角平分线性质导学案
- 格式:doc
- 大小:188.00 KB
- 文档页数:4
第十二章 全等三角形12.3 角平分线的性质第1课时 角平分线的性质学习目标:1.通过操作、验证等方式,探究并掌握角平分线的性质定理.2.能运用角的平分线性质解决简单的几何问题. 重点:掌握角的平分线的性质定理,用直尺和圆规作角的平分线. 难点:角平分线定理的应用.一、知识链接1.判定两个三角形全等的方法有哪几种?2.如图,在△ABC 中,BD 平分∠ABC ,则∠ =∠ .过点D 作DE ⊥BC ,垂足为E ,则图中线段 的长度表示点D 到BC 的距离.二、新知预习1.OC 是∠AOB 的平分线,点P 是射线OC 上的任意一点.操作测量:取点P 的三个不同的位置,分别过点P 作PD ⊥OA ,PE ⊥OB ,点D 、E为垂足,测量PD 、PE 的长.将三次数据填入下表:观察测量结果,猜想线段PD与PE的大小关系,写出结论.2.下面四个图中,点P 都在∠AOB 的平分线上,则PD =PE 的是( )A B C D 3.猜想:角平分线的性质:角平分线上任意一点到两边的相等.三、我的疑惑______________________________________________________________________________________________________________________________________________________一、要点探究探究点1:尺规作角平分线问题:如果没有角平分仪,我们用数学作图工具,能实现该仪器的功能吗?做一做:请大家找到用尺规作角的平分线的方法,并说明作图方法与仪器的关系.提示:(1)已知什么?求作什么?(2)把平分角的仪器放在角的两边,仪器的顶点与角的顶点重合,且仪器的两边相等,怎样在作图中体现这个过程呢?(3)在平分角的仪器中,BC=DC,怎样在作图中体现这个过程呢?(4)你能说明为什么OC是∠AOB的平分线吗?已知:∠AOB.求作:∠AOB的平分线.注意:作角平分线是最基本的尺规作图之一,大家一定要掌握.已知:平角∠AOB.求作:平角∠AOB的角平分线.结论:作平角的平分线的方法就是过直线上一点作这条直线的垂线的方法.探究点2:角平分线的性质实验:OC是∠AOB的平分线,点P是射线OC上的任意一点.1.操作测量:取点P的三个不同的位置,分别过点P作PD⊥OA,PE⊥OB,点D、E为垂足,测量PD、PE的长.将三次数据填入下表:猜想:角的平分线上的点到角的两边的距离相等.验证猜想:角的平分线上的点到角的两边的距离相等.已知:如图,∠AOC= ∠BOC,点P在OC上,PD⊥OA,PE⊥OB,垂足分别为D,E.求证:PD=PE.方法归纳:一般情况下,我们要证明一个几何命题时,可以按照类似的步骤进行,即1.明确命题中的已知和求证;2.根据题意,画出图形,并用数学符号表示已知和求证;3.经过分析,找出由已知推出要证的结论的途径,写出证明过程.知识要点:性质定理:角的平分线上的点到角的两边的距离相等.应用所具备的条件:(1)角的平分线;(2)点在该平分线上;(3)垂直距离.定理的作用:证明线段相等.应用格式:∵OP是∠AOB的平分线,PD⊥OA于D,PE⊥OB于E,∴PD = PE.判一判:(1)∵如下左图,AD平分∠BAC(已知),∴BD=CD.(在角的平分线上的点到这个角的两边的距离相等)(2)∵如上右图,DC⊥AC,DB⊥AB(已知),∴BD=CD.(在角的平分线上的点到这个角的两边的距离相等)典例精析例1:已知:如图,在△ABC中,AD是它的角平分线,且BD=CD,DE⊥AB,DF⊥AC,垂足分别为E,F.求证:EB=FC.例2:如图,AM是∠BAC的平分线,点P在AM上,PD⊥AB,PE⊥AC,垂足分别是D、E,PD=4 cm,则PE=______cm.变式:如图,在Rt△ABC中,AC=BC,∠C=90°,AP平分∠BAC交BC于点P,若PC=m,AB=14.(1)则点P到AB的距离为_______(用含m的式子表示);(2)求△APB的面积(用含m的式子表示);(3)求△PDB的周长.二、课堂小结1.如图,DE⊥AB,DF⊥BG,垂足分别是E,F,DE =DF,∠EDB= 60°,则∠EBF= 度,BE= .第1题图第2题图第3题图第4题图2.如图,△ABC中,∠C=90°,AD平分∠CAB,且BC=8,BD=5,则点D到AB的距离是.3.用尺规作图作一个已知角的平分线的示意图如图所示,则能说明∠AOC=∠BOC的依据是()A.SSS B.ASAC.AAS D.角平分线上的点到角两边的距离相等4.如图,AD是△ABC的角平分线,DE⊥AB,垂足为E,S△ABC=7,DE=2,AB=4,则AC的长是()A.6 B.5 C.4 D.35.如图,在Rt△ABC中,∠C=90°,BD平分∠ABC,DE⊥AB于E,则:(1)哪条线段与DE相等?为什么?(2)若AB=10,BC=8,AC=6,求BE,AE的长和△AED的周长.6.如图,已知AD∥BC,P是∠BAD与∠ABC的平分线的交点,PE⊥AB于E,且PE=3,求AD与BC之间的距离.7.如图,D是∠ACG的平分线上的一点.DE⊥AC,DF⊥CG,垂足分别为E,F.求证:CE=CF.参考答案自主学习一、知识链接1.SSS、SAS、ASA、AAS、HL2.ABD CBD DE二、新知预习1.PD=PE2.D 3.距离三、我的疑惑课堂探究二、要点探究探究点1:尺规作角平分线问题能做一做作法:(1)以点O为圆心,适当长为半径画弧,交OA于点M,交OB于点N.(2)分别以点M、N为圆心,大于12MN的长为半径画弧,两弧在∠AOB的内部相交于点C.(3)画射线OC.射线OC即为所求.针对训练解:如图.探究点2:角平分线的性质验证猜想证明:∵PD⊥OA,PE⊥OB,∴∠PDO=∠PEO=90°.在△PDO和△PEO中,,,,PDO PEOAOC BOCOP OP∠=∠⎧⎪∠=∠⎨⎪=⎩∴△PDO≌△PEO(AAS).∴PD=PE.判一判(1)×(2)×典例精析例1 证明:∵AD是∠BAC的平分线,DE⊥AB,DF⊥AC,∴DE=DF,∠DEB=∠DFC=90 °.在Rt△BDE和Rt△CDF中,,,DE DFBD CD=⎧⎨=⎩∴Rt△BDE≌Rt△CDF(HL).∴EB=FC.例2 4变式解:(1)m(2)由角平分线的性质,可知,PD=PC=m,172PDBS AB PD m=⋅=.(3)由题意可证△ACP≌△ADQ,∴AC=AD.∴C△PDB=PD+PB+DB=PC+PB+DB=BC+DB=AD+DB=AB=14.当堂检测1.60 BF2.3 3.A4.D 解析:过点D作DF⊥AC于F,∵AD是△ABC的角平分线,DE⊥AB,∴DF=DE=2,∴11422722ABCS AC=⨯⨯+⨯=,解得AC=3.5.解:(1)DC=DE.理由如下:角平分线上的点到角两边的距离相等.(2)∵BD平分∠ABC,∴∠CBD=∠EBD.在△CDB和△EDB中,∠C=∠BED,∠CBD=∠EBD,DB=DB,∴△CDB≌△EDB(AAS),∴BE=BC=8.∴AE=AB-BE=2.∴△AED的周长=AE+ED+DA=2+6=8.6.解:过点P作MN⊥AD于点M,交BC于点N.∵AD∥BC,∴MN⊥BC,MN的长即为AD与BC之间的距离.∵AP平分∠BAD,PM⊥AD,PE⊥AB,∴PM= PE.同理,PN= PE.∴PM= PN= PE=3.∴MN=6.即AD与BC之间的距离为6.7.证明:∵CD是∠ACG的平分线,DE⊥AC,DF⊥CG,∴DE=DF.在Rt△CDE和Rt△CDF中,,,CD CDDE DF=⎧⎨=⎩∴Rt△CDE≌Rt△CDF(HL),∴CE=CF.。
角平分线11月26号 主备人:袁延欣一、学习目标掌握角平分线的定义及性质,并能进行简单的运算。
二、学习重点、难点角的平分线及其应用 三、学习过程 (一)复习回顾1、角的定义及表示方法2、线段中点的定义及性质 (二)新知探究做一做:请同学们在一张半透明的纸上画∠AOB,把∠AOB 对折,让角的两边相重合。
这时,我们看到这个叫的中间有一条射线,请你测量者两个角的大小,你有什么发现?(2)小结:这条射线把这个角分成两个 的角,这时,我们把这条射线成为这个角的 。
归纳:从一个角的顶点引出一条射线,把这个角分成两个相等的角,这条射线叫做这个角的 。
注意:1)角的平分线是一条在角内部的 。
2)角的平分线把角分成了 。
几何语言:如图。
OC 是∠AOB 的平分线,则①∠AOC=∠BOC,②∠AOB=2∠AOC=2∠COB, ③∠AOB=∠BOC=21∠AOB 。
反之,①、②、③中任何一个成立,则OC 是∠AOB 的平分线。
AOB BCOA例1:1)若∠BAD=∠CAD, ∠BCE=∠ACE, 则下列结论中错误的是( ) A 、AD 是∠BAC 的平分线 B 、CE 是∠ACD 的平分线 C 、∠BCE=21∠ACB D 、CE 是∠BOC 的平分线2)如图,∠AOB=55°,OD 是∠BOC 的平分线,则∠AOD=例2. 已知∠AOB=75°,∠COA=15°,OD 为∠COB 的平分线,求∠BOD 的度数。
练习,如图,点O 事直线AB 上的一点,∠AOD=120°,CD ⊥AB 于点O,OE 平分∠BOD,求∠BOE 的度数。
例3,已知∠AOB=70°,∠BOC=30°,求∠AOC 的度数ACDED练习:在例3的条件下,OM ∠AOB 的平行线,ON 平分∠BOC,求∠MON.例4,如图,OM 是∠AOC 的平分线,ON 是∠BOC 的平分线。
12.3 角平分线性质导学案温馨寄语:朝霞般美好的理想,在向你们召唤,你们是一滴一滴的水,全将活跃在祖国的大海里.一.学习目标:1.经历探索、猜想、证明的过程,进一步发展学生的推理证明意识和能力。
2.能够利用三角形全等,证明角平分线的性质。
3.能对角平分线的性质进行简单推理,解决一些实际问题。
二.重点与难点:1.角平分线的性质。
2.表达文字几何命题的证明过程。
三、学习过程知识链接角平分线:从一个的顶点引出一条,把这个角分成两个的角,这条叫做这个角的角平分线。
合作探究活动1:在纸上任意画一个角,用剪刀剪下,如何确定角的平分线?动2:如图,在∠BAC中,若AE=AF,EG=FG。
AD是∠BAC的平分线吗?你能说明它的道理吗?活动3:如何用尺规作角的平分线?P48探究验证在∠AOB的平分线OC上任取一点P,然后,作点P到∠AOB两边的垂线段PD、 PE,画一画,量一量,从中你有什么新发现?你能说明其中的道理吗?性质:。
用符号语言描述:如图,OC是∠AOB的平分线,∵∴PD=PE验证性质:已知:如图,∠AOC=∠BOC,点P在OC上,PD⊥OA,PE⊥OB求证:PD=PE证明:四、自能训练1.知AD是△ABC的角平分线,DE⊥AB于E,且DE=3cm,则点D到AC的距离是( )A.2cmB.3cmC.4cmD.6cm2 .已知如图,BD平分∠ABC,若要证明AD=DC,则可以添加的一个条件是______.3. 如图四边形ABCD中,∠A=90º,AD=3,BC=5,对角线BD平分∠ABC,则△BCD的面积是_______.4.如图,Rt△ABC中,∠C=90º,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,且AB=8,则△BED的周长是_______.5、如图,△ABC中,∠C=90°,AD平分∠BAC,AB=5,CD=2.则△ABD的面积是_______.6、如图,△ABC 中,AD 为∠BAC 的平分线,DE ⊥AB ,DF ⊥AC ,E 、F 为垂足,在以下结论中:①△ADE ≌△ADF ;②△BDE ≌△CDF ;③△ABD ≌△ACD ;④AE =AF ;⑤BE =CF ; ⑥BD =CD .其中正确结论的个数是( )A .1B .2C .3D .4四、能力提升 1、如图,AD 是∠BAC 的平分线,DE ⊥AB,垂足为E ,DF ⊥AC 垂足为E ,且BD=CD. 求证:BE=CF2、如图,OC 是∠AOB 的平分线,AC ⊥OB 于D ,BC ⊥OA 于E.求证:AC=BC3、如图5、AB ∥CD ,∠B =90°,AE 平分∠DAB 。
1.4 角平分线的性质与判定导学案(一)【导学目标】1、掌握角平分线的性质定理及判定定理;2、理解原命题、逆命题、逆定理的概念及关系。
【导学重点】掌握角平分线的性质定理及判定定理;【导学难点】掌握角平分线的性质定理及判定定理;【强基导学】1、判定三角形全等的方法有哪些?判定直角三角形全等的方法呢?2、斜边、直角边定理的内容是什么?3、什么是角平分线?4、点到直线的距离的定义,完成任务1:【自主探学】阅读教材P22【任务1】如图,在∠AOB的平分线OC上任取一点P,作PD⊥OA ,PE⊥OB,垂足分别为点D,E,试问PD与PE相等吗?请写出证明过程。
【归纳】角平分线的性质定理:角平分线上的点到。
几何语言描述角平分线的性质定理:∵∴,完成任务2:【带问自学】阅读教材P23【任务2】如图,点P在∠AOB的内部,作PD⊥OA,PE⊥OB,垂足分别为点D,E. 若PD= PE,那么点P在∠AOB的平分线上吗?请说明理由。
【归纳】角平分线的判定定理:角的内部到角的两边距离相等的点 。
用几何语言描述角平分线的判定定理:∵∴【互动帮学】例1 如图,∠BAD =∠BCD = 90°,∠1=∠2. (1)求证:点B 在∠ADC 的平分线上; (2)求证:BD 是∠ABC 的平分线.【知识梳理】1、角平分线的性质定理是 。
2、角平分线的判定定理是 。
【达标评学】1. 如图,在△ABC 中,∠B =90°,AD 平分∠BAC 交BC 于D ,BC =10cm ,CD =6cm ,则点D 到AC 的 距离是: 。
2、如图,在Rt △ABC 中,AC =4,BC =3,AB =5, 点D 是三角形内角平分线的交点,则点D 到AB 的 距离是: 。
A3、如图,在△ABC中,∠C=90°,点D在AC上,DE⊥AB于E,且DC=DE,∠CBD:∠A=2:1,则∠A的度数为。
【布置作业】教材P26A组1、2题BEADC第3题图。
“角的平分线的性质”导学案(第一课时)姓名:_____课时目标:1.掌握角平分线的画法2.理解并掌握角平分线的性质3.了解证明几何命题的一般步骤自学目标:1.动手画任意已知角的平分线2.填空,如图,∠AOC=∠BOC,点P在OC上,PD⊥OA于D,PE⊥OB于E,求证:PD=PE.证明:∵PD⊥OAPE⊥OB∴_____=_____=90°在△PBO和△PEO中∠PDO=∠PEO________=_________OP=OP∴△PDO≌△PEO(_________)∴PD=PE用语言描述以上的结论为:角的平分线的性质:________________________________________________.3.如图,点P、D、E分别在OC、OA、OB上,判断下列推理:A①∵OC平分∠AOB∴PD=PE( ) D C②∵OC平分∠AOBPD⊥OAPE⊥OB∴PD=PE( ) P③∵PD⊥OAPE⊥OB∴PD=PE( )O E B4.证明几何命题的一般步骤是怎样的?①明确几何命题中的__________________;②根据题意,画出图形,并用符号表示_________________;③写出____________。
解读目标:1.运用角平分线性质定理的条件及要注意的问题;2.条件中已知角平分线时常见辅助线的作法。
巩固目标:1.如图,OP平分∠MON,P A⊥ON于点A,点Q是射线OM上一动点,若P A=2,则PQ的最小值为_________2.如图,∠A=90°,BD平分∠ABC,AD=3,BC=10,则△BDC的面积是________3.如图,∠C=90°,AD平分∠CAB,DE⊥AB于E,BC=8cm,AC=6cm,AB=10cm,则△BDE的周长=______. M CPDO A N(第1题图)(第2题图)(第3题图)4.如图,已知OA平分∠BAC,OB=OC,求证AB=AC. AOB C提升目标:△ABC中,∠B=90°,AB=6,BC=8,AC=10,∠BAC、∠ACB的平分线交于点O,OD⊥AC于D①求OD②求AD、CD的长ADOB C回顾目标:1、掌握角平分线的画法2、理解并掌握角平分线的性质3、了解证明几何命题的一般步骤作业:长江学案P34 1~7。
【MeiWei 81重点借鉴文档】12.3 角平分线的性质(1)导学案、学习目标1、 能用三角形全等的知识,解释角平分线的原理;2、 会用尺规作已知角的平分线.二、 温故知新如图1,在/ AOB 的两边 0A 和0B 上分别取 OM=ONMC L OA NCL OB MC 与NC 交于C 点. 求证:(1) Rt △ MO © Rt △ NOC(2) / MOC M NOC三、 自主探究 合作展示探究(一)1、 依据上题我们应怎样平分一个角呢?2、 思考:把上面的方法改为“在已知/ AOB 的两边上分别截取 OM=QN 使MC=NC 连接OC 则OC 即为/ AOB 的平分线。
”结论是否仍然成立呢?件行吗?OA 是/ BAC 的平分线,点 O 是射线 取点 O 的三个不同的位置,分别过点 AM 上的任意一点. O 作OE 1 AB, OD 丄AC,点D E 为垂足,测四、学习反思请你对照学习目标,谈一下这节课的收获及困惑。
【MeiWei 81重点借鉴文档】 3、受上题的启示,我们可以制作一个如图 2所示的平分角的仪器: 其中AB=AD BC=DC 将点A 放在角的顶点,AB 和AD 沿着角的两边放下,沿 AC 画一条射线 AE AE 就是角平分线•你能说明它的道理吗? 探究 思考 已知 求作 作法 二)如何作出一个角的平分线呢?/ AOB / AOB 勺平分线.(1 )以O 为圆心,适当长为半径作弧,分别交 OA OB 于 M N 1 M N 为圆心,大于 MN 的长为半径作弧.两弧在 2(2)分别以 C. OC 射线OC 即为所求./ AOB 内部交于点 (3)作射线 请同学们依据以上作法画出图形。
议一议: 在上面作法的第二步中,去掉“大于 1 丄MN 的长”这个条 2 E1 第二步中所作的两弧交点一定在/ AOB 的内部吗?探究(三)如图 操作测量: 量OD OE 的长.将三次数据填入下表: 3,ODOE第次 卜面用我们学过勺 知:女第二次 AO 平 寸知识证明发现: 乙分 / RAC OEI A B ODI AC 'H ♦丿'口 1 ' 1 1 :图1观察测量结果,猜想线段 OD 与OE 的大小关系,写出结论:。
“互助研展”模式数学科导学案班级:姓名:日期:编号:编制人:检查人:【课题】:12.3角的平分线的性质【课节】第1课时【课型】:新授课【学习目标】:利用尺规作已知角的平分线.角平分线的性质1.一、温故与导新:1、判断三角形全等的方法有哪些?2、作出点P到直线AB、CD的距离。
二、探究生成:问题1:下图是一个平分角的仪器,其中AB=AD,BC=DC.将点A放在角的顶点,AB和AD沿着角的两边放下,沿AC画一条射线AE,AE就是角平分线.你能说明它的道理吗?问题2:从上面的探究中,可以得出作已知角的平分线的方法.已知什么?求作什么?如图1,已知∠AOB,用尺规作图的方法作出∠AOB的角平分线OC,写出作法,并说明这种作法的依据.问题3:(1)如图2,在已画好的∠AOB的平分线OC上任意找一点P,过点P分别作PD∠OA于D,PE∠OB于E,PD、PE的长度是∠AOB的平分线上一点到∠AOB两边的距离.量出它们的长度,你发现了什么?(2)你能归纳角的平分线的性质吗?1、如图,BD是∠ABC的平分线,P为BD上的一点,PE⊥BA于点E,PE=4cm,则点P到边BC的距离为______cm.2、如图,在Rt△ABC中,∠C=90°,AD是△ABC的角平分线,DC=3,则点D到AB的距离是______.3、如图,在△ABC中,CD平分∠ACB交AB于点D,DE⊥AC交于点E,DF⊥BC于点F,且BC=4,DE=2,则△BCD的面积是等于______.4、如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的面积等于______.三、互助提升:例1:已知:如图,∠B=∠C=90°,DM平分∠ADC,AM平分∠DAB。
∠求证:MB=MC∠若DC=2,AB=3,直接写出AD的长= 。
例2:如图,已知在∠ABC中,AD为∠BAC的平分线,∠B=90°,DF∠AC,垂足为F,DE=DC.求证:BE=CF思考2:如果老师手里只有直尺和圆规,你能帮忙设计一个作角的平分线的操作方案吗?已知:∠AOB.求作:∠AOB的平分线.思考3:在S区有一个贸易市场P,它建在公路与铁路所成角的平分线上,要从P点建两条路,一条到公路,一条到铁路,怎样修才能使路最短?它们有怎样的数量关系呢?通过测量这两段距离,你发现了角的平分线的什么性质?例1:如图,∠ABC的角平分线BM、CN相交于点P。
10.5.角平分线(1)导学案教学目标:1.经历角平分线的性质的证明过程,掌握角平分线的性质定理及逆定理2.能运用角平分线的性质定理及逆定理解决有关问题。
学习策略1.角平分线性质定理的应用.2.利用角平分线的有关定理解答实际问题.学习过程一.复习回顾:1、若等腰三角形的一个角是50°,则这个等腰三角形的底角为_____________.2、若等腰三角形的一个外角是120°,则这个等腰三角形的底角为_____________.3、若等腰三角形的两边长分别为xcm和(2x-6)cm,且周长为17cm,则第三边的长为________.二.新课学习:1.角平分线的性质定理:已知:OP平分∠AOB,PD⊥OA,PE⊥OB,垂足分别为D,E求证:PD=PE证明:【归纳:】角平分线性质定理:文字语言:角平分线上的点到这个角两边的距离相等。
图形语言:符号语言:2.角平分线的判定定理:已知:如图,PD⊥OA,PE⊥OB,垂足分别为D,E,且PD=PE 求证:点P在∠AOB的角平分线上(即OP平分∠AOB)证明:【归纳:】角平分线判定定理:文字语言:在一个角的内部,并且到角两边的距离相等的点,在这个角的平分线上。
图形语言:符号语言:例1 如图10-29,在△ABC中,∠BAC=60°,点D在BC上,AD=10,DE⊥AB,DF⊥AC,垂足分别为点E,F,且DE=DF,求DE的长.三.尝试应用:1.∠AOB的平分线上一点M,M到OA的距离为2CM,则M到OB的距离为_______;2.在Rt△ABC中,∠C=90°,AD是∠BAC的平分线,若BC=16,BD=10,则D 到AB的距离是________。
3.OM平分∠BOA,P是OM上的任意一点,PD⊥OA,PE⊥OB,垂足分别为D、E,下列结论中错误的是()A、PD=PEB、OD=OEC、∠DPO=∠EPOD、PD=OD四.自主总结:1.角平分线上的点到这个角两边的距离相等。
角平分线的性质(导学案)1、证明:角的平分线上的点到这个角的两边的距离相等。
已知:如图,OC 是∠AOB 的平分线,点P 在OC 上,PD ⊥OA ,PE ⊥OB ,垂足分别是D ,E 。
例1 如图,在△ABC 中,AD 是它的角平分线,且BD=CD ,DE ⊥AB ,DF ⊥AC ,垂足分别是E ,F.求证:EB=FC.(2)变题1:如图,△ABC 中,AD 是∠BAC 的平分线, ∠C =90°, DE ⊥AB 于E ,F 在AC 上,且BD=DF ,求证:CF=EB.DP E AO BC B A CDE AF C D BE(2)(1)变题2:如图,△ABC 中, AD 是∠BAC 的平分线, ∠C =90°,DE ⊥AB 于E ,BC=8,BD=5,求DE.知识扩展: 如图,在△ABC 中,AC=BC ,∠C=90°,AD 是△ABC 的角平分线,DE ⊥AB ,垂足为E 。
求证:AB=AC+CD例2 已知:如图,△ABC 的角平分线BM 、CN 相交于点P .求证:点P 到三边AB 、BC 、CA 的距离相等.BA C D E(例2)变式训练3:如图,△ABC的∠B的外角的平分线BD与∠C的外角的平分线CE相交于点P.求证:点P到三边AB,BC,CA所在直线的距离相等.课本思考:要在S区建一个集贸市场,使它到公路和铁路距离相等,且离公路和铁路的交叉处500课后思考:如图,为了促进当地旅游发展,某地要在三条公路围成的一块平地上修建一个度假村.要使这个度假村到三条公路的距离相等,应在何处修建?有几种修建方法?。
第五章 生活中的轴对称角平分线的性质 导学案一、预习:(认真看书125—127)1、点到线的距离:2、作图:表示出点A 到直线l 距离lAlA3、过点P 做OA ,OB 的距离4、角平分线的对称轴是 5填空:角 平分线 上的点 到角 的两边 的距离 相等 几何语言: 二、新课1.已知:△ABC 中,∠B =90°, ∠A 、∠C 的平分线交于点O ,则∠AOC 的度数为 .2.角平分线上的点到_________________距离相等;到一个角的两边距离相等的点都在_____________.3.∠AOB 的平分线上一点M ,M 到 OA 的距离为1.5 cm ,则M 到OB 的距离为_________. 4.如图,∠AOB =60°,CD ⊥OA 于D ,CE ⊥OB 于E ,且CD =CE ,则∠DOC =_________. 5.如图,在△ABC 中,∠C =90°,AD 是角平分线,DE ⊥AB 于E ,且DE =3 cm ,BD =5 cm ,则BC =_____cm .6.如图,CD 为Rt △ABC 斜边上的高,∠BAC 的平分线分别交CD 、CB 于点E 、F ,FG ⊥AB ,垂足为G ,则CF ______FG ,CE ________CF .7.如图,已知AB 、CD 相交于点E ,∠AEC 及∠AED 的平分线所在的直线为PQ 与MN ,则直线MN 与PQ 的关系是_________.8.三角形的三条角平分线相交于一点,并且这一点到________________相等. 9.点O 是△ABC 内一点,且点O 到三边的距离相等,∠A =60°,则∠BOC 的度数为_____________.10.在△ABC 中,∠C =90°,AD 平分∠BAC 交BC 于D ,若BC =32,且BD ∶CD =9∶7,则D 到AB 的距离为 . 11.三角形中到三边距离相等的点是( )A 、三条边的垂直平分线的交点B 、三条高的交点C 、三条中线的交点D 、三条角平分线的交点12.如图,∠1=∠2,PD ⊥OA ,PE ⊥OB ,垂足分别为D ,E ,下列结论错误的是( )A 、PD =PEB 、OD =OEC 、∠DPO =∠EPOD 、PD =OD 13.如图,直线l 1,l 2,l 3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有( )A 、1处 B 、2处 C 、3处 D 、4处14.如图,△ABC 中,∠C =90°,AC =BC ,AD 平分∠CAB 交BC 于D ,DE ⊥AB 于E ,且AB =6㎝,则△DEB 的周长为( )A 、4㎝ B 、6㎝ C 、10㎝第4题第5题第6题第7题D 、不能确定21DAPOEBl 2l 1l 3DCEB第12题 第13题 第14题15.如图,MP ⊥NP ,MQ 为△MNP 的角平分线,MT =MP ,连接TQ ,则下列结论中不正确的是( )A 、TQ =PQB 、∠MQT =∠MQPC 、∠QTN =90°D 、∠NQT =∠MQTNTQPMEDCBAEDC BAF第15题 第16题 第17题 16.如图在△ABC 中,∠ACB =90°,BE 平分∠ABC ,DE ⊥AB 于D ,如果AC =3 cm ,那么AE +DE 等于( )A .2 cmB .3 cmC .4 cmD .5 cm17.如图,已知AB =AC ,AE =AF ,BE 与CF 交于点D ,则对于下列结论:①△ABE ≌△ACF ;②△BDF ≌△CDE ;③D 在∠BAC 的平分线上.其中正确的是( )A .①B .②C .①和②D .①②③18.如图,AB =AD ,CB =CD ,AC 、BD 相交于点O ,则下列结论正确的是( )A .OA =OCB .点O 到AB 、CD 的距离相等C .∠BDA =∠BDCD .点O 到CB 、CD 的距离相等19.△ABC 中,∠C =90°,点O 为△ABC 三条角平分线的交点,OD ⊥BC 于D ,OE ⊥AC 于E ,OF ⊥AB 于F ,且AB =10cm ,BC =8cm ,AC =6cm ,则点O 到三边AB 、AC 、BC 的距离为( )A .2cm ,2cm ,2cm ; B . 3cm ,3cm ,3cm ; C . 4cm ,4cm ,4cm ; D . 2cm ,3cm ,5cm 20.两个三角形有两个角对应相等,正确说法是( )A .两个三角形全等B .如果还有一角相等,两三角形就全等DCAO 第18题C.两个三角形一定不全等D.如果一对等角的角平分线相等,两三角形全等已知:A'AB为正三角形,ABC为等腰三角形,∠BAC=120° ∠DCE=60°,求证:DE=DB+EAB A。
郑家寨中学“自主、合作、当堂达标”预习导学案(序号 1 )班级: 八组名: 姓名: 创作:芦蕊审核:刘伟使用时间:课题12.3 角的平分线的性质1学习目标1.掌握角平分线的性质12.会用尺规作一个已知角的平分线.重难点教学重点:角平分线的性质教学难点:探索作角平分线的过程自主学习内容一、问题导入1、观察下面简易的平分角的仪器,其中AB=AD,BC=DC。
将点A放在角的顶点,AB和AD沿着角的两边放下,沿AC画一条射线AE,AE就是∠DAB的平分线。
你能说明它的道理吗? EB C2、如图,已知:AB=AD,BC=DC。
求证:AC是∠BAD的平分线。
AD二、尺规作图通过上面平分角的方法,你能猜想出一种作已知角的平分线的方法吗?已知:∠AOB.求作:∠AOB的平分线. 作法:AOB三、猜一猜1、如图,任意作一个角∠AOB ,作出∠AOB 的平分线OC.在OC 上任取一点P ,过点P 作出OA,OB 的垂线,分别记垂足为D,E 测量PD,PE 并作比较,得到什么结论?在OC 上再取几个点试一试。
通过以上测量,你发现了角平分线的什么性质?2、论证一下你的猜想:已知:如上图,OC 平分∠AOB ,点P 在OC 上,PD ⊥OA 于D ,PE ⊥OB 于E.求证:PD=PE3、归纳角平分线的性质:用几何语言表述:PEPD OBPE OA PD AOB OC AOB P =∴⊥⊥∠∠,)(平分或的平分线上在点学以致用 已知:如图,BM ,ABC 的角平分线∆P ,CN 相交于点求证:点P 到三边AB ,BC ,CA 的距离相等。
我的 自学 问题自我评价: 小组评价: 教师评价:OBA C P DE PABCMNDCAEB郑家寨中学“自主、合作、当堂达标”训练导学案 (序号 3 )班级: 八 组名: 姓名: 创作: 芦蕊 审核: 使用时间:课题12.3 角的平分线的性质时间:15分钟 总分:30分A 组1、已知:如图,AD 是△ABC 的中线,AB=AC ,DE ⊥AB 于E ,DF ⊥AC 于F. 求证:DE=DF.2、已知:如图,CD ⊥AB 于D ,BE ⊥AC 于E ,∠1=∠2. 求证:OB=OC3、如图,△ABC 中,∠C =90°,AC =BC ,AD 平分∠CAB 交BC 于D ,DE ⊥AB 于E ,且AB =6㎝,则△DEB 的周长为?自我评价: 小组评价: 教师评价:D C B AEF 21D A CE O 654321B。
教师寄语春来春去,燕离燕归,枝条吐出点点新绿,红花朵朵含苞欲放,杨柳依依书写无悔年华,白云点点唱响人生奋斗的凯歌,微冷的春风淡去了烟尘与伤痛,沉淀在内心的却是缤纷的梦想以及那收获前的耕耘与奋斗。
角平分线的性质学案【学习目标】1、探究理解角平分线的性质并会运用2、会用尺规作图作角平分线.【重点】理解角平分线的性质并会运用【难点】用尺规作图作角平分线一,学前准备二.探究活动活动一:( 体会平分角的仪器道理)1、议一议:如图是一个平分角的仪器,其中AB=AD,BC=DC.将点A放在角的顶点,AB和AD沿着角的两边放下,沿AC画一条射线AE,AE就是角平分线.你能说明它的道理吗?(思考后组内交流)2、如图,已知AB=AD,BC=DC. 求证:AC是∠DAB的平分线.活动二:(学会作角平分线)由活动一的启示,你能用尺规作一个角的平分线吗?说一说,写一写角平分线的作法.已知:∠AOB.求作:∠AOB的平分线.作法:注意:角的平分线是一条射线,它不是线段,也不是直线.练一练:作一个平角∠AOB的平分线. 由此你能得出:“过直线上一点作已知直线的垂线”的方法吗?活动三: (探究归纳出角平分线的性质)角平分线的性质:角平分线上的到角两边的相等.(体会命题的题设和结论,结合图形,写出已知、求证并加以证明)如图,已知:求证:证明:小结证明几何命题的步骤课堂作业1、作角的平分线2、如图,△ABC中,∠C=90°,AD平分∠BAC,AB=5,CD=2.求△ABD的面积.3、△ABC中,AD是它的角平分线, 4.点P在∠ABC的角平分线上,PA⊥AB, BD=CD,DE⊥AB,DF⊥AC, PC⊥BC,D在BP上。
求证AD=CD垂足分别为E、F. 求证EB=FC .。