永磁同步电机牵入同步分析
- 格式:pdf
- 大小:138.61 KB
- 文档页数:3
永磁同步电机(PMSM):永磁同步电机转动原理永磁同步电机(Permanent Magnet Synchronous Motor,PMSM)是一种高效、具有高功率密度的交流电机,其主要工作原理是在转子上添加永磁体,通过与电磁场的相互作用,使转子进行转动。
本篇文章将详细介绍永磁同步电机转动原理。
电磁同步原理在理解永磁同步电机的转动原理之前,我们需要先了解电磁同步原理。
电磁同步机的结构类似于永磁同步电机,它由固定转子和旋转转子构成。
区别在于,电磁同步机转子上没有永磁体,而是通过电击方式产生的磁场,与固定转子上的磁场相互作用,从而实现转动。
具体来说,当电流通过旋转转子上的绕组时,会产生旋转磁场。
如果在固定转子上存在着相同的磁场,那么旋转转子将会沿着相同的方向旋转,这就是电磁同步原理。
永磁同步电机转动原理永磁同步电机的转动原理与电磁同步机类似,但不同的是在转子上添加了永磁体。
因此,在有外部励磁的情况下,只要旋转转子上的永磁体与固定转子上的磁场相互作用,就可以实现转动。
具体来说,当旋转转子上的永磁体在外部控制下产生旋转磁场时,它与固定转子上的磁场相互作用,从而产生转矩。
在恒定外部负载下,永磁同步电机可以以恒定速度旋转,同时也能够提供与负载匹配的扭矩。
但是,对于不同的负载,永磁同步电机会产生不同的负载角,从而导致旋转转子和固定转子上的磁场不再保持同步。
为了保持同步,需要在控制系统中添加反馈机制来调整磁场和旋转转子的位置,从而保持同步转动。
总结永磁同步电机是一款高效、高功率密度的交流电机类型。
它的转动原理类似于电磁同步机,但与之不同的是,在旋转转子上添加了永磁体,通过与固定转子上的磁场相互作用,实现了转动。
由于不同负载会导致磁场与旋转转子位置不同步,因此需要通过反馈机制来实现同步转动。
永磁同步电动机的分析与设计永磁同步电机(Permanent Magnet Synchronous Motor, PMSM)是一种采用永磁材料作为励磁源的同步电机。
相较于传统的感应电机,永磁同步电机具有高效率、高功率因数、高转矩密度和高速控制响应等特点,因此在许多应用领域中得到广泛应用。
本文将介绍永磁同步电机的分析与设计内容。
首先,分析永磁同步电机的基本原理。
永磁同步电机由永磁铁和电磁绕组组成。
当绕组通电后,产生的磁场与永磁铁的磁场相互作用,使电机转子产生旋转力矩。
通过分析电机的磁动特性和电动力学特性,可以得到电机的数学模型和控制方程,为电机设计和控制提供理论依据。
其次,设计永磁同步电机的结构参数。
永磁同步电机的结构参数包括定子绕组的匝数、线圈的截面积和磁链密度等。
这些参数的选择将直接影响电机的性能,如转矩、效率和功率因数等。
通过优化设计,可以使电机在给定的体积和功率范围内获得最佳性能。
然后,进行永磁同步电机的电磁设计。
电磁设计包括计算电机的电磁参数,如磁链、磁势和磁密等。
在设计过程中,需要考虑电机的工作条件和负载要求,选择合适的磁路结构和电磁铁材料,以提高电机的效率和转矩密度。
接下来,进行永磁同步电机的电气设计。
电气设计包括计算电机的电气参数,如电压、电流和功率等。
通过分析电机的电气性能,可以确定电机的绕组参数和功率电路的参数,以满足电机的输出要求和电力系统的特性。
最后,进行永磁同步电机的控制设计。
控制设计是永磁同步电机应用中至关重要的一环。
通过采用合适的控制策略和控制器,可以实现电机的速度、位置和转矩精确控制,提高电机的动态响应和工作效率。
总之,永磁同步电机的分析与设计是实现高效电机控制的关键步骤。
通过对电机的原理分析、结构参数设计、电磁设计、电气设计和控制设计等方面的研究,可以实现电机的优化设计和性能优化,推动永磁同步电机技术在各个领域的应用发展。
三相同步电机分析1. 电流设置问题电流的幅值*sin(2*pi*频率*time+delta)电流极大值:电流有效值*sqrt(2)频率:f=p*n/60 p为转子级对数,即Pr2. 电压的初相位调整根据出来的A相电压调整其位置,对于电压半个周期相位为360/2/Pr,务必使A相的电压满足正弦波形3. 分析时长与步长的控制分析时长选择一到两个周期,周期的计算方法:T=1/f=p*n/60分析步长选择分析时长的1%-2%,此外,每隔一到十个记一次数4. 基于坐标变换的交流磁场磁通密度的调整(-Moving1.Position -初始相位 * PI/180) * 极对数 + PI注意前面要加个负号5. 空载情况下的三个校核要点电流要为零+A相电压从零开始起步+Flux_q=0(磁通变化后)Flux-d是沿磁极正向的磁场强度,Flux-q是垂直于磁场方向的磁场强度,正常情况下,垂直于磁场方向应该为06. 删除现有的结果7. 负载要将电流初相位delta改为零,然后给电流的大小赋值8. 气隙磁密分布情况使用气隙中间的圆线作为参考面,使用场计算器计算B在中心面上的径向与切向分量在result中添加曲线可以在此处更改对应的时间9. 对气隙磁密进行傅里叶分解首先要进行坐标变化,把横坐标变成1,并且注意要用标准单位可以用鼠标划分局部显示傅里叶结果的横坐标是谐波极对数(频率),纵坐标是谐波幅值10. 网格划分问题可以通过画圆圈线手动加密气隙网格密度,画圈之后,将coverlines删除,将自动保留线画完曲线之后再画网格,并通过plotmesh查看11. 矢量场向量曲面积分计算问题在指定的曲线上,当需要插入函数的时候,先将变量以及加减乘除运算符先加上,然后使用积分函数integ 函数,需要注意的是,此处为矢量的线积分,要注意公式的转换·1,一般,极坐标积分可以提出一个r 出来,即:()r f d θθ∫在线积分时就变成了:()l f d θ∫。
永磁同步电机原理及其应用分析
永磁同步电机的原理是通过电流控制电磁线圈在永磁体磁力的作用下产生旋转磁场,使得电磁线圈受到磁场力矩的作用而旋转,从而带动电动机的转动。
与传统的异步电动机不同,永磁同步电机在运行时具有较高的效率和功率因数,且具有快速响应和高精度的速度控制能力。
永磁同步电机的应用非常广泛,特别适用于需要高速精密控制和高效率的场合,如工业机械、电动车、印刷机、风力发电机组等。
举例来说,永磁同步电机在电动车中的应用可以提供更高的速度和加速度,同时还可以减少能量损耗,延长电池寿命。
而在风力发电机组中,永磁同步电机可以通过控制转速和功率因数,实现对电网的电能质量的改善和调节。
此外,永磁同步电机还具有易于控制、结构简单、体积小等特点。
由于永磁同步电机无需励磁设备,减少了设备的尺寸和重量,提高了电机的传动效率。
另外,永磁同步电机通过控制转子的磁场和电流的相位差,可以实现电机的运行控制和能量回馈,进一步提高了能量利用率。
然而,永磁同步电机也存在一些局限性和挑战。
首先,永磁同步电机的成本相对较高,主要是由于永磁材料的成本较高,并且在制造过程中需要一定的技术要求。
其次,永磁同步电机的磁铁容易受到温度和磁场的影响,可能导致磁力损失和磁力不稳定性。
此外,由于永磁同步电机通常需要使用复杂的电机控制系统,需要对电机精确的模型和参数进行建模和计算,以实现精密控制和调节。
综上所述,永磁同步电机作为一种高效、高精度、高控制能力的电动机,已经在许多领域得到了广泛应用。
随着永磁材料和电机控制技术的不
断发展和改进,相信永磁同步电机将在未来的应用中发挥更加重要的作用,并为社会经济的发展做出更大的贡献。
永磁同步电动机原理与分析
永磁同步电动机(Permanent Magnet Synchronous Motor,简称PMSM)是一种采用永磁体作为励磁源的同步电动机,相比传统的感应电动机具有更高的效率、功率密度和响应性能。
以下将对永磁同步电动机的工作原理和分析进行详细介绍。
一、永磁同步电动机的工作原理
1.定子部分:定子是由绕组、磁极和铁芯组成的。
绕组通过接通电源来产生定子磁场,绕组中的电流按照一定的规律进行调节,使得磁极之间的磁场呈现为正弦波形。
2.转子部分:转子是由永磁体和铁芯组成的。
永磁体可以为硬磁性材料,通过其产生一个固定的磁场,与定子的磁场相互作用,产生转矩。
当定子的绕组通电时,定子的磁场是旋转磁场,与转子的磁场相互作用,产生转矩。
由于转子的磁场是由永磁体提供的,所以称之为永磁同步电动机。
二、永磁同步电动机的分析
对于永磁同步电动机的分析,主要包括电磁特性分析和运动特性分析两个方面。
1.电磁特性分析:
2.运动特性分析:
运动特性分析还包括转矩与转速之间的关系。
转矩大小与永磁体和定子磁场之间的相对位置有关,当两者之间的磁场相互作用达到最大时,产生的转矩也会达到最大。
此外,还需要对永磁同步电动机进行电磁特性计算、变磁链接计算以及功率因数的分析,来进一步了解电机的性能特点。
总结:
永磁同步电动机是一种采用永磁体作为励磁源的同步电动机,具有高效率、功率密度和响应性能等特点。
其工作原理是通过定子磁场和转子磁场之间的相互作用来产生电磁转矩。
在分析方面,需要对电磁特性和运动特性进行分析,以了解电机的性能特点。
WORD文档可编辑第一章永磁同步电机的原理及结构1.1永磁同步电机的基本工作原理永磁同步电机的原理如下在电动机的定子绕组中通入三相电流,在通入电流后就会在电动机的定子绕组中形成旋转磁场,由于在转子上安装了永磁体,永磁体的磁极是固定的,根据磁极的同性相吸异性相斥的原理,在定子中产生的旋转磁场会带动转子进行旋转,最终达到转子的旋转速度与定子中产生的旋转磁极的转速相等,所以可以把永磁同步电机的起动过程看成是由异步启动阶段和牵入同步阶段组成的。
在异步启动的研究阶段中,电动机的转速是从零开始逐渐增大的,造成上诉的主要原因是其在异步转矩、永磁发电制动转矩、由转子磁路不对称而引等一系列的因素共同作用起的磁阻转矩和单轴转矩下而引起的,所以在这个过程中转速是振荡着上升的。
在起动过程中,质的转矩,只有异步转矩是驱动性电动机就是以这转矩来得以加速的,其他的转矩大部分以制动性质为主。
在电动机的速度由零增加到接近定子的磁场旋转转速时,在永磁体脉振转矩的影响下永磁同步电机的转速有可能会超过同步转速,而出现转速的超调现象。
但经过一段时间的转速振荡后,最终在同步转矩的作用下而被牵入同步。
1.2永磁同步电机的结构永磁同步电机主要是由转子、端盖、及定子等各部件组成的。
一般来说,永磁同步电机的最大的特点是它的定子结构与普通的感应电机的结构非常非常的相似,主要是区别于转子的独特的结构与其它电机形成了差别。
和常用的异步电机的最大不同则是转子的独特的结构,在转子上放有高质量的永磁体磁极。
由于在转子上安放永磁体的位置有很多选择,所以永磁同步电机通常会被分为三大类:内嵌式、面贴式以及插入式,如图1.1所示。
永磁同步电机的运行性能是最受关注的,影响其性能的因素有很多,但是最主要的则是永磁同步电机的结构。
就面贴式、插入式和嵌入式而言,各种结构都各有其各自的优点。
图1-1面贴式的永磁同步电机在工业上是应用最广泛的,其最主要的原因是其拥有很多其他形式电机无法比拟的优点,例如其制造方便,转动惯性比较小以及结构很简单等。
永磁同步电动机原理与分析
1.原理:
2.分析:
在内部激励型电机中,当电流通过电磁线圈时,根据安培定律,线圈周围会形成一个磁场。
这个磁场与永磁体的磁场相互作用,使得转子开始旋转。
根据电磁感应定律,电机转子上的导体产生的感应电动势会引起感应电流,从而形成了一个自激振荡类型的控制方式。
在外部激励型电机中,永磁体与定子线圈之间由磁场链接。
当线圈通过电流时,磁场会随之变化,从而使得转子开始旋转。
这种类型的电机带有一个磁场传感器,用于控制永磁体的磁场,使得电机能够根据需要进行调节。
3.应用方面:
永磁同步电动机的优点包括高效率、高功率密度、高可靠性以及较低的维护成本。
它们能够提供较高的转矩输出,因此可以满足各种工业生产需求。
此外,它们还具有较宽的转速范围,在低速和高速运行时均能提供出色的性能。
尽管永磁同步电动机具有诸多优点,但其缺点之一是价格较高。
永磁体的制造和安装需要较大的成本投入,尤其对于大型电机而言。
此外,永磁体的使用寿命有限,需要进行定期更换。
总结起来,永磁同步电动机是一种重要的电动机类型,其工作原理基于永磁体和电磁线圈之间的互作用。
它具有高效率、高可靠性和较低的维
护成本,适用于多种应用领域。
然而,由于价格较高和永磁体寿命有限这两个缺点,永磁同步电动机在一些特定应用中可能并不适用。
第一章永磁同步电机的道理及构造永磁同步电机的道理如下在电念头的定子绕组中通入三相电流,在通入电流后就会在电念头的定子绕组中形成扭转磁场,因为在转子上装配了永磁体,永磁体的磁极是固定的,依据磁极的同性相吸异性相斥的道理,在定子中产生的扭转磁场会带动转子进行扭转,最终达到转子的扭转速度与定子中产生的扭转磁极的转速相等,所以可以把永磁同步电机的起动进程算作是由异步启动阶段和牵入同步阶段构成的.在异步启动的研讨阶段中,电念头的转速是从零开端逐渐增大的,造成上诉的重要原因是其在异步转矩.永磁发电制动转矩下而引起的,所以在这个进程中转速是振荡着上升的.在起动进程中,其他的转矩大部分以制动性质为主.在电念头的速度由零增长到接近定子的磁场扭转转速时,在永磁体脉振转矩的影响下永磁同步电机的转速有可能会超出同步转速,而消失转速的超调现象.但经由一段时光的转速振荡后,最终在同步转矩的感化下而被牵入同步.永磁同步电机主如果由转子.端盖.及定子等各部件构成的.一般来说,永磁同步电机的最大的特色是它的定子构造与通俗的感应电机的构造异常异常的类似,主如果差别于转子的奇特的构造与其它电机形成了不同.和经常运用的异步电机的最大不合则是转子的奇特的构造,在转子上放有高质量的永磁体磁极.因为在转子上安顿永磁体的地位有许多选择,所以永磁同步电机平日会被分为三大类:内嵌式.面贴式以及拔出式,如图 1.1所示.永磁同步电机的运行机能是最受存眷的,影响其机能的身分有许多,但是最重要的则是永磁同步电机的构造.就面贴式.拔出式和嵌入式而言,各类构造都各有其各自的长处.图1-1面贴式的永磁同步电机在工业上是运用最广泛的,其最重要的原因是其失去许多其他情势电机无法比较的长处,例如其制造便利,迁移转变惯性比较小以及构造很简略等.并且这种类型的永磁同步电机加倍轻易被设计师来进行对其的优化设计,个中最重要的办法是将其散布构造改成正弦散布后可以或许带来许多的优势,运用以上的办法可以或许很好的改良电机的运行机能.拔出式构造的电机之所以可以或许跟面贴式的电机比拟较有很大的改良是因为它充分的运用了它设计出的磁链的构造有着不合错误称性所生成的奇特的磁阻转矩能大大的进步了电机的功率密度,并且在也能很便利的制造出来,所以永磁同步电机的这种构造被比较多的运用于在传动体系中,但是其缺点也是很凸起的,例如制造成本和漏磁系数与面贴式的比拟较都要大的多部,比拟较而言其构造固然比较庞杂,但却有几个很显著的长处是毋庸置疑的,较就会产生很大的转矩;因为在转子永磁体的装配方法是选择嵌入式的,所以永磁体在被去磁后所带来的一系列的安全的可能性就会很小,是以电机可以或许在更高的扭转速度下运行但是其实不须要斟酌转子中永磁体是否会因为离心力过大而被损坏.为了表现永磁同步电机的优胜机能,与传统异步电机来进行比较,永磁同步电机特殊是最经常运用的稀土式的永磁同步电机具有构造简略,运行靠得住性很高;体积异常的小,质量特此外轻;损耗也相对较少,效力也比较高;电机的外形以及大小可以灵巧多样的变更等比较显著的长处.恰是因为其失去这么多的优势所以其运用规模异常的广泛,几乎广泛航空航天.国防.工农业的临盆和日常生涯等的各个范畴.永磁同步电念头与感应电念头比拟,可以斟酌不输入无功励磁电流,是以可以异常显著的进步其功率身分,进而削减了定子上的电流以及定子上电阻的损耗,并且在稳固运行的时刻没有转子电阻上的损耗,进而可以因总损耗的降低而减小电扇(小容量的电机甚至可以不必电扇)以及响应的风磨损耗,从而与同规格的感应电念头比拟较其效力可以进步2-8个百分点.先对永磁同步电机的转速进行研讨,间的转速关系时速也为 n r/min,所以定子的电流响应的频率是因为定子扭转的磁动势的扭转速度是由定子上的电流产生的,所以应为可以看出转子的扭转速度是与定子的磁动势的转速相等的.对于永磁同步电机的电压特征研讨,可以运用电念头的通例来直接写出它的电动势均衡方程式(1.2)对于永磁同步电机的功率而言,同样依据发电机的通例可以或许得到永磁同步电机的电磁功率为(1.3)对于永磁同步电机的转矩而言,转矩和功率是成(1.4)第二章永磁同步电机物理模子开环仿真下面临永磁同步电机物理模子的开环进行仿真,在仿真之前先介绍各个单元模块,以便于对模子进行更好的仿真.逆变器单元,逆变是和整流相对应的,它的重要功效是把直流电转变成交换电.逆变可以被分为两类,包含有源逆变以及无源逆变.个中有源逆变的界说为当交换侧衔接电网时,称之为有源逆变;当负载直接与交换侧相连时,称之为无源逆变.以图2-1的单相桥式逆变电路的例子来解释逆变器的工作道理.图2-1逆变电路图2-1中S1-S4为桥式电路的4个臂,帮助电路构成的.当开关,S2.S3断开时,负载电压;当S1.S4断开,S2.S3闭应时,其波形如图2-2所示.图2-2逆变电路波形经由过程这个办法,就可以把直流电转变成交换电,只要转变两组开关响应的切换频率,就可以转变交换电的输出频率.这就是逆变器的工作道理.当负载是电阻时,,相位也雷同.当负载是阻感时,形也不合,图2-2.设S1.S4,同时合上S2.S3,则.但是,恰是因为负载中消失着电感,个中的电流极性仍将保持本来的偏向而不克不及连忙转变.这时负载电流会从直流电源负极而流出,经由S2.负载和S3再流回正极,,负载电流要逐渐减小,到,之后大.S2.S3断开,S1.S4闭应时的情形类似.上面是S1-S4均为幻想开关时的剖析,实际电路的工作进程要比这更庞杂一些.逆变电路依据直流侧电源性质的不合可以被分为两种:直流侧为电压源的称为电压型逆变电路;直流侧为电流源的称为电流型逆变电路.它们也分离被称为电压源逆变电路和电流源逆变电路.三相电压型逆变电路是由三个单相逆变电路而构成的.在三相逆变电路中三相桥式逆变电路运用的最为广泛.如图2-3所示的三相电是由三个半桥逆变电路构成的.图2-3三相电压型桥式逆变电路如图2-3所示的电路的直流侧一般只用一个电容器就可以了,但是为了便利剖析,画出了串联的两个电容器并且标出设想的中点单相半桥和全桥逆变电路是具有许多类似点的,三相电压型桥式逆变电路也是以180度的导电方法作为其根本的工作方法,统一半桥高低两个臂瓜代着导电,每相之间开端导电的角度以120度相错开.如许在任何时刻,将会有三个桥臂同时导通.也可能是上面一个下面两个,也可能是上面两个下面一个同时导通.它之所以被称为纵向换流是因为每次换流都是在统一相上的两个桥臂之间交换进行.逆变器的参数设置如图2-4所示图2-4逆变器模块参数设置六路脉冲触发器模块,如图2-5所示图2-5六路脉冲触发器模块同步六路脉冲产生器模块可用于许多范畴.六路脉冲触发器的重要部分.下面的图表显示了一个0度的α角的六路脉冲.如图2-6所示图2-6六路脉冲触发器输出的脉冲aipha_deg,以度的情势.该输入可以衔接到一个恒定的模块或者它可以衔接到掌握体系来掌握发电机的脉冲AB.BC.CA为输入的ABC三相的线电压Freq频率的输入端口,这种输入应当衔接到包含在赫兹的根本频率,恒定的模块.Block六路脉冲触发器的参数设置如图2-7所示图2-7六路脉冲触发器参数设置图2-8整体开环仿真框图本文在基于Matlab下树立了永磁同步电机的开环电机模子的仿真.Ω,直轴感抗为0.027H,交轴感抗为0.067H,漏磁通λf为0.272wb,迁移转变惯量J2,粘滞摩擦系数B为0.得到的仿真成果图如图2-9所示图2-9电机转速曲线从图中的曲线可以看出,电机转速给定值为3000N(pm),从电机起动开端,速度逐渐上升,达到给定值须要的时光比较长,换句话说就是电机的响应时光较长,并且在达到稳固值邻近时的转速摇动也比较大,可能是因为永磁同步电机的内部构造很庞杂,也可能是跟电机没有任何掌握有关,愿望在搭建了速度转矩双闭环掌握后的转速的响应时光能缩短,达到给定值邻近时的高低摇动能减小转矩的成果如图2-10所示图2-10永磁同步电机转矩曲线从图中可以看出,在永磁同步电机起动后转矩的值在零的邻近摇动,摇动规模照样比较大,产生摇动的重要原因照样电机庞杂的内部构造,以及在没有任何掌握的情形下才消失的,愿望在搭建成速度转矩双闭环掌握下可以使其摇动的规模减小,无穷的接近于零.电流的仿真成果如图2-11所示图2-11永磁同步电机电流曲线对于永磁同步电机开环物理模子仿真的电流,电流在电机开端运行时电流会在短时光内上升并振荡,但很快就接近与零值并且在零值邻近摇动.第三章永磁同步电机双闭环仿真在MATLAB下的SIMULINK情形中,运用个中的各类模块,树立了永磁同步电机双闭环掌握体系仿真模子.该体系是由PI掌握器构成的速度环和滞环电流掌握器树立的电流环配合掌握的双闭环掌握体系.经由过程给定转速与实际转速的比较产生的误差,将产生的误差旌旗灯号送入PI掌握器,再由PI掌握器送达转速掌握模块.并经由过程坐标变换产生的参考电流,与PMSM输出的实际电流比拟较,再经由过程桥路逆变器产生输入PMSM的三相电压,经由坐标变换后直接输入到PMSM本体掌握其运行.最终达到在运用双闭环掌握体系的掌握下可以或许实现实际转速与期望转速相一致的目标.依据模块化的思惟,我们可以将体系的整体构造划分为以下几个重要部分:3.1.1 PMSM本体模块在全部仿真进程中,电机本体模块是个中最重要的模块之一.依据公式而P 为极对数) (3.2)‘ 则可以树立如下的电机本体模块,如图3-2所示:图3-1 PMSM 电机本体模块转速掌握模块是由比例积分掌握器依据比例积分掌握道理树立的,如图3-3所示的比例积分PI 掌握模块.在本体模块中取的比例积分为0.5,积分增益为0.01,定子电流输出的限幅为[-5,5].图3-2 PI 掌握模块,,而直0,则由此可以看出转矩与电机交轴电流之间消失必定的线性关系.在仿真进程中是由程序实现的,转矩掌握模块也是依据以上的道理树立的. 在仿真中,重要有4个坐标变换的模块:两相扭转坐标系向两相静止坐标系变换(d —q 到,两相静止的坐标系向三相坐标是到abc ),以及三相坐标系向两相静止坐标系变换(abc 到,到 d —q ),.响应的坐标变换公式如下所示:两相扭转坐标系向静止坐标系变换:(3.5)两相静止坐标系向三相坐标系变换:(3.6)(3.8)响应的反变换为:(3.10)(3.11)(3.12)依据坐标变更公式(—)可以树立如图3-3.图3-4.图3-5.图3-6的坐标变换模块.图3—4 α-β到abc坐标变换图3—5abc到α-β坐标变换图3—6 α-β到d-q坐标变换对于电流掌握方法而言,采取的是滞环掌握.起首肯定一个期望值,依据滞环的带将近在期望值的两侧来肯定一个规模,当实际输出电流达到滞环宽度以上的时刻,就会输出高值旌旗灯号,从而达到对输出电流调节的目标.滞环掌握器的模块是依据滞环掌握道理搭建的,如图3-7所示.在图3-7中起首将实际电流与期望电流进行比较后产生误差,再经由滞环掌握器后产生三相电压旌旗灯号.然后经由数据逻辑非运算器器件和类型变换装配产生IGBT桥路6个IGBT管的门极脉冲旌旗灯号.因统一相上的桥臂的管子触发脉冲是相反的,所以只要在本来的三相脉冲旌旗灯号上加上逻辑非即可构成响应的6路脉冲触发旌旗灯号,掌握各个IGBT管的导通以及封闭.在本次仿真中,滞环的宽度设为0.1当期望电流与实际电流的误差不小于滞环带的宽度时,滞环掌握器即开通,输出值为1,当误差小于滞环宽度的负值时,滞环掌握器即关断,输出为0.图3—7 滞环掌握器构造电压源逆变器如图3-8所示,依据3.1.5小结末节中我们研讨的电流掌握器,它可以或许产生出IGBT的门极旌旗灯号,并且经由过程这个旌旗灯号来掌握每个IGBT管的导通以及关断.由直流电源产生的三相电流与三相实际电流值同时感化在负载上,依据误差的大小来产生输入到PMSM的三相电压Vabc,经由过程这个产生出来的三相电压来调节PMSM的实际转速也能同时调节交直轴的电流,最终达到实际值与期望值相等的目标.这个逆变桥的IGBT管是选用的IRGIB10B60KD1.为了得到相对更好的电流波形,要在IGBT桥路三相电流输出端加上一个滤波器,右边的负载电阻全取为直流电压为20V,左下角自力的部分是IGBT桥路中流经IGBT管的电流以及电压的测量装配,可经由过程它得到流经每个IGBT管的电压和电流,要想得到IGBT管上的损耗功率只需将统一个IGBT管的电压电流和电压相乘即可,要想得到在一段时光内单个IGBT管上的消费功率的总和,可以在功率输出端放上一个积分器输出值即可得到.图3—8 电压逆变器构造3.2 仿真成果图3-9 整体仿真框图直轴感抗为0.027H,交轴感抗0.067H.粘滞摩擦系数B为0.本次仿真就是为了验证所设计的PMSM双闭环掌握体系的仿真模子的静.动态机能是否得到改良,是否达到预想的成果以及体系空载启动的机能是否优胜它的优胜性可否表现出来,体系先是在空载情形下启动,在t=0.4s时突加负载2Nm,可以得到体系转速.转矩.直轴交轴电流以及A相电流的仿真曲线.给定参考转速为200rad/s,滞环宽度取为0.1.图3-10 永磁同步电机双闭环掌握转速图3.11 永磁同步电机双闭环掌握转矩图3.12图3.13图 3.14 永磁同步电机双闭环i电流曲线经由过程上面的仿真图可以很显著的看出:在给定的参考转速不变的情形下,体系从吸收到旌旗灯号到可以或许响应须要的时光很短并且高低的摇动不是很大总体来看照样很安稳的,在起动阶段体系是保持转速恒定的,并且在空载稳固速度下运行时,不斟酌体系的摩擦转矩,是以此时的电磁转矩的平均值为零,交轴和直轴电流以及相电流的平均值也接近为零.在忽然加上负载后,转速产生了忽然的降低,但是又能比较快的恢复到稳固的状况,稳态运行时转速没有静差,但忽然加上负载后,电磁转矩就会略有增大,这是因为开关的频仍切换所造成的.稳态时,电磁转矩等于负载转矩,直轴电流的平均值为零,交轴电流均值增大,相电流为正弦波形,这很相符永磁同步电机的特征.仿真成果标明电机的动静态机能比较好,得到仿真之前预期的目标,解释建模仿真的办法是比较幻想的,是精确的.第四章永磁同步电机开环和双闭环仿真比较经由过程第二章的研讨和剖析,可以看出永磁同步电机在开环的运行情势下,得到的转矩.电流.转速的波形跟我们想要的后果有很大的差距,个中会消失从起动开端,达到稳固的时光比较长,并且到达稳准时的后果也比较差,波形很显著.这主如果因为开环运行的前提下体系广泛消失的问题较多(1)在开环体系中,各类参数间互相之间影响并且互相制约着,所以很难再对换节器的参数进行更好的调剂,因而体系的动态机能的缺点很显著,在这种情形下不是很幻想.(2)任何扰动在转速消失误差后也无法调剂,因而转速动态降低较大.相对开环来讲在第三章研讨的永磁同步电机的双闭环掌握体系就对电机调节的优势就很显著,如仿真成果标明:对永磁同步电机双闭环掌握体系的仿真成果进行波形剖析,可以很清晰的看到其的合理性,并且体系可以或许在异常安稳的状况下运行,跟开环掌握体系比拟较而言它具有较好的静.动态特征,可以或许达到我们所期望的目标.所以我们可以得出以下结论,采取该PMSM双闭环掌握体系模子仿真,可以异常便捷地不雅察出它和开环情形下永磁同步电机比拟较的优胜性,实现同时也能很精确的验证其算法是否合理,只须要对个中一部分的功效模块进行调换或者是合理的恰当的修正,就可以或许实现对掌握计谋的改换或改良,不但可以间断对计划的设计周期进行掌握,并且还能快速验证所设计的掌握算法是否精确是否合理,更优胜的地方是可以或许充分地运用盘算机仿真的优胜性.经由过程修正体系的参数变量某工资的参加不合扰动身分来考核在各类不合的实验前提下电机体系的动.静态机能,或者是模仿雷同的实验前提,经由过程各类参数或者不合的波形来比较不合的掌握计谋的优势和劣势,为剖析和设计不合的永磁同步电机掌握体系供给了更为有用的手腕和对象,也给为了实际电机掌握体系的设计以及调试供给了新的思绪.在双闭环体系中运用到了直接转矩掌握道理.直接转矩掌握是近几年来继矢量掌握技巧之后成长起来的一种具有高机能的一种新型的交换变频调速技巧.1985年由德国鲁尔大学Depenbrock传授第一次提出了基于六边形磁链的直接转矩掌握理论[1],1986年日本学者Takahashi 提出了基于圆形磁链的直接转矩掌握理论[2],紧接着1987年在弱磁调速规模为涉及到了它.不合于矢量掌握技巧,直接转矩掌握本身的特色是很凸起的.在矢量掌握中碰到的盘算庞杂.特征易受电念头的参数变更所影响.实际机能很难达到理论剖析成果等问题在直接转矩掌握中得到了很大程度的改良.直接转矩掌握技巧一诞生,它就以本身新鲜的掌握思绪,简练清晰明了的体系构造,优胜的静.动态机能而受到了人们广泛的留意,因而得到敏捷的成长.今朝该技巧已成功的运用到了电力机车的牵引以及晋升机等大功率交换传动上.ABB公司已将直接转矩掌握的变频器投放到了市场上.直接转矩掌握的思惟是想要直接掌握电机的电磁转矩要来掌握定子的磁链的办法,不像矢量掌握那样,要经由过程电流来掌握它的电磁转矩,而是在定子坐标系下不雅测电机的定子磁链和电磁转矩,并将磁链.转矩的不雅测值拿来与参考值经两个滞环比较强后得到的磁链.转矩掌握旌旗灯号,分解斟酌定子磁链的地位,要有开关选择恰当的电压空间矢量,掌握定子磁链的走向,从而来掌握转矩[13].和矢量掌握比拟较,它的长处在于它抛开了矢量掌握中的庞杂的思惟,直接对电机的磁链和转矩进行掌握,并用定子的磁链偏素来代替转子磁链的偏向,从而避开了电机中不轻易肯定的参数[3].经由过程本次的毕业设计,使我把从教材里学到的器械以及教材以外的常识接洽在了一路,在本次的毕业设计中我从最根本的对永磁同步电机的根本构造.工作道理等开端研讨,经由过程查阅大量的书本材料,使我获得了在本课题之外的许多常识,在此时代固然碰到了许多的问题,但是对于我来说这是一种动力,可以或许促使我更多的进修相干的常识,使我对永磁同步电机才干有更深刻的懂得,在做毕业设计的进程中才干得心应手.做毕业设计的进程中以永磁同步电机的开环仿真作为基本,最终搭建出对永磁同步电机的双闭环掌握,使其施展出其最好的机能,并与其开环时的电机机能进行比较,不雅察出双闭环掌握体系对电机有用掌握,达到我们预期和想要的目标.现代的社会中,电力电子技巧.微电子技巧.以及电机掌握理论等都敏捷的成长起来,恰是因为以上的成长,才使得永磁同步电机可以或许更好的被深刻研讨,以及最终达到广泛的运用.固然本次毕业设计对永磁同步电机的机能做出了一些改良,得到了一些有意义的成果,但是因为本身的才能有限,还须要进一步的进修和研讨.比方关于永磁同步电机的一系列难题,以及它的局限性,都是须要得到更多的学者来进行研讨,最后愿望永磁同步电机有个更好的明天.。
永磁同步电动机原理与分析引言永磁同步电动机,在现代工业领域中被广泛应用。
相对于传统的异步电动机,它的性能有着很大的提升,如高效率、高功率因数、高速度精度等。
本文主要介绍永磁同步电动机工作原理、构成要素以及分析其特性。
工作原理基本原理永磁同步电动机采用永磁体作为转子,通过磁场与定子线圈中的电流互相作用,实现电能转换成机械能,从而驱动负载。
当磁铁密度沿着转子轴向变化时,就会产生电磁转矩,促使转子旋转。
磁场形成永磁同步电动机磁场由两部分组成,一部分是永磁体产生的磁场,另一部分是定子上电流产生的磁场。
两个磁场之间相互作用,从而产生转矩。
此外,永磁同步电动机通常采用两种类型的永磁体,分别是铁氧体和钕铁硼。
铁氧体具有较低的磁能积,但是价格便宜;钕铁硼则具有更高的磁能积,但是价格昂贵。
同步与同步速度当永磁同步电动机运行时,转子和定子的磁场必须处于同步运动状态。
由于永磁体较为稳定,所以同步速度主要受到定子电源频率的影响。
一般情况下,永磁同步电动机的同步速度略高于50 Hz或者60 Hz的交流电源频率。
构成要素定子永磁同步电动机的定子通常由三相绕组和铷钨静子组成。
铷钨静子被安装在定子上,它的主要作用是防止电流浏览导致过多功率损耗和热量损失。
转子永磁同步电动机转子是由永磁体组成。
永磁体通常有多个反向磁场发生器,这样可以使得磁场沿着其轴向方向变化。
另外,一些永磁体也会包含磁通分配器,以提高其效率。
控制器永磁同步电动机的控制器用于控制电机的速度和扭矩输出等特性。
现代永磁同步电动机控制器通常采用基于数字信号处理器的控制器,实现高精度的控制。
特性分析高效率相对于传统的异步电动机,永磁同步电动机能够更好的解决效率问题。
在高负载情况下,永磁同步电动机可以实现高达95%以上的转换效率。
高功率因数永磁同步电动机采用永磁体作为转子,可以减少电机的电流消耗,从而达到高功率因数的目的。
通常情况下,永磁同步电动机的功率因数可以高达0.9以上。
永磁同步电机原理解析永磁同步电机是一种新型的电机,其工作原理是基于磁场的相互作用。
它具有高效率、高功率密度、高转速范围和良好的控制性能等特点,在工业和交通领域得到了广泛应用。
永磁同步电机的工作原理可以简单地理解为通过永磁体和电磁线圈之间的磁场相互作用来实现电能转换为机械能。
具体来说,它由永磁体产生的恒定磁场和电磁线圈产生的可变磁场之间的相互作用来实现转子的旋转。
永磁同步电机的转子上装有永磁体,这些永磁体产生的磁场是恒定不变的。
当电机通电时,电流通过电磁线圈,电磁线圈产生的磁场会与永磁体的磁场相互作用。
根据磁场的相互作用原理,同性相斥,异性相吸,电磁线圈中的磁场会与永磁体的磁场相互作用,使得转子受到一个力矩的作用。
这个力矩会使得转子开始旋转。
为了保持电机的同步运行,需要保持电磁线圈中的磁场与永磁体的磁场同步。
这就要求电机的控制系统需要通过传感器来实时检测电机的转速和转子位置,并根据这些信息来调节电磁线圈中的电流。
通过控制电磁线圈中的电流,可以调节电磁线圈产生的磁场的大小和方向,从而实现与永磁体的磁场同步。
由于永磁同步电机的转子上的永磁体产生的磁场是恒定的,因此它可以实现高效率的能量转换。
相比之下,传统的感应电机需要通过转子上的感应线圈来产生磁场,这种方式会产生一定的能量损耗。
而永磁同步电机通过利用永磁体的磁场,减少了能量损耗,提高了电机的效率。
永磁同步电机通过永磁体和电磁线圈之间的磁场相互作用来实现电能转换为机械能。
它具有高效率、高功率密度、高转速范围和良好的控制性能等优点,广泛应用于工业和交通领域。
通过控制电磁线圈中的电流,可以实现电磁线圈的磁场与永磁体的磁场同步,从而使电机保持同步运行。
永磁同步电机的工作原理相对简单,但在实际应用中,还需要考虑电机的控制系统和传感器等方面的问题,才能充分发挥其优势。
醋纤生产线使用永磁电动机同步拖动的特性研究及实验分析自上世纪40年代开始,深入研究了与电动机振动和噪声相关的问题,而其中比较典型的研究内容就是感应电动机、直流电动机以及同步电动机。
文章主要以稀土永磁同步电动机为研究对象,针对其振动和噪声方面的应用特性展开了全面探讨,并提出了有针对性的完善措施,以供参考。
标签:永磁同步电动机;应用特性;研究引言稀土永磁电动机具有高效节能的显著优点,应用范围正日益遍及国防、航空航天、工农业生产和日常生活的诸多领域,发展潜力巨大。
相较于电励磁电动机,稀土永磁电动机结构特殊且种类多样,传统的设计理论和分析方法已难以适应高性能电机研发的要求,需要综合运用多学科理论和现代设计手段,进行创新研究。
传统设计模式得到的产品,在工况相对固定的应用场合,能够表显出良好的技术性能,但在永磁同步电动机实际运用的过程中,其振动与噪声始终没有得到有效解决,甚至会对其实际运行的稳定性产生不利的影响。
为此,针对永磁同步电动机设计当中的关键技术研究十分有必要,同样也逐渐成为国民经济发展的关键增长点。
因此,本文在电机和电磁场理论的基础上,结合实际工程应用问题,对永磁同步电动机的工作工程中的振动和噪声问题进行实验分析研究,并提出具体解决改善措施。
论文的工作主要集中在以下几个方面:(1)测试装置与系统的实验,选择11kW的永磁同步电动机,对其振动和噪声的特性进行测试。
其中,将非金属环合理安装于9000A的涡流传感器之上,随后,同样将其安装在轴承端盖的位置,进而对转子动态特性展开全面测试。
(2)永磁同步电动机振动与噪声信号的分析,通过对永磁同步电动机振动和噪声信号的测试与分析,当电动机处于额定负载的情况下,其振动信号呈现出一簇脉冲,其电流信号也有所改变,并非正常的正弦时域波形。
(3)对噪声频谱的分析,当11kW永磁同步电动机处于空载状态时,根据声压级频谱的内容可以发现,其中存在两个峰值。
而当11kW永磁同步电动机处于额定负载的状态下,根据声压级频谱内容可以发现,存在三个峰值。
永磁同步电机原理及其应用分析永磁同步电机是指在主磁场中产生磁动势,并且与电机的永磁体磁动势保持同步的电机。
其原理是利用永磁体的磁动势与电机转子磁动势相互作用,从而产生转矩。
相对于传统的交流异步电机,永磁同步电机具有高效率、高功率因数、低噪音和高控制精度等特点。
因此,在电动汽车、风力发电、机器人等领域有广泛的应用前景。
1.电动汽车:永磁同步电机可以根据驱动电机的控制策略实现高效率和高输出转矩的特性,提供更好的动力性能和续航里程。
在电动汽车领域,永磁同步电机已成为首选的驱动技术。
2.风力发电:永磁同步电机被广泛应用于风力发电机组中。
由于其高效率和高输出转矩的特点,能够提供更大的输出功率。
此外,永磁同步电机可以根据风速实时调整输出功率,提高风力发电的稳定性。
3.机器人:永磁同步电机可以提供高精度和高速度的控制,因此在机器人领域得到广泛应用。
无论是机器人手臂还是移动机器人,永磁同步电机都能够提供更准确和灵活的运动控制。
4.工业自动化:永磁同步电机广泛应用于工业自动化领域。
在工业生产中,永磁同步电机可以提供高效率、高精度和高速度的运动控制。
例如:在生产线上可用于控制输送带的速度和位置,以及机械臂的运动。
5.家用电器:由于永磁同步电机的高效率和低噪音,越来越多的家用电器开始采用永磁同步电机。
例如:洗衣机、空调、冰箱等。
总之,永磁同步电机作为一种高效、高精度和高速度的电机,已在多个领域得到广泛应用。
随着技术的不断发展,永磁同步电机的应用领域将继续扩大,为各行各业带来更高效的能源转换和精确的运动控制。
稀土永磁同步电动机牵入同步性能分析
谢卫;周洁
【期刊名称】《西安交通大学学报》
【年(卷),期】1996(030)011
【摘要】建立状态空间数学模型,对稀土永磁同步电动机在不同负载下的异步起
动和牵入同步过程进行仿真计算,对牵入了同步的临界情况进行深入的分析,并探讨了电磁参数对牵入性能的影响,得到永磁电动机设计中实用的临界牵入特性曲线。
【总页数】7页(P20-26)
【作者】谢卫;周洁
【作者单位】西安交通大学;西安交通大学
【正文语种】中文
【中图分类】TM351
【相关文献】
1.稀土永磁同步电动机起动性能分析 [J], 谢卫;丁梵林
2.凸极同步电动机的牵入同步 [J], 汤晓燕;郭芳
3.有关永磁同步电动机失步转矩和牵入同步转矩的问题 [J], 白长发
4.同步电机牵入同步故障的分析与处理 [J], 叶森;王宇
5.异步起动永磁同步电动机牵入同步转矩和失步转矩的仿真 [J], 陈飞虎;智刚
因版权原因,仅展示原文概要,查看原文内容请购买。
永磁同步电机牵入同步分析
Ξ
曹荣昌
【摘要】 从永磁同步电动机的数学模型着手.推导了永磁同步电动机的起动转矩的数学表达式,并由此分析了
在牵入同步这个复杂过程的中起作用的转矩.主题词 永磁同步电机;牵入同步分类号 T M351
随着高性能稀土永磁材料Nd Fe B 的问世开发永磁同步电机成为人们竞相研究的热
点,永磁同步电动机不但高效节能,而且结构简单使用维修方便.由于其转子没有励磁损耗,进入稳态运行后转子阻尼损耗,磁滞损耗小,因其效率高,节能效果显著,但永磁同步电机有一个先天不足,它不能自行起动,必须依靠其转子边阻尼绕组上的平均异步转矩才能实现异步起动,但接近同步时,这个平均异步转矩已变得很小,单靠平均异步转矩无法牵入同步,因此在牵入同步过程中,必然还存在其它转矩,这里我们从永磁同步电动机的数学模型着手分析一下永磁同步电动机牵入同步时的一些转矩.
1 d -q -n 坐标系下永磁同步电动机的数学模型
依参考文献[1].我们可得出永磁同步电动机的数学模型如下:
U d =r s i d +P Ψd -ωr Ψq
U q =r s i d +P Ψq +ωr Ψd U d 2=0=r d 2i d 2+P Ψd 2U q 2=0=r q 2i q 2+P Ψq 2
Ψd =L d i d +L md i d 2+L md E 0X md
Ψq =L q i q +L mq i q 2
Ψd 2=L d 2i d 2+L md i d 2+L md E 0X md
Ψq 2=L q 2i q 2+L mq i q
(1)
T e =
3
2
P (Ψd i q -Ψq i d (2)U d =-U s sin δ
(3)
U q =-U s cos δ
(4)δ=θs -θr =(ωs -ωr )t
(5)
永磁同步电动机接三相电源后,在定子绕组中形成频率为f 的旋转磁场,同时,当永磁转
子以ωr 转动时,切割定子绕组产生(1-S )f 频率的电压,当从a -b -c 坐标系变换到转子速
d -q -n 坐标系后,原定子绕组中的频率f 和(1-s )f 相对新坐标系分别变为sf 和o .这样求
解方程序(1)就可以采用叠加原理;一是频率为sf 的交流源U d 、U q 作用下交流解.一是频率为
第21卷第3期1999年9月湘 潭 大 学 自 然 科 学 学 报Natural Science Journal of X iangtan University V ol.21N o.3Sept.1999
Ξ作者单位:湘潭大学自动化与电子工程系,湘潭,411105,(第一作者,男,1966年出生,讲师) 收稿日期:19981015
零时的直流解.
首先我们求解交流源 U d 、 U q 作用下的交流解.由式(2)可知.为了得到交流源作用下的转矩必须求解出交流源作用下的解I dj ,I qj 和Ψdj ,Ψqj ,根据已知条件,有微分算子P =jsw s ,E o =0由式(5)得 δ=(ωs -ωr )t =s ωs t (6)
这样U d ,U q 用相量表示如下:
U d =-U S Π2<0
(7)
U q =U S 、
2<90°(8)
化简式(1)得 U d =
r s +js ωL d +s 2
ω2
s L 2
md r d 2+js ωs L d 2 I dj -ωr L q -js ωs L 2
mq
r q 2+js ωs L q 2
I dj
U q =r s +js ωL q +s 2ω2s L 2mq r q 2+js ωs L q 2 I qj -ωr L q -js ωs L 2
md
r d 2+js ωs L d 2 I dj (9)
求解式(9)得
I dj =I 1+jI 2
I qj =I 3+jI 4
(10)
由方程(1)可得:
Ψdj =L d
I dj +L md I d 2j Ψqj =L q I qj +L mq I q 2j (11)
I d 2j =-js ωs L md
r d 2+js
ωs L d 2 I dj
I q 2j =-js ωs L mq
r q 2+js ωs L q 2
I qj
(12)
把(10)(12)式代入(11)式得:
Ψdj =A +jB Ψqj =C +jD
(13)
I 1I 2I 3I 4A B C D 都是与r s r d 2r q 2s ωs L q L m q L d L m d 相关常数,为了研究方便,我们把方程的解
转换成时域表达式,方程(10),(13)的时域表达式为
I dj =I d sin (s ωs t +φ1)
I qj =I q sin (s ωs t +φ2)Ψd 0=M d sin (s ωs t +φ3)
Ψq 0=N d sin (s ωs t +φ4)
(14)
完成交流解后,再考虑方程(1)的直流解I d 0,I q 0,Ψd 0,Ψq 0这时P =0,U d =U q =0化简方程(1)
0=r s I d 0-ωr L q I q 0
0=r s I q 0-ωr (L d I d 0+E 0Πωs )Ψd 0=L d I d 0+E 0Πωs Ψq 0=L q I q 0
(15)
解上述方程得到直流源E 0作用下的实数2解I d 0,I q 0,Ψd 0,Ψq 0
这样,我们就可以得出方程(1)的解i d ,i q ,Ψd ,Ψq 如下:
i d =I dj +I d 0=I d sin (s ωs t +φ1)+I d 0i q =I qj +I q 0=I q sin (s ωs t +φ2)+I q 0Ψd =Ψdj +Ψd 0=M sin (s ωs +φ3)+Ψd 0Ψd =Ψqj +Ψq 0=N sin (s ωs +φ4)+Ψq 0
(16)
8
9 湘 潭 大 学 自 然 科 学 学 报 1999年
合成转矩T 为:
T e =32P (Ψd i q -Ψq i d )=3
2
P [M sin (s ωs +φ3)+Ψd 0]×[I q sin (s ωs t +φ2)+I q 0]-[N sin (s ω1t +φ4)+Ψq 0]×[I d sin (s ωs t +φ1)+I d 0]=3
2P {[Ψd 0I q 0-Ψq 0I d 0]+[
MI d
2
cos (φ3-φ2)-NI d
2
cos (φ4-φ1)]+[I q 0M sin (s ωs t +φ3)+I d 0N sin (s ωs t +φ4)]+
[
NI d
2
cos (2s ωs t +φ4+φ1)+
MI q
2
cos (2s ωs t +φ2+φ3)]}=T 0+T 1+T 2+T 3
其中: T 0=
3
2
P (Ψd 0I q 0-Ψq 0i d 0T 1=32P [MI q 2cos (φ3)-φ2)-NI d 2
cos (φ4)-φ1)]T 2=3
2
P [I q 0M sin (s ωs t -φ3)-I d 0N sin (s ωs t -φ4)]T 3=
3
2P [MI d 2cos (2s ωs t +φ4+φ1)-NI d 2
cos (2s ωs t +φ2+φ3)]图1 制动转矩和平均转矩曲线
从上述转矩表达式中我们可以清楚的看出T 0就是常提及的由直流源产生的制动转矩,T 1为交流源产生的平均异步转矩,它们与转差S 的关系曲线如图1所示.
T 2和T 3就是牵入同步时的脉振转矩.由于T 0和T 1在接近牵入同步时已很小,仅靠它们电机无法进入稳态运行.因此在牵入同步过程中起作用的主要为T 2和T 3,它们分别S
ωs 的1倍频率和2倍频率,它们的T -t 曲线都为正弦形式.这两个转矩的出现都是由于永磁同步电机的d -q 轴不对称的引起的.它们和T 0、T 1一起作用,最终使电动机牵入同步,进入稳态运行.
参 考 文 献
1 邹景祥,曹荣昌.永磁同步电动机起动过程的计算机仿真.中小型电机,1995.22(1):64
2 H onsigner V B.Permanent magnet machines :Asynchronons lperation.IEEE T ran on P ower and apparatus system.PAS -991980,(1):683 励鹤呜.主相永磁同步电动机起动性能分析.微特电机.1995(1):42
Pull -torque Analysis of Permanent Magnet synchronous Motor
Cao Rongchang
(Department of E lectrical Automation and E lectrmics Engineering X iangT an University ,X iangT an ,411105,China )
【Abstract 】 This article deduces the pull -in torque expression of permanent magnet synchronous m otor from its mathematical m odel and analysis its funaction during its pull -in process.Subject w ords permanent magnet ,pull torque
9
9第3期 曹荣昌 永磁同步电机牵入同步分析 。