机械零件的失效分析
- 格式:pptx
- 大小:5.99 MB
- 文档页数:83
机械零件失效形式及诊断1. 引言机械零件是任何机械设备中最关键的组成部分之一。
随着机械设备的运行时间增加,零件的失效概率也会增加。
因此,了解机械零件的失效形式以及如何进行诊断对于设备的维护和保养至关重要。
本文将讨论常见的机械零件失效形式以及相应的诊断方法,希望能给读者提供一些有益的知识和实用的技巧。
2. 机械零件失效形式2.1 磨损失效磨损是机械设备常见的失效形式之一。
机械零件在长时间的摩擦和磨损中会出现磨损现象,导致零件尺寸变小、表面质量下降等问题。
常见的磨损形式包括表面磨损、疲劳磨损和焊接磨损等。
2.2 塑性变形失效塑性变形是指机械零件在受外力作用下发生塑性变形,导致零件形状和尺寸的永久性变化。
塑性变形常见的形式有弯曲、扭转和压扁等。
2.3 断裂失效断裂是机械设备中最严重的失效形式之一。
机械零件在受到较大的外力作用下可能会发生断裂,导致机械设备无法正常工作。
常见的断裂形式包括静态断裂、疲劳断裂和韧性断裂等。
2.4 腐蚀失效腐蚀是指机械零件在介质中受到化学反应导致金属表面发生腐蚀破坏的现象。
腐蚀会导致机械零件的表面质量下降、尺寸变化等问题。
3. 机械零件失效的诊断方法3.1 监测技术通过使用各种监测技术,可以实时监测机械零件的工作状态和性能参数。
这些监测技术包括振动监测、噪声监测、温度监测等。
通过对监测数据的分析和比对,可以及时发现机械零件的异常情况,进而进行相应的维修和更换。
3.2 检查和观察定期的检查和观察是诊断机械零件失效的有效方法之一。
通过检查和观察,可以发现机械零件的磨损、变形、断裂等异常情况。
同时,还可以观察机械零件的润滑情况、磨损程度等。
这些信息对于及时诊断并防止机械零件失效具有重要意义。
3.3 非破坏性检测技术非破坏性检测技术可以在不破坏机械零件的情况下检测其内部的缺陷和损伤。
这些技术包括超声波检测、磁粉检测、射线检测等。
通过分析和评估检测结果,可以及时发现机械零件的问题,并采取相应的修复措施。
机械零件的失效分析失效:零件或部件失去应有的功效零件在工作过程中最终都要发生失效。
所谓失效是指:①零件完全破坏,不能继续工作;②严重损伤,继续工作很不安全;③虽能安全工作,但已不能满意地起到预定的作用。
只要发生上述三种情况中的任何一种,都认为零件已经失效。
一般称呼失效大多是特指零件的早期失效,即未达到预期的效果或寿命,提前出现失效的过程。
失效分析:探讨零件失效的方式和原因,并提出相应的改进措施。
根据失效分析的结果,改进对零件的设计、选材、加工和使用,提高零部件的使用寿命,避免恶性事故的发生,带来相应的经济效益和社会效益。
一、零件的失效形式失效形式分3种基本类型:变形、断裂和表面损伤。
1、变形失效与选材(机件在正常工作过程中由于变形过大导致失效)①弹性变形失效(由于发生过大的弹性变形而造成的零件失效)弹性变形的大小取决于零件的几何尺寸及材料的弹性模量。
金刚石与陶瓷的弹性模量最高,其次是难溶金属、钢铁,有色金属则较低,有机高分子材料的弹性模量最低。
因此,作为结构件,从刚度及经济角度看,选择钢铁是比较合适。
②塑性变形失效(零件由于发生过大的塑性变形而不能继续工作的失效)塑性变形失效是零件中的工作应力超过材料的屈服迁都的结果。
一般陶瓷材料的屈服强度很高,但脆性非常大,因此,不能用来制造高强度结构件。
有机高分子材料的强度很低,最高强度的塑料也不超过铝合金。
因此,目前用作高强度结构的主要材料还是钢铁。
2、断裂失效①塑性断裂零件在受到外载荷作用时,某一截面上的应力超过了材料的屈服强度,产生很大的塑性变形后发生的断裂;②脆性断裂脆性断裂发生时,事先不产生明显的塑性变形,承受的工作应力通常远低于材料的屈服强度,所以又称为低应力脆断;③疲劳断裂在低于材料屈服强度的交变应力反复作用下发生的断裂称为疲劳断裂;④蠕变断裂在应力不变的情况下,变形量随时间的延长而增加,最后由于变形过大或断裂而导致的失效;3、表面损伤①磨损失效磨损主要是在机械力的作用下,相对运动的接触表面的材料以细屑形式逐渐磨耗,而使零件尺寸不断变小的一种失效方式。
机械零件失效分析机械零件是构成机械设备的基本组成部分,其质量和性能的好坏直接关系到整个机械设备的可靠性和安全性。
然而,在机械设备的长期运行中,由于各种原因,机械零件可能会出现失效现象。
失效分析是一种通过分析失败机械零件的失效原因来帮助我们改进设计、制造和维修策略的方法。
一、失效类型机械零件的失效类型多种多样,常见的包括疲劳失效、磨损失效、腐蚀失效、断裂失效等。
疲劳失效是指材料在交变载荷作用下的长期疲劳过程中逐渐出现的损伤。
磨损失效是指机械零件在运行过程中由于与其他零件或外界环境的摩擦而造成的表面磨损。
腐蚀失效是指机械零件由于环境中的化学腐蚀而失效。
断裂失效是指机械零件由于超过其承载能力而发生断裂。
二、失效原因机械零件失效的原因也是多种多样的,常见的有材料问题、设计问题、制造问题、装配问题、使用问题等。
材料问题是指机械零件材料的质量或性能不达标,如含气体、夹杂物、晶粒非均匀等。
设计问题是指机械零件在设计过程中存在结构强度不足、刚度不够的问题。
制造问题是指机械零件在加工过程中存在加工质量不合格、工艺控制不严等问题。
装配问题是指机械零件在装配过程中存在装配不当、配合间隙设计不合理等问题。
使用问题是指机械零件在使用过程中存在操作不当、润滑不足等问题。
三、失效分析方法失效分析是通过分析失效零件的失效样品、现场情况以及相关维修记录来查找失效原因。
常用的失效分析方法包括物理分析、化学分析、力学分析、金相分析等。
物理分析是通过观察失效零件的外部形态和内部结构来判断失效形式。
化学分析是通过对失效零件进行化学成分分析以及腐蚀产物分析来判断失效原因。
力学分析是通过对失效零件进行力学性能测试以及有限元分析等方法来判断失效原因。
金相分析是通过对失效零件进行金相组织观察以及晶体学分析等方法来判断失效原因。
四、失效分析结果的应用失效分析的最终目的是为了指导我们改进机械零件的设计、制造和维修策略,提高机械设备的可靠性和安全性。
机械零件的失效分析失效:零件或部件失去应有的功效零件在工作过程中最终都要发生失效。
所谓失效是指;①零件完全破坏,不能继续工作;②严重损伤,继续工作很不安全;③虽能安全工作, 但已不能满意地起到预定的作用。
只要发生上述三种情况中的任何一种,都认为零件已经失效。
一般称呼失效大多是特指零件的早期失效,即未达到预期的效果或寿命,提前出现失效的过程。
失效分析:探讨零件失效的方式和原因,并提出相应的改进措施。
根据失效分析的结果, 改进对零件的设计、选材、加工和使用,提高零部件的使用寿命,避免恶性事故的发生,带来相应的经济效益和社会效益。
一、零件的失效形式失效形式分3种基本类型:变形、断裂和表面损伤。
1、变形失效与选材(机件在正常工作过程中由于变形过大导致失效)①弹性变形失效(由于发生过大的弹性变形而造成的零件失效)弹性变形的大小取决于零件的几何尺寸及材料的弹性模量。
金刚石与陶瓷的弹性模量最高,其次是难溶金属、钢铁,有色金属则较低,有机高分子材料的弹性模量最低。
因此,作为结构件,从刚度及经济角度看,选择钢铁是比较合适。
②塑性变形失效(零件由于发生过大的塑性变形而不能继续工作的失效)塑性变形失效是零件中的工作应力超过材料的屈服迁都的结果。
一般陶瓷材料的屈服强度很高,但脆性非常大,因此,不能用来制造高强度结构件。
有机高分子材料的强度很低, 最高强度的塑料也不超过铝合金。
因此,目前用作高强度结构的主要材料还是钢铁。
2、断裂失效①塑性断裂零件在受到外载荷作用时,某一截面上的应力超过了材料的屈服强度,产生很大的塑性变形后发生的断裂;②脆性断裂脆性断裂发生时,事先不产生明显的塑性变形,承受的工作应力通常远低于材料的屈服强度,所以又称为低应力脆断:③疲劳断裂在低于材料屈服强度的交变应力反复作用下发生的断裂称为疲劳断裂;④蠕变断裂在应力不变的情况下,变形量随时间的延长而增加,最后由于变形过大或断裂而导致的失效:3、表面损伤①磨损失效磨损主要是在机械力的作用下,相对运动的接触表面的材料以细屑形式逐渐磨耗,而使零件尺寸不断变小的一种失效方式。
I断裂脆性断裂是一种构件未经明显的变形而发生的断裂,当零件在外载荷作用下,由于某一危险截面上的应力超过零件的抗拉强度时将会发生脆性断裂,发生脆性断裂时,零件几乎没有发生过塑性变形。
如杆件脆断时没有明显的伸长或弯曲,更无缩颈,容器破裂时没有直径的增大及壁厚的减薄。
图1. 脆性断裂实例分析:传统力学把材料看成是没有缺陷的、没有裂纹的、均匀的和连续的理想固体,但是,实际工程材料在制备、加工(冶炼、铸造、锻造、焊接、热处理、冷加工等)及使用中(疲劳、冲击、环境温度等)都会产生各种缺陷(白点、气孔、渣、未焊透、热裂、冷裂、缺口等)。
如上图所示的齿轮,由于其内部的缺陷和裂纹会在零件使用过程中产生应力集中,该处所受拉应力为平均应力的数倍。
过分集中的拉应力如果超过该齿轮材料的临界拉应力值时,将会产生裂纹或缺陷的扩展,导致脆性断裂。
图2. 韧性断裂实例分析:韧性断裂又称延性断裂。
断裂前发生过明显的塑性变形的断裂,是塑性变形的终结。
消耗较高能量,以金属撕裂为特征的一种断裂,是与脆性断裂相对应的一种断裂模式。
物体受力时其最危险截面或区域,从弹性变形逐渐转入塑性变形状态,这时截面的某一邻域内力学参量的某一组合达到临界点,断裂口附近出现明显的宏观塑性变形, 微观断口表面呈韧窝状。
图3. 疲劳断裂实例分析:零件在交变载荷下经过较长时间的工作而发生断裂的现象就叫作疲劳断裂。
一开始,疲劳微裂纹在零件应力最高强度最低的基体上产生,之后裂纹会稳定扩展,但扩展速度较低,最后,当裂纹尺寸足够大结构有效受力截面小到不足以承受所加载荷时,零件即发生断裂,如图所示。
II磨损磨擦副表面的材料微粒,由于机械力与化学腐蚀的作用而脱离母体,使零件尺寸和表面状态改变,最终导致功能丧失,称为磨损失效。
磨损是机械的重要失效形式,它包括复杂的化学过程和物理过程,其主要形式有:粘着磨损(材料从一个磨擦表面移到另一个表面)、磨料磨损(硬磨料在摩擦表面犁出沟槽或道痕,使材料从零件表面脱落)、腐蚀磨损(化学腐蚀参与作用下的磨料磨损)和疲劳磨损(接触应力作用使材料表面疲劳剥落)等。