最新深圳市中考数学模拟试卷有配套答案(word版)
- 格式:doc
- 大小:677.78 KB
- 文档页数:9
2023年广东省深圳市中考适应性数学试卷(word版)一、单选题(★) 1. 下列是描述小明和小颖在同一盏路灯下影子的图片,其中合理的是()A.B.C.D.(★) 2. 反比例函数的图像可能是()A.B.C.D.(★) 3. 榫卯是我国古代建筑、家具的一种结构方式,它通过两个构件上凹凸部位相结合来将不同构件组合在一起,如图是其中一种榫,其主视图是()A.B.C.D.(★★) 4. 如图,在矩形中,对角线与相交于点,已知,则的大小是()A.B.C.D.(★) 5. 关于一元二次方程根的情况,下列说法中正确的是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定(★★) 6. 人类的性别是由一对性染色体(X,Y)决定,当染色体为XX时,是女性;当染色体为XY时,是男性.如图为一对夫妻的性染色体遗传图谱,如果这位女士怀上了一个小孩,该小孩为女孩的概率是()A.B.C.D.(★★) 7. 某品牌20寸的行李箱拉杆拉开后放置如图所示,经测量该行李箱从轮子底部到箱子上沿的高度与从轮子底部到拉杆顶部的高度之比是黄金比(约等于).已知cm,则AB约是()A.30cm B.49cm C.55cm D.129cm(★★★) 8. 如图,九年级(1)班课外活动小组利用平面镜测量学校旗杆的高度,在观测员与旗杆之间的地面上平放一面镜子,在镜子上做一个标记E,当观测到旗杆顶端在镜子中的像与镜子上的标记重合时,测得观测员的眼睛到地面的高度为,观测员到标记E的距离为,旗杆底部到标记E的距离为,则旗杆的高度约是()A.B.C.D.(★★) 9. 如图,某校劳动实践课程试验园地是长为,宽为的矩形,为方便活动,需要在园地中间开辟一横两纵共三条等宽的小道.如果园地余下的面积为,则小道的宽为多少?设小道的宽为,根据题意,可列方程为()A.B.C.D.(★★★★) 10. 如图,已知正方形ABCD的边长为4,E是AB边延长线上一点,BE=2,F是AB边上一点,将△CEF沿CF翻折,使点E的对应点G落在AD边上,连接EG交折痕CF于点H,则FH的长是()A.B.C.1D.二、填空题(★) 11. 已知是关的方程的一个根,则 ________ .(★) 12. 五线谱是一种记谱法,通过在五根等距离的平行横线上标以不同时值的音符及其他记号来记载音乐.如图,,,为直线与五线谱的横线相交的三个点,则的值是_______ .(★★) 13. 一个不透明的袋子里装有红、白两种颜色的球共20个,每个球除颜色外都相同,每次摸球前先把球摇匀,从中随机摸出一个球,记下它的颜色后再放回袋子里,不断重复这一过程,将实验后的数据整理成如表:估计袋中红球的个数是 _______ .(★★★) 14. 如图,已知A是y轴负半轴上一点,点B在反比例函数的图像上,交x轴于点C,,,的面积为,则 _______ .(★★★) 15. 如图,已知中,,E是的中点,过点B作,交的延长线于点D,若,,则 _____ .三、解答题(★★) 16. 解方程:.(★★★) 17. 为庆祝神舟十五号载人飞船发射取得圆满成功,某校举办了航天航空科技体验活动,内容有三项:A.聆听航天科普讲座,B.参加航天梦想营,C.参观航天科技展.每位同学从中随机选择一项参加.(1)该校小明同学选择“参加航天梦想营”的概率是;(2)请用列表或画树状图的方法,求该校小亮同学和小颖同学同时选择“参观航天科技展”的概率.(★★★)18. 如图,在平面直角坐标系中,各顶点的坐标分别是,与关于原点位似,的对应点分别为,其中的坐标是.(1) 和的相似比是;(2)请画出;(3) 边上有一点,在边上与点对应点的坐标是;(4) 的面积是.(★★★) 19. 某商店销售一款工艺品,每件成本为元,为了合理定价,投放市场进行试销.据市场调查,销售单价是元时,每月的销售量是件,而销售单价每降价元,每月可多销售件.设这种工艺品每件降价元.(1)每件工艺品的实际利润为元(用含有的式子表示);(2)为达到每月销售这种工艺品的利润为元,且要求降价不超过元,那么每件工艺品应降价多少元?(★★★) 20. 如图,已知中,D是边上一点,过点D分别作交于点E,作交于点F,连接.(1)下列条件:①D是边的中点;②是的角平分线;③点E与点F关于直线对称.请从中选择一个能证明四边形是菱形的条件,并写出证明过程;(2)若四边形是菱形,且,求的长.(★★★★) 21. 【定义】在平面内,把一个图形上任意一点与另一个图形上任意一点之间的距离的最小值,称为这两个图形之间的距离,即A,B分别是图形M和图形N上任意一点,当的长最小时,称这个最小值为图形M与图形N之间的距离.例如,如图1,,线段的长度称为点A与直线之间的距离,当时,线段的长度也是与之间的距离.【应用】(1)如图2,在等腰中,,,点D为边上一点,过点D作交于点E.若,,则与之间的距离是;(2)如图3,已知直线与双曲线交于与B两点,点A与点B 之间的距离是,点O与双曲线之间的距离是;【拓展】(3)按规定,住宅小区的外延到高速路的距离不超过时,需要在高速路旁修建与高速路相同走向的隔音屏障(如图4).有一条“东南−西北”走向的笔直高速路,路旁某住宅小区建筑外延呈双曲线的形状,它们之间的距离小于.现以高速路上某一合适位置为坐标原点,建立如图5所示的直角坐标系,此时高速路所在直线的函数表达式为,小区外延所在双曲线的函数表达式为,那么需要在高速路旁修建隔音屏障的长度是多少?(★★★★★) 22. 过四边形的顶点A作射线,P为射线上一点,连接.将绕点A顺时针方向旋转至,记旋转角,连接.(1)如图1,数学兴趣小组探究发现,如果四边形是正方形,且.无论点P在何处,总有,请证明这个结论.(2)如图2,如果四边形是菱形,,,连接.当,时,求的长;(3)如图3,如果四边形是矩形,,,平分,.在射线上截取,使得.当是直角三角形时,请直接写出的长.。
深圳市中考模拟测试数学1一、选择题(本题共有12小题,每小题3分,共36分,每小题有四个选项,其中只有一个是正确的)1.﹣12的倒数是()A、-2B、2C、﹣12D、﹣122.如图是五个相同的小正方体搭成的几何体,这几个几何体的主视图是()A、B、C、D、3. 下列计算正确的是()A、2a3+a2=3a5B、(3a)2=6a2C、(a+b)2=a2+b2D、2a2•a3=2a54. 下列图形中既是轴对称图形又是中心对称图形的是()A、B、C、D、5. 据测算,世博会召开时,上海使用清洁能源可减少二氧化碳排放约16万吨,将16万吨用科学记数法表示为()A、1.6×103吨B、1.6×104吨C、1.6×105吨D、1.6×106吨6. 如图,AB∥CD,∠ABE=60°,∠D=50°,则∠E的度数为()A、40°B、30°C、20°D、10°7. 某商人在一次买卖中均以120元卖出两件衣服,一件赚25%,一件赔25%,在这次交易中,该商人( )A、赚16元B、赔16元C、不赚不赔D、无法确定8. 某班级第一小组7名同学积极捐出自己的零花钱支持地震灾区,他们捐款的数额分别是(单位:元)50,20,50,30,25,50,55,这组数据的众数和中位数分别是()A、50元,20元B、50元,40元C、50元,50元D、55元,50元9.如图,观察二次函数y=ax2+bx+c的图象,下列结论:①a+b+c>0,②2a+b>0,③b2﹣4ac>0,④ac>0.其中正确的是()A、①②B、①④C、②③D、③④10. 如图,正六边形ABCDEF内接于⊙O,半径为4,则这个正六边形的边心距OM 和的长分别为()A、2,B、2,πC、,D、2,11. 如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=6,AB=5,则AE的长为()A、4B、6C、8D、1012. 如图,G,E分别是正方形ABCD的边AB,BC的点,且AG=CE,AE⊥EF,AE=EF,现有如下结论:①BE=GE;②△AGE△△ECF;③△FCD=45°;④△GBE△△ECH,其中,正确的结论有()A、1个B、2个C、3个D、4个11题图12题图第二部分非选择题二、填空题(本题共有4小题,每小题3分,共12分)13. 因式分解:a3﹣4a= ________.14. 从﹣3、1、﹣2这三个数中任取两个不同的数,积为正数的概率是________15. 用同样大小的黑色五角星按图所示的方式摆图案,按照这样的规律摆下去,第99个图案需要的黑色五角星________个.16.如图,△ABC的内心在x轴上,点B的坐标是(2,0),点C的坐标是(0,﹣2),点A的坐标是(﹣3,b),反比例函数y=(x<0)的图象经过点A,则k= ________.三、解答题(本题共7小题,其中第17题6分,第18题6分,第19题7分,第20题8分,第21题8分,第22题8分,第23题9分,共52分)17.11 82sin45(2)3-⎛⎫-+-π- ⎪⎝⎭18. 先简化,再求值:(1+)÷,其中0≤X≤219. 丹东是个美丽的旅游城市,吸引了很多外地游客,某旅行社对今年五月接待的外地游客来丹东旅游的首选景点做了一次抽样调查,根据收集到的数据,绘制成如下统计图(不完整),请根据图中提供的信息,完成下列问题:(1)此次共调查了人(2)请将两幅统计图补充完整.(3)“凤凰山”部分的圆心角是度。
深圳市2022-2023 学年初三年级中考适应性考试数学学科参考答案及评分标准一、选择题 题号 12345678910答案DCBCACBDAB二、填空题三、解答题16.解法一:1242=−x x ……………………………………………………………1分412442+=+−x x ……………………………………………………………2分16)2(2=−x ……………………………………………………………3分42±=−x ……………………………………………………………4分即 61=x ,22−=x .……………………………………………………………5分解法二:24120x x −−=这里1a =,7b =−,12c =−………………………………………………………1分∵ 0644816)12(141642>=+=−××−=−ac b ……………………………2分∴ 28412644±=×±=x ……………………………………………………………3分即 61=x ,22−=x . ………………………………………………………………5分解法三:24120x x −−=0)2)(6(=+−x x …………………………………………………………………3分06=−x 或02=+x 即 61=x ,22−=x . ………………………………………………………………5分17.(1)_________;…………………………………………………………………………3分(2)解法一:………………………………6分(A ,A ) (A ,B ) (A ,C ) (B ,A ) (B ,B ) (B ,C ) (C ,A ) (C ,B ) (C ,C ) 共有9种可能的结果,其中小亮和小颖同时选择“参观航天科技展”的结果有1种, 所以小亮和小颖同时选择“参观航天科技展”的概率为91.……………………………7分 解法二:……………………6分共有9种可能的结果,其中小亮和小颖同时选择“参观航天科技展”的结果有1种, 所以小亮和小颖同时选择“参观航天科技展”的概率为91. ……………………………7分 (备注:①解法一中,9种等可能结果没有列举出来不扣分,即“树状图”正确3分,“结果”正确1分;②解法二中,表格中没有结果表示,只作标记如打√,且没对√的含义给出解释,扣1分)18.(1) 1∶2 ;(或21)………………………………………………………………2分 (2………………………4分(备注:△A 1B 1C 1只需要描点及连接正确即可,建议描对一个点给1分,虚线OA 和OCAy xBCB 1 O24 68101224 6 8 A 1 C 1 31没有画出来或连接成实线,均不扣分)(3) ;(备注:坐标表示没有括号不给分) …………………………………6分 (4) 3 . ………………………………………………………………………………8分19. (1) 60-x ;(备注:写成“160-100-x ” 不扣分)…………………………3分 (2)根据题意得:(200+10x )(60-x )=15000 ………………………………………………………………5分 解得:101=x ,302=x ……………………………………………………………………6分 因为降价不超过20元,所以302=x (不合题意,舍去) ………………………………7分 答:每件工艺品应降价10元.………………………………………………………………8分 (备注:解正确但没有舍根,只扣1分;答的表述不规范,扣1分) 20.(1) 解法一:所选择的条件是 ② ,………………………………………………………………………1分 证明: ∵ DE //AC ,DF //AB∴ 四边形AEDF 是平行四边形……………………………………………………3分 ∠ADE =∠DAC∵ AD 是△ABC 的角平分线∴ ∠EAD =∠DAC ∴ ∠EAD =∠ADE∴ AE =DE …………………………4分 ∴ 四边形AEDF 是菱形……………5分解法二:所选择的条件是 ③ ,………………………………………………………………………1分 证明: ∵ DE //AC ,DF //AB∴ 四边形AEDF 是平行四边形……………………………………………………3分 ∵点E 与点F 关于直线AD 对称∴ EF ⊥AD …………………………………………………………………………4分 ∴ 四边形AEDF 是菱形……………………………………………………………5分)2,2(b a ABCDEF解法三:所选择的条件是 ③ ,………………………………………………………………………1分 证明:∵DE //AC ,DF //AB∴四边形AEDF 是平行四边形 ………………………………………………………3分 ∵点E 与点F 关于直线AD 对称∴AE =AF ………………………………………………………………………………4分 ∴四边形AEDF 是菱形…………………………………………………………………5分 (2) 解法一:∵四边形AEDF 是菱形 ∴DE =DF =2………………………………6分 ∵ DF //AB ∴∠FDC =∠ABC ∵ DE //AC ∴∠FCD =∠EDB∴△BED ∽△DFC …………………………………………………………………………7分 ∴DFBE CF DE =,即212BE=∴BE =4………………………………………………………………………………………8分 解法二:∵四边形AEDF 是菱形 ∴AE =DF =AF =2∴CA =CF +AF =1+2=3 ………………………………………………………………………6分 ∵ DF //AB ∴∠CAB =∠CFD ∠CDF =∠CBA∴△CDF ∽△CBA …………………………………………………………………………7分 ∴AB DFCA CF =,即AB231= ∴AB =6∴BE =4 ……………………………………………………………………………………8分ABCDEF21.(1)DE 与BC…………………………………………………2分 (2)点A 与点B ,………………………………………………4分 点O 到双曲线C 1的距离是_________;……………………………………………………6分 (3)作直线l 5:y x b =−+交y 轴于点P ,交C 2于M ,N 两点,作MG ⊥l 4,NH ⊥l 4,垂足分别为G ,H 两点,作OK ⊥l 5,垂足为K .当OK =80时,隔音屏障为GH 的长. ∵y x b =−+,OK =80, ∴∠POK =45°,∴2802==OK OP ,即l 5:y x =−+……………………………………………7分 由y x =−+与2400y x=联立可求: M ,N …………………………………………………………8分∴80GH MN ===答:需要在高速路旁修建隔音屏障的长度是80 m .………………………………………9分 (其它解法,酌情按步骤给分)22.(1)证明:∵四边形ABCD 是正方形∴AD =AB ,∠DAB =90° …………………………………1分 ∵旋转90°∴∠P AQ =90°且AP =AQ …………………………………2分 ∴∠DAB -∠P AB =∠P AQ -∠P AB 即:∠P AD =∠QAB ∴△APD ≌△AQB∴BQ =DP …………………………………………………3分图5 y /m x /m l 4C 2 Ol 5MNGHKP6 ABCDQP M(2)解法一:(如图2)过点B 作BE ⊥AQ ,交AQ 的延长线于点E ∵旋转60°∴AP =AQ ,∠P AQ=60°∴△APQ 为等边三角形∴AP =AQ =PQ ,∠PQA =60° ∵PQ ⊥BQ∴∠BQE =180°–∠PQA –∠PQB =180°-90°-60°=30° 又∵∠DAP =∠BAQ=15°∴∠ABQ =∠BQE –∠BAQ =30°-15°=15°=∠BAQ∴AQ =QB …………………………………………………5分 设BE =x ,在Rt △BQE 中,则BQ =2x =AQ ,QE =3x ∴AE =AQ +QE =x x x )32(32+=+ 在Rt △BQE 中,AB 2=AE 2+BE 2即 222])32[)26(x x ++=+(…………………6分 解得 x =±1(舍负),∴AP =AQ =BQ =2x =2 …………………………………7分 解法二:(如图3)过点P 作PF ⊥AB ,垂足为F 点 ∵∠DAB=60°,∠DAP =15°, ∴∠P AB=∠DAB –∠DAP =45° ∵旋转60°∴AP =AQ ,∠BAQ =∠P AQ –∠P AB =15°∴△APQ 为等边三角形………………………………4∴AP =AQ =PQ ,∠PQA =60° ∵PQ ⊥BQ∴∠AQB =∠PQA +∠PQB =60°+90°=150° ∴∠ABQ=180°-∠AQB –∠BAQ =150°-15°=15° ∴AQ =QB =PQEDA BCPQ l图2F DABCP Ql图3即△BPQ 为等腰Rt △∴∠PBQ =45°,∠PBA=∠PBQ –∠ABQ =45°-15°=30°…………………5分 设AF =x ,则PF =x ,BF =x 3 则AB =BF +AF =2613(3+=+=+x x x )……6分解得 x =2 ∴AF =PF =x =2∴AP =22=x ……………………………………………7分 (3)51124和523……………………………………10分 (备注:对1个答案给2分,对2个答案给3分) 解析:设AM 交CD 于T ,过点T 作TK ⊥AC 于K 在△TKC 中,易得TK =3,即DT =3.第一种情况:以点B 为直角顶点,即∠PBR =90°,P 、R 的位置如图5所示 连接DP ,延长CB 交AR 于点H ,过R 作RG ⊥CH ,交BH 于点G 由43==AR AP AB DA ,∠DAB =∠P AR =90° 可证△ADP ∽△ABR 则∠APD =∠ARB 由于∠PBR =∠P AR =90° 则∠ARB +∠APB =180° 即∠APD +∠APB =180° 所以D 、P 、B 三点共线 由于RG ⊥CD ,∠DAT =∠BAH 易得△RGH ∽△ABH ∽△ADT 所以2163====AD DT AB BH RG GH 由于AB =8,则BH =4,AH =54 易得△BRG ∽△DBCPRABCDMG HKT 图5所以DBBRDC BG BC RG == 又因为CB =6,CD =8,则BD =10 设RG =3x ,则BG =4x ,BR =5x ,GH =x 23,11512253==x RH ∴BH =BG +GH =4x +x 23=x 211=4,解得118=x ∴11512253==x RH ∴511325111254=−=−=RH AH AR ∴51124511324343=×==AR AP . 第二种情况:以点R 为直角顶点,即∠PRB =90°,P 、R 的位置如图6所示 连接BP ,过B 作BI ⊥AR 于点I 易证△APR ∽△IRB ∴43==BI RI AR AP 设RI =3y ,则BI =4y ,BR =5y 易证△ABI ∽△ADT 则236===DT AD BI AI ∴AI =2BI =8y ∴854)48(2222==+=+=y y y BI AI AB () ∴552548==y ∴AR =AI -RI =8y -3y =5y =52 ∴523524343=×==AR AP .PRIABCDM图6T。
广东省深圳市中考试卷数学试卷第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.6的相反数是( )A .6-B .16-C .16D .6 2.260000000用科学计数法表示为( )A .90.2610⨯B .82.610⨯C .92.610⨯D .72610⨯3.图中立体图形的主视图是( )A .B .C .D .4.观察下列图形,是中心对称图形的是( )A .B . C.D .5.下列数据:75,80,85,85,85,则这组数据的众数和极差是( )A .85,10B .85,5 C.80,85 D .80,106.下列运算正确的是( )A .236a a a =gB .32a a a -= C. 842a a a ÷= D =7.把函数y x -向上平移3个单位,下列在该平移后的直线上的点是( )A .()2,2B .()2,3 C.()2,4 D .(2,5)8.如图,直线,a b 被,c d 所截,且//a b ,则下列结论中正确的是( )A .12∠=∠=B .34∠==∠ C.24180∠+∠=o D .14180∠+∠=o9.某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有x 个,小房间有y 个.下列方程正确的是( )A .7086480x y x y +=⎧⎨+=⎩B .7068480x y x y +=⎧⎨+=⎩ C. 4806870x y x y +=⎧⎨+=⎩ D .4808670x y x y +=⎧⎨+=⎩10.如图,一把直尺,60︒的直角三角板和光盘如图摆放,A 为60︒角与直尺交点,3AB =,则光盘的直径是( )A .3B .6 D .11.二次函数2(0)y ax bx c a =++≠的图像如图所示,下列结论正确是( )A .0abc >B .20a b +< C.30a c +< D .230ax bx c ++-=有两个不相等的实数根12.如图,A B 、是函数12y x=上两点,P 为一动点,作//PB y 轴,//PA x 轴,下列说法正确的是( )①AOP BOP ∆≅∆;②AOP BOP S S ∆∆=;③若OA OB =,则OP 平分AOB ∠;④若4BOP S ∆=,则16ABP S ∆=A .①③B .②③ C.②④ D .③④第Ⅱ卷(共90分)二、填空题(每题3分,满分12分,将答案填在答题纸上)13.分解因式:29a -=.14.一个正六面体的骰子投掷一次得到正面向上的数字为奇数的概率:.15.如图,四边形ABCD 是正方体,CEA ∠和ABF ∠都是直角且点,,E A B 三点共线,4AB =,则阴影部分的面积是.16.在Rt ABC ∆中,90?C ∠=,AD 平分CAB ∠,AD BE 、相交于点F ,且4,AF EF ==则AC =.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.计算:-1012sin )2π⎛⎫- ⎪⎝⎭. 18.先化简,再求值:2221111x x x x x ++⎛⎫-+ ⎪--⎝⎭,其中2x =. 19.某学校为调查学生的兴趣爱好,抽查了部分学生,并制作了如下表格与条形统计图:请根据上图完成下面题目:(1)总人数为__________人,a =__________,b =__________.(2)请你补全条形统计图.(3)若全校有600人,请你估算一下全校喜欢艺术类学生的人数有多少?20.已知菱形的一个角与三角形的一个角重合,然后它的对角顶点在这个重合角的对边上,这个菱形称为这个三角形的亲密菱形,如图,在CFE ∆中,6,12CF CE ==,45?FCE ∠=,以点C 为圆心,以任意长为半径作AD ,再分别以点A 和点D 为圆心,大于12AD 长为半径做弧,交EF 于点,//B AB CD . (1)求证:四边形ACDB 为FEC ∆的亲密菱形;(2)求四边形ACDB 的面积.21.某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贯2元.(1)第一批饮料进货单价多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?22.如图在O e 中,2,BC AB AC ==,点D 为AC 上的动点,且cos B =. (1)求AB 的长度;(2)求AD AE ⋅的值;(3)过A 点作AH BD ⊥,求证:BH CD DH =+.23.已知顶点为A 抛物线2122y a x ⎛⎫=-- ⎪⎝⎭经过点3,22B ⎛⎫- ⎪⎝⎭,点5,22C ⎛⎫ ⎪⎝⎭. (1)求抛物线的解析式;(2)如图1,直线AB 与x 轴相交于点,M y 轴相交于点E ,抛物线与y 轴相交于点F ,在直线AB 上有一点P ,若OPM MAF ∠=∠,求POE ∆的面积;图1(3)如图2,点Q 是折线A B C --上一点,过点Q 作//QN y 轴,过点E 作//EN x 轴,直线QN 与直线EN 相交于点N ,连接QE ,将QEN ∆沿QE 翻折得到1QEN ∆,若点1N 落在x 轴上,请直接写出Q 点的坐标. 图2广东省深圳市中考试卷数学参考答案一、选择题1-5: ABBDA 6-10:BDBAD 11、12:CB二、填空题13.()()33a a +- 14.1215.8 三、解答题17.318.解:原式21(1)(1)11(1)1x x x x x x x -++-=⋅=-++ 把2x =代入得:原式13=19.解:(1)0.440100÷=(人)251000.25a =÷=,1000.1515b =⨯=(人), (2)如图:(3)6000.1590⨯=(人)20.解:(1)证明:由已知得:AC CD =,AB DB =由已知尺规作图痕迹得:BC 是FCE ∠的角平分线则:ACB DCB ∠=∠又//AB CD QABC DCB ∴∠=∠ACB ABC ∴∠=∠AC AB ∴=又,AC CD AB DB ==QAC CD DB BA ∴===∴四边形ACDB 是菱形ACD ∠Q 与FCE ∆中的FCE ∠重合,它的对角ABD ∠顶点在EF 上 ∴四边形ACDB 为FEC ∆的亲密菱形(2)解:设菱形ACDB 的边长为x可证:EAB FCE ∆∆∽ 则:FA AB FC CE =,即6126x x -= 解得:4x =过A 点作AH CD ⊥于H 点在Rt ACH ∆中,45?ACH ∠=AH ∴==∴四边形ACDB 的面积为:4⨯21.解:(1)设第一批饮料进货单价为x 元,则:1600600032x x ⋅=+ 解得:8x =经检验:8x =是分式方程的解答:第一批饮料进货单价为8元.(2)设销售单价为m 元,则: (8)200(10)6001200m m -⋅+-⋅≥化简得:2(8)6(10)12m m -+-≥解得:11m ≥答:销售单价至少为11元.22.解:(1)作AM BC ⊥,,2AB AC AM BC BC =⊥=Q112BM CM BC ===cos BM B AB ==Q Rt AMB ∆中,1BM =cos 1AB BM B ∴=÷==(2)连接DCAB AC =QACB ABC ∴∠=∠∵四边形ABCD 内接于圆O ,180ADC ABC ∴∠+∠=o ,180ACE ACB ∠+∠=o Q ,ADC ACE ∴∠=∠CAE ∠Q 公共EAC CAD ∴∆∆∽AC AE AD AC∴=2210AD AE AC ∴⋅===.(3)在BD 上取一点N ,使得BN CD =在ABN ∆和ACD ∆中31AB AC BN CD =⎧⎪∠=∠⎨⎪=⎩()ABN ACD SAS ∴∆≅∆AN AD ∴=,AN AD AH BD =⊥QNH HD ∴=,BN CD NH HD ==QBN NH CD HD BH ∴+=+=.23.解:(1)把点3,22B ⎛⎫- ⎪⎝⎭代入2122y a x ⎛⎫=-- ⎪⎝⎭,解得:1a =, ∴抛物线的解析式为:2122y x ⎛⎫=-- ⎪⎝⎭或274y x x =--; (2)设直线AB 解析式为:y kx b =+,代入点,A B 的坐标得: 122322k b k b ⎧-=+⎪⎪⎨⎪=-+⎪⎩,解得:21k b =-⎧⎨=-⎩,∴直线AB 的解析式为:21y x =--, 易求()0,1E ,70,4F ⎛⎫- ⎪⎝⎭,1,02M ⎛⎫- ⎪⎝⎭, 若OPM MAF ∠=∠,则当//OP AF 时,OPE EAE ∆∆∽,14334OP OE FA FE ===, 433OP FA ∴===, 设点(),21P t t --3= 解得1215t =-,223t =-, 由对称性知;当1215t =-时,也满足OPM MAF ∠=∠, 1215t ∴=-,223t =-都满足条件 POE ∆Q 的面积12OE l =⋅,POE ∴∆的面积为115或13.。
2022年广东省深圳市新中考数学模拟试卷(13)一、选择题(共10小题)1.−23的绝对值是()A.−32B.−23C.23D.322.十九大报告指出,我国目前经济保持了中高速增长,在世界主要国家中名列前茅,国内生产总值从54万亿元增长到80万亿元,稳居世界第二,其中80万亿用科学记数法表示为()A.8×1012B.8×1013C.8×1014D.0.8×10133.下列关于防范“新冠肺炎”的标志中既是轴对称图形,又是中心对称图形的是()A.B.C.D.4.如图所示的几何体是由六个相同的小正方体组合而成的,它的俯视图是()A.B.C.D.5.下列命题中是真命题的是()A.不等式﹣3x+2>0的最大整数解是﹣1B.方程x2﹣3x+4=0有两个不相等的实数根C.八边形的内角和是1080°D.三角形的内心到三角形的三个顶点的距离相等6.某同学在今年的中考体育测试中选考跳绳.考前一周,他记录了自己五次跳绳的成绩(次数/分钟):247,253,247,255,263.这五次成绩的平均数和中位数分别是()A .253,253B .255,253C .253,247D .255,2477.将一副三角板(∠A =30°)按如图所示方式摆放,使得AB ∥EF ,则∠1等于( )A .75°B .90°C .105°D .115°8.如图,在△ABC 中,∠B =70°,∠C =25°,分别以点A 和点C 为圆心,大于12AC 的长为半径画弧,两弧相交于M ,N ,作直线MN ,交BC 于D ,连接AD ,则∠BAD 的度数是( )A .50°B .60°C .65°D .75°9.二次函数y =ax 2+bx +c (a ≠0)的顶点坐标为(﹣1,n ),其部分图象如图所示,下面结论错误的是( )A .abc >0B .4ac ﹣b 2<0C .关于x 的方程ax 2+bx +c =n +1无实数根D .关于x 的方程ax 2+bx +c =0的正实数根x 1取值范围为:1<x 1<210.如图,已知四边形ABCD 是边长为3的正方形,动点P 从点B 出发,沿BC 向终点C运动,点P 可以与点B 、点C 重合,连接PD ,将△PCD 沿直线PD 折叠,设折叠后点C 的对应点为点E ,连接AE 并延长交BC 于点F ,连接BE ,则下列结论中:①当∠PDC =15°时,△ADE 为等边三角形;②当∠PDC =15°时,F 为BC 的中点;③当PB =2PC 时,BE ⊥AF ;④当点P 从点B 运动到点C 时,点E 所走过的路径的长为32π. 其中正确的有( )A .1个B .2个C .3个D .4个二、填空题(共5小题)11.因式分解:ab 2﹣4a = .12.在一个不透明的盒子中装有6个白球,若干个红球,它们除颜色不同外,其余均相同,若从中随机摸出一个球为白球的概率是23,则红球的个数为 . 13.定义新运算“a *b ”:对于任意实数a 、b ,都有a *b =(a +b )(a ﹣b )﹣1,例4*3=(4+3)(4﹣3)﹣1=7﹣1=6.若x *2=4x ,则x 的值为 .14.如图,在Rt △ABC 中,∠ACB =90°,AC =6,BC =8,AD 平分∠CAB 交BC 于D 点,E ,F 分别是AD ,AC 上的动点,则CE +EF 的最小值为15.如图,已知直线y =﹣2x +4与x 轴交于点A ,与y 轴交于点B ,将△AOB 沿直线AB 翻折后,设点O 的对应点为点C ,双曲线y =k x (x >0)经过点C ,则k 的值为 .三、解答题(共7小题)16.计算:(√5−π)0﹣6tan30°+(12)﹣2+|1−√3| 17.先化简,再求值:(x x+1−1)÷x 2−2x+1x 2−1,其中x =√3+1. 18.哈佛大学一项长达20年的研究表明,爱做家务的孩子跟不爱做家务的孩子相比,就业率为15:1,收入前者比后者高20%,而且婚姻更幸福.中国教育科学研究院对全国2万个学生家庭进行的调查也表明,孩子爱做家务的家庭比不爱做家务的家庭,孩子成绩优秀的比例高了27倍,为调查了解某区学生做家务的情况,随机发放调查表进行调查,要求被调查者从“A :不做家务,B :会煮饭或会做简单的菜,C :洗碗,D :保持自己的卧室清洁,E :洗衣服”五个选项中选择最常做的一项,将所有调查结果整理后绘制成不完整的条形统计图和扇形统计图.请结合统计图回答下列问题:(1)本次调查中,一共调查了 名学生;A 、B 、C 、D 、E 五个选项的频率之和等于 .(2)扇形统计图中,“会煮饭或会做简单的菜”对应的扇形圆心角是 度;(3)补全频数分布直方图;(4)若某市有小学生约24万,请你估计做家务中“洗碗”的总人数.19.资中某学校为了改善办学条件,计划购置一批电子白板和台式电脑.经招投标,购买一台电子白板比购买2台台式电脑多3000元,购买2台电子白板和3台台式电脑共需2.7万元.(1)求购买一台电子白板和一台台式电脑各需多少元?(2)根据该校实际情况,购买电子白板和台式电脑的总台数为24,并且台式电脑的台数不超过电子白板台数的3倍.问怎样购买最省钱?20.港珠澳大桥,从2009年开工建造,于2018年10月24日正式通车.其全长55公里,连接港珠澳三地,集桥、岛、隧于一体,是世界上最长的跨海大桥.如图是港珠澳大桥的海豚塔部分效果图,为了测得海豚塔斜拉索顶端A距离海平面的高度,先测出斜拉索底端C到桥塔的距离(CD的长)约为100米,又在C点测得A点的仰角为30°,测得B点的俯角为20°,求斜拉索顶端A点到海平面B点的距离(AB的长).(已知√3≈1.73,tan20°≈0.36,结果精确到0.1)21.先阅读命题及证明思路,再解答下列问题.命题:如图1,在正方形ABCD中,已知:∠EAF=45°,角的两边AE、AF分别与BC、CD相交于点E、F,连接EF.求证:EF=BE+DF.证明思路:如图2,将△ABE绕点A逆时针旋转90°至△ADE′.∵AB=AD,∠BAD=90°,∴AB 与AD重合.∵∠ADC=∠B=90°,∴∠FDE′=180°,点F、D、E′是一条直线.根据SAS,得证△AEF≌△AFE′,得EF=E′F=E′D+DF=BE+DF.(1)特例应用如图1,命题中,如果BE=2,DF=3,求正方形ABCD的边长.(2)类比变式如图3,在正方形ABCD中,已知∠EAF=45°,角的两边AE、AF分别与BC、CD的延长线相交于点E、F,连接EF.写出EF、BE、DF之间的关系式,并证明你的结论.(3)拓展深入如图4,在⊙O中,AB、AD是⊙O的弦,且AB=AD,M、N是⊙O上的两点,∠MAN=1 2∠BAD.①如图5,连接MN、MD,求证:MH=BM+DH,DM⊥AN;②若点C在ADM̂(点C不与点A、D、N、M重合)上,连接CB、CD分别交线段AM、AN或其延长线于点E、F,直接写出EF、BE、DF之间的等式关系.22.平面直角坐标系中,点O是坐标原点,抛物线y=ax2+32x+c与x轴交于A、B两点,点B的坐标为(4,0),与y轴交于点C,直线y=kx+2经过A、C两点.(1)如图1,求a、c的值;(2)如图2,点P为抛物线y=ax2+32x+c在第一象限的图象上一点,连接AP、CP,设点P的横坐标为t,△ACP的面积为S,求S与t的函数解析式,并直接写出自变量t的取值范围;(3)在(2)的条件下,点D为线段AC上一点,直线OD与直线BC交于点E,点F是直线OD上一点,连接BP、BF、PF、PD,BF=BP,∠FBP=90°,若OE=4√53,求直线PD的解析式.2022年广东省深圳市新中考数学模拟试卷(13)参考答案与试题解析一、选择题(共10小题)1.−23的绝对值是()A.−32B.−23C.23D.32【解答】解:|−23|=23.故选:C.2.十九大报告指出,我国目前经济保持了中高速增长,在世界主要国家中名列前茅,国内生产总值从54万亿元增长到80万亿元,稳居世界第二,其中80万亿用科学记数法表示为()A.8×1012B.8×1013C.8×1014D.0.8×1013【解答】解:80万亿用科学记数法表示为8×1013.故选:B.3.下列关于防范“新冠肺炎”的标志中既是轴对称图形,又是中心对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项不合题意;B、不是轴对称图形,也不是中心对称图形,故此选项不合题意;C、既是轴对称图形,又是中心对称图形,故此选项符合题意;D、不是轴对称图形,也不是中心对称图形,故此选项不合题意.故选:C.4.如图所示的几何体是由六个相同的小正方体组合而成的,它的俯视图是()A.B.C.D.【解答】解:从上面看第一层是两个小正方形,第二层是三个小正方形,故选:D.5.下列命题中是真命题的是()A.不等式﹣3x+2>0的最大整数解是﹣1B.方程x2﹣3x+4=0有两个不相等的实数根C.八边形的内角和是1080°D.三角形的内心到三角形的三个顶点的距离相等【解答】解:A、不等式﹣3x+2>0的最大整数解是0,故原命题错误,是假命题,不符合题意;B、方程x2﹣3x+4=0没有实数根,故原命题错误,是假命题,不符合题意;C、八边形的内角和为1080°,正确,是真命题,符合题意;D、三角形的内心到三角形的三边的距离相等,故原命题错误,是假命题,不符合题意,故选:C.6.某同学在今年的中考体育测试中选考跳绳.考前一周,他记录了自己五次跳绳的成绩(次数/分钟):247,253,247,255,263.这五次成绩的平均数和中位数分别是()A.253,253B.255,253C.253,247D.255,247【解答】解:x=(247+253+247+255+263)÷5=253,这5个数从小到大,处在中间位置的一个数是253,因此中位数是253;故选:A.7.将一副三角板(∠A=30°)按如图所示方式摆放,使得AB∥EF,则∠1等于()A.75°B.90°C.105°D.115°【解答】解:∵AB∥EF,∴∠BDE=∠E=45°,又∵∠A=30°,∴∠B =60°,∴∠1=∠BDE +∠B =45°+60°=105°,故选:C .8.如图,在△ABC 中,∠B =70°,∠C =25°,分别以点A 和点C 为圆心,大于12AC 的长为半径画弧,两弧相交于M ,N ,作直线MN ,交BC 于D ,连接AD ,则∠BAD 的度数是( )A .50°B .60°C .65°D .75°【解答】解:由作法得MN 垂直平分AC ,∴DA =DC ,∴∠DAC =∠C =25°,∴∠ADB =∠DAC +∠C =25°+25°=50°,在△ABD 中,∠BAD =180°﹣∠B ﹣∠ADB =180°﹣70°﹣50°=60°.故选:B .9.二次函数y =ax 2+bx +c (a ≠0)的顶点坐标为(﹣1,n ),其部分图象如图所示,下面结论错误的是( )A .abc >0B .4ac ﹣b 2<0C .关于x 的方程ax 2+bx +c =n +1无实数根D .关于x 的方程ax 2+bx +c =0的正实数根x 1取值范围为:1<x 1<2【解答】解:A .∵抛物线开口向下,∴a <0,∵对称轴为直线x =−b2a=−1, ∴b =2a <0,∵抛物线与y 轴交于正半轴, ∴c >0, ∴abc >0, 故A 正确;B .∵抛物线与x 轴有两个交点, ∴b 2﹣4ac >0,即4ac ﹣b 2<0, 故B 正确;C .∵抛物线开口向下,顶点为(﹣1,n ), ∴函数有最大值n ,∴抛物线y =ax 2+bx +c 与直线y =n +1无交点, ∴一元二次方程ax 2+bx +c =n +1无实数根, 故C 正确;D .∵抛物线的对称轴为直线x =﹣1,抛物线与x 轴的一个交点在(﹣3,0)和(﹣2,0)之间,∴抛物线与x 轴的另一个交点在(0,0)和(1,0)之间, ∴于x 的方程ax 2+bx +c =0的正实数根x 1取值范围为:0<x 1<1, 故D 错误; 故选:D .10.如图,已知四边形ABCD 是边长为3的正方形,动点P 从点B 出发,沿BC 向终点C 运动,点P 可以与点B 、点C 重合,连接PD ,将△PCD 沿直线PD 折叠,设折叠后点C 的对应点为点E ,连接AE 并延长交BC 于点F ,连接BE ,则下列结论中: ①当∠PDC =15°时,△ADE 为等边三角形; ②当∠PDC =15°时,F 为BC 的中点; ③当PB =2PC 时,BE ⊥AF ;④当点P 从点B 运动到点C 时,点E 所走过的路径的长为32π.其中正确的有( )A .1个B .2个C .3个D .4个【解答】解:∵∠PDC =15°且将△PCD 沿直线PD 折叠得到△DPE ∴,CD =DE ,∠EDP =∠CDP =15°即∠EDC =30° ∴∠ADE =60°且AD =DE ∴△ADE 为等边三角形 ∴AE =AD ,∠DAE =60° ∴∠BAF =30° ∴BF =12AF 且AF >AE 故①正确,②错误 ∵DE 是定值3,∴点E 所走过的路径是以D 为圆心,DC 长为半径的14圆∴点E 所走过的路径=14×2π×3=32π 故④正确连接EC 交DP 于N ,作EM ⊥BC ∵BP =2PC ∴BP =2,PC =1∴由勾股定理得:DP =√10∵12×DP ×CN =12×DC ×PC∴CN =3√1010∵将△PCD 沿直线PD 折叠得到△DPE ∴CE ⊥DP ,CE =6√1010∵∠CDP +∠DCN =90°,∠PCN +∠DCN =90° ∴∠CDP =∠PCN ,∠DCP =∠CME =90° ∴△CEM ∽△DCP ∴EM PC=EC DP=CM CD∴CM =1.8,EM =0.6 ∴BM =1.2以B 点为原点,BC 为x 轴,AB 为y 轴建立直角坐标系 ∴A (0,3),E (1.2,0.6) ∴可得BE 解析式y =12x , AE 解析式y =﹣2x +3 ∵12×(−2)=−1∴AE ⊥BE 故③正确 故选:C . 二、填空题(共5小题)11.因式分解:ab 2﹣4a = a (b +2)(b ﹣2) . 【解答】解:原式=a (b 2﹣4) =a (b +2)(b ﹣2), 故答案为:a (b +2)(b ﹣2)12.在一个不透明的盒子中装有6个白球,若干个红球,它们除颜色不同外,其余均相同,若从中随机摸出一个球为白球的概率是23,则红球的个数为 3 .【解答】解:设红球的个数为x 个, 根据题意得:66+x=23,解得:x =3,经检验:x =3是原分式方程的解; ∴红球的个数为3. 故答案为:3.13.定义新运算“a *b ”:对于任意实数a 、b ,都有a *b =(a +b )(a ﹣b )﹣1,例4*3=(4+3)(4﹣3)﹣1=7﹣1=6.若x *2=4x ,则x 的值为 5或﹣1 . 【解答】解:由题意得:(x +2)(x ﹣2)﹣1=4x , 整理得:x 2﹣4x ﹣5=0, 解得:x 1=﹣1,x 2=5. 故答案为:5或﹣1.14.如图,在Rt △ABC 中,∠ACB =90°,AC =6,BC =8,AD 平分∠CAB 交BC 于D 点,E ,F 分别是AD ,AC 上的动点,则CE +EF 的最小值为245【解答】解:如图所示:在AB 上取点F ′,使AF ′=AF ,过点C 作CH ⊥AB ,垂足为H .在Rt △ABC 中,依据勾股定理可知BA =10. CH =AC⋅BCAB =245, ∵EF +CE =EF ′+EC ,∴当C 、E 、F ′共线,且点F ′与H 重合时,FE +EC 的值最小,最小值为245,故答案为:24515.如图,已知直线y =﹣2x +4与x 轴交于点A ,与y 轴交于点B ,将△AOB 沿直线AB 翻折后,设点O 的对应点为点C ,双曲线y =k x(x >0)经过点C ,则k 的值为12825.【解答】解:连接OC ,过点C 作CM ⊥x 轴,垂足为M , ∵直线y =﹣2x +4与x 轴交于点A ,与y 轴交于点B , ∴A (2,0),B (0,4), ∴OA =2,OB =4, ∴AB =√22+42=2√5,∵△ABC 与△ABO 关于AB 对称, ∴OC ⊥AB ,∵S 四边形OACB =12OC •AB =2S △AOB , 即12OC •2√5=8,∴OC =8√55,又∵∠COM =∠ABO ,∠AOB =∠CMO =90°, ∴△AOB ∽△CMO , ∴S △AOB S △CMO=AB 2OC 2,即4S △CMO=20645, ∴S △CMO =6425=12|k |, ∴k =12825(取正值), 故答案为:12825.三、解答题(共7小题)16.计算:(√5−π)0﹣6tan30°+(12)﹣2+|1−√3|【解答】解:原式=1﹣2√3+4+√3−1=4−√3. 17.先化简,再求值:(x x+1−1)÷x 2−2x+1x 2−1,其中x =√3+1.【解答】解:原式=−1x+1•(x+1)(x−1)(x−1)2=−1x+1•x+1x−1 =−1x−1, 当x =√3+1时, 原式=1√3=−√33.18.哈佛大学一项长达20年的研究表明,爱做家务的孩子跟不爱做家务的孩子相比,就业率为15:1,收入前者比后者高20%,而且婚姻更幸福.中国教育科学研究院对全国2万个学生家庭进行的调查也表明,孩子爱做家务的家庭比不爱做家务的家庭,孩子成绩优秀的比例高了27倍,为调查了解某区学生做家务的情况,随机发放调查表进行调查,要求被调查者从“A :不做家务,B :会煮饭或会做简单的菜,C :洗碗,D :保持自己的卧室清洁,E :洗衣服”五个选项中选择最常做的一项,将所有调查结果整理后绘制成不完整的条形统计图和扇形统计图.请结合统计图回答下列问题:(1)本次调查中,一共调查了 2000 名学生;A 、B 、C 、D 、E 五个选项的频率之和等于 1 .(2)扇形统计图中,“会煮饭或会做简单的菜”对应的扇形圆心角是 54 度; (3)补全频数分布直方图;(4)若某市有小学生约24万,请你估计做家务中“洗碗”的总人数.【解答】解:(1)本次调查中,一共调查的市民数是:500÷25%=2000(名),A 、B 、C 、D 、E 五个选项的频率之和等于1, 故答案为:2000,1;(2)扇形统计图中,“会煮饭或会做简单菜”对应的扇形圆心角是360°×3002000=54°; 故答案为:54;(3)洗碗的人数有2000﹣100﹣300﹣500﹣300=800(人),补全频数分布直方图如下:(4)根据题意得:24×8002000=9.6(万人), 即估计做家务中“洗碗”的总人数约有9.6万人.19.资中某学校为了改善办学条件,计划购置一批电子白板和台式电脑.经招投标,购买一台电子白板比购买2台台式电脑多3000元,购买2台电子白板和3台台式电脑共需2.7万元.(1)求购买一台电子白板和一台台式电脑各需多少元?(2)根据该校实际情况,购买电子白板和台式电脑的总台数为24,并且台式电脑的台数不超过电子白板台数的3倍.问怎样购买最省钱?【解答】解:(1)设购买一台电子白板需x 元,一台台式电脑需y 元, 根据题意得:{x −2y =30002x +3y =27000,解得:{x =9000y =3000.答:购买一台电子白板需9000元,一台台式电脑需3000元;(2)设需购买电子白板a台,则购买台式电脑(24﹣a)台,根据题意得:24﹣a≤3a,解得:a≥6,设总费用为w元,则w=9000a+3000(24﹣a)=6000a+72000,∵6000>0,∴w随x的增大而增大,∴a=6时,w有最小值.答:购买电子白板6台,台式电脑18台最省钱.20.港珠澳大桥,从2009年开工建造,于2018年10月24日正式通车.其全长55公里,连接港珠澳三地,集桥、岛、隧于一体,是世界上最长的跨海大桥.如图是港珠澳大桥的海豚塔部分效果图,为了测得海豚塔斜拉索顶端A距离海平面的高度,先测出斜拉索底端C到桥塔的距离(CD的长)约为100米,又在C点测得A点的仰角为30°,测得B点的俯角为20°,求斜拉索顶端A点到海平面B点的距离(AB的长).(已知√3≈1.73,tan20°≈0.36,结果精确到0.1)【解答】解:在Rt△ADC中,∵tan30°=ADCD,CD=100米,∴AD=tan30°•CD=√33×100≈57.7(米),在Rt△BDC中,∵tan20°=BDCD,CD=100米,∴BD=tan20°•CD≈0.36×100=36(米),∴AB=57.7+36=93.7(米).21.先阅读命题及证明思路,再解答下列问题.命题:如图1,在正方形ABCD中,已知:∠EAF=45°,角的两边AE、AF分别与BC、CD相交于点E、F,连接EF.求证:EF=BE+DF.证明思路:如图2,将△ABE绕点A逆时针旋转90°至△ADE′.∵AB=AD,∠BAD=90°,∴AB 与AD重合.∵∠ADC=∠B=90°,∴∠FDE′=180°,点F、D、E′是一条直线.根据SAS,得证△AEF≌△AFE′,得EF=E′F=E′D+DF=BE+DF.(1)特例应用如图1,命题中,如果BE=2,DF=3,求正方形ABCD的边长.(2)类比变式如图3,在正方形ABCD中,已知∠EAF=45°,角的两边AE、AF分别与BC、CD的延长线相交于点E、F,连接EF.写出EF、BE、DF之间的关系式,并证明你的结论.(3)拓展深入如图4,在⊙O中,AB、AD是⊙O的弦,且AB=AD,M、N是⊙O上的两点,∠MAN=1 2∠BAD.①如图5,连接MN、MD,求证:MH=BM+DH,DM⊥AN;②若点C在ADM̂(点C不与点A、D、N、M重合)上,连接CB、CD分别交线段AM、AN或其延长线于点E、F,直接写出EF、BE、DF之间的等式关系.【解答】解:(1)如图1,设正方形ABCD的边长为x,则有CE=x﹣2,CF=x﹣3.由材料可知:EF=BE+DF=2+3=5.在Rt△CEF中,∵∠C=90°,∴CE2+CF2=EF2.∴(x﹣2)2+(x﹣3)2=52.解得:x1=6,x2=﹣1(舍去)所以正方形ABCD的边长为6.(2)EF=BE﹣DF.理由如下:在BC上取一点F′,使得BF′=DF.连接AF′,如图3.∵四边形ABCD 是正方形,∴AB =AD ,∠B =∠BAD =∠ADC =90°.∴∠ADF =90°=∠B .在△ABF ′和△ADF 中,{AB =AD ∠B =∠ADF BF′=DF.∴△ABF ′≌△ADF (SAS ).∴AF ′=AF ,∠BAF ′=∠DAF .∴∠F ′AF =∠BAD =90°.∵∠EAF =45°,∴∠F ′AE =45°=∠F AE .在△F ′AE 和△F AE 中,{AF ′=AF ∠F′AE =∠FAE AE =AE.∴△F ′AE ≌△F AE (SAS ).∴F ′E =FE .∴EF =F ′E =BE ﹣BF ′=BE ﹣DF .(3)①延长MD 到点M ′,使得DM ′=BM ,连接AM ′,如图5.∵∠ADM ′+∠ADM =180°,∠ABM +∠ADM =180°,∴∠ABM =∠ADM ′.在△ABM 和△ADM ′中,{AB =AD ∠ABM =∠ADM′BM =DM′.∴△ABM ≌△ADM ′(SAS ).∴AM =AM ′∠BAM =∠DAM ′.∴∠MAM ′=∠BAD .∵∠MAN =12∠BAD ,∴∠MAN =12∠MAM ′.∴∠MAN =∠M ′AN .∵AM =AM ′,∠MAN =∠M ′AN ,∴MH =M ′H ,AH ⊥MM ′.∴MH =M ′H =DM ′+DH =BM +DH ,DM ⊥AN .②Ⅰ.当点C 在DNM ̂上时,如图6、7.同理可得:EF=BE+DF.Ⅱ.当点C在AD̂上时,如图8.同理可得:EF=DF﹣BE.22.平面直角坐标系中,点O是坐标原点,抛物线y=ax2+32x+c与x轴交于A、B两点,点B的坐标为(4,0),与y轴交于点C,直线y=kx+2经过A、C两点.(1)如图1,求a、c的值;(2)如图2,点P为抛物线y=ax2+32x+c在第一象限的图象上一点,连接AP、CP,设点P的横坐标为t,△ACP的面积为S,求S与t的函数解析式,并直接写出自变量t的取值范围;(3)在(2)的条件下,点D为线段AC上一点,直线OD与直线BC交于点E,点F是直线OD上一点,连接BP、BF、PF、PD,BF=BP,∠FBP=90°,若OE=4√53,求直线PD的解析式.【解答】解:(1)∵直线y =kx +2经过C 点,∴C (0,2),把点B 的坐标为(4,0),C (0,2)代入y =ax 2+32x +c ,得到{0=16a +b +c c =2, 解得{a =−12c =2;(2)如图1,过点P 作x 轴的垂线,与直线AC 交于点K ,分别过点A 、点C 作PK 的垂线,垂足分别为点M 、N ,∵y =−12x 2+32+2,∴A (﹣1,0),∵直线y =kx +2经过A 点,∴k =2,∴y =2x +2,∵P 点的横坐标为t ,∴P (t ,−12t 2+32t +2),K (t ,2t +2),∴PK =12t 2+12t ,∴S =S △AMK ﹣S △AMP ﹣S △CPK=KM⋅AM 2−PM⋅AM 2−PK⋅CN 2 =PK⋅(AM−CN)2=PK 2,∴S =14t 2+14t (0<t <4);(3)∵OC =2,OB =4,∴tan ∠OBE =12,如图2:过点O 作OH ⊥BC 于点H ,易得OH =4√55,BH =8√55, ∵OE =4√53, ∴由勾股定理得EH =16√515,∴BE =8√53,∴CE =2√53, 过点E 作EG ⊥y 轴于点G ,∵tan ∠CEG =tan ∠OBE =12,∴CG =23,EG =43,∴E (−43,83), ∴易得直线OE 的解析式y =﹣2x ,∵直线AC 的解析式为y =2x +2,∴联立直线OE 与直线AC 的解析式,解得D (−12,1),过点B 作x 轴的垂线,与过点P 、F 作的y 轴的垂线分别交于Q 、R 两点, ∵∠FBP =90°,∴∠PBQ =∠BFR ,∵BP =BF ,∴△PQB ≌△BRF (AAS ),∴BR =PQ =4﹣t ,FR =BQ =−12t 2+32t +2,∴F (12t 2−32t +2,t ﹣4), 设FR 交x 轴于点I ,∵tan ∠OEG =2=tan ∠OFI ,∴t ﹣4=﹣2(12t 2−32t +2), 解得t =2或t =0(舍),∴P(2,3),∴易求直线PD的解析式为y=45x+75.。
2023年广东省深圳市中考模拟数学试题学校:___________姓名:___________班级:___________考号:___________....A .B .C .D .7.如图,三角板的直角顶点落在矩形纸片的一边上.若250∠=︒,则1∠=()A .35°B .40°C .45°D .50°8.下列说法错误..的是()A .对角线垂直且互相平分的四边形是菱形B .同圆或等圆中,同弧对应的圆周角相等C .对角线相等的四边形是矩形D .对角线垂直且相等的平行四边形是正方形9.如图所示,小刚手拿20元钱正在和售货员对话,请你仔细看图,1听果奶、1听可乐的单价分别是()A .3元,3.5元B .3.5元,3元C .4元,4.5元D .4.5元,4元10.如图,AB 与O 相切于点F ,AC 与O 交于C D 、两点,45BAC ∠=︒,BE CD ⊥于点E ,且BE 经过圆心,连接OD ,若5OD =,8CD =,则BE 的长为()A .523+B .5二、填空题11.若226,3a b a b =--=-,则12.如图,某校根据学生上学方式的一次抽样调查结果,绘制出一个未完成的扇形统计图,若该校共有学生700人,则据此估计步行的有13.若1-是关于x 的一元二次方程14.在平面直角坐标系xOy 中,将一块含有的坐标为(1,0),AB =22析式______.三、解答题AB= 21.如图①,已知线段8半圆C上的一个动点(P与点(1)判断线段AP 与PD 的大小关系,并说明理由;(2)连接PC ,当60ACP ∠=︒时,求弧AD 的长;(3)过点D 作DE AB ⊥,垂足为E (如图②),设AP x OE y ==,,求y 与关系式,并写出x 的取值范围.22.如图,在正方形ABCD 中,对角线AC 与BD 相交于点O ,点E 是BC 点,连接DE ,交AC 于点F .(1)如图①,当13CE EB =时,求CEF CDF S S △△的值;(2)如图②当DE 平分∠CDB 时,求证:AF =2OA ;(3)如图③,当点E 是BC 的中点时,过点F 作FG ⊥BC 于点G ,求证:参考答案:【点睛】此题考查科学记数法,解题关键在于掌握科学记数法是指把一个数表示成a×10的n 次幂的形式(1≤a <10,n 为正整数.)5.B【分析】逐一进行判断即可得出答案.【详解】A.844a a a ÷=,故错误;B.326()a a =,故正确;C.235a a a ∙=,故错误;D.4442a a a +=,故错误;故选:B .【点睛】本题主要考查同底数幂的乘除法,幂的乘方,合并同类项,掌握同底数幂的乘除法,幂的乘方运算法则,合并同类项的法则是解题的关键.6.C【分析】根据一次函数交点与不等式关系直接求解即可得到答案;【详解】解:由图像可得,在P 点右侧3y ax =-的图像在3y x b =+的下方,∴不等式的解集为:2x >-,故选C .【点睛】本题考查一次函数交点与不等式的关系,解题的关键是看懂一次函数图像.7.B【分析】根据题意可知AB ∥CD ,∠FEG =90°,由平行线的性质可求解∠2=∠3,利用平角的定义可求解∠1的度数.【详解】解:如图,由题意知:AB ∥CD ,∠FEG =90°,∴∠2=∠3,∵∠2=50°,∴∠3=50°,∵∠1+∠3+90°=180°,∴∠1+∠3=90°,∴∠1=40°,故选:B .【点睛】本题主要考查平行线的性质,找到题目中的隐含条件是解题的关键.8.C【分析】根据平行四边形、矩形、菱形、正方形的判定方法及圆周角定理,分别分析得出答案.【详解】解:A .对角线垂直且互相平分的四边形是菱形,所以A 选项说法正确,故A 选项不符合题意;B .同圆或等圆中,同弧对应的圆周角相等,所以A 选项说法正确,故B 选项不符合题意;C .对角线相等的四边形是不一定是矩形,所以C 选项说法不正确,故C 选项符合题意;D .对角线垂直且相等的平行四边形是正方形,所以D 选项说法正确,故D 选项不符合题意.故选:C .【点睛】本题主要考查了圆周角定理,平行四边形的判定与性质,菱形的判定等知识,熟练掌握圆周角定理,平行四边形的判定与性质,菱形的判定方法等进行求解是解决本题的关键.9.A【分析】设1听果奶为x 元,1听可乐y 元,由题意可得等量关系:①1听果奶的费用+4听可乐的费用=17元,②1听可乐的费用﹣1听果奶的费用=0.5元,根据等量关系列出方程组,再解即可.【详解】设1听果奶为x 元,1听可乐y 元,由题意得:42030.5x y y x +=-⎧⎨-=⎩,解得:3y 3.5x =⎧⎨=⎩,故选A .【点睛】此题主要考查了二元一次方程组的应用,关键是正确理解题意,找出题目中的等量∵AB 与O 相切于点F ,∴OF AB ⊥,∵45BAC ∠=︒,BE CD ⊥,∴ABE 是等腰直角三角形,∴45B A ∠=∠=︒,∴OBF 是等腰直角三角形,∴5BF OF OD ===,∴252OB OF ==,∵OE CD ⊥,∴142DE CD ==,∴223OE OD DE =-=,∴523BE OB OE =+=+,故选:A .【点睛】本题主要考查了切线的性质、等腰直角三角形的判定和性质、垂径定理、勾股定理等知识,熟练掌握切线的性质是解题的关键.11.2-【详解】为正三角形,=︒,AB BE60==∠-∠=︒45ABE ABN是正方形ABCD的对角线,=︒45(4)由函数图象可得性质:①当0x<②该函数与x轴有唯一交点.【点睛】本题考查的是函数的自变量的取值范围,求解函数值,画函数图象,归纳函数图象的性质,掌握“画函数图象以及根据图象总结函数的性质=,理由见解析21.(1)AP PD∵OA 是半圆C 的直径,∴90APO ∠=︒,即OP 又∵AD 是圆O 的弦,∴AP PD =;(2)解:如图①,连接由(1)知,AP PD =.又∵AC OC =,∴.PC OD ∥∴60AOD ACP ∠=∠=︒∵8AB =,又∵A A ∠=∠,∴APO AED △∽△,∴AP AO AE AD=,∵4AP x AO AD ==,,∴442x xy =-,∴2142y x =-+,当点E 落在O 点时,AP 则x 的取值范围是0x <②当点E 落在线段OB 上时,如图③,连接OP ,同①可得,APO AED △∽△∴AP AO AE AD=,∵4AP x AO AD ==,,∴442x y x =+,∴2142y x =-,理解正方形的性质是关键.。
2022—2023学年度第二学期模拟考试初三年级数学试卷一、选择题1. 下列各数中,绝对值最小的是( )A. ﹣2B. 3C. 0D. ﹣32. 已知点(1)A a -,与点(4)B b -,关于原点对称,则a b -的值为( )A 5- B. 5 C. 3 D. 3-3. 如图是一个长方体切去部分得到的工件,箭头所示方向为主视方向,那么这个工件的主视图是( )AB.C. D.4. 如图,在ABCD Y 中,对角线AC 与BD 相交于点O ,如果添加一个条件,可推出ABCD Y 菱形,那么这个条件可以是( )A. AB AC =B. AC BD =C. AC BD ⊥D.AB AC⊥5. 因深圳市委正紧紧围绕打造“志愿者之城”4.0升级版,推动志愿服务事业朝着更专业、更精细、更规范的方向不断迈进,截至2022年底,深圳市注册志愿者已达3510000人,平均每5个深圳市民里就有一个志愿者.其中数据3510000用科学记数法表示为( )A. 53.5110⨯ B. 63.5110⨯ C. 73.5110⨯ D.70.35110⨯..是6. 把一块直尺与一块三角板如图放置,若∠1=45°,则∠2的度数为( )A. 115°B. 120°C. 145°D. 135°7. 某个亮度可调节的台灯,其灯光亮度的改变,可以通过调节总电阻控制电流的变化来实现.如图所示的是该台灯的电流()A I 与电阻()R Ω的关系图象,该图象经过点()8800.25P ,.根据图象可知,下列说法正确的是( )A. 当0.25I <时,880R < B. I 与R 的函数关系式是()2000I R R=>C. 当1000R >时,0.22I > D. 当8801000R <<时,I 的取值范围是0.220.25I <<8 如图,我国古代的“赵爽弦图”是由四个全等的直角三角形和一个小正方形密铺构成的大正方形,若小正方形的面积为1,大正方形的面积为41,则直角三角形较短的直角边a 与较长的直角边b 的比ab的值是( )A.12B.23C.34D.459. 在△ABC 中,∠ACB =90°,AC =BC ,AB =10,用尺规作图的方法作线段AD 和线段DE ,保留作图痕迹如图所示,认真观察作图痕迹,则△BDE 的周长是( ).A. 8B. C.D. 1010. 如图,在ABC 中,90ACB ∠=︒,作CD AB ⊥于点D ,以AB 为边作矩形ABEF ,使得AF AD =,延长CD ,交EF 于点G ,作AH AC ⊥交EF 于点H ,作HN AH ⊥分别交DG ,BE 于点M 、N ,若HM MN =,1FH =,则边BD 的长为( )A.12B.C.D.二、填空题11. 因式分解:x 2y ﹣y =_____.12. 一个不透明的箱子里装有2个白球,3个红球,它们除颜色外均相同.从箱子里摸出1个球,是红球的概率为______.13. 紫砂並是我国特有的手工制造陶土工艺品,其制作过程需要几十种不同的工具,其中有一种工具名为“带刻度嘴巴架”,其形状及使用方法如图1.当制壶艺人把“带刻度嘴巴架”上圆弧部分恰好贴在壶口边界时,就可以保证要粘贴的壶嘴、壶把、壶口中心在一条直线上.图2是正确使用该工具时的示意图.如图3,O 为某紫砂壶的壶口,已知A ,B 两点在O 上,直线l 过点O ,且l AB ⊥于点D ,交O 于点C .若30mm AB =,5mm CD =,则这个紫砂壶的壶口半径r 的长为______mm .14. 如图,在直角坐标系中点()0,4A ,()3,4B ,将ABO 向右平移,某一时刻,反比例函数()0ky k x=≠图像恰好经过点A 和OB 的中点,则k 的值为______.15. 如图,点E 是正方形ABCD 边AB 上的一点,已知45DEF ∠=︒,EF 分别交边AC ,CD 于点G ,F,且满足AG DF ⋅=EG 的长为______.三、解答题16. 计算:()020236cos45-+-︒+.17. 先化简,再求值:2210511293x x x x --⎛⎫⎛⎫--÷+ ⎪ ⎪--⎝⎭⎝⎭,其中3x =.18. 某校对九年级学生进行了一次防疫知识竞赛,并随机抽取甲、乙两班各50名学生的竞赛成绩(满分100分)进行整理,描述分析.下面给出部分信息:甲班成绩的频数分布直方图如图所示(数据分为6组:4050x ≤<,5060x ≤<,6070x ≤<,7080x ≤<,8090x ≤<,90100x ≤≤),其中90分以及90分以上的人为优秀;甲班的成绩在7080x ≤<这一组的是:72,72,73,75,76,77,77,78,78,79,79,79,79.甲、乙两班成级的平均数、中位数、众数和优秀人数如下表:的平均数中位数众数优秀人数甲班成绩78m 853乙班成绩7573826根据以上信息,回答下列问题:(1)表中的m =______;(2)在此次竞赛中,你认为甲班和乙班中,______班表现的更优异,理由是______;(3)如果该校九年级学生有600名,估计九年级学生成绩优秀的有多少人?19. 探究函数性质时,我们经历了列表、描点、连线画函数图象,观察分析图象特征,概括函数性质的过程,以下是我们研究函数26y x x m =+-++性质及其应用的部分过程,请按要求完成下列各小题.x (2)-1-012345…y…654a21b7…(1)写出函数关系式中m 及表格中a ,b 的值;m =______,=a ______,b =______;(2)根据表格中的数据在所给的平面直角坐标系中画出该函数的图象;(3)已知函数()228y x =--+的图象如图所示,结合你所画的函数图象,不等式()22628x x m x +-++>--+的解集为______.20. 红灯笼,象征着阖家团圆,红红火火,挂灯笼成为我国的一种传统文化.小明在春节前购进甲、乙两种红灯笼,用3120元购进甲灯笼与用4200元购进乙灯笼的数量相同,已知乙灯笼每对进价比甲灯笼每对进价多9元.(1)求甲、乙两种灯笼每对的进价;(2)经市场调查发现,乙灯笼每对售价50元时,每天可售出98对,售价每提高1元,则每天少售出2对;物价部门规定其销售单价不高于每对65元,乙种灯笼的销售单价为多少元时,一天获得利润最大?最大利润是多少元?21. 【定义】从一个已知图形的外一点引两条射线分别经过该已知图形的两点,则这两条射线所成的最大角称为该点对已知图形的视角,如图①,APB ∠是点P 对线段AB 的视角.【应用】(1)如图②,在直角坐标系中,已知点(A ,(2,B ,(C ,则原点O 对三角形ABC 的视角为______;(2)如图③,在直角坐标系中,以原点O ,半径为2画圆1O ,以原点O ,半径为4画圆2O ,证明:圆2O 上任意一点P 对圆1O 的视角是定值;【拓展应用】(3)很多摄影爱好者喜欢在天桥上对城市的标志性建筑拍照,如图④.现在有一条笔直的天桥,标志性建筑外延呈正方形,摄影师想在天桥上找到对建筑视角为45︒的位置拍摄.现以建筑的中心为原点建立如图⑤的坐标系,此时天桥所在的直线的表达式为5x =-,正方形建筑的边长为4,请直接写出直线上满足条件的位置坐标.22. 【探究发现】(1)如图①所示,在等腰直角ABC 中,点D ,O 分别为边BA ,BC 上一点,且OB OD =,延长OD 交射线CA 于点E ,则有下列命题:①BDO BCA ∽△△;②EDA ECO ∽△△;③BDO EDA ∽△△;请你从中选择一个命题证明其真假,并写出证明过程;【类比迁移】(2)如图②所示,在等腰ABC 中,5AB AC ==,8BC =,点D ,O 分别为边BA ,BC 上一点,且OB OD =,延长OD 交射线CA 于点E ,若2OB =,求AE 的值;【拓展应用】(3)在等腰ABC 中,AB AC a ==,BC b =,()2a b a <<,点D ,O 分别为射线BA ,BC 上一点,且OB OD =,延长OD 交射线CA 于点E ,当ADO △为等腰三角形时,请直接写出OB的长(用a,b表示).2022—2023学年度第二学期模拟考试初三年级数学试卷一、选择题1. 下列各数中,绝对值最小的是( )A. ﹣2 B. 3C. 0D. ﹣3【答案】C 【解析】【分析】根据绝对值的意义,计算出各选项的绝对值,然后再比较大小即可.【详解】解:|-2|=2,|3|=3,|0|=0,|-3|=3,所以绝对值最小的是0.故选:C .【点睛】本题考查了绝对值及有理数大小比较,正确求出各数的绝对值是解题的关键.2. 已知点(1)A a -,与点(4)B b -,关于原点对称,则a b -的值为( )A. 5- B. 5C. 3D. 3-【答案】C 【解析】【分析】根据关于原点对称两点横纵坐标都互为相反数,可得出a 、b 的值,即可计算a b -的值.【详解】∵(1)A a -,与点(4)B b -,关于原点对称,∴4a =,1b =,∴413a b -=-=.故选:C【点睛】本题考查中心对称,理解关于原点对称两点的关系是解题的关键.3. 如图是一个长方体切去部分得到的工件,箭头所示方向为主视方向,那么这个工件的主视图是( )的的A. B.C. D.【答案】B 【解析】【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【详解】解:从正面看主视图为长方形,且长方形内有一条斜线.故选:B .【点睛】此题考查了三视图的知识,解题的关键是知道主视图是从物体的正面看得到的视图.4. 如图,在ABCD Y 中,对角线AC 与BD 相交于点O ,如果添加一个条件,可推出ABCD Y 是菱形,那么这个条件可以是( )A. AB AC =B. AC BD =C. AC BD ⊥D.AB AC⊥【答案】C 【解析】【分析】根据四边形ABCD 是平行四边形,AC BD ⊥,即可得四边形ABCD 是菱形.【详解】解:∵四边形ABCD 是平行四边形,AC BD ⊥,∴四边形ABCD 是菱形,故选:C .【点睛】本题考查了菱形的判定,解题的关键是掌握菱形的判定方法.5. 因深圳市委正紧紧围绕打造“志愿者之城”4.0升级版,推动志愿服务事业朝着更专业、更精细、更规范的方向不断迈进,截至2022年底,深圳市注册志愿者已达3510000人,平均每5个深圳市民里就有一个志愿者.其中数据3510000用科学记数法表示为( )A. 53.5110⨯ B. 63.5110⨯ C. 73.5110⨯ D.70.35110⨯【答案】B【解析】【分析】科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10>时,n 是正数;当原数的绝对值1<时,n 是负数.【详解】解:63.35151000001=⨯,故选:B .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值.6. 把一块直尺与一块三角板如图放置,若∠1=45°,则∠2的度数为( )A. 115°B. 120°C. 145°D. 135°【答案】D【解析】【分析】由下图三角形的内角和等于180°,即可求得∠3的度数,又由邻补角定义,求得∠4的度数,然后由两直线平行,同位角相等,即可求得∠2的度数.【详解】在Rt △ABC 中,∠A=90°,∵∠1=45°(已知),∴∠3=90°-∠1=45°(三角形的内角和定理),∴∠4=180°-∠3=135°(平角定义),∵EF ∥MN (已知),∴∠2=∠4=135°(两直线平行,同位角相等).故选D .【点睛】此题考查了三角形的内角和定理与平行线的性质.注意两直线平行,同位角相等与数形结合思想的应用.7. 某个亮度可调节的台灯,其灯光亮度的改变,可以通过调节总电阻控制电流的变化来实现.如图所示的是该台灯的电流()A I 与电阻()R Ω的关系图象,该图象经过点()8800.25P ,.根据图象可知,下列说法正确的是( )A. 当0.25I <时,880R <B. I 与R 的函数关系式是()2000I R R=>C. 当1000R >时,0.22I > D. 当8801000R <<时,I 的取值范围是0.220.25I <<【答案】D【解析】【分析】设I 与R 的函数关系式是()0U I R R =>,利用待定系数法求出()2200I R R =>,然后求出当1000R =时, 2200.221000I ==,再由2200>,得到I 随R 增大而减小,由此对各选项逐一判断即可.【详解】解:设I 与R 的函数关系式是()0U I R R=>,∵该图象经过点()8800.25P ,,∴()0.250880U R =>,∴220U =,∴I 与R 的函数关系式是()2200I R R =>,故B 不符合题意;当1000R =时, 2200.221000I ==,∵2200>,∴I 随R 增大而减小,∴当0.25I <时,880R >,当1000R >时,0.22I <,当8801000R <<时,I 的取值范围是0.220.25I <<,故A 、C 不符合题意,D 符合题意;故选D .【点睛】本题主要考查了反比例函数的实际应用,正确求出反比例函数解析式是解题的关键.8. 如图,我国古代的“赵爽弦图”是由四个全等的直角三角形和一个小正方形密铺构成的大正方形,若小正方形的面积为1,大正方形的面积为41,则直角三角形较短的直角边a 与较长的直角边b 的比a b的值是( )A. 12 B. 23 C. 34 D. 45【答案】D【解析】【分析】根据勾股定理可以求得a 2+b 2等于大正方形的面积,然后求四个直角三角形的面积,即可得到2ab 的值,然后根据(a +b )2=a 2+b 2+2ab 即可求得(a +b )的值;根据小正方形的面积为(b −a )2=1即可求得b -a =1,进而联立方程组求得a 与b 的值,则可求出答案.【详解】解:∵大正方形的面积是41,设边长为c ,∴c 2=41,∴a 2+b 2=c 2=41,∵四个直角三角形的面积是41−1=40,又∵一个直角三角形的面积是12ab ,∴2ab =40,∴(a +b )2=a 2+b 2+2ab =c 2+2ab =41+40=41+40=81,∴a +b =9.∵小正方形的面积为(b −a )2=1,b >a ,∴b -a =1,联立91a b b a +=⎧⎨-=⎩,解得:45a b =⎧⎨=⎩∴45a b =.故答案为:D .【点睛】本题考查了勾股定理、解二元一次方程组以及完全平方公式.注意完全平方公式的展开:(a +b )2=a 2+b 2+2ab ,还要注意图形的面积和a ,b 之间的关系.9. 在△ABC 中,∠ACB =90°,AC =BC ,AB =10,用尺规作图的方法作线段AD 和线段DE ,保留作图痕迹如图所示,认真观察作图痕迹,则△BDE 的周长是( )A. 8B. C. D. 10【答案】D【解析】【分析】根据等腰直角三角形的性质得到∠B=45°,根据尺规作图可知AD 平分∠CAB ,根据角平分线的性质定理解答即可.【详解】解:∵∠ACB=90°,AC=BC ,∴∠B=45°,由尺规作图可知,AD 平分∠CAB ,DE ⊥AB 又,∠ACB=90°,∴DE=DC ,又∠B=45°,∴DE=BE ,∴△BDE 的周长=BD+BE+DE=BD+CD+BE=BC+BE=AC+BE=AE+BE=AB=10,故选D .【点睛】本题考查等腰直角三角形的性质以及尺规作图,掌握等腰直角三角形的性质和基本尺规作图是解题关键.10. 如图,在ABC 中,90ACB ∠=︒,作CD AB ⊥于点D ,以AB 为边作矩形ABEF ,使得AF AD =,延长CD ,交EF 于点G ,作AH AC ⊥交EF 于点H ,作HN AH ⊥分别交DG ,BE 于点M 、N ,若HM MN =,1FH =,则边BD 的长为( )A. 12B.C.D. 【答案】B【解析】【分析】依据条件可判定(ASA)ADC AFH ≅ ,即可得到1CD FH ==,AC AN =,易证四边形AFGD 是矩形,四边形BEGD 是矩形,则AB FE = ,AD FG =,GE BD =,CG BE ∥,又HM MN =,则HG GE =,设HG GE x ==,则1FG x AD =+=,BD GE x ==,112AB AD DB x x x =+=++=+,再证ACB ADC ∽△△,得AC AB AD AC=,则()()2112AC AD AB x x =⋅=++,在Rt AFH 中,由勾股定理,得()2222211AH AF FH x =+=++,因为AC AH =,所以()()()2211211x x x ++=++,即21x x +=,解之求出x 值,即可求解.【详解】解:CD AB ⊥ ,90F ∠=︒,90ADC F ∴∠=∠=︒,AH AC ⊥ ,90DAF ∠=︒,90FAH DAH DAC DAH ∴∠+∠=∠+∠=︒,FAH DAC ∴∠=∠.在ADC △和AFH 中,ADC F AD AFDAC FAH ∠=∠⎧⎪=⎨⎪∠=∠⎩,(ASA)ADC AFN ∴ ≌,1CD FH ∴==,AC AH =.∵矩形ABEF ,CD AB ⊥,∴四边形AFGD 是矩形,四边形BEGD 是矩形,∴AB FE = ,AD FG =,GE BD =,CG BE ∴∥,又∵HM MN =,HG GE ∴=,设HG GE x ==,则1FG x AD =+=,BD GE x ==,112AB AD DB x x x =+=++=+,∵CD AB ⊥,∴90ADC ∠=︒∵90ACB ∠=︒,∴ACB ADC∠=∠∵CAB DAC∠=∠∴ACB ADC∽△△∴AC AB AD AC=,∴2AC AD AB =⋅,∴()()2112AC AD AB x x =⋅=++,在Rt AFH 中,由勾股定理,得()2222211AH AF FH x =+=++,∵AC AH=∴()()()2211211x x x ++=++,化简整理,得21x x +=.解得:x =x =,∴BD =故选:B .【点睛】本题主要考查了矩形的性质,相似三角形判定与性质,全等三角形判定与性质,平行线分线段成比例,勾股定理,解一元二次方程,本题属四边形综合题目,熟练掌握相似三角形判定与性质,全等三角形判定与性质是解题的关键.二、填空题11. 因式分解:x 2y ﹣y =_____.【答案】y (x +1)(x ﹣1).【解析】【分析】首先提公因式y ,再利用平方差进行二次分解即可.【详解】解:原式=y (x 2﹣1)=y (x +1)(x ﹣1),故答案为y (x +1)(x ﹣1).【点睛】本题考查因式分解.熟练掌握因式分解的方法是解题的关键.12. 一个不透明的箱子里装有2个白球,3个红球,它们除颜色外均相同.从箱子里摸出1个球,是红球的概率为______.【答案】35【解析】【分析】先求出总的球数,再根据概率公式进行计算即可.【详解】解:在一个不透明的箱子里装有2个白球,3个红球,共5个球,随机从中摸出一个球,摸到红球的概率是35.故答案为:35.【点睛】此题考查了概率公式,如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件 A 出现m 种结果,那么事件A 的概率()m P A n =,熟练掌握上述知识点是解答本题的关键.13. 紫砂並是我国特有的手工制造陶土工艺品,其制作过程需要几十种不同的工具,其中有一种工具名为“带刻度嘴巴架”,其形状及使用方法如图1.当制壶艺人把“带刻度嘴巴架”上圆弧部分恰好贴在壶口边界时,就可以保证要粘贴的壶嘴、壶把、壶口中心在一条直线上.图2是正确使用该工具时的示意图.如图3,O 为某紫砂壶的壶口,已知A ,B 两点在O 上,直线l 过点O ,且l AB ⊥于点D ,交O 于点C .若30mm AB =,5mm CD =,则这个紫砂壶的壶口半径r 的长为______mm .【答案】25【解析】【分析】根据题意,得到()5mm OD r =-,115mm,=mm 2BD AB OB r ==,利用勾股定理计算即可.【详解】∵30mm AB =,5mm CD =,半径r ,l AB ⊥,∴()5mm OD r =-,115mm,=mm 2BD AB OB r ==,根据勾股定理,得()2225+15r r -=,解得()25mm r =,故答案为:25.【点睛】本题考查了垂径定理,勾股定理,熟练掌握垂径定理,勾股定理是解题的关键.14. 如图,在直角坐标系中点()0,4A ,()3,4B ,将ABO 向右平移,某一时刻,反比例函数()0k y k x=≠的图像恰好经过点A 和OB 的中点,则k 的值为______.【答案】6【解析】【分析】先作出平移后的图形,设ABO 平移距离为a ,如下图,分别表示出点C 、F 坐标,利用k 的几何意义即可求解.【详解】设ABO 平移距离为a ,CDE 为平移后的图形,则()()()4034C a E a D a +,、,、,又∵点F 是DE 中点∴322F a ⎛⎫+ ⎪⎝⎭,∵点C 、F 在()0k y k x=≠图像上,根据k 的几何意义∴3422a a ⎛⎫=+ ⎪⎝⎭解得32a =∴46k a ==故答案为6.【点睛】本题考查了反比例函数中k 的几何意义,熟练掌握上述知识点是解答本题的关键.15. 如图,点E 是正方形ABCD 边AB 上的一点,已知45DEF ∠=︒,EF 分别交边AC ,CD于点G ,F ,且满足AG DF ⋅=EG 的长为______.【解析】【分析】先判定A 、E 、G 、D 四点共圆,从而得出EGD 是等腰直角三角形,则ED =,再证明ADG EFD ∽,得出AG DG ED DF=,即DG ED AG DF ⋅=⋅= ,把EG DG =,ED =代入即可求出EG 的长.【详解】解:∵正方形ABCD ,∴90BAD ADF ∠=∠=︒,45BAC CAD ∠=∠=︒,∵45DEF ∠=︒,∴DEG CAD ∠=∠,∴A 、E 、G 、D 四点共圆,如图,∴1801809090DGE EAD ∠=︒-∠=︒-︒=︒,∵45DEF ∠=︒,∴45DEG EDG ∠=∠=︒,∴EG DG =,ED =,∴90DGF ∠=︒,∴90GFD GDF ∠+∠=︒,∵90ADG GDF ADC ∠+∠=∠=︒,∴ADG GFD ∠=∠,∵45DEG GAD ∠=∠=︒,∴ADG EFD ∽,∴AGDGED DF =,即DG ED AG DF ⋅=⋅=,∵EG DG =,ED =,∴EG =∴ED =,【点睛】本题考查正方形的性质,四点共圆,圆内接四边形的性质,等腰直角三角形的判定,勾股定理,相似三角形的判定与性质,得出A 、E 、G 、D 四点共圆是解题的关键.三、解答题16. 计算:()020236cos45-+-︒+.【答案】1.【解析】【分析】先计算乘方和开方,并求绝对值和把特殊角三角函数值代入,再计算乘法,最后计算加减即可.【详解】解:原式16=1=+1=.【点睛】本题考查实数的混合运算,熟练掌握零指数幂、特殊的三角函数值和求绝对值运算是解题的关键.17. 先化简,再求值:2210511293x x x x --⎛⎫⎛⎫--÷+ ⎪ ⎪--⎝⎭⎝⎭,其中3x =.【答案】43x +,【解析】【分析】先化简括号,再算乘除,最后计算加减,再代值求解即可.【详解】解:原式=22211193x x x x x -+--÷--=2(1)31(3)(3)1x x x x x ---⨯-+-=113x x --+=43x +当3x =-时,原式=【点睛】本题主要考查了分式的化简求值以及二次根式的计算,正确的计算能力是解决问题的关键.18. 某校对九年级学生进行了一次防疫知识竞赛,并随机抽取甲、乙两班各50名学生的竞赛成绩(满分100分)进行整理,描述分析.下面给出部分信息:甲班成绩的频数分布直方图如图所示(数据分为6组:4050x ≤<,5060x ≤<,6070x ≤<,7080x ≤<,8090x ≤<,90100x ≤≤),其中90分以及90分以上的人为优秀;甲班的成绩在7080x ≤<这一组的是:72,72,73,75,76,77,77,78,78,79,79,79,79.甲、乙两班成级的平均数、中位数、众数和优秀人数如下表:平均数中位数众数优秀人数甲班成绩78m 853乙班成绩7573826根据以上信息,回答下列问题:(1)表中的m =______;(2)在此次竞赛中,你认为甲班和乙班中,______班表现的更优异,理由是______;(3)如果该校九年级学生有600名,估计九年级学生成绩优秀的有多少人?【答案】(1)78 (2)甲,甲班的平均分(中位数、众数)比乙班的平均分(中位数、众数)高;(3)该校九年级600名学生中成绩优秀的大约有54人【解析】【分析】(1)根据甲班的中位数是从小到大排列后的第25个和26个数据的平均数进行求解即可;(2)根据各统计量进行分析解答即可;(3)根据样本估计总体,用该校九年级总人数乘以抽取学生中优秀人数的占比即可求解.【小问1详解】解:由题意可知甲班的中位数是从小到大排列后的第25个和26个数据的平均数,即7878782m +==,、故答案为:78【小问2详解】甲班成绩优异,理由是:甲班的平均分(中位数、众数)比乙班的平均分(中位数、众数)高;故答案为:甲;甲班的平均分(中位数、众数)比乙班的平均分(中位数、众数)高【小问3详解】由题意得:960054100⨯=(人),答:该校九年级600名学生中成绩优秀的大约有54人.【点睛】此题考查了频数分布直方图、平均数、中位数、众数、样本估计总体等知识,读懂题意,准确求解是解题的关键.19. 探究函数性质时,我们经历了列表、描点、连线画函数图象,观察分析图象特征,概括函数性质的过程,以下是我们研究函数26y x x m =+-++性质及其应用的部分过程,请按要求完成下列各小题.x (2)-1-012345…y…654a21b7…(1)写出函数关系式中m 及表格中a ,b 的值;m =______,=a ______,b =______;(2)根据表格中的数据在所给的平面直角坐标系中画出该函数的图象;(3)已知函数()228y x =--+的图象如图所示,结合你所画的函数图象,不等式()22628x x m x +-++>--+的解集为______.【答案】(1)2-,3,4 (2)见解析 (3)0x <或4x >【解析】【分析】(1)将表格中的已知数据任意选择一组代入到解析式中,即可求出m ,然后得到完整解析式,即可求解;(2)根据表格所给数据描点、连线即可;(3)结合函数图象与不等式之间的联系,利用数形结合思想求解.【小问1详解】解:由表格可知,点()3,1在该函数图象上,∴将点()3,1代入函数解析式可得:13236m =+-⨯++,解得:2m =-,∴原函数的解析式为:|26|2y x x =+-+-;当1x =时,3y =;当4x =时,4y =;∴2m =-,3a =,4b =,故答案为:2-,3,4;小问2详解】解:通过列表—描点—连线的方法作图,如图所示;【小问3详解】解:要求不等式()22628x x m x +-++>--+的解集,实际上求出函数|26|y x x m =+-++的图象位于函数()228y x =--+图象上方的自变量的范围,∴由图象可知,当0x <或4x >时,满足条件,故答案为:0x <或4x >.【点睛】本题考查新函数图象探究问题,掌握研究函数的基本方法与思路,熟悉函数与不等式或者方程之间的联系是解题的关键.20. 红灯笼,象征着阖家团圆,红红火火,挂灯笼成为我国的一种传统文化.小明在春节前购进甲、乙两种红灯笼,用3120元购进甲灯笼与用4200元购进乙灯笼的数量相同,已知乙灯笼每对进价比甲灯笼每对进价多9元.(1)求甲、乙两种灯笼每对的进价;(2)经市场调查发现,乙灯笼每对售价50元时,每天可售出98对,售价每提高1元,则每天少售出2对;物价部门规定其销售单价不高于每对65元,乙种灯笼的销售单价为多少元时,一天获得利润最大?最大利润是多少元?【答案】(1)甲种灯笼单价为26元/对,乙种灯笼的单价为35元/对(2)乙种灯笼的销售单价为65元时,一天获得利润最大,最大利润是2040元【解析】【分析】(1)设甲种灯笼单价为x 元/对,则乙种灯笼的单价为(x +9)元/对,根据用3120元购进甲灯笼与用4200元购进乙灯笼的数量相同,列分式方程求解即可;【(2)设乙灯笼每对涨价x 元,一天通过乙灯笼获得利润为y 元,首先利用总利润等于每对灯笼的利润乘以卖出的灯笼的实际数量,可以列出函数的解析式;再由函数为开口向下的二次函数,可知有最大值,结合问题的实际意义,可得答案.【小问1详解】解:设甲种灯笼单价为x 元/对,则乙种灯笼的单价为(x +9)元/对根据题意得:312042009x x =+ 解得26x =经检验:26x =是原方程的解,且符合题意故x +9=26+9=35答:甲种灯笼单价为26元/对,乙种灯笼的单价为35元/对【小问2详解】解:设乙灯笼每对涨价x 元,一天通过乙灯笼获得利润为y 元根据题意得:y =(50+x -35)(98-2x )=-2x 2+68x +14702<0a =-∴函数y 有最大值,该二次函数的对称轴所在直线为()681722x =-=⨯-物价部门规定其销售单价不高于每对65元5065x ∴+≤ 15x ∴≤<17x 时,y 随x 的增大而增大∴当x =15时,y 有最大值,最大值为:221568151470=2040-⨯+⨯+50+15=65答:乙种灯笼的销售单价为65元时,一天获得利润最大,最大利润是2040元【点睛】本题考查了分式方程和二次函数的应用,由于前后步骤有联系,第一问解对,后面才能做对.本题还需要根据问题的实际意义来确定销售单价的取值.21. 【定义】从一个已知图形的外一点引两条射线分别经过该已知图形的两点,则这两条射线所成的最大角称为该点对已知图形的视角,如图①,APB ∠是点P 对线段AB 的视角.【应用】(1)如图②,在直角坐标系中,已知点(A ,(2,B ,(C ,则原点O 对三角形ABC 的视角为______;(2)如图③,在直角坐标系中,以原点O ,半径为2画圆1O ,以原点O ,半径为4画圆2O ,证明:圆2O 上任意一点P 对圆1O 的视角是定值;【拓展应用】(3)很多摄影爱好者喜欢在天桥上对城市的标志性建筑拍照,如图④.现在有一条笔直的天桥,标志性建筑外延呈正方形,摄影师想在天桥上找到对建筑视角为45︒的位置拍摄.现以建筑的中心为原点建立如图⑤的坐标系,此时天桥所在的直线的表达式为5x =-,正方形建筑的边长为4,请直接写出直线上满足条件的位置坐标.【答案】(1)30︒;(2)证明见解析;(3)(15,2P -或(25,2P ---.【解析】【分析】(1)延长BA 交x 轴于点D ,过点C 作CE x ⊥轴于点E ,可得AB y ∥轴,CE =3OE =,进而得到BD =,2OD =,再由锐角三家函数可得60,30BOD COE ∠=︒∠=︒,即可求解;(2)过圆2O 上任一点P 作圆1O 两条切线交圆1O 于A ,B ,连接,OA OB ,OP ,则有OA PA ⊥,OB PB ⊥,根据锐角三家函数可得30OPA ∠=︒,30OPB ∠=︒,从而得到60APB ∠=︒,即可求证;(3)分三种情况:当在直线AB 与直线CD 之间时,视角是APD ∠,此时以()4,0E -为圆心,EA 半径画圆,交直线于3P ,6P ;当在直线AB 上方时,视角是BPD ∠,此时以()2,2A -为圆心,AB 半径画圆,交直线于1P ,5P ;当在直线CD 下方时,视角是APC ∠,此时以()22D ,--为圆心,DC 半径画圆,交直线于2P ,4P ,即可求解.【详解】解:(1)延长BA 交x 轴于点D ,过点C 作CE x ⊥轴于点E ,∵点(A,(2,B,(C ,∴AB y ∥轴,CE =3OE =,∴AB x ⊥轴,∴BD =,2OD =,∴tan BD BOD OD ∠==,tan CE COE OE ∠==,∴60,30BOD COE ∠=︒∠=︒,∴30BOC BOD COE ∠=∠-∠=︒,即原点O 对三角形ABC 的视角为30︒过答案为:30︒(2)证明:如图,过圆2O 上任一点P 作圆1O 的两条切线交圆1O 于A ,B ,连接,OA OB ,OP ,则有OA PA ⊥,OB PB ⊥,的在Rt PAO △中,2OA =,4OP =,∴1sin 2OA OPA OP ∠==,∴30OPA ∠=︒,同理可求得:30OPB ∠=︒,∴60APB ∠=︒,即圆2O 上任意一点P 对圆1O 的视角是60︒,∴圆2O 上任意一点P 对圆1O 的视角是定值.(3)当在直线AB 与直线CD 之间时,视角是APD ∠,此时以()4,0E -为圆心,EA 半径画圆,交直线于3P ,6P ,∵3345DP B DP A ∠>∠=︒,6645AP C DP C ∠>∠=︒,不符合视角的定义,3P ,6P 舍去.同理,当在直线AB 上方时,视角是BPD ∠,此时以()2,2A -为圆心,AB 半径画圆,交直线于1P ,5P ,5P 不满足;过点1P 作1PMD A ⊥交DA 延长线于点M ,则114,523AP PM ==-=,∴AM ==,∴(15,2P -当在直线CD 下方时,视角是APC ∠,此时以()22D ,--为圆心,DC 半径画圆,交直线于2P ,4P ,4P 不满足;同理得:(25,2P --;综上所述,直线上满足条件的位置坐标(15,2P -或(25,2P --.【点睛】本题主要考查了切线的性质,圆周角定理,解直角三角形,勾股定理等知识,熟练掌握切线的性质,圆周角定理,解直角三角形,勾股定理是解题的关键.22. 探究发现】(1)如图①所示,在等腰直角ABC 中,点D ,O 分别为边BA ,BC 上一点,且OB OD =,延长OD 交射线CA 于点E ,则有下列命题:①BDO BCA ∽△△;②EDA ECO ∽△△;③BDO EDA ∽△△;请你从中选择一个命题证明其真假,并写出证明过程;【类比迁移】(2)如图②所示,在等腰ABC 中,5AB AC ==,8BC =,点D ,O 分别为边BA ,BC 上一点,且OB OD =,延长OD 交射线CA 于点E ,若2OB =,求AE 的值;【拓展应用】(3)在等腰ABC 中,AB AC a ==,BC b =,()2a b a <<,点D ,O 分别为射线BA ,BC 上一点,且OB OD =,延长OD 交射线CA 于点E ,当ADO △为等腰三角形时,请直接写出OB 的长(用a ,b 表示).【。
2024年中考数学模拟卷数学说明:1.答题前,请将姓名、准考证号和学校用黑色字迹的钢笔或签字笔填写在答题卡指定的位置上,并将条形码粘贴好。
2.全卷共6页。
考试时间90分钟,满分100分。
3.作答选择题1-10,选出每题答案后,用2B铅笔把答题卡上对应题目答案标号的信息点框涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案。
作答非选择题11-22,用黑色字迹的钢笔或签字笔将答案(含作辅助线)写在答题卡指定区域内。
写在本试卷或草稿纸上,其答案一律无效。
4.考试结束后,请将答题卡交回。
第一部分选择题一.选择题(共10小题,满分30分,每小题3分)1.(3分)北宋时期的汝官窑天蓝釉刻花鹅颈瓶是河南博物院九大镇院之宝之一,具有极高的历史价值、文化价值.如图所示,关于它的从正面、左面、上面三个不同的方向观察看到的平面图形,下列说法正确的是()A.从正面看与从左面看到的图形相同B.从正面看与从上面看到的图形相同C.从左面看与从上面看到的图形相同D.从正面、左面、上面看到的图形都相同2.(3分)若关于x的一元二次方程x2﹣x﹣m=0的一个根是x=3,则m的值是()A.﹣6B.﹣3C.3D.63.(3分)如图,在菱形ABCD中,∠BAD=120°.已知△ABC的周长是15,则菱形ABCD的周长是()A.23B.20C.15D.104.(3分)将方程x2﹣4x﹣3=0化成(x﹣m)2=n(m、n为常数)的形式,则m、n的值分别为()A.m=2,n=7B.m=﹣2,n=1C.m=2,n=4D.m=﹣2,n=45.(3分)近几年,二维码逐渐进入了人们的生活,成为广大民众生活中不可或缺的一部分.小刚将二维码打印在面积为20的正方形纸片上,如图,为了估计黑色阴影部分的面积,他在纸内随机掷点,经过大量重复实验,发现点落在黑色阴影的频率稳定在0.6左右,则据此估计此二维码中黑色阴影的面积为()A.8B.12C.0.4D.0.66.(3分)如图,AB∥CD,AC,BD相交于点E,AE=1,EC=2,DE=3,则BE的长为()A.B.4C.D.67.(3分)如图是小明实验小组成员在小孔成像实验中的影像,蜡烛在刻度尺50cm处,遮光板在刻度尺70cm处,光屏在刻度尺80cm处,量得像高3cm,则蜡烛的长为()A.5cm B.6cm C.4cm D.4.5cm8.(3分)某种品牌的手机经过四、五月份连续两次降价,每部售价由3200元降到了2500元,设平均每月降低的百分率为x,根据题意列出的方程是()A.2500(1+x)2=3200B.2500(1﹣x)2=3200C.3200(1﹣x)2=2500D.3200(1+x)2=25009.(3分)喜迎二十大,“龙舟故里”赛龙舟,小亮在龙舟竞渡中心广场点P处观看400米直道竞速赛,如图所示,赛道AB为东西方向,赛道起点A位于点P的北偏西30°方向上,终点B位于点P的北偏东60°方向上,AB=400米,求点P到赛道AB的距离()(结果保留整数,参考数据:)A.B.C.87D.17310.(3分)如图,CB=CA,∠ACB=90°,点D在边BC上(与B、C不重合),四边形ADEF为正方形,过点F作FG⊥CA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论:①AC=FG;②S△F AB:S四边形CBFG=1:2;③∠ABC=∠ABF;④AD2=FQ•AC,其中正确的结论的个数是()A.1B.2C.3D.4第二部分非选择题二.填空题(共5小题,满分15分,每小题3分)11.(3分)若3m=7n,则=.12.(3分)2011年3月11日13:46日本发生了震惊世界的大地震,近期国际机构将日本核电事故等级上调至国际核能事件分级表(INES)中最严重的7级,据估算其向大气排放的放射性物质量约为630000太贝克,用科学记数法表示为:.13.(3分)五一期间,小明和小亮分别从三部影片《飞驰人生2》、《热辣滚烫》、《九龙城寨之围城》、《维和防暴队》中随机选择一部观看,则他们选择的影片相同的概率为.14.(3分)如图,在平面直角坐标系中,直线AB与x轴交于点A(﹣4,0),与x轴夹角为30°,将△ABO沿直线AB翻折,点O的对应点C恰好落在双曲线y=(k≠0)上,则k的值为.15.(3分)如图,OA在x轴上,OB在y轴上,OA=8,AB=10,点C在边OA上,AC=2,⊙P的圆心P在线段BC上,且⊙P与边AB,AO都相切.若反比例函数y=(k≠0)的图象经过圆心P,则k=.第14题第15题三.解答题(共7小题,满分55分)16.(5分)解方程:x2+2x﹣8=0.17.(7分)班级开展迎新年联欢晚会时,在教室悬挂了如图所示的四个福袋A,B,C,D.在抽奖时,每次随机取下一个福袋,且取A之前需先取下B,取C之前需先取下D,直到4个福袋都被取下.(1)第一个取下的是D福袋的概率为;(2)请用画树状图或列表的方法,求第二个取下的是A福袋的概率.18.(8分)家庭过期药品属于“国家危险废物“处理不当将污染环境,危害健康.某市药监部门为了了解市民家庭处理过期药品的方式,决定对全市家庭作一次简单随机抽样调查本次抽样调查发现,接受调查的家庭都有过期药品,现将有关数据呈现如图:(1)求m、n的值;(2)补全条形统计图;(3)家庭过期药品的正确处理方式是送回收站,若该市有180万户家庭,请估计大约有多少户家庭处理过期药品的方式是送回收站.19.(8分)某景区在2024年“五一”小长假期间,接待游客达2万人次,预计在2022年“五一”小长假期间,接待游客2.88万人次,该景区一家特色小面店希望在“五一”小长假期间获得好的收益,经测算知,该小面成本价为每碗10元,借鉴以往经验,若每碗卖15元,平均每天将销售120碗,若价格每提高0.5元,则平均每天少销售4碗,每天店面所需其他各种费用为168元.(1)求出2020至2022年“五一”小长假期间游客人次的年平均增长率;(2)为了更好地维护景区形象,物价局规定每碗售价不得超过20元,当每碗售价定为多少元时,店家才能实现每天净利润600元?(净利润=总收入﹣总成本﹣其它各种费用)20.(8分)如图,点E是矩形ABCD对角线AC上的点(不与A,C重合),连接BE,过点E作EF⊥BE交CD于点F.连接BF交AC于点G,BE=AD.(1)求证:∠FEC=∠FCE;(2)试判断线段BF与AC的位置关系,并说明理由.21.(9分)【建立模型】(1)在数学课上,老师出示这样一个问题:如图1,在Rt△ABC中,∠ACB=90°,AC=BC,直线l经过点C,AD⊥l,BE⊥l,垂足分别为点D和点E,求证:△ADC≌△CEB,请你写出证明过程:【类比迁移】(2)勤奋小组在这个模型的基础上,继续进行探究问题;如图2,在平面直角坐标系中,直线y=﹣3x+3的图象与y轴交于点A,与x轴交于点C,将线段AC绕点C顺时针旋转90°得到线段CB,反比例函数的图象经过点B,请你求出反比例函数的解析式;【拓展延伸】(3)创新小组受到勤奋小组的启发,结合抛物线的图象继续深入探究:如图3,一次函数y=﹣3x+3的图象与y轴交于点A,与x轴交于点C,创新小组的同学发现在第一象限的抛物线y=﹣x2+2x+3的图象上存在一点P,连接PA,当∠PAC=45°时,请你和创新小组的同学一起求出点P的坐标.22.(10分)如图①,点D为△ABC上方一动点,且∠BDC=60°.(1)在BD左侧构造△BDE∽△BCA,连接AE,请证明△BAE∽△BCD;(2)如图②,在BD左侧构造△BDE∽△BCA,在CD右侧构造△CDF∽△CBA,连接AF,AE,求证:四边形AFDE是平行四边形;(3)如图③,当△ABC满足∠A=150°,,AC=2.运用(2)中的构造图形的方法画出四边形AFDE;(Ⅰ)求证:四边形AFDE是矩形;(Ⅱ)直接写出在点D运动过程中线段EF的最大值.2024年中考模拟考试参考答案及评分标准一、选择题题号12345678910答案A D B A B A B C D D 二、填空题题号1112131415答案 6.3×10514﹣4﹣5 16.解:x2+2x﹣8=0(x﹣2)(x+4)=0-------------------------------------------------------------------------------3分x﹣2=0或x+4=0x1=2,x2=﹣4-----------------------------------------------------------------------------------5分17.解:(1);-----------------------------------------------------------------------------------2分(2)由题意,画树状图为:---------------------------------------------------------------------------------5分共有4种等可能的结果,其中第二个取下的是A福袋的结果数有1种,∴第二个摘下A灯笼的概率为.------------------------------------------------------------------7分18.(8分)解:(1)∵抽样调查的家庭总户数为:80÷8%=1000(户),-----------1分∴m%==20%,m=20,---------------------------------------------------------------------2分n%==6%,n=6.----------------------------------------------------------------------------3分(2)C类户数为:1000﹣(80+510+200+60+50)=100,-----------------------------------4分条形统计图补充如下:--------------------------------6分(3)180×10%=18(万户)若该市有180万户家庭,估计大约有18万户家庭处理过期药品的方式是送回收点.----8分19.(8分)解:(1)可设年平均增长率为x,依题意有2(1+x)2=2.88,--------------------------------------------2分解得:x1=0.2=20%,x2=﹣2.2(舍去).-------------------3分答:年平均增长率为20%;--------------------------------------4分(2)设每碗售价定为y元时,店家才能实现每天利润600元,依题意得:(y﹣10)[120﹣(y﹣15)]﹣168=600,----------------------6分解得y1=18,y2=22,----------------------------------------------7分∵每碗售价不得超过20元,∴y=18.答:当每碗售价定为18元时,店家才能实现每天利润600元-----------------8分.20.(8分)(1)证明:∵四边形ABCD是矩形,∴AD=BC,∠DCB=90°,----------------------------------------------------------------------1分∵BE=AD,∴BC=BE,∴∠BEC=∠BCE,-----------------------------------------------------------------------------------2分∵EF⊥BE,∴∠BEF=∠DCB=90°,∴∠FEC=∠FCE;------------------------------------------------------------------------------------4分(2)解:BF⊥AC.------------------------------------------------------------------------------------5分理由:∵∠FEC=∠FCE,∴EF=CF,--------------------------------------------------------------------------------------------6分∵BE=BC,∴BF垂直平分CE,即BF⊥AC.--------------------------------------------------------------------------------------------8分21.(9分)(1)证明:如图1,∵AD⊥l,BE⊥l,∴∠ADC=∠CEB=90°,∴∠ACD+∠CAD=90°,---------------------------------------------------------1分∵∠ACB=90°,AC=BC,∴∠ACD+∠BCE=90°,∴∠CAD=∠BCE,---------------------------------------------------------------------2分∴△ACD≌△CBE(AAS);---------------------------------------------------------3分(2)如图2,过点B作BG⊥x轴于点G,则∠CGB=∠AOC=90°,∴∠ACO+∠CAO=90°,∵将线段AC绕点C顺时针旋转90°得到线段CB,∴AC=CB,∠ACB=90°,∴∠ACO+∠BCG=90°,∴∠CAO=∠BCG,∴△ACO≌△CBG(AAS),----------------------------------------------------------------------4分∴OA=CG,OC=BG,∵直线y=﹣3x+3与y轴交于点A,与x轴交于点C,∴A(0,3),C(1,0),∴OA=3,OC=1,∴CG=3,BG=1,∴OG=OC+CG=1+3=4,∴B(4,1),---------------------------------------------------------------------------------------5分将B(4,1)代入y=,得1=,∴k=4,∴反比例函数的解析式为y=;-------------------------------------------------------------------6分(3)如图3,过点C作CE⊥AC,且CE=AC,连接AE交抛物线于P,过点E作EF⊥x轴于点F,则∠CFE=∠ACE=∠AOC=90°,∴∠ACO+∠CAO=∠ACO+∠ECF=90°,∴∠CAO=∠ECF,∴△ACO≌△CEF(AAS),------------------------------------------------------------------------7分∴OA=CF=3,OC=EF=1,∴OF=OC+CF=1+3=4,∴E(4,1),设直线AE的解析式为y=kx+b,将E(4,1),A(0,3)代入得:,解得:,∴直线AE的解析式为y=﹣x+3,----------------------------------------------------------------8分联立方程组得,解得:(舍去),,∴点P的坐标为(,).------------------------------------------------------------------------9分22.(10分)(1)证明:∵△EBD∽△ABC,∴∠EBD=∠ABC,,-----------------------------------------------------------------1分∴∠EBD+∠ABD=∠ABC+∠ABD,∴∠EBA=∠DBC,∴△BAE∽△BCD;----------------------------------------------------------------------------------2分(2)证明:由(1)得:△BAE∽△BCD,∴,∵△CDF∽△CBA,∴,∴,∴AE=DF,-----------------------------------------------------------------------------------------3分同理(1)可得△CFA∽△CDB,∴,∵△BDE∽△BAC,∴∴∴DE=AF,---------------------------------------------------------------------------------------------4分∴四边形AFDE是平行四边形;---------------------------------------------------------------------5分(3)(Ⅰ)证明:由(1)知:△BAE∽△BCD,∴∠AEB=∠BDC=60°,---------------------------------------------------------------------------6分∵△EBD∽△ABC,∴∠BED=∠BAC=150°,∴∠AED=∠BED﹣∠AEB=150°﹣60°=90°,-------------------------------------------7分∴▱AFDE是矩形;-------------------------------------------------------------------------------------8分(Ⅱ)解:如图,EF的最大值为:,-------------------------------------------------------10分理由如下:作△BCD的外接圆,圆心为O,连接OA并延长交⊙O于D,此时AD最大,作BG⊥AC,交CA的延长线于G,∵∠BAC=150°,∴∠BAG=30°,∴BG=AB=,AG=AB=,∴CG=AC+AG=5,∴BC=,∴⊙O的直径为:,连接OB,OC,作OQ⊥BC于Q,作AT⊥OQ于T,∴OB=OC=,CQ=BQ=,∵∠CDB=60°∴∠BOC=2∠CDB=120°,∴∠OBC=∠OCB=30°,∴OQ=OB=,=,∵S△ABC∴AH=,∴CH===,∴AT=QH=CQ﹣CH==,∵OT=OQ﹣TQ=OQ﹣AH=﹣=,∴OA===,∴AD=OA+OD=,最大∵四边形AEDF是矩形,∴EF=AD=,∴EF的最大值为:.。
中考仿真模拟测试数学试卷学校________ 班级________ 姓名________ 成绩________满分120分,考试时间100分钟.一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的.1.与15为倒数的数为()A .﹣15B .15C .5D .﹣52.下列垃圾分类的标志中,既是轴对称又是中心对称图形的是()A .B .C .D .3.下列计算正确的是()A .√2+√3=√5B .√4×2=2√2C .√6+2=√3D .3√2﹣√2=34.2019新型冠状病毒(2019﹣nC oV),科学家借助电子显微镜发现该病毒的大小约为0.000000125米.则数据0.000000125用科学记数法表示正确的是()A .1.25×107B .1.25×10﹣7C .1.25×108D .1.25×10﹣85.下列图形中,不是正方体表面展开图的是()A .B .C .D .6.如图,在Rt △A B C 中,∠C =90°,A B =4,A C =3,则sin B =( )A .35B .45C .34D .√747.《九章算术》中的算筹图是竖排的,为看图方便我们把它改为横排,如图1,图2所示,图中各行从左到右列出的算筹数分别表示未知数x ,y 的系数与相应的常数项.图1表示的算筹图用我们现在所熟悉的方程组形式表述出来为{2x +y =11,4x +3y =27.类似地,图2所示的算筹图我们可以表述为( )A .{3x +2y =14x +4y =23B .{3x +y =122x +4y =43C .{3x +2y =19x +4y =23D .{3x +y =192x +4y =238.在同一坐标系中,若直线y =﹣x +B 与直线y =kx ﹣4的交点在第一象限,则下列关于k 、B 的判断正确的是( ) A .k <0,B <0B .k <0,B >0C .k >0,B <0D .k >0,B >09.如图,四边形A B C D 内接于⊙O ,⊙O 的半径为1,A B =√2,C B =√3,则∠A D C 的度数是( )A .100°B .105°C .110°D .120°10.已知非负数A ,B ,C 满足A +B =2,C ﹣3A =4,设S=A 2+B +C 的最大值为m,最小值为n,则m﹣n的值为()A .9B .8C .1D .103二、填空题(每小题3分,共18分)在实数范围内有意义,则x的取值范围是.11.若式子√x−112.因式分解:y3﹣4y2+4y=.13.如图,A B ∥C D ,∠A B E=146°,FE⊥C D 于E,则∠FEB 的度数是度.14.关于x的一元二次方程x2+4x﹣3A =0有实数根,则A 的取值范围是.15.在一个不透明的袋子中放有m个球,其中有6个红球,这些球除颜色外完全相同.若每次把球充分搅匀后,任意摸出一球记下颜色后再放回袋子,通过大量重复试验后,发现摸到红球的频率稳定在0.3左右,则m的值约为.16.如图,在正方形A B C D 中,O是对角线A C 与B D 的交点,M是B C 边上的动点(点M不与B ,C 重合),C N⊥D M,C N与A B 交于点N,连接OM,ON,MN.下列五个结论:①△C NB ≌△D MC ;②△C ON≌△D OM;③△OMN∽△OA D ;④A N2+C M2=MN2;⑤若A B =2,则S△OMN的最小值是1,其中正确结论有.三、解答题(本大题共9个小题,满分72分)17.(4分)计算:(-2021)0+√16-|-2|×2×2-2.18.(4分)已知:如图,Rt△A B C 中,∠C =90°,M是A B 的中点,A N=1A B ,A N∥C M.2求证:MN=A C .19.(6分)先化简(1﹣xx−1)÷x 2−4x+4x 2−1,再从不等式x ﹣1≤2的正整数解中选一个适当的数代入求值.20.(6分)某学校对试卷讲评课中学生参与的深度和广度进行评价调查,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名学生的参与情况,绘制了如图两幅不完整的统计图,请根据图中所给信思解答下列问题:(1)在这次评价中,一共抽查了____名学生;(2)讲解题目组所在扇形的圆心角的大小是_____;(3)如果全市有12000名初中学生,那么在试卷讲评课中,“独立思考”的学生约有多少人?21.(8分)某超市经销一种销售成本为每件20元的商品,据市场调查分析,如果按每件30元销售,一周能售出500件,若销售单价每涨1元,每周销售量就减少10件.设销售单价为每件x 元(x≥30),一周的销售量为y 件.(1)直接写出y 与x 的函数关系式;(2)在超市对该种商品投入不超过5000元的情况下,使得一周销售利润达到8000元,销售单价应定为多少?22.(10分)如图,在平行四边形A B C D 中,A D >A B .(1)作∠B A D 的平分线交B C 于点E (要求:尺规作图,保留作图痕迹,不写作法,要下结论); (2)在A D 边上截取A F =A B ,连接EF ,若A B =3,∠B =60°,求四边形A B EF 的面积.23.(10分)如图,直线y=x+B 与双曲线y=k(x>0)的交点为A (1,A ),与x轴的交点为B (﹣1,0),点C 为双曲x(x>0)上的一点.线y=kx(1)求A 的值及反比例函数的表达式;(2)如图1,当OC ∥A B 时,求△A OC 的面积;(3)如图2,当∠A OC =45°时,求点C 的坐标.24.(12分)如图①,已知⊙O是△A B C 的外接圆,∠A B C =∠A C B =α(45°<α<90°,D 为AB上一点,连接C D 交A B 于点E.(1)连接B D ,若∠C D B =40°,求α的大小;(2)如图②,若点B 恰好是CD中点,求证:C E2=B E•B A ;是否为定值,如(3)如图③,将C D 分别沿B C 、A C 翻折得到C M、C N,连接MN,若C D 为直径,请问A BMN 果是,请求出这个值,如果不是,请说明理由.25.(12分)在平面直角坐标系中,点A 是抛物线y=﹣1x2+mx+2m+2与y轴的交点,点B 在该抛物线上,该抛2物线A 、B 两点之间的部分(包括A 、B 两点)的图象记为G.设点B 的横坐标为2m﹣1.(1)当m=1时,①当函数y的值随x的增大而增大时,自变量x的取值范围为.②求图象G最高点的坐标.(2)当m<0时,若图象G与x轴只有一个交点,求m的取值范围.(3)设图象G最高点与最低点的纵坐标之差为h,求h与m之间对应的函数关系式.参考答案一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的.1.与15为倒数的数为()A .﹣15B .15C .5D .﹣5【答案】C【解答】解:与15为倒数的数为:5.故选:C .2.下列垃圾分类的标志中,既是轴对称又是中心对称图形的是()A .B .C .D .【答案】A【解答】解:A 、既是中心对称图形,又是轴对称图形,故本选项符合题意;B 、既不是中心对称图形,也不是轴对称图形,故本选项不合题意;C 、既不是中心对称图形,也不是轴对称图形,故本选项不合题意;D 、是中心对称图形,不是轴对称图形,故本选项不合题意.故选:A .3.下列计算正确的是()A .√2+√3=√5B .√4×2=2√2C .√6+2=√3D .3√2﹣√2=3【答案】B【解答】解:A 、√2+√3,无法计算,故此选项错误;B 、√4×2=2√2,故此选项正确;C 、√6+2,无法计算,故此选项错误;D 、3√2﹣√2=2√2,故此选项错误;故选:B .4.2019新型冠状病毒(2019﹣nC oV),科学家借助电子显微镜发现该病毒的大小约为0.000000125米.则数据0.000000125用科学记数法表示正确的是()A .1.25×107B .1.25×10﹣7C .1.25×108D .1.25×10﹣8【答案】B【解答】解:0.000000125=1.25×10﹣7,故选:B .5.下列图形中,不是正方体表面展开图的是()A .B .C .D .【答案】C【解答】解:根据正方体的展开图的11种情况可得,C 选项中的图形不是它的展开图.故选:C .6.如图,在Rt△A B C 中,∠C =90°,A B =4,A C =3,则sin B =()A .35B .45C .34D .√74【答案】C【解答】解:∵在Rt △A B C 中,∠C =90°,A B =4,A C =3, ∴sin B =,故选:C .7.《九章算术》中的算筹图是竖排的,为看图方便我们把它改为横排,如图1,图2所示,图中各行从左到右列出的算筹数分别表示未知数x ,y 的系数与相应的常数项.图1表示的算筹图用我们现在所熟悉的方程组形式表述出来为{2x +y =11,4x +3y =27.类似地,图2所示的算筹图我们可以表述为( )A .{3x +2y =14x +4y =23B .{3x +y =122x +4y =43C .{3x +2y =19x +4y =23D .{3x +y =192x +4y =23【答案】C【解答】解:图2所示的算筹图我们可以表述为:{3x +2y =19x +4y =23.故选:C .8.在同一坐标系中,若直线y =﹣x +B 与直线y =kx ﹣4的交点在第一象限,则下列关于k 、B 的判断正确的是( ) A .k <0,B <0 B .k <0,B >0C .k >0,B <0D .k >0,B >0【答案】D【解答】解:此题可通过观察图象求解,如图所示,(1)y =﹣x 只有向上平移时,图象才会经过第一象限,即B >0;(2)y =kx ﹣4(k ≠0),①k <0时,图象不经过第一象限,不合题意,②k >0时,图象经过第一象限,和y =﹣x +B 的交点在第一象限,符合题意.故选:D .9.如图,四边形A B C D 内接于⊙O ,⊙O 的半径为1,A B =√2,C B =√3,则∠A D C 的度数是()A .100°B .105°C .110°D .120°【答案】B【解答】解:过O 分别作OE ⊥A B 于E ,OF ⊥B C 于F ,连接OB ,则A E =B E =12A B =√22,B F =C F =12B C =√32,OB =1∴C os ∠OB E =OE OB =√32,C os ∠OB F =√32,∴∠OB E =45°,∠OB F =30°,∴∠A B C =∠OB E +∠OB F =75°,∵四边形A B C D 内接于⊙O ,∴∠A D C +∠A B C =180°,∴∠A D C =180°﹣75°=105°,故选:B .10.已知非负数A ,B ,C 满足A +B =2,C ﹣3A =4,设S=A 2+B +C 的最大值为m,最小值为n,则m﹣n的值为()A .9B .8C .1D .103【答案】B【解答】解:∵A +B =2,C ﹣3A =4,∴B =2﹣A ,C =3A +4,∵B ,C 都是非负数,∴{2−A ≥0①3A +4≥0②,解不等式①得,A ≤2,解不等式②得,A ≥﹣43,∴﹣43≤A ≤2,又∵A 是非负数,∴0≤A ≤2,S=A 2+B +C =A 2+(2﹣A )+3A +4, =A 2+2A +6,∴对称轴为直线A =﹣22×1=﹣1, ∴A =0时,最小值n=6,A =2时,最大值m=22+2×2+6=14, ∴m﹣n=14﹣6=8.故选:B .二、填空题(每小题3分,共18分)11.若式子在实数范围内有意义,则x的取值范围是.√x−1【答案】x>1【解答】解:根据题意得:x﹣1>0,解得:x>1,故答案为:x>1.12.因式分解:y3﹣4y2+4y=.【答案】y(y﹣2)2【解答】解:原式=y(y2﹣4y+4)=y(y﹣2)2.故答案为:y(y﹣2)2.13.如图,A B ∥C D ,∠A B E=146°,FE⊥C D 于E,则∠FEB 的度数是度.【答案】56【解答】解:∵A B ∥C D ,∴∠A B E+∠B EC =180°,∵∠A B E=146°,∴∠B EC =180°﹣146°=34°,∵FE⊥C D ,∴∠C EF=90°,∴∠FEB =∠C EF﹣∠B EC =90°﹣34°=56°.故答案为:56.14.关于x的一元二次方程x2+4x﹣3A =0有实数根,则A 的取值范围是.【答案】A ≥﹣43【解答】解:∵关于x的一元二次方程x2+4x﹣3A =0有实数根,∴△≥0,即42﹣4×(﹣3A )≥0,.解得A ≥﹣43故答案为:A ≥﹣4.315.在一个不透明的袋子中放有m个球,其中有6个红球,这些球除颜色外完全相同.若每次把球充分搅匀后,任意摸出一球记下颜色后再放回袋子,通过大量重复试验后,发现摸到红球的频率稳定在0.3左右,则m的值约为.【答案】20【解答】解:根据题意得6=0.3,m解得:m=20,经检验:m=20是分式方程的解,故答案为:20.16.如图,在正方形A B C D 中,O是对角线A C 与B D 的交点,M是B C 边上的动点(点M不与B ,C 重合),C N⊥D M,C N与A B 交于点N,连接OM,ON,MN.下列五个结论:①△C NB ≌△D MC ;②△C ON≌△D OM;③△OMN∽△OA D ;④A N2+C M2=MN2;⑤若A B =2,则S△OMN的最小值是1,其中正确结论有.【答案】①②③④【解答】解:在正方形A B C D 中,C D =B C ,∠B C D =90°,∴∠B C N +∠D C N =90°,又∵C N ⊥D M ,∴∠C D M +∠D C N =90°,∴∠B C N =∠C D M ,又∵∠C B N =∠D C M =90°,∴△C NB ≌△D MC (A SA ),故①正确;∵△C NB ≌△D MC ,∴C M =B N ,又∵∠OC M =∠OB N =45°,OC =OB ,∴△OC M ≌△OB N (SA S ),∴OM =ON ,∠C OM =∠B ON ,∴∠D OC +∠C OM =∠C OB +∠B PN ,即∠D OM =∠C ON ,又∵D O =C O ,∴△C ON ≌△D OM (SA S ),故②正确;∵∠B ON +∠B OM =∠C OM +∠B OM =90°,∴∠MON =90°,即△MON 是等腰直角三角形,又∵△A OD 是等腰直角三角形,∴△OMN ∽△OA D ,故③正确;∵A B =B C ,C M =B N ,∴B M =A N ,又∵Rt △B MN 中,B M 2+B N 2=MN 2,∴A N 2+C M 2=MN 2,故④正确;∵△OC M ≌△OB N ,∴四边形B MON 的面积=△B OC 的面积=1,即四边形B MON 的面积是定值1,∴当△MNB 的面积最大时,△MNO 的面积最小,设B N =x =C M ,则B M =2﹣x ,∴△MNB 的面积=12x (2﹣x )=﹣12x 2+x ,∴当x =1时,△MNB 的面积有最大值12,此时S △OMN 的最小值是1﹣12=12,故⑤错误,故答案为①②③④.三、解答题(本大题共9个小题,满分72分)17.(4分)计算:(-2021)0+√16-|-2|×2×2-2.【解答】解:原式=1+4﹣2×14=1+4﹣12 =92.18.(4分)已知:如图,Rt △A B C 中,∠C =90°,M 是A B 的中点,A N =12A B ,A N ∥C M . 求证:MN =A C .【解答】证明:在Rt △A B C 中,∠C =90°,∵M 是A B 的中点,∴C M =12A B , ∵A N =12A B ,∴C M =A N ,∵A N ∥C M ,∴四边形A C MN 是平行四边形.∴MN =A C .19.(6分)先化简(1﹣x x−1)÷x 2−4x+4x 2−1,再从不等式x ﹣1≤2的正整数解中选一个适当的数代入求值.【解答】解:原式=x−1−x x−1·(x+1)(x−1)(x−2)2 =−1x−1·(x+1)(x−1)(x−2)2 =﹣x+1(x−2)2,∵x ﹣1≤2,且x≠1,2,∴x ≤3,把x =3代入上式得,原式=﹣x+1(x−2)2=3+112=-4.20.(6分)某学校对试卷讲评课中学生参与的深度和广度进行评价调查,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名学生的参与情况,绘制了如图两幅不完整的统计图,请根据图中所给信思解答下列问题:(1)在这次评价中,一共抽查了____名学生;(2)讲解题目组所在扇形的圆心角的大小是_____;(3)如果全市有12000名初中学生,那么在试卷讲评课中,“独立思考”的学生约有多少人?【解答】解:(1)在这次评价中,共抽查的学生有:224÷40%=560(名).故答案为:560;(2)选择“讲解题目”的人数为:560-84-168-224=84(人),讲解题目组所在扇形的圆心角的大小是:360°×84560=54°.故答案为:54°;(3)168560×12000=3600(人),答:在试卷讲评课中,“独立思考”的学生约有3600人.21.(8分)某超市经销一种销售成本为每件20元的商品,据市场调查分析,如果按每件30元销售,一周能售出500件,若销售单价每涨1元,每周销售量就减少10件.设销售单价为每件x元(x≥30),一周的销售量为y 件.(1)直接写出y与x的函数关系式;(2)在超市对该种商品投入不超过5000元的情况下,使得一周销售利润达到8000元,销售单价应定为多少?【解答】(1)依题意得:y=500-10(x-30)=-10x+800(x≥30).(2)依题意得:(x-20)(-10x+800)=8000,整理得:x2-100x+2400=0,解得:x1=40,x2=60.当x=40时,20(-10x+800)=8000(元),8000>5000,不合题意,舍去;当x=60时,20(-10x+800)=4000(元),4000<5000,符合题意.答:销售单价应定为60元.22.(10分)如图,在平行四边形A B C D 中,A D >A B .(1)作∠B A D 的平分线交B C 于点E(要求:尺规作图,保留作图痕迹,不写作法,要下结论);(2)在A D 边上截取A F=A B ,连接EF,若A B =3,∠B =60°,求四边形A B EF的面积.【解答】解:(1)如图,A E即为所求;(2)在平行四边形A B C D 中,A D ∥B C ,∴∠D A E=∠A EB ,由(1)知:A E平分∠B A D ,∴∠D A E=∠B A E,∴∠A EB =∠B A E,∴A B =EB ,∵A B =A F,∴A F =B E ,∴A F ∥B E ,∴四边形A B EF 是平行四边形,∵A B =A F ,∴▱A B EF 是菱形,作A H ⊥B E 于点H ,∵A B =B E =3,∠B =60°,∴A H =3√32, ∴四边形A B EF 的面积为:B E ×A H =3×3√32=9√32.23.(10分)如图,直线y =x +B 与双曲线y =k x (x >0)的交点为A (1,A ),与x 轴的交点为B (﹣1,0),点C 为双曲线y =k x (x >0)上的一点.(1)求A 的值及反比例函数的表达式;(2)如图1,当OC ∥A B 时,求△A OC 的面积;(3)如图2,当∠A OC =45°时,求点C 的坐标.【解答】解:(1)∵直线A B 过点B (﹣1,0),∴﹣1+B =0,解得:B =1,∴直线A B 的表达式为y =x +1.∵点A (1,A )在直线A B 上,∴A =1+1=2,∴点A 的坐标为(1,2).又∵双曲线y =k x (x >0)过点A (1,2),∴k =1×2=2,∴反比例函数的表达式为y =2x (x >0). (2)在图1中,过点C 作C D ⊥x 轴于点D ,过点O 作OE ⊥A B 于点E ,设直线A B 与y 轴交于点M . ∵直线A B 的表达式为y =x +1,OC ∥A B ,∴直线OC 的表达式为y =x .联立两函数表达式成方程组,{y =x y =2x,解得:{x =√2y =√2或{x =−√2y =−√2(不合题意,舍去), ∴点C 的坐标为(√2,√2),∴OD =C D =√2,∴OC =√OD 2+C D 2=2.当x =0时,y =0+1=1,∴点M 的坐标为(0,1),∴OM =OB =1,∴△B OM 为等腰直角三角形,∴OE =12B M =12√OB 2+OM 2=√22, ∴S △A OC =12OC •OE =12×2×√22=√22.(3)在图1中,过点A 作A F ⊥x 轴于点F ,则B F =1﹣(﹣1)=2,A F =2,∴A B =√B F 2+A F 2=2√2,∴A E =A B ﹣B E =2√2﹣√22=3√22, ∴tA n ∠OA E =OE A E =13.∵OB =OM ,∠B OM =90°,∴∠A B O =45°.在图2中,过点C 作C N ⊥x 轴于点N .∵∠A ON =∠A B O +∠B A O ,∠A OC =∠A B O =45°,∠A ON =∠A OC +∠C ON ,∴∠C ON =∠B A O ,∴tA n ∠C ON =13.设点C 的坐标为(m,1m),3∵点C 在反比例函数y=2(x>0)的图象上,x∴m×1m=2,3∴m=√6或m=﹣√6(舍去),).∴点C 的坐标为(√6,√6324.(12分)如图①,已知⊙O是△A B C 的外接圆,∠A B C =∠A C B =α(45°<α<90°,D 上一点,连接C D 交A B 于点E.(1)连接B D ,若∠C D B =40°,求α的大小;(2)如图②,若点B 中点,求证:C E2=B E•B A ;(3)如图③,将C D 分别沿B C 、A C 翻折得到C M、C N,连接MN,若C D 为直径,请问A B是否为定值,如MN 果是,请求出这个值,如果不是,请说明理由.【解答】解:(1)∵=,∴∠C A B =∠C D B =40°,∵∠A B C +∠A C B +∠C A B =180°,∠A B C =∠A C B =α,∴α=12×(180°−40°)=70°;(2)证明:∵点B 的中点,∴=,∴∠D C B =∠A ,∵∠A B C =∠C B E,∴△B C E∽△B A C ,∴B CB A =B EB C,∴B C 2=B E•B A ,∵∠A C B =∠A C D +∠B C D ,∠B EC =∠A C D +∠A ,∠B C D =∠A ,∴∠A B C =∠A C B =∠B EC ,∴C B =C E,∴C E2=B E•B A ;(3)是定值.∵将C D 分别沿B C 、A C 翻折得到C M、C N,∴∠D C N=2∠D C A ,∠D C M=2∠D C B ,C N=C D =C M=2r,∴∠MC N=2∠A C B =2α,过点C 作C Q⊥MN于点Q,则MN=2NQ,∠NC Q=12∠MC N=α,∠C QN=90°,连接A O并延长交⊙O于点P,连接B P,则∠A B P=90°,,∴∠P=∠A C B =∠NC Q=α,∵A P=C N,∠A B P=90°=∠NQC ,∴△A B P ≌△NQC (A A S ),∴A B =NQ =12MN ,∴A B MN =12,A B MN 为定值.25.(12分)在平面直角坐标系中,点A 是抛物线y =﹣12x 2+mx +2m +2与y 轴的交点,点B 在该抛物线上,该抛物线A 、B 两点之间的部分(包括A 、B 两点)的图象记为G .设点B 的横坐标为2m ﹣1.(1)当m =1时,①当函数y 的值随x 的增大而增大时,自变量x 的取值范围为 .②求图象G 最高点的坐标.(2)当m <0时,若图象G 与x 轴只有一个交点,求m 的取值范围.(3)设图象G 最高点与最低点的纵坐标之差为h ,求h 与m 之间对应的函数关系式.【解答】解:(1)①当m =1时,抛物线的表达式为y =﹣12x 2+x +2, ∵-12<0,故抛物线开口向下,当函数y 的值随x 的增大而增大时,则图象在对称轴的左侧,即x ≤1,故答案为x ≤1;②函数的对称轴为x =1,当x =1时,y =﹣12x 2+x +2=92, 即点G 的坐标为(1,92);(2)当x =2m ﹣1时,y =﹣12x 2+mx +2m +2=3m +32,则点B 的坐标为(2m ﹣1,3m +32), 同理,点A 的坐标为(0,2m +2),∵m <0,则y B ﹣y A =3m +32﹣2m ﹣2=m ﹣12<0,即点A 在点B 的上方,故当y A >0且y B ≤0时,符合题意,即2m +2>0且3m +32≤0, 解得﹣1<m ≤﹣12;(3)设抛物线的顶点为H ,则点H (m ,12m 2+2m +2),由抛物线的表达式知,点A 、B 的坐标分别为(0,2m +2)、(2m ﹣1,3m +32), ①当m ≤0时,由(2)知,y B <y A ,而y H ﹣y A =12m 2+2m +2﹣2m ﹣2≥0,故图象G 的H 点和B 点分别是最高和最低点,则h =y H ﹣y B =12m 2+2m +2﹣3m ﹣32=12m 2﹣m +12;②当0<m ≤12时,此时点A 、B 分别是G 的最高和最低点,则h =y A ﹣y B =(2m +2)﹣(3m +32)=﹣m +12;③当12<m ≤1时,此时点B 、A 分别是G 的最高和最低点,则h =y B ﹣y A =m ﹣12;④当m >1时,此时点H 、A 分别是G 的最高和最低点,则h =y H ﹣y A =12m 2;∴h ={12m 2−m +12(m ≤0)−m +12(0<m ≤12)m −12(12<m ≤1)12m 2(m >1)。
广东省深圳市中考试卷数学试卷第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.6的相反数是( )A .6-B .16-C .16D .6 2.260000000用科学计数法表示为( )A .90.2610⨯B .82.610⨯C .92.610⨯D .72610⨯3.图中立体图形的主视图是( )A .B .C .D .4.观察下列图形,是中心对称图形的是( )A .B . C.D .5.下列数据:75,80,85,85,85,则这组数据的众数和极差是( )A .85,10B .85,5 C.80,85 D .80,106.下列运算正确的是( )A .236a a a =gB .32a a a -= C. 842a a a ÷= D =7.把函数y x -向上平移3个单位,下列在该平移后的直线上的点是( )A .()2,2B .()2,3 C.()2,4 D .(2,5)8.如图,直线,a b 被,c d 所截,且//a b ,则下列结论中正确的是( )A .12∠=∠=B .34∠==∠ C.24180∠+∠=o D .14180∠+∠=o9.某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有x 个,小房间有y 个.下列方程正确的是( )A .7086480x y x y +=⎧⎨+=⎩B .7068480x y x y +=⎧⎨+=⎩ C. 4806870x y x y +=⎧⎨+=⎩ D .4808670x y x y +=⎧⎨+=⎩10.如图,一把直尺,60︒的直角三角板和光盘如图摆放,A 为60︒角与直尺交点,3AB =,则光盘的直径是( )A .3B .6 D .11.二次函数2(0)y ax bx c a =++≠的图像如图所示,下列结论正确是( )A .0abc >B .20a b +< C.30a c +< D .230ax bx c ++-=有两个不相等的实数根12.如图,A B 、是函数12y x=上两点,P 为一动点,作//PB y 轴,//PA x 轴,下列说法正确的是( )①AOP BOP ∆≅∆;②AOP BOP S S ∆∆=;③若OA OB =,则OP 平分AOB ∠;④若4BOP S ∆=,则16ABP S ∆=A .①③B .②③ C.②④ D .③④第Ⅱ卷(共90分)二、填空题(每题3分,满分12分,将答案填在答题纸上)13.分解因式:29a -=.14.一个正六面体的骰子投掷一次得到正面向上的数字为奇数的概率:.15.如图,四边形ABCD 是正方体,CEA ∠和ABF ∠都是直角且点,,E A B 三点共线,4AB =,则阴影部分的面积是.16.在Rt ABC ∆中,90?C ∠=,AD 平分CAB ∠,AD BE 、相交于点F ,且4,AF EF ==则AC =.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.计算:-1012sin )2π⎛⎫- ⎪⎝⎭. 18.先化简,再求值:2221111x x x x x ++⎛⎫-+ ⎪--⎝⎭,其中2x =. 19.某学校为调查学生的兴趣爱好,抽查了部分学生,并制作了如下表格与条形统计图:请根据上图完成下面题目:(1)总人数为__________人,a =__________,b =__________.(2)请你补全条形统计图.(3)若全校有600人,请你估算一下全校喜欢艺术类学生的人数有多少?20.已知菱形的一个角与三角形的一个角重合,然后它的对角顶点在这个重合角的对边上,这个菱形称为这个三角形的亲密菱形,如图,在CFE ∆中,6,12CF CE ==,45?FCE ∠=,以点C 为圆心,以任意长为半径作AD ,再分别以点A 和点D 为圆心,大于12AD 长为半径做弧,交EF 于点,//B AB CD . (1)求证:四边形ACDB 为FEC ∆的亲密菱形;(2)求四边形ACDB 的面积.21.某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贯2元.(1)第一批饮料进货单价多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?22.如图在O e 中,2,BC AB AC ==,点D 为AC 上的动点,且cos B =. (1)求AB 的长度;(2)求AD AE ⋅的值;(3)过A 点作AH BD ⊥,求证:BH CD DH =+.23.已知顶点为A 抛物线2122y a x ⎛⎫=-- ⎪⎝⎭经过点3,22B ⎛⎫- ⎪⎝⎭,点5,22C ⎛⎫ ⎪⎝⎭. (1)求抛物线的解析式;(2)如图1,直线AB 与x 轴相交于点,M y 轴相交于点E ,抛物线与y 轴相交于点F ,在直线AB 上有一点P ,若OPM MAF ∠=∠,求POE ∆的面积;图1(3)如图2,点Q 是折线A B C --上一点,过点Q 作//QN y 轴,过点E 作//EN x 轴,直线QN 与直线EN 相交于点N ,连接QE ,将QEN ∆沿QE 翻折得到1QEN ∆,若点1N 落在x 轴上,请直接写出Q 点的坐标. 图2广东省深圳市中考试卷数学参考答案一、选择题1-5: ABBDA 6-10:BDBAD 11、12:CB二、填空题13.()()33a a +- 14.1215.8 三、解答题17.318.解:原式21(1)(1)11(1)1x x x x x x x -++-=⋅=-++ 把2x =代入得:原式13=19.解:(1)0.440100÷=(人)251000.25a =÷=,1000.1515b =⨯=(人), (2)如图:(3)6000.1590⨯=(人)20.解:(1)证明:由已知得:AC CD =,AB DB =由已知尺规作图痕迹得:BC 是FCE ∠的角平分线则:ACB DCB ∠=∠又//AB CD QABC DCB ∴∠=∠ACB ABC ∴∠=∠AC AB ∴=又,AC CD AB DB ==QAC CD DB BA ∴===∴四边形ACDB 是菱形ACD ∠Q 与FCE ∆中的FCE ∠重合,它的对角ABD ∠顶点在EF 上 ∴四边形ACDB 为FEC ∆的亲密菱形(2)解:设菱形ACDB 的边长为x可证:EAB FCE ∆∆∽ 则:FA AB FC CE =,即6126x x -= 解得:4x =过A 点作AH CD ⊥于H 点在Rt ACH ∆中,45?ACH ∠=AH ∴==∴四边形ACDB 的面积为:4⨯21.解:(1)设第一批饮料进货单价为x 元,则:1600600032x x ⋅=+ 解得:8x =经检验:8x =是分式方程的解答:第一批饮料进货单价为8元.(2)设销售单价为m 元,则: (8)200(10)6001200m m -⋅+-⋅≥化简得:2(8)6(10)12m m -+-≥解得:11m ≥答:销售单价至少为11元.22.解:(1)作AM BC ⊥,,2AB AC AM BC BC =⊥=Q112BM CM BC ===cos BM B AB ==Q Rt AMB ∆中,1BM =cos 1AB BM B ∴=÷==(2)连接DCAB AC =QACB ABC ∴∠=∠∵四边形ABCD 内接于圆O ,180ADC ABC ∴∠+∠=o ,180ACE ACB ∠+∠=o Q ,ADC ACE ∴∠=∠CAE ∠Q 公共EAC CAD ∴∆∆∽AC AE AD AC∴=2210AD AE AC ∴⋅===.(3)在BD 上取一点N ,使得BN CD =在ABN ∆和ACD ∆中31AB AC BN CD =⎧⎪∠=∠⎨⎪=⎩()ABN ACD SAS ∴∆≅∆AN AD ∴=,AN AD AH BD =⊥QNH HD ∴=,BN CD NH HD ==QBN NH CD HD BH ∴+=+=.23.解:(1)把点3,22B ⎛⎫- ⎪⎝⎭代入2122y a x ⎛⎫=-- ⎪⎝⎭,解得:1a =, ∴抛物线的解析式为:2122y x ⎛⎫=-- ⎪⎝⎭或274y x x =--; (2)设直线AB 解析式为:y kx b =+,代入点,A B 的坐标得: 122322k b k b ⎧-=+⎪⎪⎨⎪=-+⎪⎩,解得:21k b =-⎧⎨=-⎩,∴直线AB 的解析式为:21y x =--, 易求()0,1E ,70,4F ⎛⎫- ⎪⎝⎭,1,02M ⎛⎫- ⎪⎝⎭, 若OPM MAF ∠=∠,则当//OP AF 时,OPE EAE ∆∆∽,14334OP OE FA FE ===, 433OP FA ∴===, 设点(),21P t t --3= 解得1215t =-,223t =-, 由对称性知;当1215t =-时,也满足OPM MAF ∠=∠, 1215t ∴=-,223t =-都满足条件 POE ∆Q 的面积12OE l =⋅,POE ∴∆的面积为115或13.。