ac ab
bc 3a 2
例1 通分(2) 2a a-b
, 3b a+b
解(: 2)分母a-b、a+b的最简公分母是(a-b)(a+b)
2a a-b
2a(a b) , (a b)(a b)
3b a+b
3b(a b) (a b)(a b)
.
四、自主拓展 例2 通分:
1 (1) m 2-9 ;
(2) x ; xy-y
1
2m+6
y xy+x
分析:当分式的分母是多项式时,先将它们分解因式,
再确定最简公分母.
解:(1)分母m2-9=(m+3)(m-3),2m+6=2(m+3), 它们的最简公分母是2(m+3)(m-3)
解:(2)分母xy-y=y(x-1),xy+x=x(y+1), 它们的最简公分母是xy(x-1)(y+1),
(3)
y 2x
,
x 3y2
,
1 4 xy
;
(4)
4a 5b 2 c
,
3c 10a 2b
,
5b 2ac2
;
1
1
(5) x2 xy , xy y 2 ;
1
1
(6) x2 y 2 , x y ;
1
1
(7) x2 x , x2 x ;
1
1
(8) x2 x , x2 2x 1
五、自主评价
本节课你对自己、同学和老师有什 么建议和看法?
课堂小结:
1通分:把几个异分母的分式化成与本来的分式相 等的同分母的分式叫做分式的通分。 2.通分的关键是确定几个分式的最简公分母。 3.最简公分母的确定方法: