高等数学部分易混淆概念
- 格式:doc
- 大小:328.00 KB
- 文档页数:8
高中混淆知识点总结归纳一、数学知识点1.1函数和方程式函数和方程式是高中数学中常见的知识点,但是很多学生容易混淆它们的概念。
函数是两个集合之间的一种对应关系,而方程式是等号两边包含未知数的式子。
所以函数是一种抽象的数学概念,而方程式是用来描述具体问题的数学工具。
在解题时,要根据实际情况选择使用函数或者方程式。
1.2三角函数和三角方程三角函数是用来描述角的变化规律的数学函数,而三角方程是包含三角函数的方程式。
在学习三角函数和三角方程时,很多学生容易混淆它们的概念和运用方法。
要注意区分三角函数的定义域、值域和周期,以及掌握解三角方程的方法和技巧,这样才能更好地运用三角函数和三角方程解决实际问题。
1.3函数的导数和积分函数的导数和积分是微积分中的重要概念,但是很多学生容易混淆它们的含义和求解方法。
函数的导数描述了函数在某一点的变化率,而函数的积分描述了函数在某一区间上的累积变化量。
要注意理解导数和积分的几何意义和物理意义,以及掌握导数和积分的计算方法和运用技巧,这样才能更好地理解和运用微积分的知识。
二、物理知识点2.1力和压强力是物体之间相互作用的结果,而压强是单位面积上受力的大小。
在学习力和压强时,很多学生容易混淆它们的概念和应用方法。
要注意区分不同类型的力,理解受力分析的基本原理和方法,以及掌握压强的计算公式和应用技巧,这样才能更好地理解力和压强的知识。
2.2动能和势能动能是物体由于运动而具有的能量,而势能是物体由于位置而具有的能量。
在学习动能和势能时,很多学生容易混淆它们的概念和计算方法。
要注意区分动能和势能的物理意义,理解它们之间的转化关系和守恒定律,以及掌握动能和势能的计算公式和运用技巧,这样才能更好地理解动能和势能的知识。
2.3电流和电压电流是电荷在导体中的移动,而电压是导体中的电子在单位电荷上所具有的能量。
在学习电流和电压时,很多学生容易混淆它们的概念和测量方法。
要注意理解电流和电压的物理意义,掌握电流和电压的计算公式和测量技巧,以及理解电流和电压之间的关系和作用原理,这样才能更好地理解电流和电压的知识。
高考数学最易混淆知识点归纳高考数学作为高中数学的重要组成部分,在高考中占据着很重要的位置。
一些题目可能会涉及到一些知识点的混淆,因此我们必须要对这些混淆的知识点进行整合和分类,以便于我们更好地理解和掌握。
下面,我们来分析一下高考数学中最易混淆的知识点。
一、函数的分段定义在高考数学中,我们经常涉及到函数的分段定义。
如果我们没有认真地学习和理解分段函数的定义,就很容易在相关的题目中出现混淆。
另外,有些题目需要用到二次函数、三角函数等相关的知识点,如果我们没有对这些函数进行系统化的学习,也很容易出现混淆。
二、导数的概念和应用在高考数学中,导数的概念和应用也是很重要的一个知识点。
例如,在求解变化率、极值等相关的问题时,需要用到导数的概念和应用,如果我们对这些相关的知识点没有进行归纳和整理,就很容易出错。
三、立体图形的计算在高考数学中,我们还需要涉及到立体图形的计算。
例如,在计算长方体、圆柱体、圆锥体以及球体的面积和体积等问题时,如果我们没有将这些相关的知识点进行分类、整理,就很容易出现混淆。
四、复合函数的概念在高考数学中,复合函数的概念也是很重要的一个知识点。
例如,在单项式的运算、幂函数、指数函数和对数函数的运算中都用到了复合函数的概念。
如果我们没有对这些相关知识点进行整理和分类,也很容易出现混淆。
五、统计学问题与数学知识的结合在高考数学中,我们还经常遇到同样涉及到一些统计学问题与数学知识的结合。
例如,我们需要对数据进行分析和统计,同时需要运用到平均值、标准差、方差、概率等知识点。
如果我们没有对这些知识点进行系统化的学习和整理,那么也很容易出现混淆。
综上所述,高考数学中最易混淆的知识点包括函数的分段定义、导数的概念和应用、立体图形的计算、复合函数的概念以及统计学问题与数学知识的结合。
如果我们没有对这些相关的知识点进行整理和分类,那么在做相关的题目时就很容易出现混淆。
因此,在备考高考数学时,我们需要认真复习和整理这些知识点,以便于我们更好地掌握和理解。
高数易混知识点详解众所周知,高数是考研数学中比较难以及比较容易弄混的知识点,所以下面由小编给大家带来“高数易混知识点详解”,持续关注本站将可以持续获取更多的考试资讯!高数易混知识点详解对于考研数学高数这一块,有很多易混淆点扰乱考生复习时的视线。
下面为大家整理了2020考研高数易混概念,希望能帮到大家易混概念连续,可导,存在原函数,可积,可微,偏导数存在他们之间的关系是怎么样的?存在极限,导函数连续,左连续,右连续,左极限,右极限,左导数,右导数,导函数的左极限,导函数的右极限。
罗尔定理设函数f(x)在闭区间[a,b]上连续(中a不等于b),在开区间(a,b)上可导,且f(a)=f(b),那么至少存在一点ξ∈(a、b),使得f'(ξ)=0。
罗尔定理是以法国数学家罗尔的名字命名的。
罗尔定理的三个已知条件的意义:①f(x)在[a,b]上连续表明曲线连同端点在内是无缝隙的曲线;②f(x)在内(a,b)可导表明曲线y=f(x)在每一点处有切线存在;③f(a)=f(b)表明曲线的割线(线AB)平行于x轴;罗尔定理的结论的直几何意义是:在(a,b)内至少能找到一点ξ,使f'(ξ)=0,表明曲线上至少有一点的切线斜率为0,从而切线平行于割线AB,与x轴平行。
泰勒公式有的同学,看到泰勒公式就哆嗦,因为乍一看很长很恐怖,瞬间大脑空白,身体失重的感觉。
其实在搞明白几点后,原来的症状就没有了。
第一:什么情况下要进行泰勒展开;第二:以哪一点为中心进行展开;第三:把谁展开;第四:展开到几阶?中值定理应用多次中值定理的专题:大部分的考研题,一般要考查你应用多次中值定理,最重要的就是要培养自己对这种题目的敏感度,要很快反映出这题考哪几个中值定理,敏感性是靠自己多练习综合题培养出来的。
经常去复习,那样你对中值定理的题目渐渐就没有那种刚学高数时的害怕心情。
对称性,轮换性,奇偶性在积分的综合应用对称性,轮换性,奇偶性在积分(重积分,线,面积分)中的综合应用:这几乎每年必考,要么小题中考,要么大题中要用,这是必须掌握的知识,但是它不是靠做3,4道题目就能了解的知识点。
高中数学最易混淆知识点大全高中数学最易混淆知识点1.进行集合的交、并、补运算时,不要忘了全集和空集的特殊情况,不要忘记了借助数轴和文氏图进行求解.2.在应用条件时,易A忽略是空集的情况3.你会用补集的思想解决有关问题吗?4.简单命题与复合命题有什么区别?四种命题之间的相互关系是什么?如何判断充分与必要条件?5.你知道“否命题”与“命题的否定形式”的区别.6.求解与函数有关的问题易忽略定义域优先的原则.7.判断函数奇偶性时,易忽略检验函数定义域是否关于原点对称.8.求一个函数的解析式和一个函数的反函数时,易忽略标注该函数的定义域.9.原函数在区间[-a,a]上单调递增,则一定存在反函数,且反函数也单调递增;但一个函数存在反函数,此函数不一定单调.例如:.10.你熟练地掌握了函数单调性的证明吗?定义法(取值,作差,判正负)和导数法11.求函数单调性时,易错误地在多个单调区间之间添加符号“∪”和“或”;单调区间不能用集合或不等式表示.12.求函数的值域必须先求函数的定义域。
13.如何应用函数的单调性与奇偶性解题?①比较函数值的大小;②解抽象函数不等式;③求参数的范围(恒成立问题).这几种基本应用你掌握了吗?14.解对数函数问题时,你注意到真数与底数的限制条件了吗?(真数大于零,底数大于零且不等于1)字母底数还需讨论15.三个二次(哪三个二次?)的关系及应用掌握了吗?如何利用二次函数求最值?16.用换元法解题时易忽略换元前后的等价性,易忽略参数的范围。
“实系数一元二次方程有实数解”转化时,你是否注意到:当时,“方程有解”不能转化为。
若原题中没有指出是二次方程,二次函数或二次不等式,你是否考虑到二次项系数可能为的零的情形?利用均值不等式求最值时,你是否注意到:“一正;二定;三等”.19.绝对值不等式的解法及其几何意义是什么?20.解分式不等式应注意什么问题?用“根轴法”解整式(分式)不等式的注意事项是什么?21.解含参数不等式的通法是“定义域为前提,函数的单调性为基础,分类讨论是关键”,注意解完之后要写上:“综上,原不等式的解集是……”.22.在求不等式的解集、定义域及值域时,其结果一定要用集合或区间表示;不能用不等式表示.23.两个不等式相乘时,必须注意同向同正时才能相乘,即同向同正可乘;同时要注意“同号可倒”即a>b>0,a<0.24.解决一些等比数列的前项和问题,你注意到要对公比及两种情况进行讨论了吗?25.在“已知,求”的问题中,你在利用公式时注意到了吗?(时,应有)需要验证,有些题目通项是分段函数。
高等数学部分易混淆概念第一章:函数与极限一、数列极限大小的判断 例1:判断命题是否正确.若()n n x y n N <>,且序列,n n x y 的极限存在,lim ,lim ,n n n n x A y B A B →∞→∞==<则解答:不正确.在题设下只能保证A B ≤,不能保证A B <.例如:11,1n n x y n n ==+,,n n x y n <∀,而lim lim 0n n n n x y →∞→∞==. 例2.选择题设n n n x z y ≤≤,且lim()0,lim n n n n n y x z →∞→∞-=则( )A .存在且等于零 B. 存在但不一定等于零 C .不一定存在 D. 一定不存在 答:选项C 正确分析:若lim lim 0n n n n x y a →∞→∞==≠,由夹逼定理可得lim 0n n z a →∞=≠,故不选A 与D.取11(1),(1),(1)n n n n n n x y z n n=--=-+=-,则n n n x z y ≤≤,且lim()0n n n y x →∞-=,但lim n n z →∞不存在,所以B 选项不正确,因此选C .例3.设,n n x a y ≤≤且lim()0,{}{}n n n n n y x x y →∞-=则与( )A .都收敛于a B. 都收敛,但不一定收敛于a C .可能收敛,也可能发散 D. 都发散 答:选项A 正确.分析:由于,n n x a y ≤≤,得0n n n a x y x ≤-≤-,又由lim()0n n n y x →∞-=及夹逼定理得lim()0n n a x →∞-=因此,lim n n x a →∞=,再利用lim()0n n n y x →∞-=得lim n n y a →∞=.所以选项A .二、无界与无穷大无界:设函数()f x 的定义域为D ,如果存在正数M ,使得()f x Mx X D ≤∀∈⊂则称函数()f x 在X 上有界,如果这样的M 不存在,就成函数()f x 在X 上无界;也就是说如果对于任何正数M ,总存在1x X ∈,使1()f x M >,那么函数()f x 在X 上无界.无穷大:设函数()f x 在0x 的某一去心邻域内有定义(或x 大于某一正数时有定义).如果对于任意给定的正数M (不论它多么大),总存在正数δ(或正数X ),只要x 适合不等式00x x δ<-<(或x X >),对应的函数值()f x 总满足不等式()f x M >则称函数()f x 为当0x x →(或x →∞)时的无穷大. 例4:下列叙述正确的是: ②① 如果()f x 在0x 某邻域内无界,则0lim ()x xf x →=∞②如果0lim ()x xf x →=∞,则()f x 在0x 某邻域内无界解析:举反例说明.设11()sin f x x x=,令11,,22n n x y n n πππ==+,当n →+∞时,0,0n n x y →→,而lim ()lim (2)2n n n f x n ππ→+∞→+∞=+=+∞lim ()0n n f y →+∞=故()f x 在0x =邻域无界,但0x →时()f x 不是无穷大量,则①不正确.由定义,无穷大必无界,故②正确.结论:无穷大必无界,而无界未必无穷大. 三、函数极限不存在≠极限是无穷大当0x x →(或x →∞)时的无穷大的函数()f x ,按函数极限定义来说,极限是不存在的,但是为了便于叙述函数的性态,我们也说“函数的极限是无穷大”.但极限不存在并不代表其极限是无穷大.例5:函数10()0010x x f x x x x -<⎧⎪==⎨⎪+>⎩,当0x →时()f x 的极限不存在.四、如果0lim ()0x xf x →=不能退出01lim()x x f x →=∞ 例6:()0x x f x x ⎧=⎨⎩为有理数为无理数,则0lim ()0x x f x →=,但由于1()f x 在0x =的任一邻域的无理点均没有定义,故无法讨论1()f x 在0x =的极限. 结论:如果0lim ()0x xf x →=,且()f x 在0x 的某一去心邻域内满足()0f x ≠,则01lim()x xf x →=∞.反之,()f x 为无穷大,则1()f x 为无穷小。
《高等数学》常见易混淆概念梳理摘要概念教学是培养数学核心素养的重要手段,也是高等数学课堂教学的重要一环,只有准确把握概念的内涵与外延,才能够正确理解概念以及应用概念。
《高等数学》作为工科、理科学生必修的基础课程,对于高等数学的学习不仅是对高等数学知识的学习,同时也是对能力与素质的培养,也可以说,高等数学是解锁其他学科的一把钥匙。
高等数学的学习是从对概念的学习开始的,因此,准确把握概念,理清概念之间的区别与联系尤为重要。
本文将讨论三组常见易混淆概念,分析易混淆概念产生原因以及该如何解决。
关键词:高等数学、易混概念一、函数的导数与微分根据同济大学出版的第七版《高等数学》中给出的定义,导数的定义:设函数在点的某个邻域内有定义,当自变量x在处取得增量(点仍在该邻域内)时,相应地,因变量取得增量;如果与之比当时的极限存在,那么称函数在点处可导,并称这个极限为函数在点处的导数,记为,即.也就是说导数是自变量的增量趋于零时,函数增量与自变量的增量比的极限,而微分的定义为:设函数在某区间内有定义,及在这区间内,如果函数的增量可表示为,其中A是不依赖于的常数,那么称函数在点是可微的,而叫做函数在点相应于自变量增量的微分,记作dy,即.由此可见,微分的实质是函数值增量的近似值。
很多学生在学习过导数与微分的概念过后,常常会产生,“学习了导数为什么还要学习微分?函数的微分与导数有什么区别?”等等诸如此类的问题,还有部分学生存在对微分概念理解不透彻,对函数的微分与导数的区别与联系理解模糊的问题。
产生以上问题主要有三方面原因:第一、目前,国内大部分教材对于函数的导数与微分的内容安排一般都是首先介绍导数的概念以及导数的相关知识,再介绍求导法则以及求高阶导数、隐函数和参数方程求导数等问题,最后再介绍函数的微分,由于经过前期的学习,学生对于导数及其相关计算熟悉程度较高,在学习到微分的概念时,容易发现函数可导与可微之间的充分必要关系,且在计算微分的过程中,微分的计算又可以借助导数的计算来进行,因此导致学生过多地关注导数的相关知识,忽视了对微分概念的学习,久而久之,导致学生对函数微分的概念理解模糊;第二、函数在一点处可导与函数在一点处可微是充分必要关系,,若只强调导数与微分的计算则会加重对两个概念的混淆,所以,教师若未对函数的微分与导数的区别与联系进行强调,只是强调两者的计算,也会导致对微分的概念理解模糊的问题。
【高中数学】容易混淆的数学概念(三)直角是一个图形,它是平角的一半。
“90o”是一个量,指的是“直角”的大小。
不能把一个图形和这个图形的大小两个不同的概念混淆起来高中语文。
因此,完整地回答“什么是直角?”应该是“直角是平角的一半”或“90o的角叫直角。
”“等势角”和“平行线等势角”平面上有二直线,第三条直线分别和直线和相交,就得到八个角,即∠1、∠2、∠3、∠4、∠5、∠6、∠7和∠8。
这三条直线和八个角,通常称作“三线八角”(图1)(图1)这八个角中,∠1和∠5,∠4和∠8,∠2和∠6,∠3和∠7都叫做同位角。
除了同位角,这八个角中,还有内错角、外错角、同旁内角、同旁外角等名称。
如果直线是‖,根据平行线的性质,你可以知道∠ 1 = ∠ 5, ∠ 4 = ∠ 8.∠ 2 =∠ 6.∠ 3 = ∠ 7.换句话说,一条直线与两条水平线相交,等位角相等(图2)。
(图2)这样一来,“等势角”通常是不相等的,只有平行线中的等势角才能相等。
不要提及等势角,错误地理解它们必须相等。
“命题”和“定理”在概念的基础上,人们可以通过判断和推理的方法得出合理的结论。
例如化肥是无机肥料;通过两点可以画出一条直线;三角形三内角的和等于180o;有些直角是不相等的。
这些表示判断的句子都是命题。
一个命题最基本的特点是你可以谈论它是否正确。
如果一个命题是正确的,我们就说它是正确的;如果它不正确,我们就说它是一个错误的命题。
无论是真命题还是假命题,它都是一个命题。
像“三辆卡车”和“在公园里散步”这样的词很难说对不对,所以它们不是命题。
有些命题的正确性,可以用已有的数学概念和规律,经过推理,证明它是正确的。
这种命题叫做定理。
例如“三角形三内角的和等于180o”就是一个定理。
有些学生认为只有正确的命题才是命题。
这种观点是错误的。
这个命题可以是真的,也可以是假的。
“某些直角不相等”是一个错误的命题。
定理都是正确的命题。
要是你说“某定理不成立”,这是自相矛盾的。
总结高中数学常见错误分析在高中数学学习中,常常出现各种错误。
这些错误有时是由于理解不够深刻,有时则是粗心大意所致。
为了帮助同学们更好地学习数学,下面将分析一些高中数学学习中常见的错误。
一、概念混淆误解1. 混淆角度和弧度的概念:在学习三角函数时,常常会将弧度和角度混淆,不清楚二者的转换关系,导致计算结果错误。
2. 混淆数列和序列的概念:数列和序列都是数学中一系列按照一定顺序排列的数,但是它们的定义和性质有所不同。
在题目中没有明确给出是数列还是序列,容易混淆。
二、求解步骤错误1. 求解方程时漏解或重解:在解方程的过程中,容易漏解或者重解,忽略排除无解、恒等的情况,导致最后的答案错误。
2. 求导过程中没有注意到链式法则:在求导的过程中,涉及到复合函数的求导,需要使用链式法则。
但有时候学生忽略了这一步骤,导致最终结果错误。
三、计算符号错误1. 正负号运算错误:在计算过程中,常常忽略正负号带来的影响,导致最后计算结果错误。
2. 符号计算混淆:在计算过程中,容易混淆加法和乘法的分配律,导致计算错误。
四、图形绘制错误1. 图形比例绘制错误:在绘制图形时,很容易将比例计算错误,导致绘制的图形与实际有偏差。
2. 图形误差放大:在图形绘制中,如果一个小错误在放大后会导致很大的偏差,所以在绘制图形时需要尽量减小误差。
五、题目理解错误1. 题意理解错误:在解题过程中,没有正确理解题目的意思,导致使用错误的方法或得出错误的结果。
2. 符号表示理解错误:在题目中涉及到符号的表示,如从题目中给出的条件中找出合适的符号表示,容易理解错误,导致计算错误。
六、计算器使用错误1. 输入错误:使用计算器计算时,容易输入错误的数字或操作符,导致计算结果错误。
2. 操作顺序错误:对于复杂的运算,需要注意操作顺序,容易因为操作顺序错误导致计算结果错误。
以上是高中数学学习中常见的错误分析。
希望同学们能够认真对待数学学习,避免这些错误,提高数学学习的效果。
《高等数学》易混淆概念一、函数、极限、连续1.1 无界变量一定是无穷大量吗?答:不一定是.无界变量:设函数的定义域为,如果存在正数,使得,则称函数在上有界,如果这样的不存在,就成函数在上无界;也就是说如果对于任何正数,总存在,使,那么函数在上无界.无穷大量:设函数在的某一去心邻域内有定义(或大于某一正数时有定义).如果对于任意给定的正数(不论它多么大),总存在正数(或正数),只要适合不等式(或),对应的函数值总满足不等式,则称函数为当(或)时的无穷大.注意相互关系: 无穷大变量一定是无界变量, 无界变量不一定是无穷大变量.根据以上叙述, 很容易举出无界变量不一定是无穷大变量的反例:例1.1.,,即当时, 是无穷大量;对于, 当时, 的值总可以大于任何的正数M, 但是也总有可能等于0 . 所以当时, 是无界变量但不是无穷大量.例1.2.当时, 是无界变量, 不是无穷大量.1.2 当时,,可以推出成立;反之,若,可以推出成立吗?当的时候呢?答:当时,反过来是不一定成立的.例如:若,则此时的绝对值极限为1,而本身极限不存在.当时,,并且对于任意的极限过程都是成立的.1.3 设,且一定存在吗?答:不一定存在.分析:若,由夹逼定理可得.取,,则,且,但不存在.遇到此类问题一定要会用反例.1.4 和函数的极限一定等于函数的极限和吗?答:不一定.例1.3:,对吗?显然不对.原因在于:错用了极限的运算法则中“和的极限等于极限的和”,这一法则只适用于有限项的和,不适用无限项的和.正确答案:因为,所以,而,,故由夹逼准则得,例1.4:求极限解答:因为,其中,,所以,原式如何求此类函数的极限值呢?通常有两种方法:①用“夹逼准则”,适当的“放大”和“缩小”所求的式子,求出其极限.如例1.3;②用“定积分定义”,把所求的式子看做是某个函数在某个区间上的积分,利用积分求出其极限值.如例1.4.1.5 函数乘积的极限等于各个函数极限的乘积吗?答:不一定.只有当各个函数的极限都存在时,该命题才成立.例1.5:,对吗?这样做的错误在于不存在,从而不能利用“函数乘积的极限等于极限的乘积”这一结论.正确的做法:因为=0,(无穷小量与有界函数的乘积仍为无穷小量).而=1,所以,原函数极限为0.虽然结果一样,但是也要运用正确的求解方法求解.1.6 含参数的数列极限中常见的问题.例1.6:,这样做对吗?这样做是不对的,错误在于,忽视了对参数取值范围的讨论.正确解答,当时, .当时,注:含参数数列或函数求极限时,注意对参数进行讨论.1.7 如果函数极限不存在,那么极限一定是无穷大吗?答:不一定.当(或)时的无穷大的函数,按函数极限定义来说,极限是不存在的,但是为了便于叙述函数的性态,我们也说“函数的极限是无穷大”.但极限不存在并不代表其极限是无穷大.例1.7:函数,当时的极限不存在.1.8 如果,那么是否有?答:不一定.例1.8:,则,但由于在的任一邻域的无理点均没有定义,故无法讨论在的极限.结论:如果,且在的某一去心邻域内满足,则.反之,为无穷大,则为无穷小.1.9 求函数在某点处极限时要注意其左右极限是否相等,求无穷大处极限要注意自变量取正无穷大和负无穷大时极限是否相等,遇到间断点求极限要注意左右极限是否相等.例1.9:求极限解:,因而时极限不存在.,因而时极限不存在.1.10 利用等价无穷小代换求极限时应注意的问题.例1.10:求极限解:利用等价无穷小代换.这样计算对吗?计算的错误在于在运算过程中利用了未加证明的命题.若,则.考察这个命题,,当时,这个命题是真命题;当时,命题是假命题.对于例1.10,因为,,所以,证明的结论是错误的.正确解答:.例1.11:求错误解答:错误的原因在于在运算中错误的运用了等价无穷小代换:而根据无穷小的比较的定义,当和均为0,所以不能用等价无穷小的代换.正确解答:当时,,所以,由夹逼准则知原函数极限为0.例1.12:求极限解:本题切忌将用等价代换,导致结果为1.应该为:.注意:(1)乘除运算中可以使用等价无穷小因子替换,加减运算中由于用等价无穷小替换是有条件的,故统一不用.这时,一般可以用泰勒公式来求极限.(2)注意等价无穷小的条件,即在哪一点可以用等价无穷小因子替换.1.11 函数连续性的判断(1)设在间断,在连续,则在间断.而在可能连续.例如,设,,则在间断,在连续,在连续.若设,在间断,但在均连续.(2)“在点连续”是“在点连续”的充分不必要条件.分析:由“若,则”可得“如果,则”,因此,在点连续,则在点连续.再由上例可得,在点连续并不能推出在点连续.(3)在连续,在连续,则在连续.其余结论均不一定成立.。
2012考研数学易混淆概念分析之高等数学(二)考研数学当中的高等数学有很多容易混淆的概念知识点,万学海文数学考研辅导专家们根据多年的辅导经验,在此将为2012年的广大考生们罗列出这些容易混淆知识点以供大家参考复习。
下面,我们讲解的是函数与其导函数之间的函数特性。
导数与微分这一章是整个高数的基础,而数学又是非常强调基础阶段的学习的,所以学生在学习这一部分内容的时候,一定要把它吃透,特别是一些易混淆的概念。
下面我给大家分析一下函数与其导函数之间的函数特性—有界性、周期性、单调性、奇偶性。
⑴ 有界性:①有界函数的导函数未必有界.例1:13y x =在区间)1,0(内为有界函数,但是因为 231,()()03f x x x '=→∞→-, 所以)(x f '在区间)1,0(内为无界函数.从上例可以看出有界函数的导数是未必有界的。
②导函数有界,函数也未必有界如果导函数有界,原函数是否一定有界呢,答案也是否定的,即如果导函数有界,原函数也未必有界,例如x y =.注:在加强条件下逆命题能够成立,如下例:例2:如果导函数)(x f '在区间上,()a b 有界,则)(x f 在,()a b 上有界. 证明:设()()0f x M M '≤>,任取定点0,()x a b ∈, 0000()()lim ()x x f x f x f x x x →-'=- ,000()()()f x f x f x x x α-'∴=+- 其中0()0x x α→→, 即0000()()()()()f x x x x x f x f x α'=+---,从而, 00||(||)||()()x x f x f x M α+≤--由于无穷小量为有界量,故存在10M >,使得 1||M α≤, 又由于0||x x b a -≤-,所以,0010||||||()()|()|()()()()b a f x M f x f x f x f x M ≤++-+≤-,上式表明)(x f 在,()a b 上有界.⑵ 周期性①周期函数)(x f 的导函数)(x f '仍为周期函数 因为若)(x f 是以T 为周期的可导函数,则由于)()(x f T x f =+.)(x f 为可导函数,从而对任意的x ,总有)()()(lim )()(lim )(x f xx f x x f x T x f x T x f T x f x x '=-+=+-++=+'∞→∞→∆∆∆∆∆∆,这表明)(x f '也是以T 为周期的函数.②导函数)(x f '为周期函数,)(x f 未必是周期函数. 例3:x x x f +=sin )( 不是周期函数,但1s co )(+='x x f 却是周期函数.从本例可知导函数是周期函数,但原函数不是周期函数。
高等数学部分易混淆概念 第一章:函数与极限一、数列极限大小的判断 例1:判断命题是否正确. 若()nn x y n N <>,且序列,n n x y 的极限存在,lim ,lim ,n n n n x A y B A B →∞→∞==<则解答:不正确.在题设下只能保证A B ≤,不能保证A B <.例如:11,1n n x y n n ==+,,n n x y n <∀,而lim lim 0nn n n x y →∞→∞==.例2.选择题 设nn n x z y ≤≤,且lim()0,lim n n n n n y x z →∞→∞-=则( )A .存在且等于零 B. 存在但不一定等于零 C .不一定存在 D. 一定不存在 答:选项C 正确 分析:若lim lim 0nn n n x y a →∞→∞==≠,由夹逼定理可得lim 0n n z a →∞=≠,故不选A 与D.取11(1),(1),(1)n n n nn n x y z n n =--=-+=-,则n n n x z y ≤≤,且l i m ()0n n n y x →∞-=,但l i m n n z →∞ 不存在,所以B 选项不正确,因此选C . 例3.设,nn x a y ≤≤且lim()0,{}{}n n n n n y x x y →∞-=则与( )A .都收敛于a B. 都收敛,但不一定收敛于a C .可能收敛,也可能发散 D. 都发散 答:选项A 正确. 分析:由于,nn x a y ≤≤,得0n n n a x y x ≤-≤-,又由lim()0n n n y x →∞-=及夹逼定理得lim()0n n a x →∞-=因此,lim nn x a →∞=,再利用lim()0n n n y x →∞-=得lim n n y a →∞=.所以选项A .二、无界与无穷大无界:设函数()f x 的定义域为D ,如果存在正数M ,使得()f x Mx X D ≤∀∈⊂则称函数()f x 在X 上有界,如果这样的M 不存在,就成函数()f x 在X 上无界;也就是说如果对于任何正数M ,总存在1x X ∈,使1()f x M >,那么函数()f x 在X 上无界.无穷大:设函数()f x 在0x 的某一去心邻域内有定义(或x 大于某一正数时有定义).如果对于任意给定的正数M (不论它多么大),总存在正数δ(或正数X ),只要x 适合不等式00x x δ<-<(或x X >),对应的函数值()f x 总满足不等式()f x M >则称函数()f x 为当0x x →(或x →∞)时的无穷大.例4:下列叙述正确的是: ② ① 如果()f x 在0x 某邻域内无界,则0lim ()x x f x →=∞② 如果0lim ()x x f x →=∞,则()f x 在0x 某邻域内无界解析:举反例说明.设11()sin f x x x =,令11,,22nn x y n n πππ==+,当n →+∞时,0,0n n x y →→,而lim ()lim (2)2n n n f x n ππ→+∞→+∞=+=+∞ lim ()0n n f y →+∞=故()f x 在0x =邻域无界,但0x →时()f x 不是无穷大量,则①不正确.由定义,无穷大必无界,故②正确. 结论:无穷大必无界,而无界未必无穷大.三、函数极限不存在≠极限是无穷大当0x x →(或x →∞)时的无穷大的函数()f x ,按函数极限定义来说,极限是不存在的,但是为了便于叙述函数的性态,我们也说“函数的极限是无穷大”.但极限不存在并不代表其极限是无穷大.例5:函数10()0010x x f x x x x -<⎧⎪==⎨⎪+>⎩,当0x →时()f x 的极限不存在.四、如果0lim ()0x x f x →=不能退出01lim()x x f x →=∞ 例6:()0x x f x x ⎧=⎨⎩为有理数为无理数,则0l i m ()0x x f x →=,但由于1()f x 在0x =的任一邻域的无理点均没有定义,故无法讨论1()f x 在0x =的极限. 结论:如果0lim ()0x x f x →=,且()f x 在0x 的某一去心邻域内满足()0f x ≠,则01lim()x x f x →=∞.反之,()f x 为无穷大,则1()f x 为无穷小。
高考数学易混淆知识点总结数学作为高考的一门重要学科,在考试中往往是考生们的拦路虎之一。
有些知识点因为相近的概念或者类似的解题思路容易混淆,给考生们带来困扰。
下面我将总结一些高考数学中容易混淆的知识点,希望能够帮助考生们更好地备考。
1. 直线方程和平面方程在解题过程中,有时需要确定直线或平面的方程。
容易混淆的是直线的一般式方程、点斜式方程、两点式方程和斜截式方程的应用,以及平面的点法式方程和一般式方程的运用。
2. 平方根和立方根的运算平方根和立方根的运算是高考数学中的常见题型,特别是在有关方程的解题过程中。
容易混淆的是运算符号的优先级和平方根与立方根的交替运算。
3. 函数的图像和性质函数的图像和性质是高考数学中的重要内容,容易混淆的是常见函数的图像特点和性质,如线性函数、二次函数、指数函数、对数函数、三角函数等。
4. 解方程和不等式解方程和不等式是高考数学中的基础知识,但也是容易混淆的内容。
考生们在解方程和不等式时常常会混淆各种解法和求解的范围,特别是涉及分式方程和绝对值方程的解题。
5. 几何图形的性质几何图形的性质是高考数学中的重点和难点,容易混淆的是各种图形的特点和性质,如三角形的各种定理、圆的性质、多边形的性质等。
6. 数列与数列极限数列与数列极限是高考数学中的重要内容,容易混淆的是等差数列和等比数列的性质和求和公式,以及数列极限的性质和求解方法。
7. 概率与统计概率与统计是高考数学中的一大难点,容易混淆的是事件的概率计算、独立事件和非独立事件的概率计算,以及样本调查和数据分析的方法。
8. 向量与坐标向量与坐标是高考数学中的基础知识,容易混淆的是向量的加减法和数量积、向量的坐标表示和运算符号的优先级。
9. 平面向量与立体几何平面向量与立体几何是高考数学中的难点,容易混淆的是平面向量的共线定理和垂直定理,以及立体几何中的角度关系和体积计算。
10. 解析几何与三角函数解析几何与三角函数是高考数学中的重点,容易混淆的是解析几何中的直线方程和曲线方程的求解,以及三角函数中的基本公式和诱导公式的运用。
考研人最易混淆的那些高数概念定理摘要:高数向来是考研数学最难的一个要点,它不仅考察内容多,并且考察的角度也深。
对于初期备考的考研人来说,更是有很多易混淆点扰乱大家复习时的视线。
因此,在备考初期,这些概念定理务必要理清。
高数基础复习一定要垫好基础,有些概念定理必须搞清楚,以免后续复习漏洞太大。
整理了一些易混的概念定理,大家来梳理梳理。
►几个易混概念连续,可导,存在原函数,可积,可微,偏导数存在他们之间的关系式怎么样的?存在极限,导函数连续,左连续,右连续,左极限,右极限,左导数,右导数,导函数的左极限,导函数的右极限。
►罗尔定理设函数f(x)在闭区间[a,b]上连续(其中a不等于b),在开区间(a,b)上可导,且f(a)=f(b),那么至少存在一点(a、b),使得f)=0。
罗尔定理是以法国数学家罗尔的名字命名的。
罗尔定理的三个已知条件的意义:①f(x)在[a,b]上连续表明曲线连同端点在内是无缝隙的曲线;②f(x)在内(a,b)可导表明曲线y=f(x)在每一点处有切线存在;③f(a)=f(b)表明曲线的割线(直线AB)平行于x轴;罗尔定理的结论的直几何意义是:在(a,b)内至少能找到一点,使f)=0,表明曲线上至少有一点的切线斜率为0,从而切线平行于割线AB,与x轴平行。
►泰勒公式有的同学,看到泰勒公式就哆嗦,因为咋一看很长很恐怖,瞬间大脑空白,身体失重的感觉。
其实在搞明白一下几点后,原来的症状就没有了第一:什么情况下要进行泰勒展开;第二:以哪一点为中心进行展开;第三:把谁展开;第四:展开到几阶?►中值定理应用多次中值定理的专题:大部分的考研题,一般要考察你应用多次中值定理,最重要的就是要培养自己对这种题目的敏感度,要很快反映老师出这题考哪几个中值定理,敏感性是靠自己多练习综合题培养出来的。
经常会去复习,那样渐渐地你对中值定理的题目就没有那种刚学高数时的害怕之极。
►对称性,轮换性,奇偶性在积分的综合应用对称性,轮换性,奇偶性在积分(重积分,线,面积分)中的综合应用:这几乎每年必考,要么小题中考,要么大题中要用,这是必须掌握的知识,但是往往不是那么容易就靠做3,4个题目就能了解这知识点的应用到底有多广泛。
《高等数学》中的易混淆知识
1.凸函数和凹函数:凸函数是指满足每个区间内的一阶导数大于或等于零的函数,而凹函数是指满足每个区间内的一阶导数小于或等于零的函数。
2.正交函数和分段函数:正交函数是指函数在一定区间内有且仅有一个最小值和一个最大值,而分段函数是由一系列完全不重叠的函数段来组成的函数,可以对它做分段变换。
3.不等式和方程:不等式是指把不同的两个量之间的大小进行比较的短语,而方程是一个等式,它可以用来表示任何种类的量之间的关系,可以用来解决实际问题。
高考数学易混淆知识点总结数学是高考科目中一个相对容易失分的科目,很多学生在数学考试中容易混淆一些知识点,导致失分。
为了帮助大家更好地复习数学,我总结了一些容易混淆的知识点,希望对大家有所帮助。
一、代数知识点1. 二次函数与二次方程的区别二次函数是形如y=ax²+bx+c的函数,a≠0,其中a、b、c 是常数,x是自变量,y是因变量。
二次函数的图像是抛物线。
二次方程是形如ax²+bx+c=0的方程,a≠0,其中a、b、c 是常数,x是未知数。
解二次方程就是找到方程的根,也就是方程的解。
混淆的原因:二次函数和二次方程的公式都带有x²,容易让人混淆。
解决方法:理解二次函数和二次方程的概念和特点,二次函数是一个函数关系,而二次方程是一个方程,要求找到方程的解。
2. 整式与多项式的区别整式是由有限个数的项用加法和减法连接起来的代数表达式,每一项的指数必须是非负整数。
多项式是特殊的整式,是由若干项用加法和减法连接起来的代数表达式,每一项的指数必须是非负整数,并且不能有分式以及根式。
混淆的原因:整式是多项式的一种特殊情况,容易被误认为整式就是多项式。
解决方法:了解整式和多项式的定义和概念,多项式是整式的一种常见形式。
3. 幂的混淆正整数次幂:a^n=a×a×...×a,其中a是底数,n是指数。
零次幂:a^0=1,其中a≠0。
负整数次幂:a^(-n)=1/(a^n),其中a≠0。
混淆的原因:容易混淆正整数次幂、零次幂和负整数次幂的概念。
解决方法:理解正整数次幂、零次幂和负整数次幂的定义和特点,注意在计算幂时要遵循相应的规律。
二、几何知识点1. 长度与面积的混淆长度是表示一条线段的大小,通常用单位长度来度量,如厘米、米等。
面积是表示一个平面图形大小的量,通常用单位面积来度量,如平方厘米、平方米等。
混淆的原因:长度和面积都是度量物体大小的量,容易混淆。
解决方法:理解长度和面积的概念和计算方法,注意在计算时要根据题目中的要求选择适当的计算方式。
考研人最易混淆的那些高数概念定理高数向来是考研数学最难的一个要点,它不仅考察内容多,并且考察的角度也深。
对于初期备考的考研人来说,更是有很多易混淆点扰乱大家复习时的视线。
因此,在备考初期,这些概念定理务必要理清。
高数基础复习一定要垫好基础,有些概念定理必须搞清楚,以免后续复习漏洞太大。
本店铺整理了一些易混的概念定理,大家来梳理梳理。
►几个易混概念连续,可导,存在原函数,可积,可微,偏导数存在他们之间的关系式怎么样的?存在极限,导函数连续,左连续,右连续,左极限,右极限,左导数,右导数,导函数的左极限,导函数的右极限。
►罗尔定理设函数f(x)在闭区间[a,b]上连续(其中a不等于b),在开区间(a,b)上可导,且f(a)=f(b),那么至少存在一点ξ∈(a、b),使得f'(ξ)=0。
罗尔定理是以法国数学家罗尔的名字命名的。
罗尔定理的三个已知条件的意义:①f(x)在[a,b]上连续表明曲线连同端点在内是无缝隙的曲线;②f(x)在内(a,b)可导表明曲线y=f(x)在每一点处有切线存在;③f(a)=f(b)表明曲线的割线(直线AB)平行于x轴;罗尔定理的结论的直几何意义是:在(a,b)内至少能找到一点ξ,使f'(ξ)=0,表明曲线上至少有一点的切线斜率为0,从而切线平行于割线AB,与x轴平行。
►泰勒公式有的同学,看到泰勒公式就哆嗦,因为咋一看很长很恐怖,瞬间大脑空白,身体失重的感觉。
其实在搞明白一下几点后,原来的症状就没有了第一:什么情况下要进行泰勒展开;第二:以哪一点为中心进行展开;第三:把谁展开;第四:展开到几阶?►中值定理应用多次中值定理的专题:大部分的考研题,一般要考察你应用多次中值定理,最重要的就是要培养自己对这种题目的敏感度,要很快反映老师出这题考哪几个中值定理,敏感性是靠自己多练习综合题培养出来的。
经常会去复习,那样渐渐地你对中值定理的题目就没有那种刚学高数时的害怕之极。
XX高考数学必考点(易混淆10个知识点)高三数学学习对大家来说很重要,想要取得好成绩必须要掌握好课本上的知识点,为了帮助大家掌握高三数学知识点,下面xx为大家带来XX高三数学学习易混淆的10个知识点,希望对大家掌握数学知识有所帮助。
集合与简单逻辑1、易错点遗忘空集致误错因分析:由于空集是任何非空集合的真子集,因此,对于集合B,就有B=A,φ≠B,B≠φ,三种情况,在解题中如果思维不够缜密就有可能忽视了B≠φ这种情况,导致解题结果错误。
尤其是在解含有参数的集合问题时,更要充分注意当参数在某个范围内取值时所给的集合可能是空集这种情况。
空集是一个特殊的集合,由于思维定式的原因,考生往往会在解题中遗忘了这个集合,导致解题错误或是解题不全面。
2、易错点忽视集合元素的三性致误错因分析:集合中的元素具有确定性、无序性、互异性,集合元素的三性中互异性对解题的影响最大,特别是带有字母参数的集合,实际上就隐含着对字母参数的一些要求。
在解题时也可以先确定字母参数的范围后,再具体解决问题。
3、易错点四种命题的结构不明致误错因分析:如果原命题是“若A则B”,则这个命题的逆命题是“若B则A”,否命题是“若┐A则┐B”,逆否命题是“若┐B则┐A”。
这里面有两组等价的命题,即“原命题和它的逆否命题等价,否命题与逆命题等价”。
在解答由一个命题写出该命题的其他形式的命题时,一定要明确四种命题的结构以及它们之间的等价关系。
另外,在否定一个命题时,要注意全称命题的否定是特称命题,特称命题的否定是全称命题。
如对“a,b都是偶数”的否定应该是“a,b不都是偶数”,而不应该是“a,b都是奇数”。
4、易错点充分必要条件颠倒致误错因分析:对于两个条件A,B,如果A=>B成立,则A是B的充分条件,B是A的必要条件;如果B=>A成立,则A是B的必要条件,B是A的充分条件;如果A<=>B,则A,B互为充分必要条件。
高等数学部分易混淆概念 第一章:函数与极限一、数列极限大小的判断例1:判断命题是否正确.若()n n x y n N <>,且序列,n n x y 的极限存在,lim ,lim ,n n n n x A y B A B →∞→∞==<则解答:不正确.在题设下只能保证A B ≤,不能保证A B <.例如:11,1n n x y nn ==+,,n n x y n<∀,而lim lim 0n n n n x y →∞→∞==.例2.选择题设n n n x z y ≤≤,且lim ()0,lim n n n n n y x z →∞→∞-=则( )A .存在且等于零 B. 存在但不一定等于零 C .不一定存在 D. 一定不存在 答:选项C 正确分析:若lim lim 0n n n n x y a →∞→∞==≠,由夹逼定理可得lim 0n n z a →∞=≠,故不选A 与D.取11(1),(1),(1)n nnn n n x y z nn=--=-+=-,则n n n x z y ≤≤,且lim ()0n n n y x →∞-=,但lim n n z →∞不存在,所以B 选项不正确,因此选C .例3.设,n n x a y ≤≤且lim ()0,{}{}n n n n n y x x y →∞-=则与( )A .都收敛于a B. 都收敛,但不一定收敛于a C .可能收敛,也可能发散 D. 都发散 答:选项A 正确.分析:由于,n n x a y ≤≤,得0n n n a x y x ≤-≤-,又由lim ()0n n n y x →∞-=及夹逼定理得lim ()0n n a x →∞-=因此,lim n n x a →∞=,再利用lim ()0n n n y x →∞-=得lim n n y a →∞=.所以选项A .二、无界与无穷大无界:设函数()f x 的定义域为D ,如果存在正数M ,使得()f x Mx X D≤∀∈⊂则称函数()f x 在X 上有界,如果这样的M 不存在,就成函数()f x 在X 上无界;也就是说如果对于任何正数M ,总存在1x X ∈,使1()f x M >,那么函数()f x 在X 上无界.无穷大:设函数()f x 在0x 的某一去心邻域内有定义(或x 大于某一正数时有定义).如果对于任意给定的正数M (不论它多么大),总存在正数δ(或正数X ),只要x 适合不等式00x x δ<-<(或x X >),对应的函数值()f x 总满足不等式()f x M>则称函数()f x 为当0x x →(或x →∞)时的无穷大. 例4:下列叙述正确的是: ②① 如果()f x 在0x 某邻域内无界,则0lim ()x x f x →=∞② 如果0lim ()x x f x →=∞,则()f x 在0x 某邻域内无界解析:举反例说明.设11()sinf x xx=,令11,,22n n x y n n πππ==+,当n →+∞时,0,0n n x y →→,而lim ()lim (2)2n n n f x n ππ→+∞→+∞=+=+∞lim ()0n n f y →+∞=故()f x 在0x =邻域无界,但0x →时()f x 不是无穷大量,则①不正确. 由定义,无穷大必无界,故②正确.结论:无穷大必无界,而无界未必无穷大.三、函数极限不存在≠极限是无穷大当0x x →(或x →∞)时的无穷大的函数()f x ,按函数极限定义来说,极限是不存在的,但是为了便于叙述函数的性态,我们也说“函数的极限是无穷大”.但极限不存在并不代表其极限是无穷大. 例5:函数10()0010x x f x x x x -<⎧⎪==⎨⎪+>⎩,当0x→时()f x 的极限不存在.四、如果0lim()0x x f x →=不能推出01lim()x x f x →=∞例6:()0x x f x x ⎧=⎨⎩为有理数为无理数,则0lim ()0x x f x →=,但由于1()f x 在0x=的任一邻域的无理点均没有定义,故无法讨论1()f x 在0x =的极限.结论:如果0lim ()0x x f x →=,且()f x 在0x 的某一去心邻域内满足()0f x ≠,则1l i m()x x f x →=∞.反之,()f x 为无穷大,则1()f x 为无穷小。
五、求函数在某点处极限时要注意其左右极限是否相等,求无穷大处极限要注意自变量取正无穷大和负无穷大时极限是否相等。
例7.求极限1lim ,lim xx x x e e →∞→解:lim ,lim 0xx x x e e →+∞→-∞=+∞=,因而x →∞时x e 极限不存在。
1100lim 0,lim xxx x e e →-→===+∞,因而0x →时1x e 极限不存在。
六、使用等价无穷小求极限时要注意:(1)乘除运算中可以使用等价无穷小因子替换,加减运算中由于用等价无穷小替换是有条件的,故统一不用。
这时,一般可以用泰勒公式来求极限。
(2)注意等价无穷小的条件,即在哪一点可以用等价无穷小因子替换 例8:求极限0limx x→2写成1)1)+,再用等价无穷小替换就会导致错误。
分析二:用泰勒公式22222211()122(1())22!11()122(1())222!1()4x x x x x x x x οοο-=+++-+-++-=-+原式2221()144x x xο-+==-。
例9:求极限sin limx x xπ→解:本题切忌将sinx用x 等价代换,导致结果为1。
sin sin limx x xπππ→==七、函数连续性的判断(1)设()f x 在0x x =间断,()g x 在0x x =连续,则()()f x g x ±在0x x =间断。
而2()(),(),()f xg x f x f x ⋅在0x x =可能连续。
例10.设00()1x f x x ≠⎧=⎨=⎩,()sin g x x =,则()f x 在0x =间断,()g x 在0x=连续,()()()sin 0f xg x f x x ⋅=⋅=在0x=连续。
若设10()1x f x x ≥⎧=⎨-<⎩,()f x 在0x =间断,但2()()1f x f x =≡在0x=均连续。
(2)“()f x 在0x 点连续”是“()f x 在0x 点连续”的充分不必要条件。
分析:由“若0lim ()x x f x a →=,则0l i m ()x x f x a →=”可得“如果00lim ()()x x f x f x →=,则l i m ()()x x f x f x →=”,因此,()f x 在0x 点连续,则()f x 在0x 点连续。
再由例10可得,()f x 在0x 点连续并不能推出()f x 在0x 点连续。
(3)()x ϕ在0x x =连续,()f u 在00()u u x ϕ==连续,则(())f x ϕ在0x x =连续。
其余结论均不一定成立。
第二章 导数与微分一、函数可导性与连续性的关系可导必连续,连续不一定可导。
0x =处不可导。
(1)设0()0f x ≠,()f x 在0x x =连续,则()f x 在0x x =可导是()f x 在0x x =可导的充要条件。
()()()F x g x x ϕ=()x ϕx a =又()g a '存在,则()0g a =是()F x 在x a =可导的充要条件。
分析:若()0g a =,由定义()()()()()()()()()limlimlim()()()x ax ax aF x F a g x x g a a g x g a F a x g a a x ax ax aϕϕϕϕ→→→---''====--- 反之,若()F a '存在,则必有()0g a =。
用反证法,假设()0g a ≠,则由商的求导法则知()()()F x x g x ϕ=在xa=可导,与假设矛盾。
利用上述结论,我们可以判断函数中带有绝对值函数的可导性。
四、在某点存在左右导数时原函数的性质(1)设()f x 在0x x =处存在左、右导数,若相等则()f x 在0x x =处可导;若不等,则()f x 在0x x =连续。
(2)如果()f x 在(,)a b 内连续,0(,)x a b ∈,且设00lim ()lim (),x x x x f x f x m →+→-''==则()f x 在x x =处必可导且0()f x m '=。
若没有如果()f x 在(,)a b 内连续的条件,即设00lim ()lim ()x x x x f x f x a →+→-''==,则得不到任何结论。
例11.20()0x x f x xx +>⎧=⎨≤⎩,显然设00lim ()lim ()1x x f x f x →+→-''==,但0lim ()2x f x →+=,0lim ()0x f x →-=,因此极限0lim ()x f x →不存在,从而()f x 在0x=处不连续不可导。
第三章 微分中值定理与导数的应用一、若lim (),(0,lim ()x x f x A A f x →+∞→+∞'=≠∞=∞可以取), 则若lim ()0x f x A →+∞'=≠,不妨设0A >,则0,()2A X x X f x '∃>≥>时,,再由微分中值定理()()()()(,(,))f x f X f x X x X X x ξξ'=+->∈()()()()lim ()2x A f x f X x X x X f x →+∞⇒≥+->⇒=+∞同理,当0A <时,lim ()x f x →+∞=-∞若lim (),0,()1x f x X x X f x →+∞''=+∞⇒∃>≥>时,,再由微分中值定理()()()()(,(,))f x f X f x X x X X x ξξ'=+->∈()()()()lim ()x f x f X x X x X f x →+∞⇒≥+->⇒=+∞同理可证lim ()x f x →+∞'=-∞时,必有lim ()x f x →+∞=-∞第八章 多元函数微分法及其应用8.1多元函数的基本概念1. 0ε∀ ,12,0δδ∃ ,使得当01x x δ- ,02y y δ- 且0,0(,)()x y x y ≠时,有(,)f x y A ε- ,那么00lim (,)x x y y f x y A →→=成立了吗?成立,与原来的极限差异只是描述动点(,)p x y 与定点000(,)p x y 的接近程度的方法不一样,这里采用的是点的矩形邻域, ,而不是常用的圆邻域,事实上这两种定义是等价的. 2. 若上题条件中0,0(,)()x y x y ≠的条件略去,函数(,)f x y 就在0,0()x y 连续吗?为什么? 如果0,0(,)()x y x y ≠条件没有,说明0,0()f x y 有定义,并且00(,)x y 包含在该点的任何邻域内,由此对0ε∀ ,都有(,)f x y A ε- ,从而0,0()A f x y =,因此我们得到0lim (,)x x y y f x y A →→=0,0()f x y =,即函数在0,0()x y 点连续.3. 多元函数的极限计算可以用洛必塔法则吗?为什么?不可以,因为洛必塔法则的理论基础是柯西中值定理.8.2 偏导数1. 已知2(,)y f x y e x y +=,求(,)f x y令x y u +=,ye v =那么解出x ,y 得ln ln y vx u v=⎧⎨=-⎩,所以22(,)(,).(,)(ln ).ln f u v x u v y u v u v v ==-或者2(,)(ln ).ln f u v u v y =-8.3全微分极其应用1.写出多元函数连续,偏导存在,可微之间的关系偏导数x f ', y f '连续⇒Z 可微⇒ (,)Z f x y =连续⇒ (,)f x y 极限存在 偏导数x f ', y f '连续⇒偏导数x f ', y f '存在2. 判断二元函数(,)f x y=0,00,0(,)()0(,)()x y x y x y x y ≠≠⎩在原点处是否可微.对于函数(,)f x y ,先计算两个偏导数:(,0)(0,0)00(0,0)limlim0x x x f x f f xx∆→∆→∆--'===∆∆(0,)(0,0)00(0,0)limlim0y x x f y f f yy∆→∆→∆--'===∆∆又0005226(,)(0,0)(0,0)(0,0)limlim()()x x x x y y y y f x y f f x f yx yx y →→→→''∆∆--∆-∆∆∆=⎡⎤∆+∆⎣⎦令y k x ∆=∆,则上式为213555022663()limlim 0(1)(1)x x k x kxk x k ∆→∆→∆=∆=+∆+因而(,)f x y 在原点处可微.8.4多元复合函数的求导法则 1. 设()xy z f x y=+,f 可微,求d z .22222()()()()()()()()()()()xy xy xy x y d xy xyd x y dz f d f x y x yx y x y xyyxyyf dx f dyx y x y x y x y +-+''==++++''=+++++8.5隐函数的求导1. 设(,)x x y z =,(,)y y x z =,(,)z z x y =都是由方程(,,)0F x y z =所确定的具有连续偏导数的函数,证明..1x y z y z x∂∂∂=-∂∂∂. 对于方程(,,)0F x y z =,如果他满足隐函数条件.例如,具有连续偏导数且0x F '≠,则由方程(,,)0F x y z =可以确定函数(,)x x y z =,即x 是y ,z 的函数,而y ,z 是自变量,此时具有偏导数y x F x yF '∂=-∂',z x F x zF '∂=-∂'同理, z y F y zF '∂=-∂',所以..1x y z y z x∂∂∂=-∂∂∂.8.6多元函数的极值及其求法1.设(,)f x y 在点000(,)p x y 处具有偏导数,若(,)0x f x y '=,(,)0y f x y '=则函数(,)f x y 在该点取得极值,命题是否正确?不正确,见多元函数极值存在的充分必要条件.2.如果二元连续函数在有界闭区域内有惟一的极小值点,且无极大值,那么该函数是否在该点取得最小值?不一定,对于一元函数来说上述结论是成立的,但对于多元函数,情况较为复杂,一般来说结论不能简单的推广。