北师大版数学七年级上册2.7有理数的乘法(1)
- 格式:doc
- 大小:56.00 KB
- 文档页数:7
七年级数学上册 2.7 有理数乘法(第1课时)“负负得正”的乘法法则可以证明吗?(新版)北师大版关于“负负得正”的乘法法则,是否可以通过证明来确认这条法则呢?这个问题历来被老师们关注,有关专家对此也有各种看法,现将一篇文章转摘如下,供老师们参考(田载今,中学数学教学参考,2005年第3期)。
有理数的乘法法则中包括“负负得正”一条,“两个负有理数相乘,结果(积)是一个正有理数,其绝对值等于相乘两数的绝对值的乘积.”例如,(-2)×(-3)=+6。
这条法则对刚学它的人来说,不是很容易理解,多数人是把它硬记下来的.记得水稻专家袁隆平院士说过他学正负数时想不清这个法则的道理,就去向老师请教,老师说:“你记住就行了.”编写教材时,大家为说明这条法则的道理想了很多办法,有的教材以实际问题为背景来说明,有的教材从运算律的角度进行说明,有的教材利用相反数的意义解释……教学中,许多老师都反映这条法则的道理不是很好讲.也有人考虑:是否可以通过证明来确认这条法则呢?教科书中哪种说法可以算是对它的证明呢?一种意见认为,“负负得正”有着丰富的实际背景,实践是检验真理的标准,这些实际背景对这一法则的证明.例如,考虑这样的问题:如果水位一直以每小时2厘米的速度下降,现在水位在水文标尺刻度的A处,3小时前水位在水文标尺的刻度在何处?为区分水位变化方向,我们规定水位上升为正,下降为负;显然3小时前水位在水文标尺刻度的A处上方6cm处,这可以表示为(-2)×(-3)=+6.在许多情况下,都能找到类似这样的“负负得正”的原型,因此,“负负得正”可以认为是通过客观实践检验证明的.上面的意见中,以“实际事物的原型”替代“数学的证明”的做法是不妥的.数学中的证明不是个例的验证,数学不是物理、化学、生物那样的实验科学,它的命题具有一般性,不能依靠检验个别案例完成对一般结论的证明,而需要依据已有的结论(定义、公理和定理等)经合乎逻辑的推导来证明.这些客观事物中的原型,只有在人为地规定问题中有关量的正负意义之后,即经过数学化、抽象化之后,才具有了“负负得正”的意义,它们只能说明“负负得正”有实际背景,或作为应用“负负得正”法则的例子,而不能作为逻辑地推导这个法则的根据.另一种意见认为,可以通过运算律来证明“负负得正”这一法则,具体推导过程如下:有了有理数的加法法则以及“正正得正”,“正负得正”的乘法法则之后,由分配律,有(-1)×(-1)=(-1)×(1-2)=(-1)×1-(-1)×2=-1-(-2)=-1+2=1 .进而由交换律和结合律可以推出任何两个负数相乘的结果,例如,(-2)×(-3)=(-1)×2×(-1)×3=(-1)×(-1)×2×3 =[(-1)×(-1)]×(2×3)=1×6=6.于是,得出“负负得正”这一法则.笔者认为,上面的意见中在应用分配律时,用到了(-1)×(1-2)=(-1)×1-(-1)×2. (1)当确立了有理数的加法法则以及“正正得正”,“正负得负”的乘法法则,而尚未确立“负负得正”这一法则时,这样做是缺乏根据的.在这时,我们可以确信(-1)×(2-1)=(-1)×2-(-1)×1.⑵这是因为⑵的左边为(-1)×(2-1)=(-1)×1=-1.⑵的右边为(-1)×2-(-1)×1=-2-(-1)=-2+1=-1.所以(2)的左边等于右边,即(2)成立.但是,我们不能用类似的方法推出⑴成立,因为⑴的左边为(-1)×(1-2)=(-1)×(-1),而(-1)×(-1)的法则此时尚未成立,所以无法确定⑴的左边是否等于右边,即此时分配律等于(-1)×(1-2)是否适用尚且存疑。
有理数的乘法〔第1课时〕1 教材说明北师大版七年级上册第二章“有理数及其运算〞第7节“有理数的乘法〞2 学情分析本节课的主要内容是“有理数的乘法法则〞,在此之前学生已经学习了有理数加法法则和减法法则,也对“几个相同的数连加形式可以写成乘法形式〞有较深刻的认识,所以本节课可以类比“有理数加法法则〞对乘法法则进行归纳总结;而本节课要为接下来的“有理数的除法〞“有理数的乘法〞做铺垫,所以对符号的处理尤为关键。
2 重难点重点:有理数的乘法法则的探索与归纳难点:有理数的乘法法则的探索与归纳3 教学目标〔1〕归纳有理数乘法法则,并能准确判断结果的正负〔2〕通过类比、找规律的方法,体会归纳获得数学结论的过程〔3〕体验数学探究的乐趣,增强数学学习的信心和兴趣4 教学设计环节1 类比发现甲水库的水位每天升高3cm,乙水库的水位每天下降3cm,4天后甲、乙水库水位的总变化量各是多少?【设计】通过水库这个具体情境,帮助学生列出正数×负数的算式,初步感知符号对结果的影响。
环节2 探索规律【设计】一正一负两数相乘有实际情景作为载体,两个负数相乘的情景学生较难理解,从找规律的角度来解释学生更容易接受。
一正一负、两负相乘都可在规律中寻找答案,并能将与0相乘的情况也列出。
环节3 归纳总结有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.任何数与0相乘,积仍为0.【设计】归纳法则,使学生对运算算理和方法固定化。
环节4 应用提升【设计】简单运用乘法法则,再次稳固符号对结果的影响;将倒数的概念扩大到有理数范围,能快速说出任意有理数的倒数;能进行2个以上有理数的计算,并能快速判断结果的正负。
北师大版数学七年级上册2.7《有理数的乘法》(第1课时)教案一. 教材分析《有理数的乘法》是北师大版数学七年级上册第2.7节的内容,本节课的主要内容是让学生掌握有理数的乘法法则,并能够运用这些法则进行计算。
教材通过实例引入有理数的乘法,让学生在实际计算中体会和理解有理数乘法的规律。
二. 学情分析学生在学习本节课之前,已经学习了有理数的加法、减法、除法,对负数的概念也有了一定的了解。
但学生在处理有理数乘法时,可能会受到正负数乘法规律的干扰,对有理数乘法的法则理解不够深入。
因此,在教学过程中,教师需要引导学生通过实际计算,发现和总结有理数乘法的规律。
三. 教学目标1.知识与技能:让学生掌握有理数的乘法法则,能够正确进行有理数的乘法计算。
2.过程与方法:通过实例引入有理数的乘法,让学生在实际计算中发现和总结有理数乘法的规律。
3.情感态度价值观:培养学生对数学的兴趣,提高学生解决实际问题的能力。
四. 教学重难点1.教学重点:有理数的乘法法则。
2.教学难点:理解有理数乘法的规律,能够运用乘法法则进行计算。
五. 教学方法采用启发式教学法、实例教学法和小组合作学习法。
通过实例引入有理数的乘法,引导学生发现和总结乘法规律,激发学生的学习兴趣。
在教学过程中,鼓励学生进行小组讨论,培养学生的合作意识和解决问题的能力。
六. 教学准备1.教学PPT:制作有关有理数乘法的PPT,包括实例、习题和教学环节。
2.教学素材:准备一些有关有理数乘法的习题,用于巩固和拓展学生的知识。
3.教学工具:多媒体设备、黑板、粉笔。
七. 教学过程利用PPT展示实例:小明买了一本书,原价是8元,因为打折,小明用了6.4元买到了这本书。
请同学们思考,小明买了这本书的几折?让学生回答问题,引导学生思考有理数的乘法。
2.呈现(10分钟)教师引导学生总结有理数的乘法法则。
通过PPT展示有理数的乘法法则,让学生跟随PPT一起朗读。
有理数的乘法法则:(1)同号相乘,取相同符号,并把绝对值相乘。
2.7 有理数的乘法祸兮福之所倚,福兮祸之所伏。
《老子·五十八章》涵亚学校陈冠宇前事不忘,后事之师。
《战国策·赵策》圣哲学校蔡雨欣前事不忘,后事之师。
《战国策·赵策》圣哲学校蔡雨欣第1课时有理数的乘法法则1.经历探索有理数乘法法则的过程,理解有理数的乘法法则.2.能熟练进行有理数的乘法运算.3.会利用有理数的乘法解决实际问题.一、情境导入1.小学我们学过了数的乘法的意义,比如说2×3,6×23,……,一个数乘以整数是求几个相同加数和的运算,一个数乘以分数就是求这个数的几分之几.2.计算下列各题:(1)5×6;(2)3×16;(3)32×13;(4)2×234;(5)2×0;(6)0×27.引入负数之后呢,有理数的乘法应该怎么运算?这节课我们就来学习有理数的乘法.二、合作探究探究点一:有理数乘法法则的运用计算:(1)5×(-9); (2)(-5)×(-9);(3)(-6)×(-9); (4)(-6)×0;(5)(-13)×14.解析:(1)(5)小题是异号两数相乘,先确定积的符号为“-”,再把绝对值相乘;(2)(3)小题是同号两数相乘,先确定积的符号为“+”,再把绝对值相乘;(4)小题是任何数同0相乘,都得0.解:(1)5×(-9)=-(5×9)=-45;(2)(-5)×(-9)=5×9=45;(3)(-6)×(-9)=6×9=54;(4)(-6)×0=0;(5)(-13)×14=-(13×14)=-112.方法总结:两数相乘,积的符号由两个乘数的符号决定:同号得正,异号得负,任何数乘以0,结果为0.探究点二:求一个数的倒数【类型一】直接求某一个数的倒数错误!未找到引用源。
识点总结有理数的乘法知识点1:有理数乘法法则两数相乘,同号得正,异号得负,并把绝对值相乘。
任何数同0相乘,都得0。
知识点2:倒数的概念乘积是1的两个数互为倒数。
由于a×1/a(a≠0) ,所以当a是不为0的有理数时,a的倒数是1/a。
若a、b互为倒数,则ab=1。
知识点3:有理数乘法法则的推广(1)几个不等于0的数相乘,积的符号由负因数的个数决定。
当负因数有奇数个时,积为负;当负因数有偶数个时,积为正。
(2)几个数相乘,只要有一个因数为0,积就为0。
知识点4:有理数乘法的运算定律(1)乘法交换律:ab=ba。
(2)乘法结合律:(ab)c=a(bc)。
(3)分配律:a(b+c)=ab+ac。
复习要点有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。
任何数同0相乘,都得0。
乘积是1的两个数互为倒数。
几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数。
两个数相乘,交换因数的位置,积相等。
ab=ba三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。
(ab)c=a(bc)一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。
a(b+c)=ab+ac数字与字母相乘的书写规范:⑴数字与字母相乘,乘号要省略,或用“”⑵数字与字母相乘,当系数是1或-1时,1要省略不写。
⑶带分数与字母相乘,带分数应当化成假分数。
用字母x表示任意一个有理数,2与x的乘积记为2x,3与x的乘积记为3x,则式子2x+3x是2x与3x的和,2x与3x叫做这个式子的项,2和3分别是着两项的系数。
一般地,合并含有相同字母因数的式子时,只需将它们的系数合并,所得结果作为系数,再乘字母因数,即ax+bx=(a+b)x 上式中x是字母因数,a与b分别是ax与bx这两项的系数。
去括号法则:括号前是“+”,把括号和括号前的“+”去掉,括号里各项都不改变符号。
括号前是“-”,把括号和括号前的“-”去掉,括号里各项都改变符号。
2.7.1 有理数的乘法(一)说课稿一、教学目标1.理解有理数的乘法运算,并能够正确进行有理数的乘法计算;2.掌握有理数乘法的运算规则与特性;3.培养学生良好的数学思维能力和解决实际问题的能力。
二、教学准备1.教师准备:教学课件、教学板书、教学示例、黑板、彩色粉笔等;2.学生准备:课本、笔、纸等。
三、教学内容及流程1. 导入(5分钟)通过黑板上的题目“已知 (-2)×(-3) 的结果是多少?”来导入本节课的话题。
引导学生回顾有理数的加法和减法,然后引导他们分析负数相乘的特点。
2. 新课讲解(15分钟)首先,给出两个正数相乘的情况,例如3×5,引导学生根据加法的概念进行计算并解释结果。
然后,给出两个负数相乘的情况,例如 (-2)×(-3),引导学生进行类似的计算并解释结果。
接下来,引入有理数相乘的规则和特性。
规则1:正数与正数相乘得到正数,即正× 正 = 正;规则2:负数与负数相乘得到正数,即负× 负 = 正;规则3:正数与负数相乘得到负数,即正×负 = 负;规则4:负数与正数相乘得到负数,即负× 正 = 负。
通过具体的示例让学生理解并记忆这些规则,并与实际生活情境进行联系,帮助学生更好地理解有理数的乘法。
3. 拓展探究(15分钟)为了帮助学生更好地理解有理数的乘法运算,让学生自主探究有理数的乘法。
在黑板上写出以下乘法表达式,让学生用加法的概念进行计算: 1. 3 × (-2); 2. (-4) × (-6); 3. (-5) × 2; 4. (-3) × 7。
通过学生的计算和解释,引导他们找出有理数乘法的规律,加深对有理数乘法规则的理解。
4. 讲解归纳总结(10分钟)回顾学生的探究过程,根据学生的表现,帮助他们归纳总结有理数的乘法运算规则,并对规则进行简单的说明和解释。
5. 练习与巩固(15分钟)让学生完成课本上的相关练习题,巩固所学的有理数乘法运算规则。
新北师大版七年级数学上册: 2.7 有理数的乘法〔 1〕教课方案课题教课目标要点难点剖析及突破措2.7 有理数的乘法课时1课型新讲课〔1〕1、知识与能力目标:使学生在认识有理数乘法的意义的根基上,掌握有理数乘法法那么,并初步掌握有理数乘法法那么的合理性。
2、过程与方法目标:使学生娴熟地进行有理数的乘法运算;3、感情态度与价值观目标:培育学生察看、剖析、归纳及运算能力;培育学生的运算能力.要点:有理数乘法的运算.难点:有理数乘法中的符号法那么.打破举措:分层次教课,解说、练习相联合。
施教具准备2.7 有理数的乘法〔 1〕板书法那么:两数相乘,同号得正,异号得负,并把绝对值相乘;设计任何数同 0 相乘,都得 0教课过程上课时间:〔包含导引新课、依标导学、异步教课、达标测试、作业设计等〕第一环节:问题情境,引入新课活动内容:〔1〕察看教科书给出的图片,剖析教科书提出的问题,弄清题意,明确是什么,所求是什么,让学生议论思虑如何解答.〔2〕假如用正号表示水位上涨,用负号表示水位降落,议论四天后,甲水库水位的变化量的表示法和乙水库水位变化量的表示法.活动目的:培育学生从图形语言和文字语言中获守信息的能力,感觉用数学知识解决实质问题,体验算法多样化,并从第二种算法中获得算式3+3+3+3=3×4=12〔厘米〕;〔-3〕+〔-3〕+〔-3〕+〔-3〕=〔-3〕×4=-12〔厘米〕进而引出课题:有理数的乘法.活动本卷须知:在以上活动〔1〕中可获得“甲水库的水位总变化量是上涨12厘米,乙水库的水位总变化量是降落12厘米. 〞关于这个算法和结论学生是没有疑义的,但对活动〔2〕中获得“乙水库水位每日降落3厘米,记作-3厘米,4天后水位变化总量为〔-3〕 +〔-3〕+〔-3〕+〔-3〕=〔-3〕×4=- 12厘米,〞的意义是“水位上涨-12厘米〞会产生疑义,教师应不失机机地复习负数的相关知识,解说“水位上涨-12厘米〞与“水位降落12厘米〞是等价的.第二环节:研究猜想,发现结论活动内容:〔1〕由课题引入中知道:4个-3相加等于-12,能够写成算式〔-3×4〕=-12,那么以下一组算式的结果应当如何计算?请同学们思虑:〔-3〕×3=_____;〔-3〕×2=_____;〔-3〕×1=_____;〔-3〕×0=_____.〔2〕当同学们写出结果并说明道理时,让学生经过察看这组算式等号两边的特色去发现积的变化规律,而后再出示一组算式猜想其积的结果:〔-3〕×〔-1〕=_____;〔-3〕×〔-2〕=_____;〔-3〕×〔-3〕=_____;〔-3〕×〔-4〕=_____.活动目的:以算式求解和研究问题的形式指引学生逐渐深入的察看思虑,从负数与非负数相乘的一组算式中发现规律后,猜想负数与负数相乘的积是多少,经过对两组算式的察看,归纳,归纳出有理数的乘法法那么,并用语言表述之,以培育学生的察看能力,猜想能力,抽象能力和表述能力.活动本卷须知:〔1〕本环节的设计理念是学生经过察看思虑,亲自经历感觉乘法法那么的发现过程,并在合作沟通中相互增补,完美结论. 但在实质过程中,学生对结论的表述有困难,或许表达不正确,不全面,关于这些问题,教师绝不可以求全责怪,而应谆谆教导,趁势指引,帮助学生尽可能精练正确的表述,也不要担忧时间缺少而取代学生直接表述法那么.〔2〕展现两组算式时,注意板书艺术,把算式竖排,并对齐书写,这样易于学生察看特色,发现规律 .第三环节:考证明确结论活动内容:针对上一环节研究发现的有理数乘法法那么:两数相乘,同号得正,异号得负,绝对值相乘,任何数与零相乘,积仍为零. 进行考证活动,出示一组算式由学生达成 .4×〔-4〕=_____;4×〔-3〕=_____;4×〔-2〕=_____;4×〔-1〕=_____;(- 4〕×0=_____ ;(- 4〕×1=_____ ;(- 4〕×2=_____ ;(- 4〕×〔-1〕=_____ ;(- 4〕×〔-2〕=_____ .活动目的:这个环节的设计一方面是由于它是合情推理的必需环节,另一方面是为了让学生知道从特例归纳获得的结论不必定合适一般状况,因此要加以考证和证明它的正确性. 同时,考证的过程自己就是对有理数乘法法那么的练习和熟习过程.活动的本卷须知:〔1〕教科书中没有这个环节的要求,但在教课中应当设计这个环节,的确让学生体验经历考证过程.〔2〕本环节的要点是考证乘法法那么的正确性而不是运用乘法法那么计算. 因此在考证过程中,既要用乘法法那么计算,又要加法法那么计算,真实表达考证的作用和过程.〔3〕在用乘法法那么计算时,要注意其运算步骤与加法运算同样,都是先确立结果的符号,再进行绝对值的运算. 此外还应注意:法那么中的“同号得正,异号得负〞是专指“两数相乘而言的,〞不可以够运用到加法运算中去.第四环节:运用牢固,练习提升活动内容:〔1〕教科书第75页例1.计算:⑴〔-4〕×5;⑵〔5-〕×〔-7〕;⑶〔- 3÷ 8〕×〔- 8÷ 3〕;⑷〔-3〕×〔-1÷ 3〕;〔2〕教科书第75页例2. 计算:⑴〔-4〕×5×〔-0. 25〕;⑵〔-3÷ 5〕×〔-5÷ 6〕×〔-2〕;〔3〕教科书第76页“议一议〞:几个有理数相乘,因数都不为零时,积的符号如何确定?有一个因数为零时,积是多少?〔4〕教科书第52 页“随堂练习〞. 计算:⑴〔- 8〕× 21÷4;⑵ 4÷ 5×〔-25÷6〕×〔-7÷ 10〕;⑶ 2÷ 3×〔- 5÷4〕;⑷〔-24÷ 13〕×〔-16÷ 7〕× 0× 4÷ 3;⑸ 5÷ 4×〔- 1.2 〕×〔- 1÷ 9〕;⑹〔-3÷ 7〕×〔-1÷ 2〕×〔-8÷ 15〕.活动目的:对有理数乘法法那么的牢固和运用,练习和提升.活动的本卷须知:〔1〕例题解说板书时,要注意格式归范,一开始对每一步运算应注明原因,运算娴熟后,可不要求书写每一步的原因;〔2〕在计算完例1的⑶⑷小题后,引出有理数的互为倒数的观点的同时,要注意复习互为相反数的观点,防备产生混杂错误,并注意本节课不议论如何求倒数的问题;〔3〕例2讲解以后,要启迪学生达成"议一议"的内容,鼓舞学生经过对例2的运算结果察看剖析,用自己的语言表达所发现的规律,学生有困难时,教师可设置以下一组算式让学生计算后察看发现规律,而不该取代学生达成这个任务〔-1〕×2×3×4=_____;〔-1〕×〔-2〕×3×4=_____〔-1〕×〔-2〕×〔-3〕×4=_____;〔-1〕×〔-2〕×〔-3〕×〔-4〕=_____;〔-1〕×〔-2〕×〔-3〕×〔-4〕×0=_____.经过对以上算式的计算和察看,学生不难得出结论:多个数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积的符号为负;当负因数有偶数个时,积的符号为正. 只需有一个数为零,积就为零. 自然这段语言,不需要让学习背诵,只需理解会用即可.第五环节:讲堂小结活动内容:用发问的方式由学生达成讲堂小结. 如“本节课大家学会了什么?〞或“有理数乘法法那么如何表达?〞或“有理数乘法法那么的研究采纳了什么方法?〞等等.活动目的:培育学生的口头表达能力,提升学生的参加意识. 鼓舞学生展现自我.活动的本卷须知:学生小结时,可能会有语言表达阻碍或表达不流利,但只需不影响运算的正确性,那么不用重申正确记忆,而应鼓舞学生勇敢讲话,同时教师可用正确的语言合时的加以复述第六环节:部署作业活动内容:教科书第53 页,知识技术1、2;问题解决1;联系扩广1.活动目的:复习牢固检测本节知识,训练运算技术和提升解决问题的能力.活动的本卷须知;对知识技术1的计算,应要修业生对每一步的原因要写出来,以牢固有理数的乘法法那么,此后的计算可省去原因.教课后记学生娴熟地进行有理数的乘法运算。
2.7.1有理数的乘法教案一、教学目标:知识与技能:使学生在了解有理数乘法的意义的基础上,掌握有理数乘法法则,并初步掌握有理数乘法法则的合理性;培养学生的运算能力。
过程与方法:在探索有理数乘法法则的教学过程中,注意培养学生的观察、比较、归纳及运算能力;培养学生数形结合和分类的思想方法,形象地理解有理数乘法,会进行运算。
情感态度价值观:使学生感受生活中处处有数学,体验数学的价值,激发学生探究数学的兴趣。
二、教学重难点:教学重点:有理数乘法的运算。
教学难点:有理数乘法中的符号法则。
三、教学方法:分层次教学,讲授、练习相结合,小组合作学习。
四、教学过程:(一)课前研究:自学教材p49-51,探索出有理数的乘法法则;小结本节课知识点。
创设情境议一议(-3)×4=-12 (-3)×3=_____;(-3)×2=_____;(-3)×1=_____;(-3)×0=_____.当同学们写出结果并说明道理时,让学生通过观察这组算式等号两边的特点去发现积的变化规律,然后再出示一组算式猜想其积的结果:(-3)×(-1)=______;(-3)×(-2)=______;(-3)×(-3)=______;(-3)×(-4)=______.正数乘正数积为______数。
负数乘正数积为______数。
正数乘负数积为______数。
负数乘负数积为_____数。
结论:这样有理数乘法怎么乘呢?(二)课中展示:例题解析计算 (1)()5)10(-⨯- (2)41158⨯- (3) 06⨯-(4)⎪⎭⎫⎝⎛-⨯-313(5)⎪⎭⎫⎝⎛-⨯⨯-3102.1)34(分析:两个有理数相乘时,先确定积的符号,再把绝对值相乘,带分数相乘时,要先把带分数化成假分数,分数与小数相乘时,要统一成分数或小数。
在第(4)题的基础上,给出倒数的概念:如果两个有理数的乘积为1,那么称其中的一个数是另一个数的倒数,也称这两个数互为相反数。
北师大版七年级上册有理数的乘法(一)教学设计一、学习目标:1、通过自主学习理解乘法的实际意义;学会有理数乘法运算的方法与技巧。
2、通过观察、思考、归纳、猜想、验证等过程,探索有理数的乘法法则。
3、培养学生的语言表达能力,以及与他人沟通,增强学习数学的自信心。
二、教学重难点:重点:应用有理数的乘法法则正确的进行有理数乘法计算;难点:有理数的乘法法则中符号变化的理解及积的符号的确定;三、教学过程设计:一)创设问题情境,引入新课1、同学们!还记得上我们学校上星期成功兴办的体育节吗(出示幻灯图片)在开幕式上,每个班级都接受了检阅,展示了一中的风彩!如果每班平均有30人接受检阅,全校共有40个班级,那么共有多少学生接受了检阅呢(教师根据学生回答显示算式)如果我将这个算式中一个因数改变符号,让学生猜一猜结果。
(教师在将这两个算式板书在黑板上)刚才同学说的得数对不对呢,其理由又是什么呢?这就是我们今天所要一起探索学习的:有理数的乘法(教师板书)二)提出问题出示自学指导:1、阅读教材P60 ,分析提出的问题,弄清题意,明确已知是什么,所求是什么,讨论思考如何解答?2、小组探索交流:你是如何得出两个有理数相乘的法则的?并用你自己的语言归纳法则3 、组内小组成员互相出题目,验证你的结论。
4、自学例题,总结两个有理数相乘的步骤、方法与技巧。
理解倒数的概念,并与相反数与绝对值知识作以区别。
三)解决问题1、通过自学,汇报学习效果&z=&tn=baiduimagedetail&word=%D3%D0%C0%ED%CA%FD%B3%CB%B7%A8%CB%AE%BF%E2%C9%CF%C 9%FD%CF%C2%BD%B5%CD%BC%C6%AC&in=4663&cl=2&lm=-1&pn=9&rn=1&di=365&ln=1988&fr=&fm =hao123&fmq=_R&ic=&s=&se=&sme=0&tab=&width=&height=&face=&is=&istype=#pn0&-1&di &objURLhttp%3A%2F%&fromURLhttp%3A%2F%&W264&H168(1)如果用正号表示水位上升,用负号表示水位下降,讨论四天后,甲水库水位的变化量的表示法和乙水库水位变化量的表示法.解答:3+3+3+3=3×4=12(厘米);(-3)+(-3)+(-3)+(-3)=(-3)×4=-12(厘米)注意:在以上活动中可得到“甲水库的水位总变化量是上升12厘米,乙水库的水位总变化量是下降12厘米.”对于这个算法和结论学生是没有疑义的,但对活动(2)中得到“乙水库水位每天下降3厘米,记作-3厘米,4天后水位变化总量为(-3)+(-3)+(-3)+(-3)=(-3)×4=—12厘米,”的意义是“水位上升-12厘米”会产生疑义,教师应不失时机地复习负数的有关知识,解释“水位上升-12厘米”与“水位下降12厘米”是等价的。