当前位置:文档之家› 某啤酒工厂制冷系统设计

某啤酒工厂制冷系统设计

某啤酒工厂制冷系统设计
某啤酒工厂制冷系统设计

某啤酒工厂制冷系统设计

摘要通过啤酒厂设计实例,介绍了啤酒厂生产工艺的制冷要求、制冷站设备选型及制冷系统流程以及冰蓄冷在氨制冷系统里面的

应用。

关键词啤酒工厂制冷站氨制冷冰蓄冷

0引言

随着中国经济的发展,人民生活水平的提高,啤酒作为人民大众最喜爱的饮料之一,啤酒生产也得到了很大发展。在啤酒的生产工艺中,从麦芽冷却、发酵、滤酒到酵母扩培,无一不用到制冷介质。制冷介质的满足生产温度要求以及稳定输送将影响到整个啤酒生产线的正常运行。设计一套配置合理、运行经济稳定的制冷系统在新建啤酒工厂的设计中显得尤为重要。本文叙述的是一个典型的啤酒生产工厂的设计实例,该项目中采用的冰蓄冷系统,对老制冷站房的改造也是可行的。

1工程概况

某啤酒工厂新建年产10万千升(一期5万千升)啤酒工程项目,工艺生产需要-4℃的乙二醇溶液以及2℃~4℃的冰水,满负荷时总需冷量为2000kw,制冷系统应满足非全天使用但在整个啤酒旺季可能经常使用的情况。

2制冷站房设计

制冷站靠近负荷中心糖化车间、发酵罐场设置。氨制冷站属于乙类站房,宜单独设置。制冷站考虑生产线扩容需要,预留压缩机

空调机房设计

第八章 空调机房设计 8. 1 机房位置及技术要求 8.1.1 机房位置的选择与组成 1 .机房的位置选择 离心式、 螺杆式制冷机组的机房按功能分有两类: 一类是为建筑物空调服务的冷冻机房, 提供空调用的低温冷冻水,常采用冷水机组直接供冷或蓄冷槽与制冷机组组合供冷的方法;另一类是为冷藏、 冷冻服务的制冷机房, 常采用螺杆式制冷机组。 冷冻机房位置的合理选择, 对于整个建筑物的合理布局、安全方便地使用是非常重要的。选择机房位置时,应遵循建筑设计防火规范、采暖通风与空气调节设计规范、冷库设计规范等,并应综合考虑下列因素: 1)应与建筑物的总体布局相协调,机房应设在既靠近负荷中心,又能使进出机房的各类管道布置方便的地方。冷藏、冷冻的制冷机房和设备间除了要满足上述要求外,选址时还应避开库区的主要交通干线。 2)由于制冷机房用电功率大,因此机房应靠近变配电房设置,以减少线路压降损失,保证机组正常运行。 3)对于采用不同制冷剂的机房的布置,应符合下列要求: ①卤代烃压缩式制冷装置可布置在民用建筑、生产厂房及辅助建筑物内,但不得直接布置在楼梯间、走廊、和建筑物的出入口处。 ②由于氨制冷剂具有强烈的刺激性、毒性、易燃的危险性,因此氨压缩式制冷装置应布置在隔断开的房间或单独的建筑物内,但不能布置在民用建筑和工业企业辅助建筑物内。 4)单独建造的制冷机房宜布置在全厂厂区夏季主导风的下风向。在动力站区域内,一般应布置在乙炔站、锅炉房、煤气站、堆煤场和散发尘埃的站房的上风向。 5)为保证机组的散热及可靠运行,并创造一个安全、卫生的工作环境,机房位置的选择应使它能具备良好的通风和采光条件,一般应贴邻外墙布置。 6)选择机房位置时.还应考虑到设备运行时的振动和噪声对周围房间和环境的影响,一般不应贴邻办公、会议、卧室等房间布置。 7)采用冷却塔冷却方式的机房,应靠近冷却塔的位置设置,避免粗大的冷却水管占用过多的空间、消耗更多的输送动力。

空调用冷水机组部分负荷性能与空调系统的匹配分析

空调用冷水机组部分负荷性能与空调系统的匹配分析 龚毅 摘要:本文分析研究了反映空调用冷水机组在部分负荷运行时的综合性能相关参数,讨论了不同部分负荷性能冷水机组的能耗评价方法和节能潜力,划分了冷水机组在不同负荷段的部分负荷性能与全负荷性能的关系,指出美国空调与制冷学会标准(ARI-550/590-98)中提出的综合部分负荷性能系数IPLV的技术意义及其变化,提示了制冷系统的设计与运行能耗与空调动态负荷的相关性,给出了空调用冷水机组部分负荷性能与空调系统匹配的基本思路。 关键词:冷水机组部分负荷性能空调系统匹配 在空调工程中,制冷系统的设计、安装和运行对整个空调系统的能耗影响很大。随着我国经济的快速发展,空调的使用日趋广泛,空调面积数量大幅度上升,各类风冷式、水冷式甚至蒸发式的冷水机组已经成为空调用冷源的主力军,冷水机组的能耗也越来越大,采用合理、科学和经济的设计、选型和运行方案,就成为降低冷水机组消耗的关键问题。 空调用冷水机组的全年运行能耗与冷水机组的性能有关,而冷水机组的性能主要包括全负荷性能和部分负荷性能,两者在选择和匹配冷水机组时均起着重要的作用。由于空调系统的冷负荷总是随室外气象参数扰动和室内状态的改变而变化的,在供冷期间空调系统在部分负荷下运行的时间较多,所以冷水机组的实际运行过程中大部分时间都是处于部分负荷运行状态,因此冷水机组部分负荷时的性能对其运行能耗的影响是很大的。研究冷水机组、空调系统的部分负荷特性及其相互之间的匹配关系,对于挖掘空调制冷总能系统的节能潜力无疑是十分重要的。 1冷水机组部分负荷综合性能参数 在规定的名义工况条件下,冷水机组的制冷量与能耗之比称为冷水机组的能效比EER(Energy Efficiency Ratio),它是标志冷水机组能耗的重要指标。在上个世纪的八十年代,节能研究的重点一直集中在如何提高冷水机组的EER。但是,EER所表示的仅仅是名义工况条件下的能耗。随着系统负荷的减少,它会大幅度的下降。例如某机组,在100%负荷(满负荷)时,它的EER是3.0左右的话,当系统调节为40%附近的负荷率时,EER已经降为1.4了。事实上,系统负荷与冷水机组的制冷量完全匹配的情况几乎是没有的。为此,必须考虑冷水机组在各种负荷下综合能耗。季节能效比 SEER(Seasonal Energy Efficiency Rate)和由美国空调与制冷学会标准(ARI—550/590–98)中提出的综合部分负荷性能系数IPLV(Integrate Partial Load Value)来评价不同类型冷水机组在整个空调季节中的综合性能,可以更准确的反映冷水机组的能耗。这里重点分析综合部分负荷性能系数IPLV。 冷水机组的部分负荷性能一般是以名义工况输入功率百分数和名义工况制冷量的百分数来表示。一般来说,冷水机组的部分负荷性能大致可以有在整个负荷段冷水机组的全负荷性能好于、差于部分负荷性能和部分负荷段好于、部分负荷段差于部分负荷性能这三种情况。由于冷水机组的实际运行情况(串、并联台数;负荷调节方法;地理位置和建筑特点;室内外参数条件和机组运行方案)是有较大差异的,难以准确作出冷水机组的负荷特性曲线,需要寻求一个能描述不同类型冷水机组共同的部分负荷性能评价指标。综合部分负荷性能系数的概念是最早于1986年首先提出来的,后来经过多次修改完善,形成了美国空调与制冷学会ARI550-92《离心式和回转式螺杆式冷水机组》以及ARI590-92《容积式冷水机组》两个标准中规定的综合部分负荷性能系数IPLV(Integrate Partial Load Value),在部分负荷下求得制冷性能系数,再按加权系数公式计算出冷水机组部分负荷性能值,主要反映冷水机组的部分负荷调节功能。这一方程是对于提供冷水机组平均负荷性能的一种进展,使得这一指标能够准确地描述在一个标准年周期内冷水机组运转的实际过程,这样就可以通过扩展的计算机数据分析

制冷系统设计步骤

制冷系统设计步骤

一、设计任务和已知条件 根据要求,在武汉地区,以风机盘管为末端装置,冷冻水温度为7℃,空调回水温度为11℃,总制冷量为400KW,冷却水系统选用冷却塔使用循环水。 二、制冷压缩机型号及台数的确定 1、确定制冷系统的总制冷量 制冷系统的总制冷量,应该包括用户实际所需要的制冷量,以及制冷系统本身和供冷系统冷损失,可按下式计算: 式中——制冷系统的总制冷量(KW) ——用户实际所需要的制冷量(KW) A——冷损失附加系数。 一般对于间接供冷系统,当空调制冷量小于174KW时,A=0.15~0. 20;当空调制冷量为174~1744KW时,A=0.10~0.15;当空调制冷量大于1744KW时,A=0.05~0.07;对于直接供冷系统,A=0.05~0. 07。 2、确定制冷剂种类和系统形式

根据设计的要求,选用氨为制冷剂而且采用间接供冷方式。 3、确定制冷系统设计工况 确定制冷系统的设计工况主要指确定蒸发温度、冷凝温度、压缩机吸气温度和过冷温度等工作参数。有关主要工作参数的确定参考《制冷工程设计手册》进行计算。 确定冷凝温度时,冷凝器冷却水进、出水温度应根据冷却水的使用情况来确定。 ①、冷凝温度()的确定 从《制冷工程设计手册》中查到武汉地区夏季室外平均每年不保证50h的湿球温度(℃) ℃ 对于使用冷却水塔的循环水系统,冷却水进水温度按下式计算: ℃ 式中——冷却水进冷凝器温度(℃); ——当地夏季室外平均每年不保证50h的湿球温度(℃); ——安全值,对于机械通风冷却塔,=2~4℃。

冷却水出冷凝器的温度(℃),与冷却水进冷凝器的温度及冷凝器的形式有关。 按下式确定: 选用立式壳管式冷凝器=+(2~4)=31.2+3=34.2℃ 注意:一般不超过35℃。 系统以水为冷却介质,其传热温差取4~6℃,则冷凝温度为 ℃ 式中——冷凝温度(℃)。 ②、蒸发温度()的确定 蒸发温度是制冷剂液体在蒸发器中汽化时的温度。蒸发温度的高低取决于被冷却物体的温度及传热温差,而传热温差与所采用的载冷剂(冷媒)有关。 系统以水为载冷剂,其传热温差为℃,即 ℃ 式中——载冷剂的温度(℃)。 一般对于冷却淡水和盐水的蒸发器,其传热温差取=5℃。

空调系统匹配

空调系统匹配 一、制冷基本原理 1、定义 制冷:从低于环境的物体中吸取热量,并将其转移给环境介质的过程。 制冷机:完成制冷循环所必需的机器和设备的总称。 制冷装置:将制冷机同使用冷量的设施结合在一起的装置。如冰箱,空调机等。 制冷剂:除半导体制冷以外,制冷机都是依靠内部循环流动的工作介质来实现制冷过程,完成这种功能的工作介质,称为制冷剂,也称制冷工质,俗称雪种。 2、制冷的基本原理 由于热量只能自动地从高温物体传给低温物体,因此实现制冷必须包括消耗能量的补偿过程。制冷机的基本原理:利用某种工质的状态变化,从较低温度的热源吸取一定的热量Q0,通过一个消耗功W的补偿过程,向较高温度的热源放出热量Qk,。在这一过程中,由能量守恒得 Qk= Q0 + W。 3、制冷的基本方法 相变制冷:利用液体在低温下的蒸发过程或固体在低温下的熔化或升华过程向被冷却物体吸取热量。普通空调器都是这种制冷方法。 气体膨胀制冷:高压气体经绝热膨胀后可达到较低的温度,令低压气体复热即可制冷。 气体涡流制冷:高压气体经过涡流管膨胀后即可分离为热、冷两股气流,利用冷气流的复热过程即可制冷。 热电制冷:令直流电通过半导体热电堆,即可在一端产生冷效应,在另一端产生热效应。4、单级压缩蒸气制冷循环 蒸气压缩式制冷机是目前应用最广泛的一种制冷机,有单级、多级和复叠式之分。 单级压缩蒸气制冷机是指将制冷剂经过一级压缩从蒸发压力压缩到冷凝压力的制冷机。单级制冷机一般可用来制取-40℃以上的低温。 普通的空调器都是利用单级压缩蒸气制冷机的原理制造的。 单级压缩蒸气制冷机的由以下几个基本组成部份: 压缩机 冷凝器 节流机构(毛细管) 蒸发器 制冷剂

冷库制冷系统的概述

冷库制冷系统的概述 利用外界能量使热量从温度较低的物质(或环境)转移到温度较高的物质(或环境)的系统叫制冷系统。 制冷系统可分为蒸气制冷系统、空气制冷系统和热电制冷系统。其中蒸气制冷系统又可分为蒸气压缩式、蒸气吸收式和蒸气喷射式等多种类型。 1.制冷系统方案设计的意义 制冷系统方案设计是设计工作中一个关键的环节,其方案的选用直接关系到制冷装置建造费用、操作管理的方便程度、机器设备的先进性及经常运转费用的高低等。因此,在选择、确定方案时,应从先进性、实用性、经济发展诸方面考虑,因地制宜地选出合适的设计方案。 2.制冷系统方案设计的依据 1)制冷装置服务对象,如冷库、空调、工艺用水等。 2)建设规模和投资限额。 3)生产工艺要求。 4)当地水文气象条件,如冷却水温、水量、水质等。 5)制冷装置所处环境。 3.制冷系统方案设计原则 1)满足生产工艺要求。 2)尽量选用新工艺、新技术、新设备。 3)制冷系统在运行安全可靠的前提下尽量简单,操作管理方便。 4)投资合理,不仅要考虑一次投资和经常运转费用,还要考虑到技术、经济及发展问题。 总之,要使所选方案安全可靠、方便灵活、技术先进、经济合理。 4.蒸气压缩制冷系统的基本构成 (1)单级压缩系统的基本构成由制冷原理可知,压缩机、冷凝器、节流阀、蒸发器是构成压缩式制冷系统必不可少的四大部件,把它们依次用管道连接起来,就形成了一个最基本的单级压缩系统。制冷剂在系统中经过压缩、冷凝、节流,蒸发四个过程,即可完成一个制冷循环。 (2)双级压缩系统的基本构成。双级压缩由低压级压缩机(低压缸)、高压级压缩机(高压缸)、中间冷却器、冷凝器、节流阀、蒸发器组成的双级压缩系统的基本构成。其循环是:低压级压缩机由蒸发器吸入低压蒸气,压缩至中间冷却器,在中间冷却器内被冷却,再由高压级压缩机吸入并升压至冷凝压力送入冷凝器,在冷凝器中被冷凝成液体,再经节流阀供至蒸发器吸热蒸发,如此循环。中间冷却器内的冷源是由高压液体经节流后提供。 (3)综合系统的基本构成实际制冷装置中,有单级压缩系统,也有双级压缩系统,还有既有单级也有双级的综合系统。此时的综合系统并不是由两个独立的单、双级系统合并而成,一般情况下,由于单、双级压缩冷凝压力的一致性,实际上综合系统可以看成是单级系统和双级系统共用冷凝器而构成的。 (4)压缩系统的基本构成是制冷系统中比不可少的。但使用中的制冷系统为了提高运行的安全性和改善运行的经济性,增设了诸如贮液器、油分离、气液分离器、排液桶、低压循环桶、液泵、调节站、安全阀等设备和阀件,构成了比基本构成复杂得多的实际制冷系统。 5.蒸气压缩式制冷系统原理图 用管线、阀件图例绘制的,能简单的表示出实际制冷系统中机器、设备、阀件、仪表之间互相关系的图称制冷系统原理图。从制冷系统原理图上可以看出机器、设备的规格、

制冷原理与设备指导书

《制冷原理与设备》实验指导书 郭兆均 主编 二00七年二月 制冷(热泵)循环演示装置 实验指导书 一、实验目的 制冷循环演示装置可为“制冷原理与设备”的专业课程进行演示性实验。通过本实验,让同学们加深对制冷(热泵)循环工作过程的理解,熟悉制冷(热泵)循环演示系统工作原理。并进一步掌握制冷(热泵)循环系统的操作、调节方法,并能进行制冷(热泵)循环系统粗略的热力计算。 这套装置是采用玻璃作换热器的壳体,管路中有透明观察窗,因此,实验过程能让同学们清晰地观察到制冷工质的蒸发、冷凝过程及流后产生的“闪发”气体面形成的二相流,使之了解蒸汽压缩式制冷循环工质状态的变化及循环全过程的基本特征。 二、实验装置简图: 制冷(热泵)循环演示装置原理图 三、实验所用仪表、仪器设备: 1. 转子流量计 2.温度计 3.压力表 4.电压表 5 .电流表 6. 蒸汽压缩式制冷机 四、操作步骤: 1. 制冷循环演示的操作,先将制冷系统中的回通换向阀调至“制冷”位置上,然后打开冷却水阀门,利 用转子流量计上面的阀门作适当调节蒸发器和冷凝器的供水流量,再开启压缩机、观察制冷工质的冷凝及蒸发过程与其现象,待制冷系统运行(约8分钟)稳定后,即可记录制冷压缩机输入电流、电压、冷凝压力、蒸发压力,以及冷凝器及蒸发器的进水温度、出水温度、水流量等有关的参数。 2. 热泵循环演示:把制冷系统中的四通阀调整至“热泵”位置上,再打开冷却水阀门,利用转子流量计 上面的阀门作适当调节蒸发器和冷凝器的供水流量,再开启压缩机、观察制冷工质的冷凝及蒸发过程与其现象,待制冷系统运行(约8分钟)稳定后,即可记录制冷压缩机输入电流、电压、冷凝压力、蒸发压力,以及冷凝器及蒸发器的进水温度、出水温度、水流量等有关的参数。实验结束后,必须先按下停止压缩机的开关,切断压缩机的供给电源,然后再关闭供水阀门。 五、实验数据处理 六、制冷(热泵)循环系统的热力计算 1. 当系统做制冷运行时: 换热器1的制冷量为: 11121()P Q G C t t q =-+g (Kw ) 换热器1的制冷量为: 22342()P Q G C t t q =-+g (Kw ) 热平衡误差为: 1221 () 100%Q Q N Q --?= ?

空调用制冷技术课程设计

目录 目录 (1) 设计任务书 (2) 设计说明书 (3) 一、制冷机组的类型及条件 (3) 二、热力计算 (6) 三、制冷压缩机型号及台数的确定 (7) 四、冷凝器的选择计算 (8) 五、蒸发器的选择计算 (12) 六、冷却水系统的选择 (14) 七、冷冻水系统的选择 (14) 八、管径的确定 (14) 九、其它辅助设备的选择计算 (15) 十、制冷机组与管道的保温 (17) 十一、设备清单 (18) 十二、参考文献 (18)

空调用制冷技术课程设计任务书 一、课程设计题目:本市某空调用制冷机房 二、原始数据 1.制冷系统采用空冷式直接制冷,空调制冷量定为100KW。 2.制冷剂为:氨(R717)。 3.冷却水进出口温度为:28℃/31℃。 4.大连市空调设计干球温度为28.4℃,湿球温度为25℃。 三、设计内容 1.确定设计方案根据制冷剂为:氨(R717)确定制冷系统型式。 2.根据冷冻水、冷却水的要求和条件,确定制冷工况并用压焓图来表示。 3.确定压缩机型号、台数、校核制冷量等参数。 4.根据蒸发温度、冷凝温度选择蒸发器(卧式壳管)冷凝器(水冷或空冷),并做其中一个设备(蒸发器或冷凝器)的传热计算。 5.确定辅助设备并选型 6.编写课程设计说明书。

空调用制冷技术课程设计说明书 一、制冷机组的类型及条件 1、初参数 1)、制冷系统主要提供空调用冷冻水,供水与回水温度为:7℃/12℃,空调制冷量定为100KW 。 2)、制冷剂为:氨(R717)。 3)、冷却水进出口温度为:28℃/31℃。 4)、大连市空调设计干球温度为28.4℃,湿球温度为25℃。 2、确定制冷剂种类和系统形式 根据设计的要求,本制冷系统为100KW 的氨制冷系统,一般用于小型冷库,该制冷机房应设单独机房且远离被制冷建筑物。因为制冷总负荷为100KW,所以可选双螺杆制冷压缩机来满足制冷量要求(空气调节用制冷技术第四版中国建筑工业出版社P48)。冷却水系统选用冷却塔使用循环水,冷凝器使用立式壳管式冷凝器,蒸发器使用强制循环对流直接蒸发式空气冷却器(即末端制冷设备)。 3、确定制冷系统设计工况 确定制冷系统的设计工况主要指确定蒸发温度、冷凝温度、压缩机吸气温度和过冷温度等工作参数。有关主要工作参数的确定参考《制冷工程设计手册》进行计算。 确定冷凝温度时,冷凝器冷却水进、出水温度应根据冷却水的使用情况来确定。 ①、 冷凝温度()的确定 从《制冷工程设计手册》中查到大连地区夏季室外平均每年不保证50h 的湿球温度(℃) C o s 25t 对于使用冷却水塔的循环水系统,冷却水进水温度按下式计算:

空调制冷系统匹配计算书

目录 1 空调制冷系统匹配计算的目的 (3) 2 制冷循环热力计算 (3) 2.1 设计工况的确定 (3) 2.2 各状态点参数的确定 (3) 2.3 制冷剂质量流量和体积流量 (4) 3 压缩机选型校核 (4) 3.1 所需压缩机排量 (4) 3.2 所选压缩机与汽车的动力匹配计算 (4) 3.2.1 汽车行驶速度及传动比 (4) 3.2.2 与汽车的动力匹配计算 (4) 3.3 设计工况下的压缩机性能 (6) 3.4 怠速工况下的制冷量校核 (6) 3.5 压缩机允许最高转速校核 (6) 4 冷凝器能力计算 (6) 5 蒸发器能力计算 (6) 6 送风量的确定 (6)

CP08空调制冷系统匹配计算书 1 空调制冷系统匹配计算的目的 制冷系统匹配计算的目的有三个: a)所选压缩机的能力是否合理; b)压缩机与汽车的动力匹配是否合理; c)确定所需配置多大的冷凝器和蒸发器。 2 制冷循环热力计算 2.1 设计工况的确定 空调系统的工作压焓图如图1所示: 图1 空调系统工作压焓图 冷凝压力P k=1.5MPa(表压);对应的冷凝温度t k=55.2℃; 蒸发压力P0=0.3MPa(表压);对应的蒸发温度t0=0.67℃; 蒸发器过热度S h=10℃;冷凝器过冷度S c=5℃;2.2 各状态点参数的确定 点1(蒸发器出口): 压力P1=0.3MPa;温度t1=10℃; 焓值h1=407kJ/kg;比容v1=0.073m3/kg 点2(压缩机出口): 压力P2=1.5MPa;温度t1≈75℃; 点3(膨胀阀前): 压力P3=1.5MPa;温度t3=55.2-5=50.2℃; 焓值h3=200kJ/kg; 点4(蒸发器进口): 压力P1=0.3MPa;温度t4=0.67℃; 焓值h4=h3=200kJ/kg;

(完整版)制冷原理与设备复习题

a绪论 一、填空: 1、人工制冷温度范围的划分为:环境温度~-153.35为普通冷冻;-153.35℃~-268.92℃为低温冷冻;-268.92℃~接近0k为超低温冷冻。 2、人工制冷的方法包括(相变制冷)(气体绝热膨胀制冷)(气体涡流制冷)(热电制冷)几种。 3、蒸汽制冷包括(单级压缩蒸气制冷)(两级压缩蒸气制冷)(复叠式制冷循环)三种。 二、名词解释:人工制冷;制冷;制冷循环;热泵循环;制冷装置;制冷剂。 1.人工制冷:用人工的方法,利用一定的机器设备,借助于消耗一定的能量不断将热量由低温物体转移给高温物体的连续过程。 2.制冷:从低于环境温度的空间或物体中吸取热量,并将其转移给环境介质的过程称为制冷。 3.制冷循环:制冷剂在制冷系统中所经历的一系列热力过程总称为制冷循环 4.热泵循环:从环境介质中吸收热量,并将其转移给高于环境温度的加热对象的过程。 5.制冷装置:制冷机与消耗能量的设备结合在一起。 6.制冷剂:制冷机使用的工作介质。 三、问答: 制冷原理与设备的主要内容有哪些? 制冷原理的主要内容: 1.从热力学的观点来分析和研究制冷循环的理论和应用; 2.介绍制冷剂、载冷剂及润滑油等的性质及应用。 3.介绍制冷机器、换热器、各种辅助设备的工作原理、结构、作用、型号表示等。 第一章制冷的热力学基础 一、填空: 1、lp-h图上有_压强_、_温度_、_比焓_、__比熵_、_干度_、比体积_六个状态参数。 2、一个最简单的蒸气压缩式制冷循环由_压缩机__、__蒸发器_、_节流阀、_冷凝器___几大件组成。 3、一个最简单的蒸气压缩式制冷循环由_绝热压缩、_等压吸热_、_等压放热_、__绝热节流_几个过程组成。 4、在制冷技术范围内常用的制冷方法有_相变制冷_、__气体绝热膨胀制冷_、_气体涡流制冷_、_热电制冷_几种。 5、气体膨胀有__高压气体经膨胀机膨胀_、_气体经节流阀膨胀_、_绝热放气制冷三种形式。 6、实际气体节流会产生零效应_、热效应_、冷效应_三种效应。制冷是应用气体节流的_冷_效应。理想气体节流后温度_不变_。 二、名词解释: 相变制冷;气体绝热膨胀制冷;气体涡流制冷;热电制冷;制冷系数;热力完善度;热力系数; 洛伦兹循环;逆向卡诺循环; 1.相变制冷:利用液体在低温下的蒸发过程或固体在低温下的融化或升华过程从被冷却的物体吸取热量以制取冷量。 2.气体绝热膨胀制冷:高压气体经绝热膨胀以达到低温,并利用膨胀后的气体在低压下的复热过程来制冷 3.气体涡流制冷:高压气体经涡流管膨胀后即可分离为热、冷两股气流,利用冷气流的复热过程即可制冷。4.热电制冷:令直流电通过半导体热电堆,即可在一段产生冷效应,在另一端产生热效应。 5制冷系数:消耗单位功所获得的制冷量的值,称为制冷系数。ε=q。/w。 6.热力完善度:实际循环的制冷系数与工作于相同温度范围内的逆向卡诺循环的制冷系数之比。其值恒小于1。 7.热力系数:获得的制冷量与消耗的热量之比。用ζ0表示 8.洛仑兹循环:在热源温度变化的条件下,由两个和热源之间无温差的热交换过程及两个等熵过程组成的逆向可逆循环是消耗功最小的循环,即制冷系数最高的循环。 9.逆向卡诺循环:当高温热源和低温热源的温度不变时,具有两个可逆的等温过程和两个可逆的绝热过程组成的逆向循环,称为逆向卡诺循环

关于空调制冷系统设计的优化

关于空调制冷系统设计的优化 发表时间:2018-08-01T09:58:15.197Z 来源:《电力设备》2018年第11期作者:高威林伟雪杨伟基 [导读] 摘要:现代科技的发展,是人们的生活水平有了质的飞跃,人们对生活要求也在不断提高,空调作为保证人们舒适度的重要工具,对其制冷系统设计要求也在不断提高。 (珠海格力电器股份有限公司广东省珠海市 519100) 摘要:现代科技的发展,是人们的生活水平有了质的飞跃,人们对生活要求也在不断提高,空调作为保证人们舒适度的重要工具,对其制冷系统设计要求也在不断提高。空调制冷设计已经不在局限于初始阶段的了解,而是对其系统功能更加深入的设计,为空调制冷系统技术设计提供指导。 关键词:空调;制冷;系统化;优化 前言 随着国内经济建设的发展,空调制冷系统应用场合也不断扩展,大量运用在工业、民用项目中。空调制冷系统的设计有了很大的进步,其应用技术要求也在不断提高。这对广大暖通工程师提出了更高的要求,仅仅局限于对系统或设备的简单了解,并不一定能保证整个制冷系统稳定、高效和安全运转。笔者结合多年的设计、施工安装和后期运行经验,以及同业项目信息的整理归纳,现将空调制冷系统设计和运行中可能会发生的部分问题进行总结分析。 一、室外低温环境下冷却系统运行设计方案 冷却系统是大多数农业与工业项目生产运行的辅助系统,制冷系统在使用过程中具有周期性长,一年四季均可使用,不受气候的影响等特点。而且,制冷系统具有变化波动较小的负荷侧制冷负荷,主要的设备具有耐用性好,不易出现故障,备用性能优良等优点。在冷却系统的设计过程中,设计人员要重点提高其运行效率,减少能源消耗,增强其适应外界环境的能力,提高系统的应急反应系统设置。其中,在冷却系统设计过程中,需要考虑的因素很多,其中重点要考虑的因素是室外低温环境对冷却系统的影响。以东北地区为例,东北地区冬季的气温较低,制冷系统的设置安装主要用于产品的冷藏保鲜。在东北冬季温度下降到零下30摄氏度以下时,制冷系统依然要工作,这就存在一种满负荷情况下运行的状态。但是,在制冷系统进行设计时,并没有针对这种情况进行科学合理的设置,导致空调系统的室外冷却塔在低温环境下出现冰冻现象,设置系统中的冷却水温过低,在冰点之下,严重超出设计计算的范围,制冷系统因冷却塔无法正常工作而进入停止运行状态,系统发出警报。上述这种情况,如果能够在设计上进行科学合理的优化,不仅可以保证制冷系统正常运行,还能够减少能源消耗,提高制冷系统的运行效率。首先,在制冷系统中安装水气换热装置,通过密闭系统实现高效的水气换热,完成冷却载冷剂的工作。一般使用乙二醇水溶液作制冷剂,因为其凝固点较低,所以可以在低温环境下避免冷却塔冰冻。其次,使用高效密闭循环系统,不仅能够及时有效的补充损耗的水,还能够保证水循环系统的清洁,减少因杂质过多而导致的水循环硬化现象发生[1]。当室外温度较低时,乙二醇溶液不会因低温而结冰,可以保证系统管路通畅,保证制冷系统的稳定性与高效性。总而言之,制冷系统的设计与安装要结合实际的工作环境,针对特殊情况进行优化设计,保证空调制冷系统的正常运行,减少生产经营中不必要的经济损失。 二、注重膨胀水箱的计算,方便优化设计 对于空调系统膨胀水箱容积的计算,国内的设计手册给出了两种不同计算方法。将这两种计算方法运用于水冷式冷水系统或供暖系统,夏季冷水温度7℃,冬季热水温度60℃,其计算结果相差不大。但是对于冬冷、夏热区域的长江流域而言,很多项目采用了风冷热泵主机作为冷热源。此时系统管路里的水温最低为7℃(夏季冷水出水温度),最高达到45℃(冬季热水出水温度),两种方法的计算结果则可能偏差较大,下面将具体举例计算。 三、旁通清洗回路的设置 在空调制冷系统设计与安装的相关规定中表明,制冷系统工作过程中,冷却水及冷热水系统要进行冲洗排出污水的工作,排污工作后要进行检测,当检测符合标准后还要进行2小时循环运行,而且要保证系统中水质正常后方可进行正常使用。但是,在实际的设计与安装过程中,一些制冷系统管道与换热器中会出现焊接时掉下的残渣或其他异物,对系统的正常使用造成一定的不良影响。本文作者在研究这类问题时发现,这些水循环系统缺少完善的旁通清洗回路装置,不能够及时有效的进行系统中污物的排出[2]。因此,在优化空调制冷系统设计过程中,要在制冷系统水管前面增加一个旁路清洗回路装置,实现空调系统安装时排出系统内污物,加强系统维护与保养工作,延长空调系统的使用寿命,保证空调的制冷效果。 四、空调制冷系统优化设计 第一,空调制冷系统优化的内容在产品设计的过程中,可以使用很多种方法将其中的参数问题或者是结构上的问题进行解决,但是在生产的过程中最好的也是最能够使用在产品生产中的方案只有一个,就是将这个方案进行确定的过程我们将其优化,一般表现为提高空调的功能效果、降低能耗、减小噪音,对空调的外形进行优化、降低生产成本等方面,这些都是优化设计要考虑的问题,我们可以从这些优化设计的内容中了解到,对空调制冷系统进行优化设计重点在于提高空调设备的运行效率、节能降耗,提升空调企业的经济效益,让企业得到更好的发展。第二,对空调制冷系统进行优化设计的任务通过对空调系统进行优化设计,可以将空调的一些性能、参数进行提升,让空调的性能更加的安全、经济,让空调的市场竞争力得到提升。对空调进行制冷系统优化设计中最重要的是按空调的型号,对整个空调技术参数进行确定,有详细的技术规范,将各个部件的技术指标进行明确。比如说:空调压缩机的型号。空调中的冷凝器、蒸发器,还有一些结构上的参数,比如说,使用的制冷剂的流动方向、传热管的大小,空调叶片的形状、距离等。空调循环风量大小的指标,比如说将空调电机的转速、功率等参数进行优化设计等等。对空调的制冷系统进行优化设计时为了减少资源的浪费,降低空调的能耗,提高资源的利用率。 五、以最大电流值为标准的冷风机组配电容量的设计 目前,我国各种类型的电气设备配电设计过程中,主要根据额定电流来确定设备的最大线径,以额定电流当作电气设备的运行电流。因此,设计与安装人员在完成设计时,电气工程人员只可能得到作为电气设备选择性型号的标准情况下的额定量流量。空调制冷系统中的冷水系统中的所有设备受温度变化的影响较小,实际运行的电流与标准情况下基本相同,系统的供电容量变化也相对较小,这样的情况下不容易产生设备故障。空调制冷系统中的风冷系统与冷水系统相比,其局限性比较大,受外界温度影响较大,随着温度的变化而变化。一般来说,风冷机组虽外界温度升高而耗电量增加,随着温度下降而耗电量降低。当空调制冷机组采用的是空气或冷却水系统时,其运行环

(完整版)汽车空调系统匹配计算

摘要 汽车空调的普及,是提高汽车竞争能力的重要手段之一。随着汽车工业的发展和人们物质生活水平的提高,人们对舒适性,可靠性,安全性的要求愈来愈高。国内近年来,汽车生产厂家越来越多,产量越来越大,大量中高档车需要安装空调。因此,对汽车空调的研究开发特别重要。 本论文针对吉利LG—1空调系统匹配设计,对普通轿车空调系统的设计开发原理和特点进行了比较系统的阐述. 第一章概论 1.1 汽车空调的作用及其发展 汽车工业是我国的支柱产业之一,其发展必然会带动汽车空调产业的发展。汽车空调作为空调技术在汽车上的应用,它能创造车室内热微环境的舒适性,保持车室内空气温度、湿度、流速、洁净度、噪声和余压等在热舒适的标准范围内,不仅有利于保护司乘人员的身心健康,提高其工作效率和生活质量,而且还对增加汽车行始安全性具有积极作用。 就世界上汽车空调技术发展的历史来看,其发展的速度也是惊人的。1927年就诞生了较为简单的汽车空调装置,它只承担冬季向乘员供暖和为挡风玻璃除霜的任务。直到1940年,由美国Packard公司生产出第一台装有制冷机的轿车。1954年才真正将第一台冷暖一体化整体式设备安装在美国Nash牌小汽车上。1964年,在Cadillac轿车中出现了第一台自动控温的汽车空调。1979年,美国和日本共同推出了用微机控制的空调系统,实现了数字显示和最佳控制,标志着汽车空调已进入生产第四代产品的阶段。汽车空调技术发展至今,其功能已日趋完善,能对车室进行制冷,采暖,通风换气,除霜(雾),空气净化等。我国空调产业发长速度虽然较快,但是目前国内车用空调系统生产基本上仍是处于引进技术与开发、研究并举的阶段。 1.2 汽车空调的特点 汽车空调使用的特殊性,决定了它在结构、材料、安装、布置、设计、技术要求等方面与普通空调,如建筑物空调,有着较大的差别: 1)在动力源处理上,车用空调压缩机只能采用开启式的结构型式,这就带来空调系统轴封要求高,制冷剂容易泄漏的问题。 2)作为空调的对象,汽车车室容积狭小,人员密集,其热、湿负荷大,气流分布难以均匀,要求所选配的车用空调机组制冷量要大,能降温迅速。 3)当车用空调装置消耗汽车主发动机的动力时,必须考虑其对汽车动力也操纵性能的影响,也必须考虑车速变化幅度大或变化频繁,给空调系统制冷剂流量控制、制冷量控制、系统设计带来的影响。 4)汽车本身结构非常紧凑,可供安装空调设备觉得空间极为有限,不仅对车用空调装置的外形、体积和质量要求较高,而且对其性能和选型也会带来影响。 5)汽车是运动中的物体,对汽车空调系统各组成部件的振动、噪声、安全、可靠等方面的技术要求严格。6)车用空调装置的结构、外形和布置,必须考虑其对汽车底盘、车身结构件及汽车行驶稳定性、安全性的影响。 第二章课题的目的及现实意义 2.1 课题主要目的 本空调系统的国产化开发是按照浙江吉利轿车的要求进行系统仿制,本着通用性和互换性的原则而进行的。本系统参照于日本威驰轿车空调系统,适用于小型轿车空调系统的研发。 压缩机总成的装配位置与原装系统相同,重新设计压缩机支架及涨紧机构,仍采用V型皮带轮。 风机、干燥器、电磁阀及各部件,位置和型号与威驰轿车原装系统选配相同。 管路走向及固定方式与原装基本相同,对接口尺寸按我公司标准做相应的修改。

二氧化碳在冷库制冷系统的应用讲课稿

C O2在冷库制冷系统的应用 辽宁石油化工大学汤玉鹏一、C O2作为制冷剂的发展历史 在19世纪末至20世纪30年代前,C O2(R744),氨(R717),S O2(R764),氯甲烷(R40)等曾被广泛应用。 1850年,最初是由美国人A l e x a n d e r T w i n i n g提出在蒸汽压缩系统中采用C O2作为制冷剂,并获英国专利[1]。 1867年,T h a d d e u s S C L o w e首次成功使用C O2应用于商业机,获得了英国专利。于1869年制造了一台制冰机。 1882年,C a r l v o n L i n d e为德国埃森的F K r u p p公司设计和开发了采用C O2 作为工质的制冷机。 1884年,WR a y d t设计的C O2压缩制冰系统获得了英国15475号专利。澳大利亚的J Ha r r i s o n设计了一台用于制冷的C O2装置获得了英国1890号专利。 1886年,德国人F r a n z Wi n d h a u s e n设计的C O2压缩机获得了英国专利。英国的J&E Ha l公司收购了该专利,将其改进后于1890年开始投入生产。 19世纪90年代美国开始将C O2应用于制冷。 1897年K r o e s c h e l B r o s锅炉公司在芝加哥成立了分公司,生产C O2压缩机。 1919年前后,C O2制冷压缩机才被广泛应用在舒适性空调中。 1920年,在教堂的空调系统中得到应用。 1925年,干冰循环用于空气调节。 1927年,在办公室的空调系统中得到使用。 1930年,在住宅的空调系统中得到使用,后来又被用于各种商业建筑和公共设施的空调制冷系统。 C O2制冷曾经达到很辉煌的程度。据统计,1900年全世界范围内的356艘船舶中,37%用空气循环制冷机,37%用氨吸收式制冷机,25%使用C O2蒸气压缩式制冷机。发展到1930年,80%的船舶采用C O2制冷机,其余的20%则用氨制冷机。由于当时的技术水平比较差,C O2较低的临界温度(31.1℃)和较高的临界压力(7.37MP a),使得C O2系统的效率较低。加上其冷凝器的冷却介质多采用温度较低的地下水或海水,基本属于亚临界循环。当水温较高时(如热带海洋上行驶的轮船其冷却水的温度可接近30℃),其制冷效率会更加下降。所以C O2制冷技术并没有进一步开发运用于汽车空调、热泵等。

汽车空调系统匹配计算11

吉利LG—1空调系统设计计算 3.1 汽车空调的工作原理 图3.1 汽车空调系统工作原理 1—压缩机 2—排气管 3—冷凝器 4—风扇 5、7——高压液管 6—干燥储液器8—膨胀阀 9—低压液管 10—蒸发 器 11—鼓风机 12—感温包 13—吸气管 3.2对微弛空调系统进行数据采集 本系统为仿制系统,外形尺寸于原装系统基本相当。 散热板及翅片示意图,由于为仿制所以测量尺寸不够精准,所以其各部分数据均需要验算。 1、蒸发器设计 散热板: 宽Wt=58mm,高Ht=2.5mm,铝板厚δt=0.5mm。可得: 内部流道尺 寸 hH=Ht—2δt=1mm Wh=Wt—2δt=57mm 翅片:宽度Wf=58mm,高度Hf=8mm,厚δt=0.1mm。翅片角度αl=36o,间距Lf=2mm。 2、冷凝器设计 冷凝器选用平行流式,散热层多孔扁管和翅片结构尺寸: 翅片宽度16mm,高度8mm,厚度0.135mm,翅片间距1.5mm,百叶窗角度27℃,扁管外壁面高度2mm,宽度16mm,分4个流层,扁管数目依次是14-9-7-5。取迎面风速4.5m/s。

3.其他部分由于本身没采用进口件,而且对于本公司来说主要是选配。所以没有仿制微弛。 空调系统设计计算 3.3 空调系统热负荷计算 1.空调系统冷负荷计算 本系统设计主要是估算冷负荷,以便压缩机的选配和两器的设计,本设计中主要是针对压缩机的选配,我们采用较容易确定的太阳辐射热QS和玻璃渗入热QG,他们的总合占系统的70%。即可得总负荷,为了安全再取k=1.05的修正系数。轿车一般的工况条件: 冷凝温度tc=63°,蒸发温度te=0°, 膨胀阀前制冷剂过冷温度△tsc =5°, 蒸发器出口制冷剂气体过热度△tsh=5,压缩机吸气温度ts=10°, 室外温度ti=35°, 室内温度t0=27°,轿车正常行驶速度ve=40km/h ,压缩机正常转速n=1800r/min. 太阳辐射热的确定 故而,机组制冷量取Q0=4000W。即可 压缩机的选配 大部分汽车空调压缩机由发动机驱动,压缩机的转速与发动机呈一定的比例,在很大的范围内同步变化,再加上其固定是通过支架与发动机刚性的连接,工作条件非常的差,因此对汽车空调压缩机有比家用空调压缩机更高的要求。

制冷系统设计经验

近期论坛高质量文章不多,人气下降明显,版主积极性明显下降。本人正在进行硕士毕设论文阶段, 目前随着写作的进展,特分享一些里面的经验内容供各位看官评论,希望能尽一份力,为我们的论坛。由于之后本人不再从事本行业,7年来本人经验由论坛来,如今经过思索提炼正在草拟论文,想尽量 把相关精彩之处都借助论文这个方式写出来,写到精彩之处不由得想与论坛各位坛友分享。 (1)知识和经验二者之间的关系。本人毕业后从事制冷设计工作7年,校内时书本上学的各个关键理论好比一个个知识点,而实践经验相当于线。随着毕业后时间的推移,往往各个知 识点会逐渐遗忘,相信记忆再好的人,如果毕业2年内不搞相关工作,最后也仅剩下印象, 甚至忘的精光,因为没有实践经验支撑的理论早晚是会被遗忘的。而随着相关工作的进行, 在实践中,你会发现在研发设计,试验甚至失败中印证了课本上所学的一个个内容,于是 重新捡起来,回归课本、经过思考,才能真正被消化。久而久之,各个关键参数和公式算 法通过实践这条线连成串,经过自己大脑的联想、列举、归纳又横向交织成网,相互验证, 也就形成自己的一套理论体系,很难遗忘了。 (2)(2)蒸发、冷凝温度的确定。有很多人在论坛上问过我蒸发温度和冷凝温度是如何限定的,与环温的关系又是怎样的。很多从事了多年维修的师傅由经验反推理论,常常关注蒸 发、冷凝温度,根据表测得的参数去反推进行系统设计,这其实是错误的。制冷系统的蒸 发温度和冷凝温度是根据热源和热汇温度确定的,而不是相反。而热源、热汇的温度并不 是人为规定的,热源是由被冷却物质所需要的温度决定的,热汇是由放热端所处的环境温 度(冷却水温度)决定的。而我们所能做的,就是根据以上条件设计制冷系统,即根据允 许的换热面积和氟、水、空气侧状况匹配经济性温差进而求得蒸发、冷凝温度。由于很多 种热源、热汇温度下又存在关联或相似性区间,所以我们又把各个热源热汇划分出区间进 行归纳,方便不同区间相关配件的选配,如T1、T2、T3等工况。这里举个例子就是由卡 诺定理,理论上制冷系统的制冷系数为: Snap1.jpg(2.37 KB, 下载次数: 112) 可以看出低温热源温度越高,高温热汇和低温热源温差越小,制冷系数越大。某些厂家为 了提高制冷系数,随意改变工况或为了使蒸发、冷凝温度更接近热源、热汇温度,不惜成 本的成倍加大换热面积从而减小换热温差,这也就是目前小压缩机配大换热器的例子比比 皆是的原因。需要说明的是,确定热源、热汇温度后综合考虑经济性温差进而合理的匹配 换热面积才符合我们科学设计的原则。 (3)压缩机汽缸容积与系统制冷量的关系。在给定的制冷系统里,很多参数都是随着工况变化的,很多人问我设计的根源是什么,从哪出发。这就要首先找到一个不变量。对于一台已有的制冷压缩机来说,在制冷系统中,理论输气量Vh为定值,它也是我们确定工况后进行系统设计的出发点。 Snap1.jpg(2.58 KB, 下载次数: 36) 其中n为压缩机电机转速,对于50Hz的两极电动机来说,转数在2830rpm,i指压缩机汽缸数,Vp为 汽缸容积。具个例子,已知某汽缸标称容积为7.4cc的转子压缩机在T1工况下(To=7.2℃、过热11K;

论述如何有效优化空调制冷系统设计

论述如何有效优化空调制冷系统设计 发表时间:2016-06-13T14:42:30.290Z 来源:《基层建设》2016年4期作者:廖锡博 [导读] 随着我国空调行业的越来越成熟,如何有效优化空调制冷系统变得越来越重要。 广东申菱环境系统股份有限公司广东佛山 528313 摘要:随着我国空调行业的越来越成熟,如何有效优化空调制冷系统变得越来越重要。通过何种方法有效优化空调制冷系统,这对设计者来说是一种挑战。空调制冷系统设计向高水平、高质量方向发展,为空调行业未来发展奠定基础。 关键词:空调制冷系统;设计;注意要点 1.空调制冷系统的工作原理 制冷系统是空调的核心组成部分,主要由冷凝器,压缩机、节流装置和蒸发器四部分组成。空调在进行工作时,压缩机会吸入制冷系统内的低温和低压制冷蒸汽,并且将其压缩成高温和高压的过热蒸汽之后,再排放至冷凝器内。与此同时,空调室外侧风扇吸收的外部空气会流动经过冷凝器,排掉制冷剂产生的热量,从而使得高温和高压的制冷剂蒸汽液化为高压的液体。当这些高压液体流经节流装置时,压力和温度都会有所下降,之后再进入具有一定压力的蒸发器里吸收热量进行蒸发,而室内侧空调的风机也不断将周围的空气引导到蒸发器的翅片间进行热量的交换,把放热完成后的冷气体排放至室内。如此反复的循环就是空调制冷系统的原理,能够实现空气降温的目的。 2.空调制冷系统中各元件的作用 空调系统的制冷过程中,压缩机作为空调制冷系统的关键环节,其的作用是压缩并输送制冷剂蒸汽,使得蒸发器保持低压力而冷凝器保持高压力作用;节流装置的作用是对制冷剂的流量进行调节,并起到节流降压的作用;冷凝器作为空调系统的热量输出设备,自蒸发器中所吸取的热量与压缩机因消耗功而转化成的热量均在冷凝器内被冷却的介质带走。蒸发器作为冷汽输出的设备,其中,制冷剂可对被冷却物体的热量进行吸收,从而制取冷量,更好的实现空调制冷的目的。 3.空调制冷系统优化的具体分析 空调制冷系统的节能措施,在设计上,需从两个方面入手,一是降低单位制冷量功耗,一是提高单位功耗制冷量;以下从几点方面简单介绍制冷系统的优化; 3.1高效化的压缩机 空调制冷系统中,压缩机的性能越高,效率越高,所用到的能量越少,更好的提高压缩机的性能,就成节能优化关键的一步。涡旋式压缩机是一种新型节能压缩机,适用于小型空调制冷系统化中。涡旋式压缩机又可分为数码涡旋压缩机、直流变频涡旋压缩机等。数码涡旋压缩机是采用压缩机顶部的气腔进行气体的吸排来调节电磁阀的通断电的时间,从而影响压缩机的排气量,控制压缩机的容量,进而实现对压缩机能源消耗的有效控制,促进空调制冷系统化的节能环保。直流变频涡旋压缩机是利用其它压缩机上永久性的磁铁作为压缩机的定子以及采用稀土为原材料制成永久性永久性磁钢作为压缩机的转子。此类型的压缩机装置能降低空调制冷系统装置的噪声,延长空调的使用寿命,并能对空调制冷系统中电机的转速作出合理的调整,提高能源的利用率,降低能源消耗,促进空调制冷系统化的节能环保。 3.2将蒸发器和冷凝器进行改良 蒸发器和冷凝器是由铝翅片和铜管一同组成的。为了达到更加经济的效果,一般翅片的厚度在0.095到0.1毫米之间。翅片有两种,波纹片和开槽片,开槽片的换热能力比波纹片更高。为了防止蒸发器和冷凝器在运行过程中出现故障,通常会在蒸发器的翅片上涂上一层亲水膜,这样在制冷运行时能够避免因为积累的水分过多存留在翅片上,保证蒸发器和冷凝器的正常工作。铜管中主要使用的内螺纹管和光管。虽然两种管的外径都是一样,但是内螺纹管较光管相比拥有更为强大的换热能力。通过对蒸发器和冷凝器内部物件的选择可以在一定程度上提高蒸发器和冷凝器的换热能力。但是一定要在确定蒸发器和冷凝器的结构之后再进行相应的换热能力测试。现阶段大部分的蒸发器和冷凝器都是采用铜管和铝翅片这种形式,经过了解,国外也存在其他方式的换热器,例如全铝换热器,相信通过合理的设计其他合理的材料也可以取得较好的换热效果,开发新模式的换热器同样可以有效优化制冷效果。 3.3有效提高蒸发温度 蒸发温度是蒸发器内的制冷剂在一定压力下沸腾汽化时的温度。蒸发温度的高低,主要取决于介质的温度及流量、蒸发器的迎风面积面积、蒸发器大小等条件。理论和实践证明,在空调系统其他条件不变的情况下,蒸发温度提高后,冷凝和蒸发压力差减小,压缩机排气温度降低、耗功减少,可以提高制冷系数;而且提高蒸发温度后,还可以增加单位时间制冷剂循环量,从而增加制冷量。 3.4有效降低风系统的阻力 在较大的制冷系统中,空调风系统所产生的能源消耗也是比较大的,如果能够有效设计空调内部的风路系统,有效减低空调内部阻力,减少制冷系统中风机消耗的功率,从而达到优化制冷系统的目的。 3.5制冷系统相应配合提高能效 虽然每个部件都可以不断提高其自身效率,但是没有高度的配合还是达不到提高能效的目的,就像蒸发器不能无限放大,风量也不能无限增加,必须找到一个性能最佳点才能有效发挥各个部件的作用。若要提高空调系统的能效比,首先要充分了解和掌握影响空调能效比的因素:压缩机与膨胀阀自身的热力学性能,空调制冷剂的效率,换热器的换热效率,压缩机的压缩效率,毛细管道的损坏以及空调装置的整体配置情况等。因此,针对这些因素,可以从换热器的材料,结构等工艺技术以及变频技术等方面着手,并从空调制冷系统的整体出发,是空调各个部分间能够形成高效统一的匹配关系,从而全面提高提高空调系统的能效比。例如,可以采用变频电机对压缩机的转速的控制来提高空调的能效比;通过材料与外形的设计增加换热器的换热面积;对变频空调采取电子膨胀阀加变频压缩机的配合控制方式提高空调的能效比;通过室内外变频风机电机控制通过两器的换热风量;通过更改蒸发器大小排数和翅片密度与风量大小配合取得合适的蒸发温度;通过改进冷凝器配合新一代制冷剂的使用来提高空调的能效比等 3.6.加强空调的日常保养和维护 空调制冷系统的冷凝器上有灰尘会导致能源消耗的加大,而空调制冷系统中蒸发器的温差控制不合理也将会直接增加能源的消耗,因

相关主题
文本预览
相关文档 最新文档