流域—河口三角洲湿地生态系统健康评价研究进展
- 格式:pdf
- 大小:638.50 KB
- 文档页数:10
第34卷第6期2023年11月㊀㊀水科学进展ADVANCES IN WATER SCIENCE Vol.34,No.6Nov.2023DOI:10.14042/ki.32.1309.2023.06.015黄河三角洲水文-地貌-生态系统演变与多维调控研究进展凡姚申1,窦身堂1,于守兵1,王广州1,吴㊀彦1,谢卫明2(1.黄河水利科学研究院水利部黄河下游河道与河口治理重点实验室,河南郑州㊀450003;2.华东师范大学河口海岸学国家重点实验室,上海㊀200241)摘要:河口三角洲是由水文㊁地貌和生态耦合作用形成的复合系统,其演变具有时空波动性强㊁响应高度敏感㊁边缘效应显著与环境异质性高的特性,属典型的易失衡区㊂从黄河三角洲水文-地貌-生态子系统演变过程㊁耦合作用关系以及多维调控理论与技术等方面,阐述了多重压力下的子系统自适应调整与状态特征,归纳了水文条件与河口地貌-生态系统演变的互馈关系,搭建了多维协同的水沙配置研究框架,并提出了基于水沙优化配置的多维调控策略㊂针对目前研究存在的问题,从连续性监测平台建设㊁全过程模型构建㊁失衡风险预测以及多维调控理论与技术研究等方面提出了未来研究的重点方向,以期为优化利用有限水沙资源维持河口系统稳定提供科学支撑㊂关键词:水文-地貌-生态;演变过程;耦合关系;互馈关系;多维调控;黄河三角洲中图分类号:P737;X171.1㊀㊀㊀文献标志码:A㊀㊀㊀文章编号:1001-6791(2023)06-0984-15收稿日期:2023-06-12;网络出版日期:2023-10-19网络出版地址:https :ʊ /urlid /32.1309.P.20231019.1237.002基金项目:国家自然科学基金资助项目(U2243207);河南省自然科学基金资助项目(232300421017)作者简介:凡姚申(1989 ),男,河南项城人,高级工程师,博士,主要从事河口海岸水沙动力地貌研究㊂E-mail:fysmyself@通信作者:窦身堂,E-mail:doushentang@ 河口三角洲作为河陆海相互作用的关键区域,给人类和全球众多生物提供了重要栖息场所和物质来源,是地球表层极具价值的生态系统,也是经济社会可持续发展的核心地带[1],在全球有效碳存贮与碳中和方面具有不可替代性[2-3]㊂维护河口演变平衡关乎三角洲的稳定与资源利用的可持续性,是沿海经济社会发展的重要基石㊂然而,河口三角洲演变具有时空波动性强㊁变化响应敏感㊁边缘效应显著以及环境异质性高等特性,属典型的易失衡区㊂20世纪50年代以来,河流入海水沙减小叠加海平面上升和极端气候事件,导致全球大多数河口三角洲出现岸滩侵蚀㊁土地淹没㊁生态环境破坏等一系列问题[4]㊂因此,河口地貌演变与生态系统演化成为近期及未来研究热点, 大河三角洲计划 (Mega-Delta Programme)已列入联合国 海洋科学 十年行动计划(2021 2030年),同时相关问题也纳入了‘国家重大科技基础设施建设中长期规划(2012 2030年)“㊂黄河是以高含沙量著称的世界级大河,大量入海泥沙在河口沉积造就了广袤的河口三角洲,同时孕育了世界上暖温带保存最广阔㊁最完善㊁最年轻的湿地生态系统,是黄河下游与环渤海地区的天然生态屏障㊂黄河三角洲属于河控多沙型河口三角洲,由1855年黄河在铜瓦厢决口流入渤海后经过11次大的流路变迁㊁泥沙堆积而形成[5-6]㊂黄河三角洲稳定是黄河流域与环渤海地区的防洪安全㊁供水安全㊁生态安全和经济社会发展全局的重要基础㊂2019年,黄河流域生态保护与高质量发展上升为国家重大战略,明确提出 黄河三角洲要做好保护工作,促进生态系统健康,提高生物多样性 ㊂然而,与世界大河三角洲类似,黄河三角洲也同样承受着来自河流㊁海洋和人类活动的多重压力,目前已出现入海泥沙急剧变化的新现象[7];河口由快速向海淤进到缓慢沉积,水下三角洲局部出现侵蚀迹象,正处于冲淤转型新时期[8-9];尾闾沟汊不断撕裂产㊀第6期凡姚申,等:黄河三角洲水文-地貌-生态系统演变与多维调控研究进展985㊀生㊁孕育发展,拦门沙出露水面,河口前缘淤积延伸出现新状态[10]㊂在新情势下,黄河三角洲水文㊁地貌㊁生态演变与响应机制更加复杂㊂目前,国内外在黄河三角洲水文和地貌过程及生态现状等各个方面都取得了一系列重大研究成果,但对其演变与调控研究进展综述性文献却较少㊂本文就近30a来黄河三角洲水文-地貌-生态演变与调控的相关研究进展进行归纳和总结,包括黄河三角洲子系统演变过程㊁耦合作用关系以及多维调控理论与技术等,探讨目前存在的主要问题,并对今后研究方向作出展望㊂1㊀水文-地貌-生态子系统演变1.1㊀入海水沙变化与水文条件入海水沙是河口最典型的水文过程㊂20世纪50年代以来,随着河流建坝㊁采砂和引水等工程的建设,全球主要河流河口来水来沙量呈持续下降趋势,如红河流域Hoa Binh大坝建成后,泥沙通量较建坝前减少了约60%~70%[11],人类活动使珠江口内泥沙淤积量减少约29%[12]㊂与世界大河河口类似,黄河口入海泥沙也呈显著减少的趋势㊂1960年三门峡水库开始运行以前是黄河入海水文过程的 天然期 ,据利津水文站20世纪50年代水沙资料显示,该时期黄河口年均入海水量为480亿m3㊁沙量为13.4亿t㊂1986年后黄河年均入海水沙进入枯水少沙期,水㊁沙量分别是天然期的35%和18%㊂20世纪90年代河口出现连年断流,小浪底水库调控运用以来(2002 2022年)黄河不再断流,但黄河水文情势仍处于水沙延续枯少期[10]㊂黄河口入海水沙的这些变化势必会对河口地貌和生态演变造成影响,对于黄河口地区的管理和保护,需要综合考虑水沙输送的变化趋势,采取相应的措施来维护河口地貌稳定和生态系统健康发展㊂河流入海泥沙输运扩散过程已成为河口海岸和近岸海洋学研究的前沿和热点问题㊂入海泥沙扩散机制是三角洲地貌演变的重要环节,但受区域动力特征及混合过程和流域㊁海洋动力过程相互作用的影响,探究河口泥沙扩散途径和范围一直是难点[13-14]㊂黄河水沙入海上层径流与底层海流作用形成的切变锋锋面拦阻,是限制河口入海泥沙的重要因素和河口拦门沙形成的重要动力机制[15]㊂季节性海水温度变化是影响水沙扩散的另一个重要因素,相比于冬季,夏季表层海水温度升高,水体分层强烈,上下层易形成温度切变锋,表层高含沙冲淡水向外海扩展更远㊂入海水沙在黄河口不同区域呈现输运沉积特征差异,但已有研究结果并不统一㊂有研究认为扩散范围限制在15m等深线以浅区域[16];另一部分研究则认为入海泥沙输运按一定比例沉积在拦门沙(河口)㊁水下三角洲(滨海)㊁外海,但不同研究中各区域比例存在较大差异,未能达成共识[17]㊂黄河口海域盐度1958 2000年总体呈上升趋势[18],盐度升高对河口三角洲地下水位变化㊁土壤盐分分布产生影响,进而对河口三角洲湿地发育有较大影响㊂黄河三角洲区地下水主要为微咸水㊁咸水和卤水[19],以往研究聚焦于黄河三角洲地下水淡咸水的形成和演化㊁地下水土壤空间分异规律㊁营养盐入海通量变化等[20],但对地下水埋深㊁土壤盐分时空分布特征与黄河入海径流变化的相关性研究仍不充分㊂1.2㊀尾闾冲淤与三角洲地貌演变黄河 善淤㊁善决㊁善徙 ,其尾闾入海流路历经10余次大规模改道后叠置形成复杂的三角洲叶瓣体系㊂随着叶瓣不断向海延伸,改道点有向上游移动的趋势[21]㊂从水动力学机制来看,河床纵向坡度减小和回水效应是造成河流改道的重要原因[22]㊂自1976年起入海流路改道至清水沟,对清水沟河道演变及影响因素研究成果颇丰㊂Zheng等[23]将清水沟流路演变分为快速淤积(1976 1980年)㊁河道展宽(1980 1985年)㊁河道萎缩(1985 1996年)和河道下切加深(1996 2015年)4个阶段㊂Han等[24]指出河道地形受水沙调控㊁尾闾改道和三角洲前缘发育程度等因素制约,且河道在来水来沙量较小时萎缩变浅,在来水量较大时下切展宽㊂刘清兰等[25]基于正交曲线网格建立利津站以下河道数字高程模型,发现调水调沙改变了入海水沙的年内分配,造成尾闾河道的持续冲刷,2002 2017年累计冲刷泥沙量为6240万m3;但经过多年冲刷,986㊀水科学进展第34卷㊀受河床整体下切和河口淤积延伸影响,调水调沙的冲刷效率在持续降低㊂黄河三角洲总体地貌演变特征为行河流路岸线淤积延伸㊁不行河流路岸段持续蚀退,三角洲地貌演变呈现显著的空间异质性和不平衡状态㊂陆上三角洲年代际地貌演变可归纳为4个连续阶段,分别为快速淤长期(1976 1981年)㊁缓慢淤长期(1981 1996年)㊁缓慢侵蚀期(1996 2002年)和缓慢淤长期(2003 2013年)[26]㊂Cui等[27]从三角洲平均高潮线的角度分析,也得出类似的三角洲演变阶段㊂Xu[28]认为陆上三角洲的淤长与夏季东亚季风指数密切相关,但也有学者提出人为河流改道等人类活动是影响陆上三角洲岸线动态的重要因素[29]㊂现行清8汊河(1996年开始行河)水下滨海区地貌冲淤演变特征可划分为中速淤积(1996 2002年)㊁快速淤积(2002 2007年)㊁缓速淤积(2007 2015年)和快速侵蚀(2015 2016年)[30],从空间上来看口门滨海区呈淤积状态,而孤东近岸和1996年废弃的老河口区呈冲刷状态[31]㊂Ma等[32]分析了近年来黄河三角洲潮滩㊁低潮线和水下地貌的动态,认为12m等深线是冲淤平衡转换带㊂不行河的刁口河流路和神仙沟流路河口海岸侵蚀显著,1976 2000年岸线分别向陆后退约7km和4.5km㊂Chu等[33]指出1976 2000年最大的侵蚀区出现在刁口河和神仙沟行河期间形成的向海堆积的凸角处㊂Li等[34]提出刁口河流路河口的蚀退演变经历的主要3个阶段:1976 1985年的快速侵蚀㊁1985 1992年的缓慢侵蚀和1992 1996年的侵蚀淤积调整阶段㊂3个阶段刁口河口侵蚀速率逐渐降低,在1976年后刁口河流路水下三角洲被重塑成与1976年之前截然不同的缓坡形态[35]㊂Zhang等[36]认为尾闾河道摆动㊁相对海平面变化㊁区域海洋水动力及地方工程建设是影响该区域岸线变化的重要因素㊂Fan等[37]对黄河三角洲北部潮间带范围时空演变进行了分析,指出北部潮间带蚀退不仅受海洋动力影响,也受到人类围垦的影响㊂由此可见,黄河口地貌演变是一个复杂而多变的过程,受到河流水文泥沙㊁海洋水动力条件和人类活动等多种因素的综合影响,亟需从微观层面揭示各影响因素的耦合互馈与相互作用关系及其地貌变化机制,这是理解河口地貌演变的关键所在㊂1.3㊀河口生态条件与生态演化黄河三角洲湿地是中国暖温带保存最广阔㊁最完善㊁最年轻的湿地生态系统,沿海滩涂广泛发育,湿地植物富集㊂根据水体类型和存续方式的不同,黄河三角洲湿地可分为淡水湿地㊁咸水湿地和半咸水湿地㊂淡水湿地多以河流为轴分布在河道两侧,咸水湿地主要分布于海岸带附近,半咸水湿地则主要分布于河流与海洋的交汇地带[38]㊂黄河口湿地生境类型极为丰富,万千生物得以在此栖息繁衍㊂然而,黄河三角洲成陆时间较短,土壤发育年轻,生态发育层次低,适应变化能力弱,抵抗外界干扰能力差,属脆弱生态敏感区[39]㊂近年来,对于世界大多数河口来说,高强度人类活动㊁海平面上升及风暴潮等引起的陆海水沙条件改变导致河口湿地已出现不同程度的退化㊁侵蚀或永久消失(如围垦),进而加剧了河口生境的脆弱性,危及河口生态安全㊂因此,最近10a来关于河口湿地恢复的一系列成果不断出现,长江三角洲通过构建低矮堤坝以形成坝内植被恢复生态[40],美国密西西比河三角洲试图将疏浚泥沙与沼泽恢复结合以稳定海岸[41],荷兰则努力推行利用北海沉积物哺育潮滩,构建牡蛎礁防护海岸侵蚀等一系列措施以恢复河口湿地生态[42]㊂针对黄河三角洲滨海湿地严重退化的问题,学者们开展了大量修复研究和示范工作㊂前期,黄河三角洲退化滨海湿地的修复工作,多注重植被覆盖的恢复效果,且多简单采取围封和补充淡水相结合的方式,过分依靠自然恢复,人工重建发挥作用不足㊂这样的修复方式,不仅耗水量巨大,且导致恢复后的植被群落结构简单,生物多样性丧失,作为鸟类栖息地的重要生态服务功能被严重削弱,影响了湿地功能的正常发挥㊂近期,许多学者针对气候变化㊁工农业发展和外来物种入侵等因素共同影响下的植被动态进行研究,并取得了新进展,获得了新认识㊂例如,有学者发现黄河三角洲受人工干扰影响湿地植被景观破碎化程度剧烈,景观多样性指数呈下降趋势[43],加之河口来水来沙减少㊁海岸侵蚀和海水入侵加剧致使湿地植被恢复和绿化受到更加严重的盐碱胁迫[44],而修复水文连通和实施生态补水对盐沼植物和水生动物的生存以及生物多样性具有积极作用[45]㊂综合来看,黄河三角洲湿地面临着严重退化的挑战,通过学者们的研究和努力,可以找到解决问题的新途径,修复工作需要更加注重湿地的生态功能,采取合适的措施来恢复植被和保护生物多样㊀第6期凡姚申,等:黄河三角洲水文-地貌-生态系统演变与多维调控研究进展987㊀性,以确保湿地生态系统的可持续发展㊂2㊀水文-地貌-生态子系统耦合关系2.1㊀水文条件对河口地貌的影响水文条件(包括水动力与泥沙运动)引起河口三角洲地形地貌变化㊂径流入海后与潮流㊁波浪等相互作用下的泥沙扩散㊁沉积㊁起动㊁平流及底沙再悬浮是河口区的典型水沙动力过程,见图1[46]㊂对于多沙河口而言,高含沙径流动力常以射流的方式入海[47],泥沙沉积与侵蚀的不同模式塑造了不同形态的河口前缘地貌[48]㊂Warrick[49]研究发现在入海泥沙通量突然增多时,泥沙首先在河口沙嘴潮间带淤积,几个月后波浪再悬浮和余流输运作用将泥沙带到口门附近的洲滩形成堆积体,随着堆积体在沿岸方向不断延伸,三角洲几何形态逐渐呈扇形发育㊂在洪水期间,径流作用尤为突出,往往取代潮流成为控制泥沙输移的关键因素[50],在强径流的作用下河床中形成双向螺旋流,掘蚀河床而将泥沙向河床两侧堆积,随后水下沙坝出露海面并逐渐将河道分汊[51]㊂黄河调水调沙塑造了强径流入海条件,黄河口近岸落潮动力加强,涨潮动力减弱,含沙量显著增大[52],入海泥沙普遍以异轻羽状流的形式在河口附近的有限区域内沉积[53],在没有大风扰动的情况下河流入海悬沙浓度大于29.0kg/m3时会产生高密度泥沙异重流[54]㊂调水调沙期间大量泥沙沉积促使河口口门地貌发生快速变化,进而引起入海主流的快速摆动[55]㊂黄河入海泥沙还具有 夏储冬输 的特点,夏季在河口附近沉积的泥沙成为冬季泥沙输运的重要来源,冬季泥沙输运量远远大于夏季且有向外海输运的趋势[56-57]㊂图1㊀河口区典型水沙动力过程Fig.1Typical water and sediment dynamic processes in the estuary水沙供给的多寡是哺育河口三角洲地貌发育与否的充分条件㊂多沙时期遵循三角洲面上呈 大循环 及流路自身的 小循环 演变规律[58]㊂此后,针对流路地貌稳定问题,提出了出汊是影响流路稳定的关键问题,并揭示了 淤积 延伸 出汊摆动 改道 流路演变的自然规律[59]㊂在少沙情势下,行河口门造陆幅度趋于减缓,在个别来沙量较少年份甚至出现侵蚀[60],局部逐渐呈现由河控型向海控型转变的趋势㊂黄河口海岸动态平衡的沙量阈值是当前研究的焦点,但研究成果差别较大(表1)㊂研究方法大多是建立描述某一时段内陆地面积变化特征的因变量与水沙条件自变量的统计关系,得到因变量为0时的平衡沙量或临界水沙组合关988㊀水科学进展第34卷㊀系式㊂从反映流路淤积延伸㊁河海交汇作用最强㊁海岸侵蚀最剧烈的角度选择海岸线标准,研究三角洲陆地变化及海岸动态稳定沙量很有必要㊂表1㊀维持黄河口海岸动态平衡的沙量阈值Table1Critical sediment load to maintain the dynamic balance of the Yellow River estuary coast序号空间范围时间范围研究资料临界沙量/(亿t㊃a-1)文献1行河海岸 ʈ2[61] 2黄河陆上三角洲1855 1976年滨海区水深 2.45[62] 3黄河陆上三角洲1955 1989年海域海图 2.78[63] 4清水沟陆上三角洲1976 1997年滨海区水深 1.51[64] 5刁口河陆上三角洲1953 1973年滨海区水深 4.21[64] 6清8汊陆上三角洲1996 2005年遥感影像 1.63[28] 7清水沟陆上三角洲1976 2005年遥感影像 3.31[28] 8清水沟水下三角洲1977 2005年水深地形 1.29~1.79[35] 9清8汊陆上三角洲2002 2015年遥感影像0.48[37] 10清8汊水下三角洲1996 2016年水深地形0.414~0.623[31] 11黄河陆上三角洲1976 2015年遥感影像 1.76[65] 12清水沟水下三角洲1997 2018年水深地形 1.09~1.65[32]㊀㊀需要指出的是,即便黄河入海水沙发生了显著变异,黄河进入了枯水少沙期,但2002年实施调水调沙以来现行河道仍在淤积延伸,尾闾河道依然处于不断出汊变动中㊂如2018年以来,黄河口各汊道交替成为行水主汊,河口泄洪排沙主通道不断变化(图2)㊂汊道频繁演变不仅严重威胁河口两岸防洪安全,而且可能破坏河势稳定㊁引起流路摆动㊂不仅如此,2020年多次洪水径流输沙入海后,河口河道呈现出明显的淤积趋势,河道前缘出现二级分汊,支汊淤积萎缩与拦门沙交互作用形势更加复杂㊂这些变化综合表明,在经历了近40a的黄河来沙减少后,黄河口地貌系统正在面临不同程度的转变,淤积和侵蚀共存,尤其是侵蚀型地貌,受前期沉积物特性㊁海洋常规/非常规动力和植被附着特征影响更为复杂,亟需从水文-地貌-生态系统的整体层面揭示河口地貌变化机制,这是理解地貌多维耦合响应机理与状态转化的关键所在㊂图2㊀黄河口主支汊道频繁演替Fig.2Frequent succession of the main tributaries of the Yellow River estuary㊀第6期凡姚申,等:黄河三角洲水文-地貌-生态系统演变与多维调控研究进展989㊀2.2㊀河口地貌反馈影响水文条件水文条件塑造河口地貌,而河口地貌是河口水文条件的地形边界,其响应水文条件的结果必定也会反馈影响水文条件,因此两者存在明显的耦合作用㊂河口拦门沙(沙坝)是河海动力相互作用后径流能量耗散㊁咸淡水混合泥沙絮凝加速沉积而成的堆积体[66],也是河口地貌反馈影响水文条件最明显的区域㊂在黄河三角洲的各种沉积环境中,拦门沙的沉积速率最高,河流输送入海的沉积物中,约有30%~40%的入海泥沙沉积在拦门沙区域内[67]㊂不同径流量对拦门沙形态发育影响不同,在高径流量时期形成双叶瓣单河道形式的拦门沙,在低径流量时期形成单叶瓣双河道形式的拦门沙㊂拦门沙的淤高和延伸可以影响河口一系列水沙运动过程,如Li等[68]发现拦门沙的存在可以改变河口环流和床面剪应力,进而影响河口最大浑浊带的形成;Gong等[69]指出河口拦门沙的水力控制在被背风跳跃阻挡的状态下,可以通过潮泵输运增强向陆地的盐输送,这表明拦门沙对盐的运移具有重要的控制作用㊂细颗粒泥沙在黄河口不断淤积,口门拦门沙发育充分㊂拦门沙形成之后,侵蚀基面抬高,对河道泄水排沙十分不利,导致水位壅高,产生溯源淤积,加重下游河道抬升,是黄河口影响下游河道防洪安全的根源㊂学者们对于黄河口拦门沙淤积反馈的影响距离有不同看法,有的认为河口淤积延伸将导致整个黄河下游河道长期难以平衡[70-71],有的则认为仅在感潮河段涨潮时才产生溯源淤积[72],大多认为溯源淤积影响范围在泺口与艾山之间[73]㊂曹文洪等[74]基于概化河工模型研究发现黄河口拦门沙的形成与滞流点的关系非常密切,河口径流与潮流的交汇处(滞流点)的位置在拦门沙顶部变动㊂黄河口拦门沙出露水面后,河口沙嘴不断向外凸出,这导致现行河口外涨潮优势流呈舌状向南部莱州湾方向伸展,有利于泥沙的净输入[75]㊂这些研究结果表明黄河口地貌与水文之间的关系是非线性㊁多元和时空变化的,由于获取准确㊁连续的水文和地貌数据仍然是一项挑战,缺乏高质量的观测数据限制了对黄河口水文-地貌互馈机制的深入研究㊂2.3㊀河口生态与水文-地貌的相互作用河口生态过程与水文-地貌之间存在复杂的耦合关系,水文是河口地貌演化㊁地下水及盐度等生境条件和生态演替的主要驱动因素,生态水量是各类生物生长的必要物质(水文的直接作用),水文作用引起的地貌演变为生物提供稳定的基底(水文的间接作用)㊂为此,生态专家提出在潮滩湿地生态修复时应着重注意生物和物理缓解作用之间的相互作用,如盐沼植被的存在削弱了水动力,从而减少了滩面侵蚀,反过来水动力的削弱和沉积物稳定性的增加也有利于盐沼植被生长[76]㊂地貌高程(影响水位)和盐度是决定滨海湿地植物存活和分布的最关键环境因子[77],不同植物对高程和盐度的要求不同,水-盐环境(一般指水位和盐度环境)对不同的盐沼植物存在一个临界值,一旦水-盐环境胁迫超过盐沼植物的耐受阈值,将直接影响植物的生长及存活[78-80]㊂受水-盐胁迫影响,黄河三角洲湿地植被从海向陆呈连续带状分布格局,主流植被类型依次为碱蓬㊁芦苇㊁柽柳㊂植物根系促淤,会抬高地表高程,是生物反馈地貌的集中体现㊂互花米草盐沼繁殖能力强㊁根系茂密,黄河三角洲于1990年首次引种互花米草,最初目的是用于保滩促淤,然而近年来却成为入侵物种,导致黄河口滨海湿地生态失衡;2011年后,黄河三角洲地区互花米草开始进入快速扩散期,并迅速入侵土著植被栖息地;到2020年,现行河口区互花米草分布面积达52.7km2,占总盐沼面积的31%[43]㊂互花米草具有较强繁殖能力,其形成的盐沼植被丰度较高,增强了局部沉积,黄河三角洲湿地互花米草群落的地表高程变化速率为58.8ʃ19.4mm/a,远高于土著植被碱蓬和柽柳[81]㊂互花米草增加了地表高程,也降低了黄河口自然湿地淹水频率[82]㊂河口生物与水文-地貌环境的相互作用不仅在时间尺度上不断累积,也会通过空间尺度上的交流影响河口地貌形态㊂河口潮滩生物出现的规律性的斑图形态,是盐沼在不同尺度上对水动力和泥沙沉积作用的响应,也称为自组织斑图[83-84]㊂黄河三角洲潮滩微地貌斑图呈现季节性变化,每年4 6月伴随着滩涂上泥螺生物量的增加,微地貌斑图逐渐减弱,受泥沙扩散㊁水流再分配过程交互作用的影响,高丘上的底栖微藻生物量明显高于洼地[85]㊂随着对生物-地貌耦合关系的认识,在研究河口水沙地貌变化时,越来越多的学者考虑在传统地貌模型的基础上引入生物过程[86-87]㊂以基于水沙动力过程的数学模型为主流,通过较准确地还。
河口湿地生态系统和生物多样性河口湿地是一种特殊而重要的生态系统,位于河流与海洋相交的地区,具有独特的生物多样性和生态功能。
它不仅是许多珍稀物种的栖息地,也承载着人类的生活和发展需求。
本文将探讨河口湿地的生态系统特点以及其对生物多样性的贡献。
首先,河口湿地是由河流和海洋的相互作用形成的独特地理环境。
在河流注入海洋的过程中,带有丰富营养物质的淡水与咸水交汇,形成了一个复杂的生态系统。
这种生态系统中的水域不仅供养着大量的底栖生物,例如藻类、浮游生物和底栖动物,也是很多鸟类、鱼类和底栖植物的重要栖息地。
其次,河口湿地具有丰富的生物多样性。
由于其特殊的生态条件,河口湿地是许多珍稀、濒危物种的栖息地,包括候鸟、珍稀植物和底栖动物等。
河口湿地内的高密度植被为鸟类提供了繁殖和觅食的场所,吸引了大量的候鸟迁徙至此地。
同时,丰富的浮游生物也为各类鱼类提供了充足的食物资源,维持了该区域鱼类的丰富性。
河口湿地的生态功能不仅仅体现在其对生物多样性的贡献上,还涉及到水循环、气候调节和防洪等方面。
首先,河口湿地可以减缓来自河流的水流速度,降低洪峰流量,起到了一定的防洪效果。
其次,湿地植物的生长过程中,会大量吸收水分,减少径流量,降低水质污染。
同时,植物的蒸腾作用也可以增加空气湿度,改善区域的气候环境。
此外,河口湿地还是一个良好的养殖基地,渔民可以在此获得丰富的渔获。
然而,近年来,人类的活动对河口湿地造成了一定的破坏。
大规模的土地开发、工业污染以及过度捕捞等活动都对河口湿地的生态系统造成了极大的压力。
其中,河口湿地的底栖植物和底栖动物是最容易受到破坏的物种。
这些物种的逐渐减少会导致食物链的破裂,进而影响到整个湿地生态系统的稳定性。
为了保护河口湿地生态系统和生物多样性,政府和相关部门应采取一系列的措施。
首先,建立和完善湿地保护区的管理制度,加强对湿地的监测和保护力度。
其次,限制人类活动对湿地的破坏,控制土地开发和工业排污行为,确保湿地生态系统的健康发展。
湿地环境修复技术改善水体质量评价摘要:湿地是一种重要的生态系统,对于水体的质量具有重要的影响。
湿地环境修复技术是通过恢复、重建或改善湿地生态系统的结构和功能,以改善水体质量。
本文将探讨湿地环境修复技术对于水体质量的改善效果,并介绍了一些常见的湿地修复技术,如湿地植被修复、生物修复和物理修复等。
实践表明,湿地环境修复技术在提高水体质量方面具有显著效果,并为湿地生态系统的保护和可持续发展做出了重要贡献。
1. 引言湿地是一种具有独特生态特征的生态系统,包括沼泽、河口、湖泊、湿地草甸等。
它们是自然界的重要水文环境过滤器,有助于净化水体中的有害物质,并提供了重要的生态功能和生态服务。
然而,由于人类活动的不当干扰和环境压力的增加,湿地生态系统面临着严重的威胁,导致水体质量下降。
湿地环境修复技术的使用可以改善和恢复湿地生态系统,提高水体质量。
2. 湿地环境修复技术的分类湿地环境修复技术可以分为湿地植被修复、生物修复和物理修复等不同类型。
2.1 湿地植被修复湿地植被修复是通过恢复和增加湿地植被的种植和管理,以改善水体质量。
湿地植被具有吸附、固定和转化废物的能力,可以有效地去除水中的悬浮物、营养物质和有机物等污染物。
湿地植被修复技术可以分为表层植物修复和底栖植物修复两种类型,根据具体修复目标和湿地环境的特点选择适合的修复方式。
2.2 生物修复生物修复是利用湿地生物来去除和转化水体中的污染物。
湿地生物活动可以降解有机物、氧化氨氮、去除磷等,从而改善水体的质量。
生物修复技术在一些湿地系统中已经得到了广泛的应用,如湿地人工渗滤系统、湿地人工湖泊等。
2.3 物理修复物理修复是利用物理方法去除水体中的污染物。
常用的物理修复技术包括鱼石花池、人工湿地过滤系统、湿地床等。
这些技术可以有效地去除水体中的悬浮物、沉积物和颗粒污染物。
3. 湿地环境修复技术的效果评价湿地环境修复技术的效果评价是判断修复效果是否达到预期目标的重要方法。
河口湿地的生态功能与退化研究河口湿地是位于河流入海口的地区,是水与陆地交汇的重要生态过渡带。
它不仅具有丰富的生物多样性,更承载着众多生态功能,并对区域的生态系统和人类社会产生着重要影响。
然而,随着人类活动的不断扩张和环境破坏,河口湿地面临着退化和生态功能丧失的威胁。
首先,河口湿地是一个重要的生态保育区。
它提供了丰富的栖息地,为众多鸟类、鱼类和其他水生生物提供了理想的繁殖和生存环境。
鸟类迁徙过程中依赖湿地地带,而丰富的食物资源和相对安全的环境吸引着大量候鸟在此停歇。
这些候鸟的迁徙对植物传粉和种子散布具有重要作用,保持着生态系统的平衡。
此外,河口湿地还可以减少水流速度,净化水体中的污染物质,保护渐滩和滨岸的稳定,防止土地侵蚀。
然而,河口湿地退化的问题也日益严重。
首先,过度的填海造地破坏了湿地的完整性和连通性。
填海造地使得湿地被隔离,阻碍了候鸟的迁徙和繁殖活动,并且导致海水倒灌的情况,加剧了河流的污染。
其次,过度的工业污染和农业排放导致湿地水质恶化,沉积物中的重金属和有害物质对生物多样性产生了严重威胁。
此外,过度的人类干扰,如过度捕捞和乱砍滥伐,也破坏了湿地的生态系统。
为了有效保护河口湿地的生态功能,需要采取一系列的措施。
首先,政府需要制定和执行严格的政策法规,限制填海造地和过度的工业污染排放,确保湿地的完整性和连通性。
同时,加强监测和治理水质污染,控制农业排放,减少对湿地生态系统的威胁。
此外,加强公众教育和意识提升,提高对湿地生态功能的认识和重视,推动可持续利用湿地资源的理念。
最后,加强国际合作,推动区域间湿地保护与恢复的合作交流,共同面对湿地退化和生态功能丧失的挑战。
总而言之,河口湿地作为水与陆地交汇的重要生态过渡带,承载着丰富的生态功能。
然而,河口湿地退化的问题也日益严重,对生态系统和人类社会产生着重要影响。
为了有效保护河口湿地的生态功能,需要制定严格的政策法规,加强水质监测和治理,提升公众意识,促进国际合作。
河口湿地生态保护与恢复项目环境影响评价报告一、引言河口湿地是珍贵的生态系统,为保护和恢复河口湿地的生态功能,我公司计划进行河口湿地生态保护与恢复项目。
为确保该项目的环境影响符合相关法律法规要求,特进行本次环境影响评价。
二、评价范围本次环境影响评价报告对河口湿地生态保护与恢复项目进行全面评估,主要关注以下方面:1. 资源利用与保护:对湿地内水资源、土地资源以及植物和动物资源的利用与保护进行评估。
2. 水质影响评价:评估项目施工和运营对水质的可能影响,以确保湿地内的水质不受负面影响。
3. 生态系统保护及恢复:评估项目对湿地内生态系统的保护和恢复作用,确保湿地的生态功能得到有效维护。
4. 社会影响评价:分析项目对周边社区和居民的可能影响,并提出相应的管理措施。
三、评价方法为准确评估河口湿地生态保护与恢复项目的环境影响,我们采用以下方法:1. 实地调查:对项目区域进行实地勘察,详细了解湿地的现状和潜在环境问题。
2. 数据分析:收集并分析相关的环境数据和水样,评估项目对水质和生态系统的潜在影响。
3. 模拟模型:利用专业的模拟模型,模拟项目施工和运营对湿地生态系统的影响,为评价提供科学依据。
4. 社会调查:通过问卷调查和面谈等方式,了解项目对当地社区和居民的影响程度和态度。
四、环境影响评价结果根据我们的评估,河口湿地生态保护与恢复项目对环境的影响较小,且可以通过合理的管理措施进行控制。
具体评价结果如下:1. 资源利用与保护:项目的资源利用较为合理,对湿地内水资源、土地资源、植物和动物资源的影响可以通过科学的管理手段得到有效控制。
2. 水质影响:项目施工和运营对湿地内的水质影响较小,通过合理的污水处理和排放控制措施,可以确保水质不受到负面影响。
3. 生态系统保护及恢复:项目明确注重湿地生态系统的保护和恢复,通过湿地植被的恢复、生态修复措施等方式,可以有效维护湿地的生态功能。
4. 社会影响:根据调查结果显示,项目对周边社区和居民的影响较小,社会各界普遍对该项目持支持态度。
河口湿地的地理特征及重要生态功能分析河口湿地是指河流注入海洋或湖泊时形成的湿地区域。
由于地理位置的特殊性,河口湿地在自然环境中扮演着重要的角色。
本文将从地理特征和生态功能两个方面来分析河口湿地的重要性。
一、地理特征1.1地理位置河口湿地位于河流与海洋或湖泊交汇的地方,通常位于河流下游。
世界上著名的河口湿地有美国的密西西比河三角洲、中国的长江三角洲等。
河口湿地的地理位置决定了其独特的自然环境和生态系统。
1.2水文特征河口湿地受到淡水和海水的交互影响,形成了独特的水文特征。
在潮汐作用下,海水和淡水交错流动,形成了复杂的水流系统。
这种水文特征不仅影响了河口湿地的水质和生物多样性,还对周边地区的水资源和生态系统具有重要影响。
1.3土壤特征河口湿地的土壤通常富含有机质,呈现出淤泥状。
这种土壤特征使得河口湿地成为了各种湿地植被的理想生长环境。
同时,河口湿地的土壤还具有很好的保水和保肥能力,为湿地植物的生长提供了有利条件。
二、生态功能2.1水环境净化河口湿地作为水体与陆地的交界处,具有很好的水环境净化功能。
河口湿地中的湿地植物和微生物可以吸收和分解水中的有机物和重金属等污染物质,净化水体。
同时,湿地的湿润环境也有利于沉积物的沉淀和固定,进一步净化水体。
2.2生物多样性保护河口湿地是生物多样性的重要栖息地。
湿地植物和水生动物在河口湿地中繁衍生息,形成了复杂的食物链和生态系统。
同时,河口湿地也是候鸟迁徙的重要驿站,许多候鸟在迁徙过程中会选择在河口湿地中停歇和觅食。
因此,保护河口湿地对于维护生物多样性具有重要意义。
2.3防洪和海岸稳定河口湿地具有良好的防洪和海岸稳定功能。
河口湿地可以吸收和储存大量的水分,减缓洪峰流量,起到调节洪水的作用。
同时,湿地植物的根系可以固定土壤,减少河岸和海岸的侵蚀。
因此,保护河口湿地有助于减少洪灾和海岸侵蚀的发生。
2.4碳汇和气候调节河口湿地是重要的碳汇和气候调节器。
湿地植物通过光合作用吸收二氧化碳,并将其固定在土壤中。
河口生态系统健康评价研究进展*牛明香王俊**(农业部海洋渔业可持续发展重点实验室,山东省渔业资源与生态环境重点实验室,中国水产科学研究院黄海水产研究所,山东青岛266071)摘要河口生态系统一方面能提供多样化的生态服务和较多的经济产出,但同时也更易受到人类活动的影响。
合理评价河口生态系统健康有利于了解河口生态系统现状,为可持续利用河口生态系统提供科学依据。
本文在查阅国内外大量文献的基础上,对河口生态系统的特征、健康内涵以及健康标准进行了归纳和分析,并系统论述了河口生态系统健康的评价指标、评价方法、指标筛选原则以及主流评价指标体系和评价模型,概述了RS 和GIS 技术在河口生态系统健康评价中的应用。
针对目前研究中存在的主要问题,提出了河口生态系统健康评价研究的发展方向,认为今后开展河口生态系统健康评价研究还需要在概念、影响机理、空间尺度选取以及新技术新方法的应用等方面进一步加强。
关键词河口;生态系统健康;评价中图分类号X171.1文献标识码A 文章编号1000-4890(2014)7-1977-06Review on estuary ecosystem health assessment.NIU Ming-xiang ,WANG Jun **(Key Labo-ratory of Sustainable Development of Marine Fisheries ,Ministry of Agriculture ;Shandong Provin-cial Key Laboratory of Fishery Resources and Ecological Environment (SFREE );Yellow Sea Fish-eries Research Institute ,Chinese Academy of Fishery Sciences ,Qingdao 266071,Shandong ,Chi-na ).Chinese Journal of Ecology ,2014,33(7):1977-1982.Abstract :Estuary ecosystem is usually productive and can provide diverse ecosystem services ,however ,it is vulnerable to the effects of human activities.Effective assessment of estuary eco-system health can provide the scientific basis for understanding the status and sustainability of the ecosystem.In this study ,we reviewed theories on health assessment of estuary ecosystem ,e.g .characteristics ,conception and criterion ,and summarized the index ,technology and evaluation models as well as the rules for index choosing in the present applications.The technology of remote sensing (RS )and geographic information system (GIS )were additionally emphasized.Considering the existing difficulties in the health assessment of estuary ecosystem ,we proposed a possible trend of development in this field.New technologies along with the concept ,impact mechanism and spatial scale setting were suggested to be further strengthened in the future resear-ches of estuary ecosystem health evaluation.Key words :estuary ;ecosystem health ;evaluation.*公益性行业(农业)科研专项(201303050)、黄海水产研究所级基本科研业务费项目(20603022013001)、全球变化研究重大科学研究计划项目(2010CB951204)和农业部黄渤海渔业资源环境重点野外科学观测试验站项目资助。
湿地生态系统功能的综合评估湿地,这一独特的生态系统,犹如大自然的“肾脏”,在维护地球生态平衡、提供生态服务以及促进人类可持续发展方面发挥着至关重要的作用。
对湿地生态系统功能进行综合评估,是深入了解其价值和保护需求的关键步骤。
湿地具有多样的生态功能。
首先是水资源调节功能。
它就像一个巨大的天然水库,在洪水期能够储存过量的水,减轻洪水对周边地区的冲击;而在干旱期,又能缓慢释放储存的水,维持河川径流的稳定,保障周边生态系统和人类用水需求。
例如,许多江河湖泊的源头湿地,为下游地区提供了源源不断的清洁水源。
其次,湿地在水质净化方面表现出色。
通过物理、化学和生物等多种过程,湿地能够去除水中的污染物和营养物质。
湿地中的植物根系可以吸附和过滤水中的杂质,微生物则能分解有机污染物,将其转化为无害物质。
一些受到污染的水流经过湿地后,水质能够得到明显改善。
再者,湿地为众多生物提供了栖息地和繁殖场所,是生物多样性的“宝库”。
从微小的浮游生物到大型的鸟类、哺乳动物,湿地孕育着丰富的物种。
这里既有依赖湿地独特环境生存的珍稀濒危物种,也有常见的各类动植物。
它们共同构成了复杂而稳定的生态群落,相互依存、相互制约。
湿地还在气候调节方面发挥着积极作用。
大面积的湿地能够增加空气湿度,调节局部气温,减轻城市热岛效应。
同时,湿地中的植物通过光合作用吸收二氧化碳,释放氧气,对于减缓气候变化具有一定的贡献。
然而,要全面评估湿地生态系统的功能并非易事。
这需要综合考虑多个方面的因素。
生态指标是评估的重要依据之一。
这包括湿地的面积、类型、植被覆盖度、生物多样性等。
通过实地调查和监测,获取这些数据,可以直观地了解湿地的生态现状。
例如,观察湿地中植物的种类和分布情况,统计鸟类和其他动物的数量和种类,能够反映出湿地生态系统的健康程度和对生物的支持能力。
水文指标同样关键。
监测湿地的水位变化、水流速度、水的停留时间等,有助于了解其水资源调节功能的强弱。
如果一个湿地的水位波动过大,或者水流速度异常,可能意味着其水资源调节功能出现了问题。
水域生态系统健康评价研究进展
章欣仪;刘伟成;张川;李鹏全;叶深;郑春芳
【期刊名称】《浙江农业科学》
【年(卷),期】2022(63)9
【摘要】水域在生态系统中占有重要地位,其健康状况的研究也受到了越来越多的关注。
本文回顾了生态系统健康的定义,阐述了水域生态系统评价的方法,对比总结了各种评价方法的优缺点及应用前景,并在此基础上提出了目前研究存在的问题,展望了水域生态系统健康评价的研究方向。
【总页数】6页(P2132-2137)
【作者】章欣仪;刘伟成;张川;李鹏全;叶深;郑春芳
【作者单位】温州大学生命与环境科学学院;浙江省海洋水产养殖研究所;浙江省近岸水域生物资源开发与保护重点实验室
【正文语种】中文
【中图分类】S181;X826
【相关文献】
1.深圳鹅公湾渔业水域生态系统健康状况评价
2.深圳鹅公湾渔业水域生态系统健康状况评价
3.基于底栖生物指数评价生态系统健康状况的研究进展
4.生态系统健康评价及指示物种评价法研究进展
5.基于多指标评价法的河流生态系统健康评价研究进展
因版权原因,仅展示原文概要,查看原文内容请购买。
湿地退化及其生态恢复水环境所程东升、王亮、王世岩、吴佳鹏1 调研背景概述湿地与森林、海洋并称全球三大生态系统,也是价值最高的生态系统。
根据《湿地公约》的定义,湿地包括沼泽、泥炭地、湿草甸、湖泊、河流、滞蓄洪区、河口三角洲、滩涂、水库、池塘、水稻田以及低潮时水深浅于6米的海域地带等。
湿地具有涵养水源、净化水质、调蓄洪水、控制土壤侵蚀、补充地下水、美化环境、调节气候、维持碳循环和保护海岸等极为重要的生态功能,是生物多样性的重要发源地之一,因此也被誉为“地球之肾”、“天然水库”和“天然物种库”。
据联合国环境署2002年的权威研究数据显示,1公顷湿地生态系统每年创造的价值高达1.4万美元,是热带雨林的7倍,是农田生态系统的160倍。
湿地还是许多珍稀野生动植物赖以生存的基础,对维护生态平衡、保护生物多样性具有特殊的意义。
相比较而言,湿地是最濒危的生态系统(Tockner et al.,2010)。
由于自然原因及人类不合理开发利用,导致湿地面积减少(Brinson and Malvarez,2002)、蓄水量减少,水质恶化,整个湿地生态系统功能降低,生物多样性减少(刘红玉和李兆富,2006)。
从世界范围来看,众多国家已经历或正在经历湿地面积迅速减少、退化的过程。
在17世纪,美国有超过88×104km2的湿地,从殖民时期到20世纪80年代,损失了53%的湿地(Bacon,1992)。
在过去的1000年时间内,欧洲大陆上80%的原生湿地损失殆尽(Verhoeven,2013)。
大部分国家,如荷兰、德国、西班牙、希腊、意大利、法国等,其湿地面积损失均在50%以上(Jone and Hughes,1992)。
亚洲的新加坡、菲律宾、泰国的红树林湿地已分别损失了97%、78%、22%(Scott,1992)。
中国湿地退化现象也非常突出(刘影和彭薇,2003;吴向培等,2003;田昆等,2004;侯伟等,2005;张昆等,2008;李景刚等,2010),71%的湿地受到人类活动的严重威胁,天然湖泊已经从20世纪50年代的2800个下降到80 年代的2350个,面积减少了11%(傅国斌和李克让,2001)。
山东科学SHANDONGSCIENCE第36卷第6期2023年12月出版Vol.36No.6Dec.2023收稿日期:2023 ̄08 ̄28基金项目:山东省民盟省委2022年重点调研项目(盟鲁[2022]13号)作者简介:蔡馨燕(1977 )ꎬ女ꎬ副研究员ꎬ研究方向为科技战略规划与科技情报研究ꎮE ̄mail:191523972@qq.com黄河三角洲湿地生态退化修复的应用研究进展蔡馨燕1ꎬ王毅2ꎬ陈英凯3(1.山东省科学技术情报研究院ꎬ山东济南250101ꎻ2.鲁东大学资源与环境工程学院ꎬ山东烟台264025ꎻ3.山东省农业科学院ꎬ山东济南250131)摘要:系统综述了黄河三角洲湿地生态退化现状及退化原因ꎬ并对其生态修复技术进行概括归纳ꎮ发现黄河三角洲湿地退化严重ꎬ总体面积逐年缩减ꎬ同时组成结构发生改变ꎬ自然湿地不断减少而人工湿地逐渐增加ꎬ景观格局呈现破碎化趋势ꎬ生态系统服务功能严重退化ꎮ造成黄河三角洲湿地生态退化的原因主要包括黄河水沙通量减少㊁海-陆交互作用增强㊁土壤盐渍化加剧㊁气候暖干化㊁外来物种入侵和人类活动ꎮ目前采用的生态修复技术包括生物组分修复㊁水体修复㊁土壤改良和综合生境修复ꎮ最后针对性地提出黄河三角洲湿地修复建议ꎬ对实践黄河流域生态保护和高质量发展的国家重大战略具有重要意义ꎮ关键词:黄河三角洲ꎻ退化湿地ꎻ湿地环境ꎻ生物多样性ꎻ生态修复ꎻ环境污染ꎻ海岸景观中图分类号:X ̄1㊀㊀㊀文献标志码:A㊀㊀㊀文章编号:1002 ̄4026(2023)06 ̄0112 ̄09开放科学(资源服务)标志码(OSID):ProgressofappliedresearchontheecologicaldegradationandrestorationofwetlandsintheYellowRiverDelta:areviewCAIXinyan1ꎬWANGYi2ꎬCHENYingkai3(1.ShandongInstituteofScientificandTechnicalInformationꎬJinan250000ꎬChinaꎻ2.CollegeofResourcesandEnvironmentalEngineeringꎬLudongUniversityꎬYantai264025ꎬChinaꎻ3.ShandongAcademyofAgriculturalSciencesꎬJinan250131ꎬChina)AbstractʒAsystematicreviewwasconductedonthecurrentstatusandcausesoftheecologicaldegradationofwetlandsintheYellowRiverDelta(YRD)ꎬandtheecologicalrestorationtechnologiesweresummarized.TheresultsrevealedthatthewetlandareasintheYRDarecurrentlyinaseriousstateofdegradationꎬwiththetotalareaofwetlandsshrinkingyearbyyear.Alongwiththeshrinkingofthewetlandareaꎬthewetlandcompositionhaschangedꎬnaturalwetlandsaredecreasingwhileartificialwetlandsaregraduallyincreasingꎬthepatternofthelandscapeshowsatrendtowardfragmentationꎬandtheservicefunctionoftheecosystemhasbeenseriouslydegraded.ThemaincausesofwetlandecologicaldegradationintheYRDincludethereductionofwaterandsedimentfluxesfromtheYellowRiverꎬincreasedsea ̄landinteractionsꎬintensifiedsalinizationofthesoilꎬclimatechangeꎬinvasivespeciesꎬandhumanactivities.Currentecologicalrestorationtechniquesforwetlandrestorationincludebiocomponentrestorationꎬwaterbodyrestorationꎬsoilimprovementꎬandcomprehensivehabitatrestoration.ThisstudywillutimatelyprovidespecificrecommendationsforwetlandrestorationintheYRDꎬwhichisofgreatsignificanceforthenationalstrategyofecologicalprotectionandthehigh ̄qualitydevelopmentoftheYRD.KeywordsʒYellowRiverDeltaꎻdegradedwetlandsꎻwetlandenvironmentꎻbiodiversityꎻecologicalrestorationꎻenvironmentalpollutionꎻcoastallandscape㊀㊀黄河三角洲湿地是黄河流域保存最为完整㊁面积最大的一片湿地ꎬ以浅海㊁滩涂㊁沼泽等为主要内容ꎬ具有保护生物多样性㊁控制污染㊁蓄水调洪㊁调节气候等多种生态功能ꎮ黄河三角洲拥有丰富的自然资源ꎬ是实现海洋㊁渔业㊁盐业㊁石化工业可持续发展的先决条件ꎬ是整个黄河三角洲地区经济健康发展的重要保障[1 ̄5]ꎮ黄河三角洲作为黄河流域生态保护与治理的四大重点区域之一ꎬ维护黄河三角洲地区生态平衡对实现黄河流域生态保护和高质量发展的国家重大战略目标具有重要意义[6 ̄8]ꎮ由于人类活动干扰和自然因素的综合影响ꎬ黄河三角洲湿地面积大幅降低ꎮ在人为方面ꎬ开垦湿地㊁修建水利工程等活动ꎬ改变了黄河三角洲水文过程ꎬ导致区域内湿地水体营养不足以及高度盐渍化[9]ꎻ在人为活动干扰严重的地方ꎬ湿地植被类型单一ꎬ植被群落的各种指标均较低[10]ꎮ在自然方面ꎬ黄河流域连年干旱少雨ꎬ枯水期增长ꎬ湿地水资源短缺ꎬ导致湿地生态系统不断退化[11]ꎮ这一系列人为与自然因素导致黄河三角洲湿地环境㊁生态㊁灾害和资源4大问题凸显[12]ꎮ因此ꎬ黄河三角洲湿地亟待生态环境保护与修复[13 ̄14]ꎮ长久以来ꎬ我国一直在实施许多湿地生态恢复项目ꎬ主要是通过自然恢复和工程修复相结合ꎬ进行退耕还湿㊁退耕还滩ꎬ从而恢复其退化的生态系统ꎬ但这些修复措施耗时长㊁成本高㊁成效低[15]ꎬ不符合当前绿色低碳发展需求ꎮ国内外研究人员针对湿地生态保护与修复ꎬ创新了一系列的技术和产品ꎬ比如生物组分修复㊁水体修复㊁土壤改良和生态修复等技术ꎬ以及土壤改良剂和污染物吸附消纳材料等[16 ̄17]ꎮ但黄河三角洲正在遭受剧烈变化的人类发展活动与自然环境演变的影响ꎬ部分修复手段和产品起到的作用并不明显[18]ꎮ因此ꎬ本文分析黄河三角洲湿地生态退化现状及原因ꎬ以目前的生态修复手段为研究重点ꎬ系统地探究我国黄河三角洲湿地生态退化修复领域的总体研究进展与热点ꎬ明确现状问题ꎬ为黄河三角洲湿地以及其他河口滨海湿地的生态退化修复提供有效建议ꎮ1㊀黄河三角洲湿地生态退化现状黄河三角洲湿地不断退化和萎缩ꎬ导致湿地生态健康和可持续发展受到严重影响ꎮ遥感影像数据分析表明ꎬ1990 2020年ꎬ黄河三角洲湿地面积呈现先减少后增加的趋势ꎬ从1990年的1459.5km2减少到2000年的1437.4km2再增加到2020年的1975.5km2ꎮ滩地湿地显著减少约35.3%ꎬ养殖池塘显著增加约644.3km2[19]ꎮ近年来ꎬ黄河三角洲湿地环境㊁生态㊁灾害和资源4大问题凸显ꎬ严重影响湿地生态服务功能ꎮ工农业污染㊁围海造地导致湿地环境受到污染ꎬ湿地面积锐减ꎬ湿地水土质量也受到严重影响[20]ꎻ生物多样性降低㊁景观多样化受损ꎬ导致湿地生态平衡受到负面影响ꎻ赤潮㊁海岸侵蚀㊁海水入侵和油田开发等自然和人为导致的灾害ꎬ严重影响湿地资源的可持续发展ꎻ渔业资源的短缺和人为养殖的增加ꎬ导致湿地环境压力增大ꎬ湿地生态不断退化[21]ꎮ此外ꎬ外来物种的入侵也严重影响湿地功能ꎬ例如ꎬ互花米草的外来侵入ꎬ导致黄河口湿地的芦苇㊁盐碱蓬等原生植物物种的分布面积减小ꎬ减少速率分别为0.72km2/y与0.39km2/yꎬ芦苇斑块数目㊁斑块密度均有明显的降低[22]ꎮ这些问题相互交织ꎬ对黄河三角洲湿地的生态服务功能和景观功能造成严重影响[23]ꎮ2㊀黄河三角洲湿地生态退化原因黄河三角洲湿地生态环境的恶化ꎬ是人类活动与自然过程相互作用的结果ꎮ黄河三角洲内油田开发㊁围垦㊁养殖㊁堤坝㊁公路等大规模的人类活动ꎬ侵占了沿海地区的大片土地ꎬ直接导致海岸湿地的结构和功能遭受了严重的损害[24]ꎬ工业和农业活动所产生的废水㊁生活污水以及油污等排放ꎬ长期以来未受到有效控制ꎬ造成了滩涂水体㊁盐沼以及土壤环境的严重污染ꎬ还对周边海洋生态系统造成了不可逆转的影响[25]ꎮ除了人为干扰ꎬ自然因素也在加剧湿地生态恶化ꎮ黄河入海水量的减少以及泥沙供应的不足ꎬ直接影响了三角洲湿地的自然补给ꎬ造成湿地面临淡水资源短缺的困境[26]ꎮ同时ꎬ海洋动力的加强也进一步削弱了湿地的稳定性ꎬ加速了湿地的退化进程[27 ̄28]ꎮ2.1㊀黄河水沙通量减少黄河三角洲湿地的形成与发展ꎬ以黄河水㊁沙资源为基础ꎮ上世纪70年代开始ꎬ黄河入海流量和泥沙淤积量显著下降ꎬ并有越来越严重的趋势ꎮ虽然黄河自2000年调水调沙后ꎬ没有出现过断流现象ꎬ但泥沙流量很低[29]ꎮ2009年利津水文站的年径流量为140.9亿吨ꎬ是近50年来平均径流量的41%ꎻ年泥沙输送能力只有1.34亿吨[30]ꎮ黄河水沙通量缩小ꎬ造成三角洲湿地生态系统中淡水资源量大幅降低ꎬ土壤含盐量增加ꎬ不仅引起植被多样性减少ꎬ更加重湿地生态系统的破坏与退化[31]ꎮ同时ꎬ黄河来水量减少ꎬ也会造成河道对氮磷营养盐的消纳持留能力下降ꎬ河口湿地氮磷污染加重ꎬ提高了近海赤潮发生几率ꎬ危及湿地环境治理与生态系统服务功能[32]ꎮ2.2㊀海-陆交互作用增强黄河近岸和河口的沉积动态变化十分显著ꎮ首先ꎬ黄河流域每年调沙活动不仅使河口潮汐动力变化ꎬ还会对泥沙沉积进程造成一定影响[33]ꎮ其次ꎬ黄河三角洲潮间带海岸线发生演变ꎬ随着新淤泥的生成ꎬ潮间带海岸线正在逐渐变浅ꎬ导致原有的潮汐作用减弱甚至消失ꎮ由于黄河三角洲海岸湿地淡水补充和潮汐效应的削弱ꎬ导致盐碱化问题日益突出[34]ꎮ再次ꎬ黄河河道变化频繁也是一个重要的问题ꎬ每当改道入海时ꎬ河口就会出现一个巨大的沙嘴ꎬ而废弃水道也会受到海力的侵蚀ꎬ导致黄河流线经常性处于 淤积-抬高-漫流-摇摆-改道 的周期性变化中[35]ꎮ这种剧烈变化的海-陆交互作用加剧了黄河三角洲海岸湿地生态环境的恶化ꎮ2.3㊀气候暖干化受全球变暖影响ꎬ黄河三角洲呈现暖干化趋势ꎬ区域降水量下降明显ꎮ黄河三角洲平均降雨量592mmꎬ多年平均蒸发量1550mmꎬ且年内降水分配极其不均ꎬ7~8月占全年降水的48.9%ꎬ冬春季的蒸降比高于2ꎬ甚至超过6[36]ꎬ降水量减少导致湿地水源的匮乏ꎬ难以维持正常的生态功能ꎬ尤其是冬春季节性干旱期ꎮ冬春季节性干旱期会导致冬春土壤返盐严重[37 ̄38]ꎮ气候暖干化趋势造成的年降水量减少和季节性干旱频率增加ꎬ将使土壤盐碱化程度进一步加剧ꎬ一些盐分耐受能力不强的本土植物产生胁迫影响ꎬ可能导致植被的改变和生态系统的不稳定ꎬ从而引起湿地盐生植物群落演替和湿地生态环境恶化[39 ̄40]ꎮ2.4㊀人类经济活动加剧导致黄河三角洲湿地退化的人类活动主要包括油田开采㊁围海养殖㊁农业发展㊁城镇化活动等[41]ꎮ这些活动导致了大量的土地开发和围垦ꎬ这直接引起了湿地面积的减少ꎬ破坏了湿地的完整性和生态功能ꎮ黄河三角洲天然湿地面积在1976 2014年间呈逐年递减趋势ꎬ耕地面积不断扩大ꎮ到2015年ꎬ黄河三角洲自然湿地的碎裂化程度和斑块形态的复杂性都明显提高ꎬ而滩涂面积则显著减少ꎮ以农业活动为例ꎬ一方面ꎬ农田频繁的引黄灌溉ꎬ与湿地竞争淡水资源ꎬ水资源的匮乏使得湿地难以维持正常的水生态系统[42]ꎻ另一方面ꎬ农业施用的大量化肥与退水排盐ꎬ造成下游受纳湿地盐㊁氮㊁磷㊁农药㊁抗生素输入量增加ꎬ加重了湿地生态净化功能负担并危及湿地生态系统的健康[43]ꎮ2.5㊀互花米草入侵威胁湿地生物多样性互花米草(Spartinaalterniflora)原产于北美地区ꎬ具有生长迅速㊁耐盐碱㊁强大的生殖能力等特点ꎬ在引入中国后迅速扩张成为入侵物种ꎮ自2010年起ꎬ互花米草在黄河三角洲的分布面积和规模不断扩大ꎬ截至2015年ꎬ互花米草覆盖面积超过20km2[44]ꎮ互花米草入侵导致黄河三角洲湿地生态系统趋向简化ꎬ系统内能流和物流中断或不畅ꎬ系统自我调控能力减弱ꎬ生态系统稳定性和功能有序性降低ꎮ研究表明ꎬ互花米草的生长会消耗大量水分ꎬ导致湿地水源减少ꎬ加剧湿地退化[45]ꎮ互花米草生长也会改变湿地微地形和水流状况ꎬ影响湿地的水动力学过程ꎮ互花米草的竞争性生长还会使得本土植物难以存活ꎬ威胁本土湿地植物的多样性[46]ꎮ由于互花米草的侵入ꎬ黄河口湿地内芦苇和盐碱蓬的分布范围逐渐减少ꎬ湿地景观斑块呈现破碎化ꎬ景观类型趋于多样化与均匀化ꎬ景观异质性降低ꎬ对湿地植被多样性㊁底栖动物与鸟类的生存环境产生负面影响[47 ̄48]ꎮ3㊀黄河三角洲湿地生态修复技术湿地生态修复是指根据自然㊁可行性等原则ꎬ选择合理的生态修复策略ꎬ以恢复退化湿地原有的结构和功能ꎬ并尽量保持其稳定[49]ꎮ生态修复包括自然恢复与人工修复ꎮ自然修复指在消除了外部环境的压力和干扰后ꎬ经过一段时间的自然恢复ꎬ形成了一个比较理想的生态系统[50]ꎮ人工修复指在排除了外部的压力和干扰后ꎬ仅靠自然过程是很难或无法恢复到预期的ꎬ需要借助人为干预手段来进行修复ꎬ通常是对破坏超过一定阈值㊁不能恢复的湿地生态系统进行修复ꎮ根据上文所提到的黄河三角洲湿地退化原因ꎬ本文将黄河三角洲退化湿地生态修复技术归纳为生物组分修复㊁水体修复㊁土壤改良和综合生境修复4个部分[51]ꎮ3.1㊀生物组分修复3.1.1㊀植物群落重建技术在滨海盐沼和淡水湿地的基础上ꎬ通过引入种植碱蓬㊁盐碱蓬㊁芦苇等本土湿地植物ꎬ增加生物多样性㊁提高湿地生产力[52]ꎮ或者通过优化和提升土壤种子库ꎬ如盐地碱蓬种子库的强化与促发技术ꎬ柽柳和芦苇群落的种子库的改造技术ꎬ促进湿地植被物种更新和植被演替ꎮ植物群落重建可以结合生态工程方法ꎬ如建立湿地过滤系统㊁植物滨岸带和人工湿地ꎬ缓解湿地盐渍胁迫㊁减轻水土污染ꎮ例如辽河河口正在实施的修复工程ꎬ采用了本土先锋植物碱蓬ꎬ修复效果明显ꎬ但工程对时间和人力需求比较大ꎬ对气象和气候条件要求严格ꎬ且后期监管和维护也需额外的资源[53]ꎮ3.1.2㊀生物入侵防治技术采取工程㊁物理㊁化学等多种方法对外来植物进行杀死和清理ꎬ防止其再次侵入ꎮ工程措施包括围堰㊁淹水㊁晒地㊁引水ꎻ物理措施包括刈割㊁铲除㊁火烧等ꎬ防止其在当地建立繁殖种群ꎻ或者修建屏障㊁围栏等ꎬ限制入侵物种的移动和传播ꎻ化学防治方法以滩涂米草除控剂为主[54]ꎮ在采取防治技术后ꎬ常移栽本地植物ꎬ加速受损生态系统的修复和恢复ꎬ提高湿地生态系统对抗入侵物种的抵抗力ꎬ但此技术除成本高以外ꎬ其在黄河三角洲湿地实施的工程复杂性和风险也比较高ꎮ3.1.3㊀增殖和释放技术在黄河三角洲湿地和海洋资源逐渐减少的情况下ꎬ根据水生动物种类构成ꎬ释放各种鱼类㊁虾㊁蟹㊁螺㊁贝等水生动物ꎬ使水生生态系统结构得到合理优化ꎬ恢复鱼类的种群与数量[55 ̄56]ꎮ尤其在黄河三角洲地区ꎬ利用这种技术可以提高鱼类的数量和多样性ꎬ保持水生生态系统的完整性ꎬ维护渔业水体的生态平衡ꎮ在实施增殖和释放技术时ꎬ需要考虑水生动物生存率㊁遗传多样性㊁生态位竞争等问题ꎬ同时也需要系统追踪和评估实施过程对黄河三角洲湿地生态系统的影响[57]ꎮ生物组分修复技术主要针对黄河水沙通量减少㊁影响湿地景观结构与功能稳定㊁生物多样性等问题ꎬ对黄河三角洲的水土进行固持ꎬ提升生态系统的稳定性及生态服务功能有较好作用ꎮ3.2㊀水体修复3.2.1㊀生态补水技术生态补水技术主要靠水库㊁堤坝等蓄水方式ꎬ实现淡水资源的季节均匀分配ꎬ缓解湿地盐碱化程度ꎬ为湿地中各类生物提供所需的生存和繁衍场所[58]ꎮ黄河三角洲湿地淡水资源短缺ꎬ可以通过历史径流量和生态-水文过程分析ꎬ优化湿地的生态补水方式㊁数量和补水时间ꎬ并建立起一种长效补水机制维持湿地咸淡水体系平衡[59]ꎮ但也需考虑水量不足ꎬ当地生产生活对水资源争夺等社会问题ꎮ3.2.2㊀水系连接技术水系连接技术主要通过疏通潮沟㊁涵洞改造㊁堤防拆除等措施强化水体直接的连续和水文交换ꎮ比如ꎬ有研究表明潮水可以保证翅碱蓬不会因为盐结晶而导致死亡ꎬ从而避免翅碱蓬群落退化[60 ̄61]ꎻ但海堤会使地形抬高并造成潮汐作用减弱ꎬ造成翅碱蓬群落的退化ꎮ通过拆除堤坝ꎬ恢复潮汐作用ꎬ增加湿地的水流动性ꎬ可以促进翅碱蓬群落恢复[62]ꎬ但是相关技术实施时的水质变化㊁病害传播㊁维护和管理成本等问题也需考虑ꎮ水体修复技术主要针对黄河三角洲黄河来水来沙持续减少ꎬ流路固化ꎬ河床下切ꎬ黄河与湿地㊁滩涂的水文联通性降低ꎬ淡水补给减少等问题ꎬ有利于调控区域内的海陆交汇总作用[63]ꎮ3.3㊀土壤改良3.3.1㊀微生物修复技术黄河三角洲的胜利油田开采对湿地土壤环境造成巨大负面影响ꎮ虽然传统物理和化学修复方法能够有效减少土壤中的石油碳氢化合物ꎬ但成本过高ꎬ可能造成二次污染ꎬ对退化土壤生态功能的修复不足[64]ꎮ有研究表明ꎬ芽孢杆菌属(Bacillusspp.)和假单胞菌(Pseudomonasspp.)等特定微生物能较好地降解碳氢化合物ꎬ常常与生物表面活性剂一起用于土壤修复领域[65]ꎮ生物炭等富碳材料能够促进盐沼土壤中一些有利于植物生长的细菌(如根瘤菌和芽孢杆菌)繁殖ꎬ抑制一些有害真菌的生长ꎬ从而重塑微生物群落结构及其碳代谢功能ꎬ也能从微生物层面实现改善退化盐沼的生态系统服务功能[66]ꎮ对于黄河三角洲湿地ꎬ需考虑微生物修复技术是否适用于治理当地的污染物ꎬ技术实行是否符合当地的法律法规ꎮ3.3.2㊀盐碱地改良技术盐碱地改良技术主要采用水利㊁生物㊁物理㊁化学等方法ꎬ通过对土壤特性进行优化ꎬ建立适合于盐沼湿地生态修复的土壤环境[67]ꎮ主要途径有:(1)水利改造ꎮ以排水方式将多余盐分排出农田ꎬ以减少土壤含盐量ꎬ常用的有暗管㊁明沟㊁竖井排水等[68]ꎮ(2)生物改良ꎮ通过种植耐盐植物ꎬ能有效降低土壤水分蒸发和避免表面盐渍化ꎬ同时还能减少地下水含盐量ꎬ改善土壤生态环境[69]ꎮ(3)物理改造ꎮ通过改变土壤和土体物理构造来调节水盐运移过程ꎬ以降低土壤水分蒸发和减少深层土壤盐上行输运[70]ꎮ(4)化学改造ꎮ利用化学改良剂改变土壤中的吸附离子ꎬ以达到降低土壤pH㊁碱化度以及改善土壤结构的目的ꎮ常用的化学改良剂包括石膏㊁脱硫石膏㊁硫磺㊁腐殖酸㊁糠醛渣等[71]ꎮ盐碱地改良技术可以较好地修复黄河三角洲湿地的盐碱状况ꎬ但此技术的可持续性也是需考虑和解决的问题ꎮ3.4㊀综合生境修复3.4.1㊀鸟类生境仿真技术黄河三角洲湿地是鸟类主要栖息地ꎬ由于湿地退化造成的鸟类栖息地环境破坏ꎬ要根据鸟类生存习性ꎬ采取人工方法建立栖息环境ꎬ吸引鸟来栖息ꎬ从而使湿地鸟类的多样性得到恢复和提高ꎮ常用措施包括生境岛的隔绝㊁微细地貌改造㊁生态补充㊁围堰矮化㊁人工鸟窝㊁设置鸟食区㊁干扰隔离等[72]ꎬ但是此技术对气候㊁食物和栖息地要求较高ꎬ人工管理依赖程度也较高ꎮ3.4.2㊀人工礁石技术人工礁石是一种人造的结构ꎬ它可以模仿自然礁石的某些特征ꎬ为湿地水生动物提供安乐窝ꎬ可为湿地鱼类的生长创造良好的生态环境ꎬ对保护渔业资源㊁保持海洋多样性㊁促进渔业资源的稳定和增殖有重要作用[73]ꎬ但其对黄河三角洲湿地水流和沉积也会产生影响ꎮ常见的人工礁石技术主要是在水体中放置混凝土构件㊁废旧船体㊁塑料和竹制建筑等ꎮ综合生境修复技术整体技术要求高ꎬ且经济成本高ꎬ具体效果还有待进一步证实ꎮ4㊀结论与展望黄河三角洲湿地退化严重ꎬ生态系统服务功能严重退化ꎮ造成黄河三角洲湿地生态退化的原因主要包括黄河水沙通量减少㊁海-陆交互作用增强㊁土壤盐渍化加剧㊁气候暖干化㊁外来物种入侵和人类活动的影响ꎮ尽管学界已经初步认识黄河三角洲海岸生态系统退化的一般成因ꎬ但对退化因子的互作机理及其调节机制还缺乏足够认识ꎮ因此ꎬ需要加强对湿地生态系统结构㊁过程㊁功能及调控的系统深入研究ꎬ并依托黄河三角洲典型的盐沼㊁滩涂等湿地建立生态修复技术示范区ꎬ创新和示范植被恢复㊁地表径流控制㊁海陆水文调节㊁滩涂微地形改良㊁土壤改良㊁水盐调节㊁水环境净化㊁土壤修复㊁生境重建㊁生物多样性恢复等综合修复技术ꎬ为黄河三角洲湿地生态恢复工程设计与建设提供技术支撑ꎮ结合已有研究进展ꎬ从以下方面提出未来研究建议:(1)在充分考虑黄河三角洲地区的自然和社会环境问题下ꎬ开展湿地生态修复技术的大规模筛选㊁中试与示范应用ꎬ对黄河三角洲湿地生态修复非常重要ꎮ(2)需进一步优化与升级湿地生态修复技术ꎮ一方面ꎬ降低技术的生态风险ꎬ提升修复效果ꎻ另一方面ꎬ降低技术实施成本ꎬ提高实施效果的可持续性ꎮ(3)在使用土壤添加剂进行土壤改良时ꎬ应着重注意材料本身的环境安全性ꎬ以防对原生生态系统造成二次污染ꎮ参考文献:[1]邵鹏帅ꎬ韩红艳ꎬ孙景宽.黄河三角洲湿地退化和恢复对柽柳土壤有机碳含量及红外碳组分的影响[J].生态学杂志ꎬ2022ꎬ41(7):1258 ̄1265.DOI:10.13292/j.1000 ̄4890.202207.026.[2]王岩ꎬ陈永金ꎬ刘加珍.黄河三角洲湿地植被空间分布对土壤环境的响应[J].东北林业大学学报ꎬ2013ꎬ41(9):59 ̄62.DOI:10.13759/j.cnki.dlxb.2013.09.001.[3]王永丽ꎬ于君宝ꎬ董洪芳ꎬ等.黄河三角洲滨海湿地的景观格局空间演变分析[J].地理科学ꎬ2012ꎬ32(6):717 ̄724.DOI:10.13249/j.cnki.sgs.2012.06.013.[4]路广ꎬ韩美ꎬ王敏ꎬ等.近代黄河三角洲植被覆盖度时空变化分析[J].生态环境学报ꎬ2017ꎬ26(3):422 ̄428.DOI:10.16258/j.cnki.1674 ̄5906.2017.03.009.[5]刘峰.黄河三角洲湿地水生态系统污染㊁退化与湿地修复的初步研究[D].青岛:中国海洋大学ꎬ2015.[6]战琦梦.黄河三角洲潮滩自然资源资产价值评估[D].烟台:鲁东大学ꎬ2020.[7]黄玉芳ꎬ葛雷ꎬ单凯ꎬ等.黄河下游河道湿地演变与河防工程建设时空关系分析[J].环境影响评价ꎬ2021ꎬ43(3):13 ̄18.DOI:10.14068/j.ceia.2021.03.003.[8]宋守旺.黄河三角洲保护区自然资源的开发与保护[J].环境与发展ꎬ2019ꎬ31(1):188 ̄189.DOI:10.16647/j.cnki.cn15 ̄1369/X.2019.01.109.[9]安乐生ꎬ周葆华ꎬ赵全升ꎬ等.黄河三角洲植被空间分布特征及其环境解释[J].生态学报ꎬ2017ꎬ37(20):6809 ̄6817.DOI:10.5846/stxb201607261518.[10]陈柯欣ꎬ丛丕福ꎬ雷威.人类活动对40年间黄河三角洲湿地景观类型变化的影响[J].海洋环境科学ꎬ2019ꎬ38(5):736 ̄744.DOI:10.13634/j.cnki.mes.2019.05.014.[11]张心茹ꎬ曹茜ꎬ季舒平ꎬ等.气候变化和人类活动对黄河三角洲植被动态变化的影响[J].环境科学学报ꎬ2022ꎬ42(1):56 ̄69.DOI:10.13671/j.hjkxxb.2021.0492.[12]王薇ꎬ陈为峰ꎬ王燃黎ꎬ等.黄河三角洲新生湿地景观格局特征及其动态变化:以垦利县为例[J].水土保持研究ꎬ2010ꎬ17(1):82 ̄87.[13]于君宝ꎬ王永丽ꎬ董洪芳ꎬ等.基于景观格局的现代黄河三角洲滨海湿地土壤有机碳储量估算[J].湿地科学ꎬ2013ꎬ11(1):1 ̄6.DOI:10.13248/j.cnki.wetlandsci.2013.01.006.[14]贾文泽ꎬ田家怡ꎬ潘怀剑.黄河三角洲生物多样性保护与可持续利用的研究[J].环境科学研究ꎬ2002ꎬ15(4):35 ̄39.DOI:10.13198/j.res.2002.04.37.jiawz.011.[15]任葳.基于微地形营造的黄河三角洲退化滨海湿地修复模式研究[D].呼和浩特:内蒙古大学ꎬ2017.[16]ZHANGXQꎬHESYꎬYANGY.EvaluationofwetlandecosystemservicesvalueoftheYellowRiverDelta[J].EnvironmentalMonitoringandAssessmentꎬ2021ꎬ193(6):353.DOI:10.1007/s10661 ̄021 ̄09130 ̄x.[17]张绪良ꎬ张朝晖ꎬ徐宗军ꎬ等.黄河三角洲滨海湿地植被的碳储量和固碳能力[J].安全与环境学报ꎬ2012ꎬ12(6):145 ̄149. [18]高瑞ꎬ王志勇ꎬ周晓东ꎬ等.利用多时相遥感监测与分析黄河三角洲湿地变化动态[J].测绘通报ꎬ2021(4):22 ̄27.DOI:10.13474/j.cnki.11 ̄2246.2021.0105.[19]LIUXZꎬQISZ.WetlandsenvironmentaldegradationintheYellowRiverDeltaꎬShandongProvinceofChina[J].ProcediaEnvironmentalSciencesꎬ2011ꎬ11:701 ̄705.DOI:10.1016/j.proenv.2011.12.109.[20]张婉婷.基于生态系统崩溃风险的滨海湿地生态退化诊断方法研究[D].厦门:自然资源部第三海洋研究所ꎬ2022. [21]钱逸凡ꎬ刘道平ꎬ楼毅ꎬ等.我国湿地生态状况评价研究进展[J].生态学报ꎬ2019ꎬ39(9):3372 ̄3382.DOI:10.5846/stxb201805181093.[22]杨俊芳.现代黄河三角洲入侵植物互花米草遥感监测与分析[D].东营:中国石油大学(华东)ꎬ2017.[23]YANJFꎬZHUJꎬZHAOSYꎬetal.CoastalwetlanddegradationandecosystemservicevaluechangeintheYellowRiverDeltaꎬChina[J].GlobalEcologyandConservationꎬ2023ꎬ44:e02501.DOI:10.1016/j.gecco.2023.e02501.[24]ZHANGXJꎬWANGGQꎬXUEBLꎬetal.DynamiclandscapesandthedrivingforcesintheYellowRiverDeltawetlandregioninthepastfourdecades[J].TheScienceoftheTotalEnvironmentꎬ2021ꎬ787:147644.DOI:10.1016/j.scitotenv.2021.147644. [25]韩美ꎬ张翠ꎬ路广ꎬ等.黄河三角洲人类活动强度的湿地景观格局梯度响应[J].农业工程学报ꎬ2017ꎬ33(6):265 ̄274.DOI:10.11975/j.issn.1002 ̄6819.2017.06.034.[26]韩美ꎬ张晓慧.黄河三角洲湿地主导生态服务功能价值估算[J].中国人口 资源与环境ꎬ2009ꎬ19(6):37 ̄43.DOI:10.3969/j.issn.1002 ̄2104.2009.06.007.[27]孙志高ꎬ牟晓杰ꎬ陈小兵ꎬ等.黄河三角洲湿地保护与恢复的现状㊁问题与建议[J].湿地科学ꎬ2011ꎬ9(2):107 ̄115.DOI:10.13248/j.cnki.wetlandsci.2011.02.002.[28]范延辉ꎬ王君.黄河三角洲石油污染土壤中微生物多样性与耐盐性初探[J].滨州学院学报ꎬ2010ꎬ26(3):35 ̄40.DOI:10.3969/j.issn.1673 ̄2618.2010.03.008.[29]王学金ꎬ陈立强ꎬ宋玉敏ꎬ等.三角洲地区黄河水资源利用现状及对策[J].水利规划与设计ꎬ2013(1):18 ̄19.DOI:10.3969/j.issn.1692 ̄2469.2013.01.007.[30]RENGBꎬZHAOYJꎬWANGJBꎬetal.EcologicaleffectsanalysisofSpartinaalterniflorainvasionwithinYellowRiverdeltausinglongtimeseriesremotesensingimagery[J].EstuarineꎬCoastalandShelfScienceꎬ2021ꎬ249:107111.DOI:10.1016/j.ecss.2020.107111.[31]LUCXꎬZHAOCꎬLIUJꎬetal.IncreasedsalinityandgroundwaterlevelsleadtodegradationoftheRobiniapseudoacaciaforestintheYellowRiverDelta[J].JournalofForestryResearchꎬ2022ꎬ33(4):1233 ̄1245.DOI:10.1007/s11676 ̄021 ̄01422 ̄9. [32]郑明喜ꎬ解伏菊ꎬ侯传美.黄河三角洲退化湿地植被与土壤的恢复研究[J].气象与环境学报ꎬ2012ꎬ28(1):11 ̄16.DOI:10.3969/j.issn.1673 ̄503X.2012.01.002.[33]DINGZꎬSUFZꎬZHANGJJꎬetal.Clusteringcoastallandusesequencepatternsalongthesea ̄landdirection:AcasestudyinthecoastalzoneofBohaiBayandtheYellowRiverDeltaꎬChina[J].RemoteSensingꎬ2019ꎬ11(17):2024.DOI:10.3390/rs11172024.[34]WUXAꎬBINSꎬSYVITSKIJꎬetal.CanreservoirregulationalongtheYellowRiverbeasustainablewaytosaveasinkingdelta?[J].EarthᶄsFutureꎬ2020ꎬ8(11):e2020EF001587.DOI:10.1029/2020ef001587.[35]HUORꎬCHENHꎬLILꎬetal.FloodvariabilityintheupperYangtzeRiveroverthelastmillennium Insightsfromacomparisonofclimate ̄hydrologicalmodelsimulatedandreconstruction[J].ScienceChinaEarthSciencesꎬ2023ꎬ66(3):547 ̄567.DOI:10.1007/s11430 ̄022 ̄1008 ̄5.[36]郝继祥ꎬ王一帆ꎬ邹荣松ꎬ等.黄河三角洲盐碱地改良对冬春地下水盐运动的影响[J].农业科技与信息ꎬ2021(17):22 ̄24.DOI:10.15979/j.cnki.cn62 ̄1057/s.2021.17.007.[37]杨婧文.黄河三角洲濒海区土壤质量盐碱退化评价与遥感反演[D].泰安:山东农业大学ꎬ2022.[38]宋静茹ꎬ杨江ꎬ王艳明ꎬ等.黄河三角洲盐碱地形成的原因及改良措施探讨[J].安徽农业科学ꎬ2017ꎬ45(27):95 ̄97.DOI:10.13989/j.cnki.0517 ̄6611.2017.27.030.[39]何敏ꎬ陈萍ꎬ张明增.黄河三角洲生态保护对策研究[J].中国科技信息ꎬ2012(6):33.DOI:10.3969/j.issn.1001 ̄8972.2012.06.001.[40]SHIHHꎬLUJFꎬZHENGWꎬetal.Evaluationsystemofcoastalwetlandecologicalvulnerabilityunderthesynergeticinfluenceoflandandsea:acasestudyintheYellowRiverDeltaꎬChina[J].MarinePollutionBulletinꎬ2020ꎬ161:111735.DOI:10.1016/j.marpolbul.2020.111735.[41]肖杨.黄河三角洲人类活动及其土壤盐碱退化效应[D].泰安:山东农业大学ꎬ2018.[42]ZHANGBLꎬYINLꎬZHANGSMꎬetal.AssessmentoncharacteristicsofLUCCprocessbasedoncomplexnetworkinModernYellowRiverDeltaꎬShandongProvinceofChina[J].EarthScienceInformaticsꎬ2016ꎬ9(1):83 ̄93.DOI:10.1007/s12145 ̄015 ̄0234 ̄2.[43]谢晓天ꎬ陈良ꎬ陈晓鹏ꎬ等.黄河三角洲农业面源磷污染时空分布研究[J].广东化工ꎬ2020ꎬ47(6):153 ̄154. [44]刘展航ꎬ张树岩ꎬ侯玉平ꎬ等.互花米草入侵对黄河口湿地土壤碳氮磷及其生态化学计量特征的影响[J].生态环境学报ꎬ2022ꎬ31(7):1360 ̄1369.DOI:10.16258/j.cnki.1674 ̄5906.2022.07.008.[45]李昱蓉ꎬ武海涛ꎬ张森ꎬ等.互花米草入侵和持续扩张下黄河三角洲滨海湿地潮沟的形态特征及其变化[J].湿地科学ꎬ2021ꎬ19(1):88 ̄97.DOI:10.13248/j.cnki.wetlandsci.2021.01.009.[46]ZHANGCꎬGONGZNꎬQIUHCꎬetal.Mappingtypicalsalt ̄marshspeciesintheYellowRiverDeltawetlandsupportedbytemporal ̄spatial ̄spectralmultidimensionalfeatures[J].TheScienceoftheTotalEnvironmentꎬ2021ꎬ783:147061.DOI:10.1016/j.scitotenv.2021.147061.[47]张光亮ꎬ白军红ꎬ贾佳ꎬ等.互花米草入侵对黄河口盐沼湿地土壤溶解性有机碳空间分布的影响[J].北京师范大学学报(自然科学版)ꎬ2018ꎬ54(1):90 ̄97.DOI:10.16360/j.cnki.jbnuns.2018.01.012.[48]张晗旭ꎬ李馨宇ꎬ崔保山ꎬ等.黄河三角洲湿地生态修复工程对底栖动物的影响效果研究[J].环境工程ꎬ2023ꎬ41(1):222 ̄231.DOI:10.13205/j.hjgc.202301027.[49]杨薇ꎬ裴俊ꎬ李晓晓ꎬ等.黄河三角洲退化湿地生态修复效果的系统评估及对策[J].北京师范大学学报(自然科学版)ꎬ2018ꎬ54(1):98 ̄103.DOI:10.16360/j.cnki.jbnuns.2018.01.013.[50]LISZꎬXIETꎬBAIJHꎬetal.DegradationandecologicalrestorationofestuarinewetlandsinChina[J].Wetlandsꎬ2022ꎬ42(7):1 ̄10.DOI:10.1007/s13157 ̄022 ̄01589 ̄9.[51]马玉蕾ꎬ王德ꎬ刘俊民ꎬ等.黄河三角洲典型植被与地下水埋深和土壤盐分的关系[J].应用生态学报ꎬ2013ꎬ24(9):2423 ̄2430.DOI:10.13287/j.1001 ̄9332.2013.0487.[52]LIUZZꎬFAGHERAZZISꎬMAXꎬetal.Consumercontrolandabioticstressesconstraincoastalsaltmarshrestoration[J].JournalofEnvironmentalManagementꎬ2020ꎬ274:111110.DOI:10.1016/j.jenvman.2020.111110.[53]郭乾友.滩涂互花米草除治技术研究[J].防护林科技ꎬ2011(2):3 ̄5.DOI:10.13601/j.issn.1005 ̄5215.2011.02.019. [54]芦康乐ꎬ杨萌尧ꎬ武海涛ꎬ等.黄河三角洲芦苇湿地底栖无脊椎动物与环境因子的关系研究:以石油开采区与淡水补给区为例[J].生态学报ꎬ2020ꎬ40(5):1637 ̄1649.DOI:10.5846/stxb201901100087.[55]潘怀剑ꎬ田家怡.黄河三角洲水质污染对淡水鱼类多样性的影响[J].水产科学ꎬ2001ꎬ20(4):17 ̄20.DOI:10.16378/j.cnki.1003 ̄1111.2001.04.006.[56]SHANGSꎬHUSXꎬLIUXXꎬetal.EffectsofSpartinaalterniflorainvasiononthecommunitystructureanddiversityofwetland。
引言水是生物进化和生态演替过程中无可替代的自然资源。
河湖水域是自然淡水资源,为人类创造能源、能量,但由于工业化发展,流域水体污染日益严重,水质越来越差、水功能衰减越来越严重。
面对全球水资源危机和水环境污染,采取有效的指标和科学的方法进行水环境生态系统健康性评价成为研究热点[1]。
Rapport等人[2]于1993年提出,生态系统健康是一个生态系统环境的征象,容易受火灾、干旱、物种灭绝、外来物种入侵、气候变化、矿业、农业等因素影响。
对于水生态系统健康性评价,目前还未形成一套成熟的系统健康评价标准。
Costanza等人[3]通过研究,将健康的生态系统定义为具有一定自净能力,在受到外界干扰的情况下,具有一定的抵抗力和修复能力,以维持系统的稳定性和可持续性。
河湖生态系统健康性评价主要是从科学、系统的角度去判定河湖系统的系统运作和恢复能力。
1河湖生态系统健康性评价研究现状19世纪末,欧洲为了解决河湖污染问题,通过水质评价初步判定河湖健康,由水质指标浓度高低来判定水体污染严重程度,此方法已逐步并成熟推向各个国家。
20世纪70-80年代,为了更全面反映河流生态健康状况,河湖“健康”的研究逐渐由水质延伸到包含多种环境因素的评价,包含水文水利、水生生物等因素[4]。
湖生态健康评价研究始于英国,通过应用Trem生物指数法和Chanddler指数法进行水体有机物的分析。
至20世纪80年代,河湖生物预测模型法和生态多指标评价法得到越来越多的研究[5]。
1981年,美国Karr提出以生态完整性直属的评价方法,通过运用河湖物种的多样性进行12项指标分析河湖生物群落和功能,此方法得到普遍应用。
后续中国也逐渐开展河湖生态系统健康评价,于1992年杨莲芳等人[6]开展底栖动物完整性指数评价研究,将大型底栖动物生物学、生态学和生理学特征反应作为水生态系统质量的重要指标,基于群落结构特征而构建的底栖生物完整性指数B-IBI。
于2005年,赵彦伟、吴阿娜、谢锋、张光生等人陆续深入研究河湖生态系统,于宁波甬江、巢湖、青海湖、滇池等流域进行了健康评估,在评价指标体系构建上做了大量工作,涵盖水资源开发利用率、水流量变异程度、湖岸带稳定性、湖库连通指数、富营养化状况等方面进行研究,同时根据不同河流的形态功能差异,充分研究河流防洪灌溉、开发利用作用和生态效能[7-8]。
流域—河口三角洲湿地生态系统健康评价研究进展
作者:吴涛, 赵冬至, 康建成, WU Tao, ZHAO Dong-Zhi, KANG Jian-cheng
作者单位:吴涛,WU Tao(上海师范大学,城市生态与环境研究中心,上海,200234;国家海洋环境监测中心,辽宁,大连,116023), 赵冬至,ZHAO Dong-Zhi(国家海洋环境监测中心,辽宁,大连,116023)
, 康建成,KANG Jian-cheng(上海师范大学,城市生态与环境研究中心,上海,200234)
刊名:
海洋环境科学
英文刊名:MARINE ENVIRONMENTAL SCIENCE
年,卷(期):2010,29(2)
被引用次数:8次
1.KEDDY P A Wetland Ecology Principles and Conservation 2000
2.HOLLAND M M Wetlands and environment gradients 1996
3.DIVERSITAS 2008
4.国家中长期科学和技术发展规划纲要(2006-2020) 2008
5.杨志峰;崔保山;黄国和黄淮海地区湿地水生态过程、水环境效应及生态安全调控[期刊论文]-地球科学进展2006(11)
6.COWARDIN,L M;CARTER V;GOLET F C Classification of wetlands and deepwater habitats of the United States 1979
7.崔保山;杨志峰湿地学 2006
8.MITSCH W J;GOSSELINK J G Wetlands 2000
9.TARNOCAI C;ADAMS G D;GLOOSCHENKO V The Canadian wetland classification system 1998
10.ZOLTAI S C;VITT D H Canadian wetlands:Enironment gradients and classificatian 1995
11.WARNER B G;RUBIC C D A The Canadian wetland classification system 1997
12.RAPPORT D J Evolution of indicators of ecosystem health 1992
13.COSTANZA R Special section:forum on valuation of ecosystem services;The value of ecosystem services 1998
14.崔保山;杨志峰湿地生态系统健康研究进展[期刊论文]-生态学杂志 2001(03)
15.王备新;杨莲芳;刘正文生物完整性指数与水生态系统健康评价[期刊论文]-生态学杂志 2006(06)
16.李春晖;崔嵬;庞爱萍流域生态健康评价理论与方法研究进展[期刊论文]-地理科学进展 2008(01)
17.TOMAS VIVES P Monitoring Mediterranean wetlands:A methodological Guide 1996
NDRES P B Ecological indicators:panacea or liability 1992
19.崔保山;杨志峰湿地生态系统健康评价指标体系Ⅰ.理论[期刊论文]-生态学报 2002(07)
20.崔保山;杨志峰湿地生态系统健康的时空尺度特征[期刊论文]-应用生态学报 2003(01)
21.KELLY J R;HARWELL M A Indicatoas of ecosystem response and recovery 1989
22.王薇黄河三角洲湿地生态系统健康综合评价研究 2007
23.俞小明;石纯;陈春来河口滨海湿地评价指标体系研究[期刊论文]-国土与自然资源研究 2006(2)
24.蒋卫国;李京;李加洪辽河三角洲湿地生态系统健康评价[期刊论文]-生态学报 2005(03)
25.付在毅;许学工;林辉平辽河三角洲湿地区域生态风险评价[期刊论文]-生态学报 2001(03)
26.KARR J R;DUDLEY D R Ecological perspectives on water quality goals[外文期刊] 1981
DSON A R;WHITE L J;DOOLAN J A Development and testing of an index of stream condition for waterway management in Australia 1999
29.张晓萍;杨勤科;李锐流域健康诊断指标--一种生态环境评价的新方法[期刊论文]-水土保持通报 1998(04)
30.ADRIAANSE A Environmental Policy Performance Indicators.A study on the Development of Indicators for Environmental Policy in the Netherlands 1993
31.于伯华;吕昌河基于DPSIR概念模型的农业可持续发展宏观分析[期刊论文]-中国人口资源与环境 2004(05)
32.陈文波;肖笃宁;李秀珍景观指数分类、应用及构建研究[期刊论文]-应用生态学报 2002(01)
33.杨帆;赵冬至;马小峰RS和GIS技术在湿地景观生态研究中的应用进展[期刊论文]-遥感技术与应用 2007(03)
34.CUI L J;PADDENBURG ANNA VAN;ZHANG M Y Applications of RS,GIS and GPS technologies in research,inventory and management of wetlands in China[期刊论文]-Journal of Forestry Research
2005(04)
35.GRIFITHS G H Editorial:Remote Sensing and Landscape Ecolagy:Landscape Patterns and Landscape Change 2000(13)
36.FORMAN R T T;GODRON M Landscape Ecology 1986
37.李秀珍;布仁仓;常禹景观格局指标对不同景观格局的反应[期刊论文]-生态学报 2004(01)
38.景观格局软件Fragstats使用手册 2008
1.林倩.张树深.刘素玲.LIN Qian.ZHANG Shu-shen.LIU Su-ling辽河口湿地生态系统健康诊断与评价[期刊论文]-生态与农村环境学报2010,26(1)
2.王秀明.李洪远.孟伟庆.WANG Xiu-Ming.LI Hong-Yuan.MENG Wei-Qing基于模糊综合评价模型的天津滨海新区湿地生态系统健康评价[期刊论文]-湿地科学与管理2010,06(3)
3.蒋卫国.李京.李加洪.谢志仁.王文杰.JIANG Wei-Guo.LI Jing.LI Jia-Hong.XIE Zhi-Ren.WANG Wen-Jie辽河三角洲湿地生态系统健康评价[期刊论文]-生态学报2005,25(3)
4.申德轶.衷平.SHEN De-Yi.ZHONG Ping生态健康评价在温地管理中的应用[期刊论文]-湿地科学与管理
2008,4(3)
5.吴涛.赵冬至.康建成.WU Tao.ZHAO Dong-zhi.KANG Jian-cheng基于遥感技术的河口三角洲湿地景观生态健康研究进展[期刊论文]-海洋环境科学2010,29(3)
6.白祥.金海龙.任建丽.高翔.陈丽华.吴加清.BAI Xiang.JIN Hai-Long.REN Jian-Li.GAO Xiang.CHEN Li-Hua. WU Jia-Qing基于PSR模型的新疆艾比湖湿地生态系统健康评价指标体系研究[期刊论文]-湿地科学与管理
2009,5(3)
7.林倩辽河口湿地景观演变与生态系统健康评价研究[学位论文]2009
1.唐得昊.邹欣庆.刘兴健海岸带生态系统健康评价中能质和生物多样性的差异——以江苏海岸带为例[期刊论文]-生态学报 2013(4)
2.孔范龙.郗敏.李悦.吴健敏.张清磊卤阳湖湿地的保护规划及效益分析[期刊论文]-青岛大学学报(工程技术版) 2012(4)
3.许自舟.马玉艳.闫启仑.解鹏飞海洋生态系统健康评价软件的研制与应用[期刊论文]-海洋环境科学 2012(2)
4.韩大勇.杨永兴.杨杨.李珂湿地退化研究进展[期刊论文]-生态学报 2012(4)
5.李珂.杨永兴.杨杨.韩大勇.杨宇明.田昆.张昌兵中国高原湿地退化与恢复研究进展[期刊论文]-安徽农业科学2011(11)
6.何东进.林立.游巍斌.王韧.蔡金标.廖小娟闽东滨海湿地景观格局演化及其模拟[期刊论文]-福建林学院学报2013(2)
7.唐得昊.邹欣庆.刘兴健海岸带生态系统健康评价中能质和生物多样性的差异——以江苏海岸带为例[期刊论文]-生态学报 2013(4)
8.韩大勇.杨永兴.杨杨.李珂湿地退化研究进展[期刊论文]-生态学报 2012(4)
引用本文格式:吴涛.赵冬至.康建成.WU Tao.ZHAO Dong-Zhi.KANG Jian-cheng流域—河口三角洲湿地生态系统健康评价研究进展[期刊论文]-海洋环境科学 2010(2)。