电厂热工保护系统
- 格式:ppt
- 大小:299.50 KB
- 文档页数:60
DLxxx火力发电厂热工保护系统设计规程序在火力发电厂的热工系统中,保护系统的设计至关重要。
保护系统的规程对于火力发电厂的安全稳定运行起着至关重要的作用。
本文将围绕DLxxx火力发电厂热工保护系统设计规程展开讨论,旨在全面介绍热工保护系统设计规程的要点及其意义。
一、规程的制定背景DLxxx火力发电厂热工保护系统设计规程的制定,是为了进一步规范火力发电厂的热工保护系统设计标准,提高火力发电厂的热工系统的安全性和稳定性。
随着社会的发展和科技的进步,新型燃料的使用以及火力发电厂设备的更新换代,对热工保护系统设计的要求也日益提高。
制定符合时代发展的规程,有利于保障火力发电厂的正常运行。
二、规程的适用范围DLxxx火力发电厂热工保护系统设计规程适用于火力发电厂的热工系统,包括锅炉、汽轮机、循环水系统、锅炉给水系统等。
规程明确了在燃煤、燃气、燃油等多种燃料情况下的适用范围和要求,确保规程的全面性和适用性。
三、规程的主要内容1. 安全保护原则:规程明确了热工保护系统设计应遵循的安全保护原则,包括设备保护、人员保护等方面的要求,确保热工系统在各种工况下都能够安全稳定地运行。
2. 设计要求:规程对热工保护系统的设计要求进行了详细的规定,包括保护系统的结构设计、功能设计、性能指标等方面的要求,确保保护系统能够及时、准确地响应各种异常情况。
3. 设备选型:规程对热工保护系统中所涉及的设备选型进行了要求,包括传感器、执行器、控制器等设备的选型原则和要求,确保设备的稳定性和可靠性。
4. 运行维护:规程明确了热工保护系统的运行维护要求,包括系统的检修周期、设备的维护原则、故障处理流程等,确保保护系统在运行过程中能够保持良好的状态。
四、规程的意义DLxxx火力发电厂热工保护系统设计规程的制定和实施,对于火力发电厂具有重要的意义:1. 提高安全性:规程的实施能够提高火力发电厂热工系统的安全性,减少事故发生的可能性,确保人员和设备的安全。
浅析电厂热工保护系统误动与逻辑优化发布时间:2021-08-23T09:55:28.720Z 来源:《当代电力文化》2021年4月11期作者:周阳[导读] 热工保护系统是火力发电机组不可或缺的一部分,其能否可靠准确地动作,对于机组的安全稳定运行起着关键作用。
周阳国电汉川发电有限公司湖北省汉川市 431600摘要:热工保护系统是火力发电机组不可或缺的一部分,其能否可靠准确地动作,对于机组的安全稳定运行起着关键作用。
但在机组正常运行过程中,往往由于DCS软/硬件故障、热控元件故障、电缆接线短路/断路/虚接、电源故障、人为因素或设计安装存在缺陷等各类原因,热工保护会发生误动或拒动的事件。
这些情况轻则造成机组快减负荷,严重的就会直接导致停机,给企业带来不同程度的经济损失。
因此,在机组稳定运行时,加强日常巡视、规范操作、认真排查设备隐患,在主/辅机可能发生事故前,及时采取相应措施加以保护,才能避免机组发生减负荷或停机事件,从而减少经济损失。
本文主要分析浅析电厂热工保护系统误动与逻辑优化。
关键词:热工保护;误动;逻辑优化;设备治理引言在热保护工作过程中,经常发生误动作拒绝的情况,即使主辅助机械正常工作,保护工作也经常发生。
如果停止主辅助机械,将影响系统的正常运行,给火力发电厂带来一定的经济损失。
通常,保护系统会因故障问题而启动,主辅助机械停止工作。
同时受故障原因的影响,保护系统在主辅助机械发生故障时不能立即工作,保护作用得不到充分发挥,事故扩大,这种情况是拒绝保护。
随着科学技术的进步和发展,火力发电厂的运行效率不断提高,热工保护的误动拒动问题也受到广泛关注和重视。
1、火力发电厂热工保护概述火力发电厂运行中,热工保护能否有效发挥作用直接关系到机组运行的安全稳定,特别是在大型火力发电厂,每年因非计划停运、RB 等原因造成的损失占一定比例,在停运事件中,部分是热工保护系统故障造成的,新机组投入使用时,这种情况尤为突出,发生这种情况主要是因为建设时期没有进行合理的设计和配置,投产机组经常发生热工保护的误动作,严重的情况下一年内也可能发生7次误动作。
电厂热工自动控制系统电厂热工自动控制系统单元机组的自动调节系统¾ ¾ ¾ ¾ ¾机组功率-转速调节系统汽温控制系统(过热、再热)水位控制系统(凝汽器、除氧器、汽包)燃烧控制系统(燃料、风量、炉膛压力及一、二次风配比控制)其它单回路控制系统第一部分汽温控制系统一、过热汽温控制系统1. 任务温度过高,可能造成过热器、蒸气管道和汽轮机的高压部分金属损坏;温度过低,会引起电厂热耗上升,并使汽轮机轴向推力增大造成推力轴承过载,还会引起汽轮机末级叶片蒸汽湿度增加,降低汽轮机内效率,加剧对叶片的腐蚀控制要求:最大控制偏差不超过±10℃,长期偏差不超过±5℃规定要求:2. 静态特性过热器的传热形式、结构、布置将直接影响其静态特性。
大容量锅炉一般采用对流过热器、辐射过热器和屏式过热器交替串连布置。
过热器出口温度对流式3. 动态特性蒸汽流量变化、热烟气的热量变化、减温水流量变化相同点:均为有迟延的惯性环节辐射式不同点:特性参数有较大区别蒸汽流量变化扰动下,汽温的迟延和惯性较小烟气扰动与蒸汽流量扰动相似,汽温反映较快减温水流量扰动由于管道较长,汽温反应较慢4. 控制方案串级控制导前微分控制过热器减温器出口温度TE4001TE4025末级过热器出口温度TE4024LDC指令过热器减温水阀控制逻辑静态特性:纯对流特性动态特性:更容易受负荷、燃烧工况等干扰的影响,温度变化幅度较大调节手段:烟气再循环、尾部烟道挡板、喷燃器摆角、喷水减温烟气再循环:尾部烟道烟气抽至炉膛底部,降低炉膛温度,减少炉膛的辐射传热,从而提高炉膛出口烟气的温度和流速。
使再热器的对流传热加强,达到调温的目的。
优点:反应灵敏,调温幅度大。
缺点:系统结构复杂尾部烟道挡板:尾部烟道被分割为两部分,主烟道中布置低温再热器,旁路烟道中布置低温过热器,烟气挡板布置在温度较低的省煤器下面。
优点:结构简单,操作方便缺点:调温灵敏度差,幅度小,挡板开度与汽温不成线性关系。
热工保护拒动、误动原因分析及防范措施摘要:热工保护系统是火力发电厂一个十分重要的、不可缺少的组成部分,对提高机组主辅设备的可靠性和安全性具有十分重要的作用。
本文就火力发电厂热工保护时常会发生的误动、拒动情况进行了原因分析,并根据生产经验总结出一些解决对策,对提高热工保护的可靠性,维持机组的安全运行提供参考。
关键词:火力发电厂;热工保护;误动;拒动;措施0 前言热控保护系统是火力发电厂一个十分重要的、不可缺少的组成部分,对提高机组主辅设备的可靠性和安全性具有十分重要的作用。
在主、辅设备发生某些可能引发严重后果的故障时,及时采取相应的措施加以保护,从而软化故障,停机待修,避免发生重大的设备损坏和人身伤亡事故。
但在主辅设备正常运行时,保护系统因自身故障而引起动作,造成主辅设备停运,称为保护误动,并因此造成不必要的经济损失;在主辅设备发生故障时,保护系统也发生故障而不动作,称为保护拒动,并因此造成事故的不可避免和扩大。
随着DCS控制系统的成熟发展,热工自动化程度越来越高,凭借其巨大的优越性,使机组的可靠性、安全性、经济性运行得到了很大的提高。
但热工保护误动和拒动的情况还时有发生。
如何防止DCS系统失灵和热工保护误动、拒动成为火力发电厂日益关注的焦点。
1 热工保护误动、拒动原因分类及分析1.1 DCS软、硬件故障主要原因是信号处理卡、输入输出模块、网络通讯等故障引起。
如我厂三期#5机组(ABB Symphony 控制系统)就曾因为环路通讯故障造成机组跳闸。
经查原因为环网通讯同轴电缆接地导致通讯闭塞。
1.2 热控元件故障因热工元件故障(包括温度、压力、液位、流量、阀门位置元件、电磁阀等)误发信号而造成的主机、辅机保护误动、拒动占的比例也比较大,有些电厂因热工元件故障引起热工保护误动、拒动甚至占到了一半。
主要原因是元件老化和质量不可靠,单元件工作,无冗余设置和识别。
1.3 采样信号不满足要求造成的误动或拒动在这一类误动或拒动中,主要发生在汽包水位保护、炉膛压力保护、真空保护、润滑油压保护等需要三选二保护。
电厂热工保护系统的常见故障摘要:随着我国科学技术的不断发展,电厂热工保护系统也开始向自动化的方向发展,在安全性和可靠性上有了很大的保障。
由于发电机组的容量增加,电厂热工保护系统出现了一些故障问题,相关人员只有做好监测工作,才能保证热工保护系统的稳定运行。
本文将探讨电厂热工保护系统的常见故障及防控对策,希望给相关人士提供一些借鉴。
关键词:电厂热工保护系统;常见故障;防控对策电厂热工保护系统常见故障在发电厂的运行中,热工保护系统与其关键部件(如锅炉、汽轮等)的正常稳定运行有着非常密切的联系,电厂设备的安全运行在很大程度上取决于热工保护系统是否能够可靠的运行。
当前电厂热工保护系统的常见故障主要包括以下几种。
DCS 故障在DCS 的运行过程中,如果在其输电模块、网络通信以及信息处理卡等发生故障且没有进行及时有效的处理时,就可能会造成热工保护系统误动的情况发生。
热控元件故障随着热工保护系统的长期运行,其中的元件会逐渐老化,此时这些元件的故障发生率就会不断的提高。
当热控元件因老化发生故障而发出错误信号时,就可能会导致热工保护系统出现拒动或者误动的问题,导致电力生产发生不必要的风险。
热控元件故障是导致热工保护系统拒动、误动较为常见的故障之一。
电缆接线故障当热工保护系统的电缆绝缘层出现老化或者被腐蚀、破坏时,极有可能会导致潮湿空气或者水进入电缆的接线柱,进而导致电缆接线出现短路、虚接或断路等问题,进而导致热工保护系统发生误动。
设备电源故障热工保护系统中DCS 的应用使其自动化程度得到了较大的提高,系统的稳定性和可靠性也大大提升。
但为了保证热工保护系统的正常运行,通常会在控制站内设置电源停机保护装置。
然而当电源插件设计不合理或者出现接触不良等问题时,就会导致电源发生故障,发生热工保护拒动和误动事件。
人为因素导致的故障在热工保护系统的设计、安装、调试以及运行、维护过程中,如果相关人员专业水平较差、培训工作不到位、责任心不强等,在操作上出现失误,就可能会导致热工保护系统发生故障,使得拒动或误动的情况频繁发生。
K 54备案号:J926-2009工阳lll华人民共和罔电力行业标准jDL/T 5428 - 2009火力发电厂热工保护系统设计技术规定Technical code for design ofI&C protectionsv. stem in fos矧fuel power plant 2009-07-22发布2009-12-01实施III华人民共和陶国家能源局发布⑧DL /T 5428 - 2009前言…………………………………一Ⅲl范围………- ……………………………………¨12规范性引用文件 (2)3 术语和定义、缩略语………………………………………….53.1术语和定义……”………………………………………………”5 3.2缩略语…………………………………~84总则………………………………………………1 05热丁保护系统的设计原则………………………….a….115.t电源设计原则...一...................... (1)5.2逻辑设计原则...~ ......................a (11)5_3热工保护系统配置原则 (13)5.4其他......。
..................~ (16)6锅炉保护………………一……….176.1锅炉局部保护…“………~ ………¨176,2锅炉炉膛安全保护………………………一………………….19 6+3锅炉停炉保护…”………一……………………………_227锅炉燃烧器控制.........~ (26)7.1 点火、助燃……一…………1 267。
2煤粉燃烧器控制.........一 (28)7.3磨攥机启、停条件......“ (28)7,4蛤煤机启,件条件......~ (29)7。
5给(排)粉机扁、停条件……………………………………。
30 8汽轮发电机组保护……一………………………’318.! 汽轮机局部保护……………………………………。
火电厂热工保护系统的常见故障及防控措施摘要:火力发电机组的热工保护系统是保证机组安全运行和经济效益的重要组成部分。
热工保护系统的可靠性直接影响到机组的运行状态和事故预防。
在实际运行中,热工保护系统可能会出现各种故障,导致保护误动或拒动,造成机组停运或事故。
本文分析了热工保护系统常见的故障类型和原因,旨在为提高火力发电机组热工保护系统的可靠性提供参考和借鉴。
关键词:火力发电机组;热工保护系统;故障分析;防控措施0引言当前我国火电厂呈现了规模化,大型化,集约化,现代化的发展方向,而火力发电机组热工保护系统又是火电厂能够正常稳定运行的重要设备,为进一步提高火电厂发电效率,降低资源消耗,本文以火力发电机组的热工保护系统可靠性研究为课题进行了探究。
1火力发电厂热工保护系统概述火力发电厂热工保护系统是火力发电机组热工自动化系统的重要组成部分,它是一种基于电气/电子/可编程电子系统(E/E/PES)实现的保护功能,主要用于监测和控制火力发电机组及其附属设备的运行状态,当检测到异常或事故时,能够自动地对相关设备进行操作,以消除异常和防止事故的发生或扩大,保证人身安全、设备安全和工艺系统安全。
火力发电厂热工保护系统一般由分散控制系统(DCS)、独立于DCS或与DCS一体化的锅炉/汽轮机保护装置(FSSS和ETS)、独立的保护跳闸继电器(组)、现场仪表及执行机构/装置、相关的信号及电源线缆等共同构成。
根据保护对象的不同,火力发电厂热工保护系统可以分为锅炉保护、汽轮发电机组保护、热力系统及辅机保护等三大类。
锅炉保护主要用于监测和控制锅炉的运行参数,如蒸汽压力、温度、流量、水位、氧量等,以及锅炉的启动、停止、点火、调节等过程。
锅炉保护包括锅炉炉膛安全保护(FSSS)、锅炉停炉保护和锅炉其他保护等[1]。
汽轮发电机组保护主要用于监测和控制汽轮机和发电机的运行参数,如转速、功率、励磁电流、振动等,以及汽轮机和发电机的启动、停止、调节等过程。
电厂热工保护的可靠性研究与分析电厂热工保护是保证电力系统安全稳定运行的关键技术之一。
随着电力系统的发展和进步,热工保护系统已经发展成为一个高度自动化、复杂性较高的系统。
其所面临的问题也日趋复杂,如何提高热工保护系统的可靠性成为一个亟待解决的问题。
本文将从热工保护的现状出发,探讨影响热工保护可靠性的因素,并结合实际数据进行可靠性分析与研究。
一、热工保护的现状热工保护是指在电力系统运行过程中,通过测量、监控和控制系统,对热工参数进行实时监测,保证设备和系统的安全、稳定运行。
电力系统的高速发展,热工保护系统的功能日趋复杂,而其存在的亟待解决的问题也日益突出。
1. 热工保护的功能不足在电力系统的运行过程中,热工保护系统的主要功能是对设备的温度、压力、流量等参数进行监测和保护,以保证设备在工作过程中处于安全状态。
但在实际运行中,往往会因为热工保护部件的故障或者决策标准的不够严格,导致热工保护的功能不足,无法对设备的状态进行准确的监测和保护。
2. 误操作和定位不准由于热工保护系统的配置复杂性大,每台发电机的具体情况、不同的电厂类型以及不同的燃料种类都会对热工保护系统的决策产生影响。
在总体上,热工保护系统需要对每台设备进行耗时较长的调试和优化,但有时候由于操作人员的误操作或者热工保护系统定位不准确等原因,导致错误的保护措施被实施,从而产生不良的后果。
3. 安全信号处理不及时在电力系统的运行中,热工保护系统需要利用各种信号传感器,对设备状态进行检测和判断。
但是对于一些安全信号,由于信号传输缓慢或者传感器响应速度较慢,导致热工保护措施的实施不及时,无法准确地保护设备,从而产生安全隐患。
二、影响热工保护可靠性的因素热工保护系统可靠性的高低,不仅与系统本身的设计质量有关,也与电力系统运行的环境、运维管理水平等多个方面有关。
下面将分别从设计质量、环境因素和运维管理等方面,分析影响热工保护系统可靠性的因素。
1.设计质量(1)硬件设计热工保护系统的硬件设计是关键的,硬件元器件的质量和稳定性对系统稳定运行有着至关重要的作用。
火电厂热工保护系统简析一、前言热工保护系统作为火力发电厂热力生产过程中十分重要的组成部分,它最基本的任务就是在发电设备正常启停和运行过程中,当相关参数超过预期规定值时能够及时采取紧急措施,自动停止相关设备的运行,制止危险工况的发展,为设备安全提供根本保障。
火力发电厂热工保护系统主要包括锅炉锅炉炉膛安全保护FSSS、主蒸汽(再热蒸汽)压力和温度高保护、汽包水位高低保护、汽机紧急跳闸系统ETS、汽机防进水保护、辅机故障保护等。
二、热工保护系统结构热工保护系统由以下部分构成:1、保护测量元件:主要包括压力(差压)开关、温度开关、液位开关、行程开关等。
2、就地驱动装置:主要包括电动(气动)阀门及挡板、油枪、电动机等。
3、控制电源4、控制装置:主要由分散控制系统DCS或可编程控制器PLC或现场总线控制系统FCS等实现。
设备主要包括机柜、卡件、控制元器件等。
5、电缆线路、取样管路、气源管路等。
三、热工保护系统故障原因分析火电厂热控系统运行受多方面因素影响,电气元件故障、电缆接线故障、系统故障是常见的影响因素,此外,还有设计安装故障与人为故障等。
火电厂热控系统运行必须及时排除以上故障,这就有必要分析这些故障的发生原因。
1、控制装置故障分析控制装置主要包括分散控制系统DCS、可编程控制器PLC以及现场总线控制系统FCS等,是一项综合性较强的系统,其主要包括计算机技术、网络技术、过程控制技术、LED显示技术等。
可以实现热工保护、数据采集与记录、模拟量控制、顺序控制等功能。
随着计算机技术的快速发展,控制装置的可靠性也有明显提高。
但由于计算机或元件质量造成的系统故障也时有发生。
诱发其故障的原因主要包括操作站问题、主DPU死机、辅助DPU切换失败、服务器死机、控制卡件故障以及外部环境不能满足控制系统要求等因素,是影响机组安全运行的重大隐患之一。
2、就地控制设备故障分析就地控制设备包括检测仪表、行程开关等就地保护测量元件及阀门挡板、电动机等就地驱动装置,因就地控制设备故障引起的事故很多,主要是指元件信号失真,设备拒绝动作或误动作。
I C S27,100 K 54备案号:J926-2009工阳lll华人民共和罔电力行业标准jDL/T 5428 - 2009火力发电厂热工保护系统设计技术规定Technical code for design ofI&C protectionsv. stem in fos矧 fuel power plant2009-07-22发布2009-12-01实施III华人民共和陶国家能源局发布⑧目次DL /T 5428 - 2009前言…………………………………一Ⅲl范围………- ……………………………………¨12规范性引用文件 (2)3 术语和定义、缩略语………………………………………….53.1术语和定义……”………………………………………………”5 3.2缩略语…………………………………~84总则………………………………………………1 05热丁保护系统的设计原则………………………….a….115.t电源设计原则...一...................... (1)5.2逻辑设计原则...~ ...................... a (11)5_3热工保护系统配置原则 (13)5.4其他......。
..................~ (16)6锅炉保护………………一……….176.1锅炉局部保护…“………~ ………¨176,2锅炉炉膛安全保护………………………一………………….196+3锅炉停炉保护…”………一……………………………_227锅炉燃烧器控制.........~ (26)7.1 点火、助燃……一…………1 267。
2煤粉燃烧器控制.........一 (28)7.3磨攥机启、停条件......“ (28)7,4蛤煤机启,件条件......~ (29)7。
5给(排)粉机扁、停条件……………………………………。
308汽轮发电机组保护……一………………………’318.! 汽轮机局部保护……………………………………。
热工保护系统热工保护系统是一种为热工设备提供保护的系统,包括发电机组、锅炉、压缩机等。
该系统是为了防止热工设备在运行中因超过允许的温度和压力而导致事故发生而设计的。
热工保护系统的工作原理热工保护系统通过检测热工设备的温度、压力、流量、转速等参数,来判断热工设备是否正常工作。
当热工设备发生故障或运行超标时,系统会自动断开电源或采取其他措施,以防止事故的发生。
热工保护系统可以根据不同的设备类型和工作情况进行不同的设置,以适应不同的工作环境和要求。
热工保护系统的组成部分热工保护系统主要包括以下几个部分:传感器传感器是热工保护系统中最基本的组成部分之一,用于获取热工设备的温度、压力、流量、转速等参数信息。
控制器控制器是热工保护系统的核心部分,用于接收传感器获取到的参数信息,并根据设定的参数范围进行判断和控制。
当热工设备发生故障或运行超标时,控制器会向执行机构发出指令,采取相应的措施。
执行机构执行机构是热工保护系统中用于采取措施的部分,根据控制器发出的指令来进行相应的操作。
例如,当热工设备温度超标时,执行机构可以自动断开电源或采取其他措施来降低温度。
电源系统电源系统是热工保护系统中用于提供电力的部分,包括供电变压器、电源线路、控制电源等。
其作用是保证热工保护系统的正常运行,以保障热工设备的安全。
热工保护系统的应用热工保护系统广泛应用于各种热工设备中,例如发电机组、锅炉、压缩机、加热炉等。
其作用是保证热工设备的正常工作,提高设备的可靠性和安全性。
在电力工业中,热工保护系统是必不可少的一部分,以保证发电机组的安全运行。
在石油、化工、冶金等行业中,热工保护系统也被广泛应用,以保障设备和工厂的安全运行。
热工保护系统的发展趋势随着工业各个领域的发展和技术的进步,热工保护系统的应用越来越广泛。
同时,热工保护系统也在不断发展和创新。
现代热工保护系统已经可以实现自动化、智能化和部分自主控制。
例如,在某些大型发电厂中,热工保护系统已经可以实现全自动化的控制,可以随时随地对发电机组的运行状态进行监测和控制。
火电厂热工保护控制系统可靠性技术提升探讨摘要:热工保护控制系统是火电厂热力生产过程中的重要组成部分,它的主要任务就是发电机组设备在各种危险中启动和运行时,为了防止危险规模及工况的扩大,在短时间内快速停机,从而达到自动停止相关设备运行。
随着技术的升级,可以将具有特定功能的PLC(可编程逻辑控制器)连接到机组设备上,自动执行停机操作。
但由于各种因素,热工保护系统经常出现故障。
有必要分析故障的原因,注意故障的预防。
关键词:火电厂热工保护;控制系统;可靠性技术1火电厂热工保护系统失灵拒动的原因1.1紧急制动机构设计是比较复杂的系统,当出现下列情况之一时,应迅速启动紧急制动机构,使相应设备快速制动,避免故障升级:1.1.1膨胀差大,即高、中压缸膨胀差超过4mm或反向小于7mm,或膨胀差低压缸超过15mm;1.1.2DEH(汽轮机数字电液控制系统)电气转速超过额定转速的110%;1.1.3润滑油压低于70kPa;1.1.4EH(电液控制系统,DEH的重要组成部分,由供油系统、执行机构、紧急切断系统组成)油压低于7.8MPa;1.1.5轴向位移正向超过1.2mm,反向超过1.65mm;1.1.6排气装置真空度气压小于-29kPa,无延时;1.1.7背压超限,即超过相应负载下压力保护曲线的定值,延时超过15分钟。
以上故障属于火电厂汽轮机ETS通道跳闸主保护紧急制动情况的一部分。
可以看出,由于会导致失败的参数较多,自动紧急制动机构的设计必然复杂,以此类推。
就控制程序逻辑算法的编程而言,上述问题不是上下文相关的,即“一个问题出现后,先引起另一个问题,最终导致火电厂发电设备运行出现问题”。
因此,如果用电路设备的连接方式来类比,以上7个问题都可以看作是一种“反并联”,即一个参数出现异常,整个设备仍然可以处于运行状态,但监控系统已收到信号。
并且需要立即下达命令。
为了应对如此复杂的情况,控制系统程序算法的复杂度也会相应增加。