(1n -)个元素中任取一个元素排在第二位,有(1n -)种方法;……步骤m :从剩下的[(1)]n m --个元素中任取一个元素排在第m 个位置,有11n m n m --=-+()(种)方法;由乘法原理,从n 个不同元素中取出m 个元素的排列数是121n n n n m ⋅-⋅-⋅⋅-+()()(),即121m n P n n n n m =---+()()(),这里,m n ≤,且等号右边从n 开始,后面每个因数比前一个因数小1,共有m 个因数相乘。
二、组合一般地,从n 个不同元素中取出m 个(m n ≤)元素组成一组不计较组内各元素的次序,叫做从n 个不同元素中取出m 个元素的一个组合.从排列和组合的定义可以知道,排列与元素的顺序有关,而组合与顺序无关.如果两个组合中的元素完全相同,那么不管元素的顺序如何,都是相同的组合,只有当两个组合中的元素不完全相同时,才是不同的组合.从n 个不同元素中取出m 个元素(m n ≤)的所有组合的个数,叫做从n 个不同元素中取出m 个不同元素的组合数.记作m n C 。
一般地,求从n 个不同元素中取出的m 个元素的排列数n m P 可分成以下两步:第一步:从n 个不同元素中取出m 个元素组成一组,共有m n C 种方法;第二步:将每一个组合中的m 个元素进行全排列,共有m mP 种排法. 根据乘法原理,得到mm m n n m P C P =⋅.因此,组合数12)112321⋅-⋅-⋅⋅-+==⋅-⋅-⋅⋅⋅⋅m m n nm m P n n n n m C P m m m ()(()()(). 这个公式就是组合数公式.例题精讲:一、 排列组合的应用【例 1】 小新、阿呆等七个同学照像,分别求出在下列条件下有多少种站法?(1)七个人排成一排;(2)七个人排成一排,小新必须站在中间.(3)七个人排成一排,小新、阿呆必须有一人站在中间.(4)七个人排成一排,小新、阿呆必须都站在两边.(5)七个人排成一排,小新、阿呆都没有站在边上.(6)七个人战成两排,前排三人,后排四人.(7)七个人战成两排,前排三人,后排四人. 小新、阿呆不在同一排。
【解析】 (1)775040P =(种)。
(2)只需排其余6个人站剩下的6个位置.66720P =(种).(3)先确定中间的位置站谁,冉排剩下的6个位置.2×66P =1440(种).(4)先排两边,再排剩下的5个位置,其中两边的小新和阿呆还可以互换位置.552240P ⨯= (种).(5)先排两边,从除小新、阿呆之外的5个人中选2人,再排剩下的5个人,25552400P P ⨯=(种).(6)七个人排成一排时,7个位置就是各不相同的.现在排成两排,不管前后排各有几个人,7个位置还是各不相同的,所以本题实质就是7个元素的全排列.775040P =(种).(7)可以分为两类情况:“小新在前,阿呆在后”和“小新在前,阿呆在后”,两种情况是对等的,所以只要求出其中一种的排法数,再乘以2即可.4×3×55P ×2=2880(种).排队问题,一般先考虑特殊情况再去全排列。
【例 2】 用1、2、3、4、5、6可以组成多少个没有重复数字的个位是5的三位数?【解析】 个位数字已知,问题变成从从5个元素中取2个元素的排列问题,已知5n =,2m =,根据排列数公式,一共可以组成255420P =⨯=(个)符合题意的三位数。
【巩固】 用1、2、3、4、5这五个数字可组成多少个比20000大且百位数字不是3的无重复数字的五位数?【解析】 可以分两类来看:⑴ 把3排在最高位上,其余4个数可以任意放到其余4个数位上,是4个元素全排列的问题,有44432124P =⨯⨯⨯=(种)放法,对应24个不同的五位数;⑵ 把2,4,5放在最高位上,有3种选择,百位上有除已确定的最高位数字和3之外的3个数字可以选择,有3种选择,其余的3个数字可以任意放到其余3个数位上,有336P =种选择.由乘法原理,可以组成33654⨯⨯=(个)不同的五位数。
由加法原理,可以组成245478+=(个)不同的五位数。
【巩固】 用0到9十个数字组成没有重复数字的四位数;若将这些四位数按从小到大的顺序排列,则5687是第几个数?【解析】从高位到低位逐层分类:⑴千位上排1,2,3或4时,千位有4种选择,而百、十、个位可以从0~9中除千位已确定的数字之外的9个数字中选择,因为数字不重复,也就是从9个元素中取3个的排列问题,所以百、十、个位可有39987504P=⨯⨯=(种)排列方式.由乘法原理,有45042016⨯=(个).⑵千位上排5,百位上排0~4时,千位有1种选择,百位有5种选择,十、个位可以从剩下的八个数字中选择.也就是从8个元素中取2个的排列问题,即288756P=⨯=,由乘法原理,有1556280⨯⨯=(个).⑶千位上排5,百位上排6,十位上排0,1,2,3,4,7时,个位也从剩下的七个数字中选择,有116742⨯⨯⨯=(个).⑷千位上排5,百位上排6,十位上排8时,比5687小的数的个位可以选择0,1,2,3,4共5个.综上所述,比5687小的四位数有20162804252343+++=(个),故比5687小是第2344个四位数.【例 3】用1、2、3、4、5这五个数字,不许重复,位数不限,能写出多少个3的倍数?【解析】按位数来分类考虑:⑴一位数只有1个3;⑵两位数:由1与2,1与5,2与4,4与5四组数字组成,每一组可以组成22212P=⨯=(个)不同的两位数,共可组成248⨯=(个)不同的两位数;⑶三位数:由1,2与3;1,3与5;2,3与4;3,4与5四组数字组成,每一组可以组成3 33216P=⨯⨯=(个)不同的三位数,共可组成6424⨯=(个)不同的三位数;⑷四位数:可由1,2,4,5这四个数字组成,有44432124P=⨯⨯⨯=(个)不同的四位数;⑸五位数:可由1,2,3,4,5组成,共有5554321120P=⨯⨯⨯⨯=(个)不同的五位数.由加法原理,一共有182424120177++++=(个)能被3整除的数,即3的倍数.【巩固】用1、2、3、4、5、6六张数字卡片,每次取三张卡片组成三位数,一共可以组成多少个不同的偶数?【解析】由于组成偶数,个位上的数应从2,4,6中选一张,有3种选法;十位和百位上的数可以从剩下的5张中选二张,有255420P=⨯=(种)选法.由乘法原理,一共可以组成32060⨯=(个)不同的偶数.【例 4】某管理员忘记了自己小保险柜的密码数字,只记得是由四个非0数码组成,且四个数码之和是9,那么确保打开保险柜至少要试几次?【解析】四个非0数码之和等于9的组合有1,1,1,6;1,1,2,5;1,1,3,4;1,2,2,4;1,2,3,3;2,2,2,3六种。
第一种中,可以组成多少个密码呢?只要考虑6的位置就可以了,6可以任意选择4个位置中的一个,其余位置放1,共有4种选择;第二种中,先考虑放2,有4种选择,再考虑5的位置,可以有3种选择,剩下的位置放1,共有4312⨯=(种)选择同样的方法,可以得出第三、四、五种都各有12种选择.最后一种,与第一种的情形相似,3的位置有4种选择,其余位置放2,共有4种选择.综上所述,由加法原理,一共可以组成412121212456+++++=(个)不同的四位数,即确保能打开保险柜至少要试56次.【例 5】两对三胞胎喜相逢,他们围坐在桌子旁,要求每个人都不与自己的同胞兄妹相邻,(同一位置上坐不同的人算不同的坐法),那么共有多少种不同的坐法?【解析】第一个位置在6个人中任选一个,有166C=(种)选法,第二个位置在另一胞胎的3人中任选一个,有133C =(种)选法.同理,第3,4,5,6个位置依次有2,2,1,1种选法.由乘法原理,不同的坐法有11111163221163221172P P P P P P ⨯⨯⨯⨯⨯=⨯⨯⨯⨯⨯=(种)。
【例 6】 一种电子表在6时24分30秒时的显示为6:24:30,那么从8时到9时这段时间里,此表的5个数字都不相同的时刻一共有多少个?【解析】 设A :BC DE 是满足题意的时刻,有A 为8,B 、D 应从0,1,2,3,4,5这6个数字中选择两个不同的数字,所以有26P 种选法,而C 、E 应从剩下的7个数字中选择两个不同的数字,所以有27P 种选法,所以共有26P ×27P =1260种选法。
从8时到9时这段时间里,此表的5个数字都不相同的时刻一共有1260个。
【例 7】 一个六位数能被11整除,它的各位数字非零且互不相同的.将这个六位数的6个数字重新排列,最少还能排出多少个能被11整除的六位数?【解析】 设这个六位数为abcdef ,则有()a c e ++、()b d f ++的差为0或11的倍数.且a 、b 、c 、d 、e 、f 均不为0,任何一个数作为首位都是一个六位数。
先考虑a 、c 、e 偶数位内,b 、d 、f 奇数位内的组内交换,有33P ×33P =36种顺序;再考虑形如badcfe 这种奇数位与偶数位的组间调换,也有33P ×33P =36种顺序。
所以,用均不为0的a 、b 、c 、d 、e 、f 最少可排出36+36=72个能被11整除的数(包含原来的abcdef )。