染料敏化太阳能电池工艺以及研究现状
- 格式:doc
- 大小:186.50 KB
- 文档页数:5
染料敏化太阳能电池的发展综述染料敏化太阳能电池(Dye-sensitized Solar Cells,DSC)是一种新型的太阳能电池技术,于20世纪90年代初由瑞士杂交电车公司的Grätzel教授首次提出。
与传统的硅太阳能电池相比,DSC具有低成本、高转化效率和简单制备等优势。
其工作原理是通过将染料分子吸附在液态电解质和半导体电极之间的钙钛矿光敏剂上,实现对光的吸收和电子传输。
自问世至今,DSC在材料、结构和工艺等方面进行了不断的改进和创新,取得了巨大的进展。
在DSC的材料研究方面,钙钛矿材料是DSC中最重要的组成部分。
最早的染料敏化太阳能电池使用染料分子作为光敏剂,但其效率有限。
随着钙钛矿材料的问世,DSC的效率得到了显著提升。
最早的钙钛矿光敏剂是染料分子与三角锥晶格结构的二氧化钛表面有机酸形成络合物,后来发展出钙钛矿结构材料,如MAPbX3(MA代表甲胺离子,X代表卤素)和FAPbX3(FA代表氟化铵离子)等。
这些新型钙钛矿光敏剂具有更高的吸光度和更长的电子寿命,大大提升了DSC的光电转化效率。
除了钙钛矿材料的改进,DSC的结构和工艺也得到了不断的优化。
最早的DSC采用的是液态电解质,但其在长期稳定性方面存在问题。
为了克服这一问题,研究人员开发出了固态电解质和无电解质DSC,提高了DSC的长期稳定性。
此外,还有人将DSC与其他太阳能电池技术相结合,如有机太阳能电池和钙钛矿太阳能电池,形成了复合结构,提高了光电转化效率。
随着科技的不断进步,DSC逐渐成为了实际应用的焦点。
许多公司和研究机构投入到DSC的产业化开发和商业化推广中。
目前已经有一些商业化的DSC产品面市,如太阳能充电器、建筑一体化太阳能材料等。
此外,DSC还具有一些独特的应用特点,如透明、可弯曲、柔性等,使其在可穿戴设备、汽车、船舶等领域具有广阔的应用前景。
综上所述,染料敏化太阳能电池的发展经历了多个方面的改进和创新。
在材料、结构和工艺等方面的不断优化,使得DSC的光电转化效率得到了显著提升。
染料敏化太阳能电池的研究及其应用前景染料敏化太阳能电池(DSSCs)是一种新型的太阳能电池技术,具有高效、环保、成本低等特点,并且可以适应各种光照条件。
这种太阳能电池的研究和应用前景备受关注。
DSSCs的研究始于20世纪90年代初期。
它的基本结构由硅基质、电解质、阳极和阴极四个部分组成,既有光电转换功能,又有储能和输出功能。
与传统的硅太阳能电池相比,DSSCs的成本低、制造工艺简单、光伏转换效率高且稳定性强,而且适应各种光照条件,性能优良。
根据实验室研发的结果,电压可以达到0.8V-1.0V,转换电效可以跨越12%-15%。
DSSCs的核心是敏化剂,这些敏化剂可以有效吸收光能,并将其转化为电能。
敏化剂通常用有机染料或半导体量子点制备。
有机染料通常选择比较富电子的化合物,这些化合物具有高吸光度和卓越的光电转换效率。
而半导体量子点是纳米尺度下的量子控制系统,具有单电子级别的光电转换效率。
同时,DSSCs还有许多其他有趣的研究方向,例如提高敏化剂的吸收性,增强电解质的电化学稳定性,改善电极材料和组装介质,提高输出电压和效率等。
在电解质的研究方面,有机电解质和固态电解质的研究尤其引人关注。
DSSCs的应用前景广泛。
它们可以用于户外太阳能装置、城市建筑立面材料、透明玻璃幕墙、电子设备的充电、电动车的充电等领域。
在家庭光伏系统的应用中,DSSCs可以替代传统硅太阳能电池,成为一项新型的太阳能转换技术。
同时,由于DSSCs可以根据不同光照条件自适应调节,因此在户外应用中也表现出良好的适应性和稳定性。
总的来说,染料敏化太阳能电池是一项前途广阔的技术研究领域,它具有高效、成本低、制造工艺简单、适应性好等特点。
未来,我们可以期待它在普及太阳能应用、推进可持续发展等方面发挥更大的作用。
染料敏化太阳能电池行业的发展染料敏化太阳能电池是一种新型的太阳能电池,它采用了全新的技术和原理,具有很高的发电效率和实用性。
随着环保意识的提高和新能源的逐渐普及,染料敏化太阳能电池行业的发展前景非常广阔。
本文将从这个角度出发,深入探讨染料敏化太阳能电池的技术原理、应用领域和未来发展方向等问题。
一、技术原理染料敏化太阳能电池是一种类似于传统晶体硅太阳能电池的装置,但它与传统太阳能电池不同的是采用了一种全新的电池材料——染料。
染料敏化太阳能电池的工作原理是利用染料分子吸收太阳能中的光子,将其转化成电子和空穴。
染料分子吸收光子后,电子从染料分子的价带跃迁到染料分子的导带中,同时留下一个具有正电荷的空穴。
在电池的两个电极(正极和负极)之间,这些电子和空穴被分别收集,构成电荷传输路线。
通过连接一定的电路,这些电子和空穴就可以被引导到获得电能的装置中,发挥最终功效。
二、应用领域染料敏化太阳能电池具有很高的发电效率和稳定性,它的应用领域非常广泛。
目前主要应用于以下几个方面:1.户外光伏产品——染料敏化太阳能电池可以制成柔性太阳能板,这种太阳能板可以贴在各种户外设备上,如行车记录仪、充电宝、户外摄像机、自行车等。
在户外野外等没有电源的环境下,可以利用它来为这些装备提供电源,十分便捷。
2.建筑光伏应用——染料敏化太阳能电池可以在建筑的门面、窗户、墙壁、屋顶等处应用,可以减少对建筑外观的破坏,美化建筑外观,同时还可以为建筑提供持续的电力,节省能源成本,使得建筑更加环保。
3.光伏无人机应用——染料敏化太阳能电池的重量轻、成本低,非常适合应用于无人机光伏电池上。
通过利用它提供的太阳能电能,无人机可以飞行更长时间,飞行高度也更高。
同时,它不会对固定翼强制要求的结构大小和重量带来影3.智能家居应用——染料敏化太阳能电池可以应用于各种家用电器、电子设备中,使得这些设备在电网停电或人为故意停电的情况下,仍然可以继续工作。
在智能家居领域,染料敏化太阳能电池的应用前景非常广泛。
染料敏化太阳能电池的研究现状及其应用前景染料敏化太阳能电池是一种新型的光电转换器件,其优点在于价格低廉、制备简单、可塑性强、光电转换效率高等。
目前,染料敏化太阳能电池的研究已经取得了一些进展,并得到了广泛的关注和应用。
本文将从染料敏化太阳能电池的原理、研究现状和应用前景等方面进行论述。
一、染料敏化太阳能电池的原理染料敏化太阳能电池的核心部件是一种染料分子,在阳光的照射下能够吸收光能,并将其转化为电能。
染料分子一般由两部分构成,即染料分子和电子受体。
染料分子吸收光能后,电子便被激发到受体的导带上,而染料分子中的空穴则被氧化剂捕获,在某些电解液中,电子和空穴便可以沿着电解液中的导电链传输,最终到达电极表面,从而产生电流。
二、染料敏化太阳能电池的研究现状染料敏化太阳能电池的研究始于90年代初期,并在近年来得到了广泛的发展和研究。
目前,重要的染料敏化太阳能电池有三种类型,即液态染料敏化太阳能电池、固态染料敏化太阳能电池和有机-无机钙钛矿太阳能电池。
其中,液态染料敏化太阳能电池是第一代染料敏化太阳能电池,具有可调谐能谱、制备容易等优点,但其使用寿命较短、稳定性差等缺点限制了其应用前景。
相比之下,固态染料敏化太阳能电池具有良好的光电性能和较好的稳定性,但其制备和性能调整难度大,仍存在需要优化的地方。
而有机-无机钙钛矿太阳能电池则被认为是最为重要的染料敏化太阳能电池之一,其光电转换效率高、稳定性好、制备简单等优点,使其在未来的能源领域中展现出良好的应用前景。
三、染料敏化太阳能电池的应用前景染料敏化太阳能电池在未来的应用前景广阔,其中最具有潜力的是其在建筑、车辆和电子设备等领域的应用。
在建筑领域中,染料敏化太阳能电池可以被直接塑造成为可替代建筑外墙、天窗等元素,使得建筑具有更好的一体化和更加环保的特点。
在车辆领域中,染料敏化太阳能电池可以利用随处可见的太阳能将车辆电池充电,使得车辆具有更加绿色和高效的特点。
而在电子设备领域中,染料敏化太阳能电池可以大大增加电子设备续航能力,使得电子设备具有更加灵活和无线的特点。
染料敏化太阳能电池的进展研究染料敏化太阳能电池(Dye-sensitized solar cells,DSSCs)是一种第三代太阳能电池技术。
它通过将染料敏化电子传输物质(纳米晶钛酸盐)涂覆在导电玻璃上,再将电解质涂覆在钛酸盐上,形成一个光敏层。
光在光敏层中被吸收,并激发电子,电子通过导电玻璃传输到负载。
染料敏化太阳能电池具有低成本、高效率、透明度高、制备工艺简单等优点,因此受到了广泛关注。
随着对染料敏化太阳能电池的研究深入,研究者们采用不同的方法和材料,不断提高其效率和稳定性。
例如,研究者使用无机半导体材料如TiO2、ZnO等作为电子传输材料,通过控制其晶粒尺寸和结构以提高电子传输效率。
同时,改进染料分子的设计和合成,可以增加染料的光吸收范围和光电转换效率。
在电解质方面,研究者已经替代了常用的有机电解质,如碘/碘离子电解液,使用无机电解质如柠檬酸锂盐电解液,提高了电池的稳定性和长期使用寿命。
此外,染料敏化太阳能电池的反应速度也是关注的焦点之一、使用催化剂如Pt、Ru等可以提高反应速度和光电转换效率。
另一个改进的方向是采用二维材料或金属有机框架(MOF)作为电子传输材料。
例如,石墨烯、二硫化钼等材料具有高导电性和光吸收能力,可以提高电子传输效率和光电转换效率。
MOF具有结构可调性和多孔性,可以通过调整结构和组分来提高电池的稳定性和性能。
此外,染料敏化太阳能电池的透明度也是研究的重点之一、目前,研究者们已经开发出透明的电解质和导电材料,可以用于制备透明的染料敏化太阳能电池,为建筑一体化光伏应用提供了可能。
最后,染料敏化太阳能电池的商业化应用仍面临一些挑战。
首先,其稳定性和寿命需要进一步提高。
其次,生产成本仍然较高,需要降低制造成本来提高竞争力。
最后,其能量转换效率仍然有待提高,以满足实际应用的需求。
综上所述,染料敏化太阳能电池作为一种新型的太阳能电池技术,在效率、成本和特性方面具有优势。
不断的研究和改进使得其效率和稳定性得到了显著提高,为其商业化应用提供了可能。
染料敏化太阳能电池的研究与应用染料敏化太阳能电池,又称为Grätzel电池,是一种新型的太阳能电池,它采用了新型的敏化物质,能够将太阳能转化成电能,并且具有透明、柔性、低成本等优点。
近年来,染料敏化太阳能电池在绿色能源领域受到了广泛关注和研究。
本文将从染料敏化太阳能电池的原理、研究进展和应用前景三个方面进行探讨。
一、染料敏化太阳能电池的原理染料敏化太阳能电池是一种基于光电化学原理的能量转化装置。
它将太阳辐射吸收并转化为电能,使之成为一种更加可用的能源形式。
该电池的基本结构由透明导电玻璃、染料敏化剂、电解质、对电极和光敏电极组成。
其中,染料敏化剂是关键的能量转化介质,其作用是:吸收太阳光,在激发状态下电子跃迁至导电材料上,从而形成电荷的分离和运输。
电解液则提供了离子的传输通道,以维持电荷平衡。
光敏电极和对电极分别接受电荷,建立电势差,形成电流。
并且,由于特殊的电极材料和导电液体,这种电池可以向两个方向输出电流,进而光伏效率得到提高。
二、染料敏化太阳能电池的研究进展染料敏化太阳能电池由于其结构简单、成本低廉、灵活透明等优点受到了广泛关注。
自1972年O'Regan和Grätzel教授首次提出Grätzel电池后,研究者们对它的改进和优化不断进行,目前已经取得了较为丰富的研究成果:1、液态电解质Grätzel电池。
1985年,Tennakone等人利用溶于有机溶剂中的银离子/亚铁氰酸盐作为电解质,制备出稳定的液态Grätzel电池。
分别于对电极和光敏电极上采用铂和钾硝酸,其效率可达到5.2%。
2、固态电解质Grätzel电池。
为了克服液态电解质Grätzel电池中电解液泄漏的问题,研究者们又发展出了固态电解质Grätzel电池。
2000年,Zakeeruddin等人在TiO2纳米晶膜上涂覆了含PbI2等离子体和2,2',7,7'-四-(甲基丙烯酸乙酯)氧合物作为电解质的Grätzel电池,其效率高达7.2%。
染料敏化太阳能电池的效率提升研究太阳能是一种环保、可再生的能源,被广泛应用于建筑物能源供应和移动设备等领域。
染料敏化太阳能电池作为太阳能电池的一种重要类型,其高效率的研究与提升一直是研究者们的关注焦点。
本文将就染料敏化太阳能电池的效率提升进行研究,分析目前存在的挑战,并探讨可能的解决方案。
染料敏化太阳能电池(DSSC)是一种基于半导体薄膜、光敏化剂和电解质溶液的太阳能电池。
其工作原理是通过染料吸收太阳光产生电子-空穴对,并将电子注入半导体导带,从而形成电流。
然而,目前DSSC的能量转换效率仍然相对较低,主要面临以下几个挑战。
首先,染料吸收太阳光的效率有限。
常见的染料敏化电池使用有机染料作为光敏化剂,但其吸收光谱范围较窄,限制了对太阳光的利用效率。
因此,研究人员提出使用无机钙钛矿材料作为光敏化剂,具有宽波长吸收和高光转换效率的特点,为提升DSSC效率提供了新的途径。
其次,电子传输和收集效率也是限制DSSC效率的因素之一。
传统DSSC中的电子传输路径包括染料、半导体等多个界面,电子传输路径长度较长,容易发生电子散射和损失。
因此,改进电子传输和收集路径,如优化电解质的组成和结构、引入电子传输助剂等,是提高DSSC效率的关键。
第三,电解质对DSSC效率的影响也不可忽视。
电解质在DSSC中起到电子传输和离子传输的作用,对光电转换效率有重要影响。
常见的有机溶剂基电解质由于高挥发性和稳定性较差,限制了太阳能电池的长期稳定性。
因此,研究人员提出使用无机电解质材料,如钙钛矿材料和聚合物电解质,提高DSSC的稳定性和效率。
在面临以上挑战的同时,研究人员也提出了多种解决方案,试图提高DSSC的效率。
首先,改进光敏化剂和染料的设计。
通过调整光敏化剂的结构和化学成分,提高其吸收光谱范围和光电转换效率。
例如,引入新型染料分子或设计出有机-无机杂化染料,可以有效提高DSSC的光电转换效率。
其次,优化电子传输和收集路径。
改进电解质组成和结构,引入电子传输助剂等,减小电子传输路径长度和损失,提高电子传输效率和电荷收集效率。
染料敏化太阳能电池的研究与发展现状染料敏化太阳能电池(DSSC)是一种新型的太阳能转换技术,具有低成本、高效率和环保的特点,因此受到了广泛的关注和研究。
在过去的几十年里,DSSC的研究和发展取得了一些重要的进展,但仍然面临着一些挑战和障碍。
本文将对DSSC的研究现状进行综述,并探讨其未来的发展方向和前景。
首先,我们来看一下DSSC的基本原理和结构。
DSSC是一种以染料为光敏剂的太阳能电池,其工作原理类似于光合作用。
其基本结构包括纳米结构的二氧化钛(TiO2)电子传输层、染料敏化层、电解质和对电子传输的透明导电玻璃。
当阳光照射到DSSC上时,染料吸收光子并转化为电子-空穴对,电子被注入TiO2电子传输层,从而产生电流。
这种结构简单、制造成本低,因此受到了人们的青睐。
在DSSC的研究领域,染料的选择和设计是一个至关重要的方面。
传统的染料敏化太阳能电池所使用的染料主要是有机染料,但它们在光稳定性和光吸收范围方面存在着一些不足。
因此,近年来研究人员开始尝试使用无机染料和有机-无机杂化染料来提高DSSC的光电转换效率和稳定性。
同时,一些新型的染料敏化剂,如钙钛矿材料,也被引入到DSSC中,取得了较好的效果。
这些新型染料的研究为提高DSSC 的光电转换效率提供了新的途径。
除了染料的选择,DSSC的电解质也是一个关键的研究领域。
传统DSSC所使用的电解质是有机溶液,但它们在高温和长时间照射下会发生不稳定和蒸发的问题。
为了解决这一问题,研究人员开始尝试使用固态电解质来代替传统的有机溶液。
固态电解质不仅能够提高DSSC的稳定性,还可以减小DSSC的封装成本和提高其安全性。
因此,固态电解质被认为是DSSC未来发展的一个重要方向。
此外,DSSC的光电转换效率也是一个备受关注的问题。
目前,DSSC的光电转换效率已经超过了10%,但与硅基太阳能电池相比仍有一定差距。
为了进一步提高DSSC的光电转换效率,研究人员正在探索一些新的技术和方法,如表面修饰、光学结构优化和光伏材料的组合应用等。
第一章染料敏化纳米晶太阳能电池的历史发展及研究现状1-2法国科学家Henri Becquerel于1839年首次观察到光电转化现象3,但是直到1954年第一个可实用性的半导体太阳能电池的问世,“将太阳能转化成电能”的想法才真正成为现实4。
在太阳能电池的最初发展阶段,所使用的材料一般是在可见区有一定吸收的窄带隙半导体材料,因此这种太阳能电池又称为半导体太阳能电池。
尽管宽带隙半导体本身捕获太阳光的能力非常差,但将适当的染料吸附到半导体表面上,借助于染料对可见光的强吸收,也可以将太阳能转化为电能,这种电池就是染料敏化太阳能电池。
1991年,瑞士科学家Grätzel等人首次利用纳米技术将染料敏化太阳能电池中的转化效率提高到7%5。
从此,染料敏化纳米晶太阳能电池(即Grätzel电池)随之诞生并得以快速发展。
1.1 基本概念1.1.1大气质量数6对一个具体地理位置而言,太阳对地球表面的辐射取决于地球绕太阳的公转与自转、大气层的吸收与反射以及气象条件(阴、晴、雨)等。
距离太阳一个天文单位处,垂直辐射到单位面积上的辐照通量(未进入大气层前)为一常数,称之为太阳常数。
其值为1.338~1.418 kW·m-2,在太阳电池的计算中通常取1.353 kW·m-2。
太阳光穿过大气层到达地球表面,受到大气中各种成分的吸收,经过大气与云层的反射,最后以直射光和漫射光到达地球表面,平均能量约为1kW·m-2。
一旦光子进入大气层,它们就会由于水、二氧化碳、臭氧和其他物质的吸收和散射,使连续的光谱变成谱带。
因此太阳光光谱在不同波长处存在许多尖峰,特别是在红外区域内。
现在通过太阳模拟器,在室内就能够得到模拟太阳光进行试验。
在太阳辐射的光谱中,99%的能量集中在276~4960nm之间。
由于太阳入射角不同,穿过大气层的厚度随之变化,通常用大气质量(air mass,AM)来表示。
并规定,太阳光在大气层外垂直辐照时,大气质量为AM0,太阳入射光与地面的夹角为90º时大气质量为AM1。
染料敏化太阳能电池研究引言随着能源需求的不断增长和环境问题的不断加剧,绿色可再生能源的研究和应用变得愈加重要。
太阳能作为一种广泛可利用的绿色能源,持续受到科学家们的关注和研究。
染料敏化太阳能电池(Dye-sensitized solar cells,DSSCs)以其高效转化太阳能的能力和相对低成本的制备方法,成为太阳能领域的一项重要突破。
本文将对染料敏化太阳能电池的原理、研究进展以及未来发展方向进行探讨。
第一章染料敏化太阳能电池原理1.1 光电转换过程染料敏化太阳能电池是一种基于光电转换的太阳能电池,其原理与传统硅基太阳能电池有所不同。
在DSSCs中,染料吸收太阳光的能量,将其转化为电子并注入导电的纳米晶体电极中,通过外部电路从而实现电能的输出。
1.2 结构组成DSSCs主要由染料敏化层、电解质层、钝化层、导电玻璃等构成。
染料敏化层是该电池的关键部分,其中的染料分子通过吸收光能,发生电子激发并注入导电材料中,完成光电转换过程。
电解质层通常采用液态电解质,用于传递电子,并在光生电子通过电解质层后,回归到阳极。
钝化层的作用是防止电解质溶液进入阳极,从而提高DSSCs的稳定性。
导电玻璃则作为电池的基底,用于支撑和导电。
第二章染料敏化太阳能电池研究进展2.1 染料的选择和设计染料的种类和性质对DSSCs的性能起着至关重要的作用。
科学家们通过对染料结构的改进和设计,提高了其对太阳光的吸收能力、光稳定性和电荷转移效率。
有机染料和无机染料是常用的两类染料,尤其是针对有机染料的研究,取得了显著的突破。
2.2 界面工程DSSCs的性能与界面的电荷传输以及电子传导密切相关。
界面的工程化设计可以改善光生电子和空穴的逆向传输,并减少反应中间体的重新组合。
此外,还可以优化染料敏化层和导电玻璃之间的接触,提高光电转换效率。
2.3 导电材料的研究导电材料在DSSCs中扮演着关键的角色,影响电荷的传输和集中,以及增强光电流。
研究表明,纳米晶体二氧化钛(TiO2)是最常用的导电材料,同时针对其表面形貌和晶体结构进行优化改进,可以提高DSSCs的效率。
新型染料敏化太阳能电池的研究进展及应用前景近些年来,新型太阳能电池技术日益得到重视,其应用在环保、节能等领域也越来越广泛。
其中,新型染料敏化太阳能电池成为了热门研究方向之一。
本文将重点介绍新型染料敏化太阳能电池在研究上的进展以及其应用前景。
一、新型染料敏化太阳能电池的发展历程染料敏化太阳能电池(DSC)最早提出于1991年由瑞士联邦理工学院的O'Regan和Graetzel所发明。
DSC技术使用染料吸收阳光中的光子,将其转化为电子,形成阳极和阴极,产生电流。
DSC的优势在于其材料成本低、生产成本低、高效率、可定制化等因素,因此备受人们关注。
DSC最初的染料是对苯二酚,但是受到光稳定性和可再生能力的限制,使DSC还无法完全实现商业化。
因此,寻找新型染料敏化太阳能电池材料成为了研究者们的主要方向。
随着时间的推移,新型染料敏化太阳能电池的发展取得了很大的进展。
一些新的染料被发现,例如卤素染料、荧光染料和钙钛矿染料,使DSC的光电转换效率得到了提高。
二、现有新型染料敏化太阳能电池的优势和研究进展1、高效率新型染料敏化太阳能电池相比传统的硅基太阳能电池,其效率明显提高。
近年来,国内外学者多次发表关于新型染料染料敏化太阳能电池的研究成果,最高的光电转换效率约为18%。
虽然这个效率远低于硅基太阳能电池,但染料敏化太阳能电池由于独特的结构设计和使用分子级别的钝化层,其效率有望在未来进一步提高。
2、材料成本低在制造DSC所需要的材料上,与传统硅基太阳能电池相比,新型染料敏化太阳能电池的材料成本远低于后者。
在使用过程中,染料敏化太阳能电池还可以通过人工制备来达到可持续性的效果。
3、长寿命最初,染料敏化太阳能电池的零件有一定的寿命限制。
但是,随着研究的深入,电池零件得到了改进,如耐光性能、耐化学性、封装性能等方面的提高,使得染料敏化太阳能电池的使用寿命大大延长。
三、新型染料敏化太阳能电池的应用前景1、环保领域随着全球环保意识的加强,太阳能电池作为清洁、可再生、低碳的能源形式越来受到人们关注。
染料敏化太阳能电池实验报告(共9篇) 染料敏化太阳能电池实验天然染料敏化TiO2太阳能电池的制备及光电性能测试姓名:蓝永琛班级:新能源材料与器件学号:20112500041一、实验目的1. 了解染料敏化纳米TiO2太阳能电池的工作原理及性能特点。
2. 掌握合成纳米TiO2溶胶的方法、染料敏化太阳能电池光阳极的制备方法以及电池的组装方法。
3. 掌握评价染料敏化太阳能电池性能的方法。
二、实验原理略三、仪器与试剂一、仪器设备可控强度调光仪、紫外-可见分光光度计、超声波清洗器、恒温水浴槽、多功能万用表、电动搅拌器、马弗炉、红外线灯、研钵、三室电解池、铂片电极、饱和甘汞电极、石英比色皿、导电玻璃、镀铂导电玻璃、锡纸、生料带、三口烧瓶(500mL)、分液漏斗、布氏漏斗、抽虑瓶、容量瓶、烧杯、镊子等。
二、试剂材料钛酸四丁酯、异丙醇、硝酸、无水乙醇、乙二醇、乙腈、碘、碘化钾、TBP、丙酮、石油醚、绿色叶片、红色花瓣、去离子水四、实验步骤一、TiO2溶胶制备目前合成纳米TiO2的方法有多种,如溶胶-凝胶法、水热法、沉淀法、电化学沉积法等。
本实验采用溶胶-凝胶法。
(1)在500mL的三口烧瓶中加入1:100(体积比)的硝酸溶液约100mL,将三口烧瓶置于60-70oC的恒温水浴中恒温。
(2)在无水环境中,将5mL钛酸丁酯加入含有2mL异丙醇的分液漏斗中,将混合液充分震荡后缓慢滴入(约1滴/秒)上述三口烧瓶中的硝酸溶液中,并不断搅拌,直至获得透明的TiO2溶胶。
二、TiO2电极制备取4片ITO导电玻璃经无水乙醇、去离子水冲洗、干燥,分别将其插入溶胶中浸泡提拉数次,直至形成均匀液膜。
取出平置、自然晾干,再红外灯下烘干。
最后在450oC下于马弗炉中煅烧30min 得到锐态矿型TiO2修饰电极。
可用XRD粉末衍射仪测定TiO2晶型结构。
三、染料敏化剂的制备和表征(1) 叶绿素的提取采集新鲜绿色幼叶,洗净晾干,去主脉,称取5g剪碎放入研钵,加入少量石油醚充分研磨,然后转入烧杯,再加入约20mL石油醚,超声提取15min后过滤,弃去滤液。
新型染料敏化太阳能电池的设计与研究新型染料敏化太阳能电池的设计与研究随着全球能源危机的日益加剧,人们对于新型可再生能源的需求也越来越高。
太阳能作为一种最为广泛的可再生能源,一直备受关注。
然而,传统的硅基太阳能电池由于成本高、制造复杂等问题,限制了其在大规模应用中的发展。
因此,新型染料敏化太阳能电池应运而生。
染料敏化太阳能电池是一种基于半导体纳米晶体和染料分子之间的光电转换机制的太阳能电池。
其基本原理是通过染料分子吸收光子,激发电子从染料分子中跃迁到纳米晶体表面,进而产生电荷分离和电流。
相比传统的硅基太阳能电池,染料敏化太阳能电池具有制造简单、成本低、高效率等优点。
在设计染料敏化太阳能电池时,需要考虑以下几个方面:1. 染料的选择染料是染料敏化太阳能电池的关键组成部分,直接影响电池的光电转换效率。
目前常用的染料有Ruthenium、Porphyrin、Phthalocyanine等。
在选择染料时需要考虑其吸收光谱、光稳定性、价格等因素。
2. 纳米晶体的制备纳米晶体是染料敏化太阳能电池的另一关键组成部分。
其制备方法包括溶胶-凝胶法、热分解法、水热法等。
不同的制备方法会影响纳米晶体的形貌、尺寸和结构,从而影响光电转换效率。
3. 电解液的选择电解液是染料敏化太阳能电池中的重要组成部分,用于传递电荷和维持电荷平衡。
目前常用的电解液有有机溶剂型和无机盐型两种。
在选择电解液时需要考虑其氧化还原反应动力学、稳定性、价格等因素。
4. 电极的制备电极是染料敏化太阳能电池中的另一关键组成部分。
目前常用的电极材料有透明导电玻璃、金属氧化物等。
在制备电极时需要考虑其导电性、透明性、稳定性等因素。
通过以上方面的考虑,可以设计出一种高效率、稳定性好的染料敏化太阳能电池。
近年来,国内外学者在此领域进行了大量研究,取得了许多重要进展。
例如,美国加州大学伯克利分校的研究团队最近设计出了一种新型染料敏化太阳能电池,其光电转换效率达到了11.4%,较传统硅基太阳能电池有了很大提升。
染料敏化太阳能电池研发现状与展望染料敏化太阳能电池(Dye-sensitized solar cells,DSSCs)是一种新型的光电转换装置,具有低成本、高效率、可弯折等优点,因此在可再生能源领域备受研究者的关注。
本文将介绍染料敏化太阳能电池的基本原理、研发现状以及未来的展望。
首先,我们来了解一下染料敏化太阳能电池的基本原理。
DSSCs主要由电解质溶液、染料敏化剂、电极和反电极组成。
染料敏化剂被吸附在电极表面,并能够吸收可见光,并将光能转化为电能。
当染料被吸收光子时,它会发生电子跃迁,从而形成电荷对。
电解质溶液中的阳极会接收电子,而阴极则接收阳离子,形成电流。
因此,DSSCs将光能转化为电能的过程中,涉及光吸收、电荷分离和电荷传输等多个关键步骤。
目前,染料敏化太阳能电池的研发已经取得了一定的进展。
首先,关于染料敏化剂的研究已经取得了显著的成果。
研究者们通过合成不同结构的染料敏化剂,提高了光电转换效率。
其次,对电解质溶液的改进也为DSSCs的性能提升提供了可能。
研究人员发现,通过改变电解质溶液中阳离子的种类和浓度,可以影响DSSCs的电荷传输效率,从而提高了光电转换效率。
此外,针对电极材料的改进也是提高DSSCs性能的关键。
近年来,一些新型的电极材料如氧化锌纳米线和钛酸钡纳米管等已被引入DSSCs中,以增强光电转换效率。
尽管染料敏化太阳能电池在研发过程中取得了一些令人鼓舞的成果,但目前还面临着一些挑战。
首先,染料敏化剂的稳定性仍然是一个问题。
染料敏化剂容易受到光照和氧化的损害,降低了太阳能电池的寿命。
其次,电解质的挥发性和易燃性可能限制了染料敏化太阳能电池的应用范围。
最后,太阳能电池的效率仍然较低,需要进一步提高。
然而,未来染料敏化太阳能电池的发展前景仍然乐观。
首先,随着纳米科技的发展,研究人员可以制备出更好的染料敏化剂,提高光电转换效率。
其次,新型材料的引入有望提高DSSCs的稳定性和寿命。
例如,有研究者使用钙钛矿材料代替染料敏化剂,取得了更高的效率和更好的稳定性。
染料敏化太阳能电池概述染料敏化太阳能电池(Dye-Sensitized Solar Cells,DSSCs)是一种新型的太阳能转换技术,利用有机染料将太阳光转化为电能。
相比于传统的硅基太阳能电池,染料敏化太阳能电池具有成本低、制备简单、柔性可调、较高的光电转换效率等优势,因此在太阳能领域引起了极大的关注。
工作原理染料敏化太阳能电池的工作原理基于光生电化学效应。
首先,太阳光穿过负载染料的半透明电极,并被染料吸收。
吸收光的染料分子会产生激发态电子,在紧随其后的电解质中获得电子并转移到染料颗粒表面的半导体纳米晶粒中。
然后,电子从半导体纳米晶粒中通过电解质转移到透明导电玻璃电极上,并通过外部电路回流到半透明电极上的电子空位。
这个光生电子转移和电荷回流的过程形成了一个光电转换的闭合回路,从而产生出可用的电能。
结构组成染料敏化太阳能电池主要由光电极、电解质和透明导电玻璃电极构成。
光电极光电极是染料敏化太阳能电池的关键组成部分,其中包含染料、半导体纳米晶粒和电子传输材料。
染料通过吸收光能将其转化为激发态电子,而半导体纳米晶粒则负责接收和传输这些电子。
电子传输材料位于半导体纳米晶粒和透明导电玻璃电极之间,起到连接和传输电子的作用。
电解质电解质是染料敏化太阳能电池中的离子液体,它能够扩散和传输电子,并且具有足够的氧化还原能力。
常用的电解质有有机液体和无机液体两种。
透明导电玻璃电极透明导电玻璃电极位于DSSCs的底部,通常由锡氧化物(SnO2)或氟化锡(FTO)等材料制成。
透明导电玻璃电极的作用是提供一个支撑底座,以及给流经DSSCs的太阳光提供一个透明的通道。
制备方法光电极制备光电极的制备主要包括染料吸附、半导体纳米晶制备以及电子传输材料的涂布等步骤。
首先,将染料溶液涂覆到透明导电玻璃电极上,并通过烘烤步骤将染料固定在电极上。
然后,将半导体纳米晶溶液涂覆到染料覆盖的电极上,并进行烧结使纳米晶粒固定在电极上。
最后,涂布电子传输材料,形成光电极。
染料敏化太阳能电池的发展趋势随着环保意识的提高,清洁能源的发展越来越受到人们的关注。
太阳能作为最为常见、便利和优质的清洁能源之一,也受到了越来越多人的重视和关注。
染料敏化太阳能电池(DSSC)作为太阳能电池的一种,由于其高效转换、低成本制造等特点,近年来越来越受到关注和重视。
本文将着重探讨染料敏化太阳能电池的发展趋势。
一、染料敏化太阳能电池的工作原理染料敏化太阳能电池又称染料敏化电池(Dye-sensitized solar cells, DSSC),其工作原理是通过染料敏化半导体薄膜,将太阳能电能转换为电子能,再将电子能转换为电能,从而实现太阳能的利用。
染料敏化太阳能电池核心组成部分包括:透明导电玻璃基板,碘化电解质,染料分子,光敏电极和对电极等几个部分。
其中最重要的是染料分子,不同染料对太阳光的吸收系数和波段响应不同,因此染料的种类和性能对DSSC的光电效率影响较大。
二、染料敏化太阳能电池的发展历程染料敏化太阳能电池的发展历程可以追溯到20世纪90年代。
1991年,日本学者中村泰文等人首次报道了以钛酸酯为电子电荷传导体的染料敏化太阳能电池。
此后,一系列的研究使DSSC得以不断升级。
2006年,DSSC的光电转化效率首次达到超过10%。
此后,各种新材料和新技术将DSSC的性能不断提高,最高光电转换效率已经达到达到17%以上。
在这一过程中,光敏电极的材料和制备工艺、染料种类和性能、电解液等关键技术的不断更新和优化是推动DSSC发展的主要因素。
三、染料敏化太阳能电池的发展趋势1.注重高光电转换效率光电转换效率是衡量染料敏化太阳能电池性能的重要指标之一。
因此,如何提高DSSC的光电转换效率是未来研究的重点之一。
目前,DSSC的光电转换效率已经接近传统硅基太阳能电池,因此未来的DSSC研究应该针对高光电转换效率方向进行。
2.优化染料性能和稳定性染料作为DSSC的核心组成部分,其性能和稳定性的好坏直接关系到DSSC的光电转换效率和寿命。
染料敏化太阳能电池的性能改进与机理探究染料敏化太阳能电池(DSSC)作为一种新型的太阳能电池,由于其低成本、易制备、可用于柔性器件等优点,引起了广泛关注。
它的工作原理是通过染料吸收太阳光,激发染料分子中的电子从而形成电荷对,并将其注入半导体电解质界面,从而产生电流。
但是,DSSC的效率仍然低于硅基太阳能电池。
因此,提高DSSC的光电转化效率成为一个重要的研究方向,本文将从两个方面进行讨论。
一、增强光吸收DSSC的光吸收效率与染料分子的光谱响应有关。
由于染料中的吸收峰只覆盖了太阳光的一小部分波长范围,因此必须利用多种染料混合来增强其光吸收。
此外,金属或碳纳米颗粒等光子转换剂的引入也可以增强光吸收。
然而,目前染料的热损失问题仍然限制了效率的进一步提高。
通过添加热稳定性比较好的染料,或者将DSSC材料放置在低温环境下等措施可以减小热损失,提高光电转换效率。
二、改进电子传输和电荷分离DSSC的电子传输和电荷分离过程对于太阳能电池的效率至关重要。
一些研究表明,在DSSC中添加锂离子等掺杂剂可以增加电解质中的离子浓度和电导率,改进电子传输和电荷分离等效应。
同时,通过制备新型半导体材料,优化电解质,如采用H2O 电解质或低挥发耐热盐类等,可以在一定程度上提高电荷分离和电子传输速度,从而改善电池效率。
结论要想完全发挥DSSC的优势,还需要针对具体应用场景,优化电池的薄膜厚度、电极表面状态、电极光滑度等因素。
此外,对于光敏染料分子的设计、新型材料开发、机理探究,也是提高DSSC效率的关键因素。
总之,DSSC技术的发展需要多学科的交叉融合和合作,除了物理、化学、材料科学等学科的贡献外,还需要工程技术领域的不断创新和发展,使之最终走向商业化及应用普及。
染料敏化太阳能电池的研究与发展第一章绪论太阳能电池是一种将太阳光能转化为电能的器件,由于其环保、可再生等优点,成为当今世界能源领域的热点研究对象。
在所有太阳能电池中,染料敏化太阳能电池(dye-sensitized solar cells, DSSC)因具有高效、简单、低成本等特点,逐渐得到人们的认可和关注。
本文将对DSSC的研究与发展进行探索。
第二章原理与机制DSSC 类似于自然界中的光合作用,其核心是一对光致电子转移剂分子,它们吸收太阳光后,在半导体电解质中跨过电子表面势垒,形成电流。
其中光敏染料扮演重要角色,吸收太阳光并将能量转化为电子,然后将电子通过电解质传递到电极上。
电解质与电极之间产生的电势梯度可引起电子运动,从而产生电流。
第三章染料敏化太阳能电池的材料选择DSSC 中的材料包括电极、电解质、光敏染料等,材料的选择影响着 DSSC 的性能。
电极可采用钛基材料,以优异的导电性能和化学稳定性为特点。
电解质可以选择离子液体、过渡金属配合物、纳米晶等材料,其功能是传递电子和维持反应过程的正常进行。
光敏染料必须具有良好的光吸收特性、高的光照转换效率以及化学稳定性等。
第四章研究进展及应用前景DSSC 由于具有丰富的材料选择、简单易制备、较高的光电转换效率、良好的稳态发电性能和可持续性,近年来受到广泛关注。
DSSC 的研究进展包括光敏染料的优化、电极和电解质的改进、器件结构的创新等方面。
目前DSSC 已广泛应用于户外行业、建筑、电子设备等领域,展现了巨大的市场前景。
第五章结论通过分析 DSSC 的原理与机制、材料选择和研究进展及应用前景等方面,可知 DSSC 在发展潜力方面具有巨大潜力。
在未来的研究中,应继续优化 DSSC 的关键的材料结构和器件结构,提高其光电转换效率,拓宽DSSC 的应用领域,为实现可持续能源的目标做出更大的贡献。
染料敏化太阳能电池的性能提高研究染料敏化太阳能电池是一种新型的太阳能电池,可以将太阳能转化成电能,广泛应用于家庭、工业、农业等领域。
然而,由于其转化效率低、稳定性不足等问题,一直受到人们的关注与关注。
本文将重点探讨染料敏化太阳能电池的性能提高研究。
一、染料敏化太阳能电池的基本原理染料敏化太阳能电池是一种通过染料吸收太阳能转化为电能的电池。
其基本结构包括导电玻璃、染料敏化层、电解质和反电极四个部分。
导电玻璃与染料敏化层之间的界面是染料敏化太阳能电池的关键部分,其工作原理与光合作用类似,即染料敏化层中的染料吸收光子后将激发态电子传递到导电玻璃上,形成电荷分离,导致电流的产生。
二、染料敏化太阳能电池的性能瓶颈目前,染料敏化太阳能电池的转化效率仍然比较低,约为10%左右,而硅太阳能电池的转化效率可达到20%以上。
其主要原因是染料敏化层中的染料仅能吸收可见光,不能吸收红外和紫外光,因此能量的利用效率有限。
同时,染料敏化太阳能电池在使用过程中也存在稳定性差等问题,容易发生退色、老化等现象。
三、染料敏化太阳能电池的性能提高研究为了提高染料敏化太阳能电池的转化效率和稳定性,目前采取了多项措施。
1. 研究新的染料敏化剂选择吸收光谱范围更广的染料敏化剂是提高染料敏化太阳能电池转化效率的重要途径。
目前,许多研究者开展了基于新的染料敏化剂的研究工作。
例如,英国诺丁汉大学的研究团队利用一种新型染料敏化剂,使染料敏化太阳能电池的转化效率提高到了13.5%。
2. 设计新的染料敏化层除了研究新的染料敏化剂外,设计新的染料敏化层也是提高染料敏化太阳能电池转化效率的重要途径。
一种新的染料敏化层,称为钙钛矿染料敏化层,在提高染料敏化太阳能电池转化效率方面具有很大的潜力。
目前,许多研究人员已经开展了相关研究工作,将其应用于染料敏化太阳能电池中。
3. 加强电解质的稳定性在染料敏化太阳能电池中,电解质对电池的性能稳定性起着重要作用。
因此,加强电解质的稳定性是提高染料敏化太阳能电池稳定性的重要途径。
染料敏化太阳能电池工艺以及研究现状张安玉1309050319染料敏化太阳能电池工艺以及研究现状张安玉摘要:染料敏化太阳能电池是一种新型的太阳能电池,由于其制作工艺简单,制造成本低廉,有着广泛的应用前景,是太阳能电池的重要发展方向。
其中,染料敏化剂是太阳能电池的重要组成部分,已成为研究的热点。
本文主要介绍染料敏化太阳电池的组成结构和工作原理,综述了染料敏化太阳能电池的研究现状,论述了光阳极上半导体薄膜的制备、改性方法;阐述了敏化染料和氧化还原电解质的要求、特点和分类。
指出高性能半导体薄膜、光谱响应宽稳定性好的敏化染料以及高效全固态电解质的研发与应用是今后的主要研究方向。
并对未来的发展趋势和前景进行展望。
关键词: 染料敏化太阳能电池;光阳极;敏化染料太阳能是一种取之不尽、用之不竭的清洁能源,如何有效地将太阳能转化为电能或其他可利用的能源是物理和化学界的重大课题.其中太阳能电池是研究的热点项目,目前发展最成熟的是硅基太阳能电池,该类型电池实验室光电转换效率已接近25%,与理论值的29%非常接近。
但是它对材料的纯度要求较高,制作工艺复杂,成本昂贵,这极大地限制了它的广泛应用。
目前发展成熟的太阳能电池是硅基太阳能电池,单晶硅太阳能电池的效率已达到25% 以上[1],但是它对材料的纯度要求高、制作工艺复杂、成本昂贵,这极大地限制了它的广泛应用。
1991 年,瑞士洛桑高等工业学院的Gratzel 教授及其小组报道了染料敏化纳米晶太阳能电池(dye-sensitized solar cells,DSSC)的光电转化效率为7.1%[2],从此由于它简单的制作工艺、相对高的光电转化效率、低廉的成本等优点迅速成为广大科学家及科学工作者的研究热点与重点。
1染料敏化太阳能电池(DSSC)的结构与原理1.1结构DSSC 的结构是典型的“三明治”结构,光敏染料太阳能电池的构造和原理如图1,一般是由光阳极、敏化染料、氧化还原电解质以及对电极(通常为铂电极)组成。
其中光阳极包括:透明导电基底(这里为导电玻璃)、纳米多孔半导体。
图 1 染料敏化太阳能电池的结构与工作原理示意图1.2 工作原理当太阳光照射在染料敏化太阳能电池上,染料分子中基态电子被激发,激发态染料分子将电子注入到纳米多孔半导体的导带中,注入到导带中的电子迅速富集到导电玻璃面上,传向外电路,并终回到对电极上。
而由于染料的氧化还原电位高于氧化还原电解质电对的电位,这时处于氧化态的染料分子随即被还原态的电解质还原。
然后氧化态的电解质扩散到对电极上得到电子再生,如此循环,即产生电流。
电池的大电压由氧化物半导体的费米能级和氧化还原电解质电对的电位决定。
2 染料敏化太阳能电池的研究现状2.1 光阳极上纳米多孔半导体的研究进展DSSC 光阳极上的半导体材料多采用纳米多孔TiO2,它是染料分子的载体,同时分离并传输电荷。
目前光阳极的研究重点主要是两方面:①寻找制备半导体光阳极薄膜时,可以增大TiO2比表面积和改善TiO2 表面活性的方法;②由于电子在TiO2薄膜中电子的传输阻力大,影响电池转换效率的进一步提高,故寻找可以替代TiO2的其它半导体材料[3]。
2.1.1 光阳极上半导体薄膜的制作方法制备光阳极纳米多孔薄膜的方法很多,包括溶胶-凝胶法[4],粉末涂敷法[5]、水热法[6]、液相沉积法[7]、化学气象沉积法[8]、电化学法[9]等。
其中粉末涂敷法在工业生产中称为丝网印刷法,具有工艺简单、适合大规模生产等优点,为电池的大规模工业化奠定了基础。
以上方法所制得的都是无序膜,内在的传导率较小,不利于电荷载流子的分离和传输。
电子在纳米晶网络的传输过程中与电子受体的复合也会引起电流的损失,在电极面积放大时尤为突出[10]。
未来膜电极的发展方向是制备高度有序的薄膜结构,如纳米管[11]、纳米棒[12]、纳米线[13]、纳米阵列[14]等。
这些氧化物半导体薄膜垂直平行排列于导电玻璃片的表面,其结构的有序性,利于电子空穴对的分离和传输且易于控制,有望进一步提高短路电流和开路电压[15]。
Nicholas 等[16]比较了高度有序的TiO2 纳米棒阵列、高度有序的TiO2纳米管阵列、烧结的纳米TiO2粉体薄膜的光电转换效率,结果表明高度有序的TiO2纳米棒阵列薄膜作为光阳极时,光电转换效率高,达到了5.4%。
2.1.3 光阳极上半导体薄膜材料有研究表明电子在TiO2 薄膜中的运动受到束缚,在多孔膜中停留时间长,和电解质的复合的概率大,导致暗电流增加,从而降低了TiO2电池总的效率。
可以代替TiO2的氧化物半导体有ZnO、SnO2、Nb2O 等。
在这些材料中,ZnO 是有可能成为替代TiO2的氧化物之一,电子在ZnO 中有较大的迁移率,有望减小电子在薄膜中的传输时间。
且纳米ZnO 的制备要比TiO2简单得多,可以进一步降低电池成本。
使用丝网印刷法制备纳米ZnO 作为光阳极制作染料敏化薄膜太阳电池,得到的电池效率高达2.22%。
近有报道使用20nm 的ZnO 粉体制成薄膜,组装成电池得到的光电转换效率η提高到 6.58%。
2.2 电解质的研究进展电解质在DSSC 电池中会还原染料正离子,同时传输电荷,终导致电子与空穴的分离。
理想的氧化还原电对要满足:在阴极,电子传输速度应该要快,能够尽快与电子发生氧化还原反应,以减少电子在阴极的积累;而在光阳极上,电解质的还原反应要比较慢,降低激发到半导体导带中的光电子与电解质中电子受体的复合速度。
电解质按物理状态分为液态电解质、准固态电解质和固态电解质。
2.2.1液态电解质液态电解质在常温下为液态,它主要是由3个部分组成:有机溶剂、氧化还原电对和添加剂。
氧化还原电对一般为I3-/I-,有机溶剂主要有腈类或碳酸酯类,添加剂一般为4-叔丁基吡啶或N-甲基苯并咪唑。
由于液态电解质黏度小,离子扩散快,对TiO2多孔膜的浸润性好和渗透能力强,使得液态DSSC 电池一直保持着高的效率。
尽管液态电解质取得了较高的光电转换效率,但是使用液体电解质不利于电池的密封,会因为有机溶剂易挥发和电解质易泄露造成电池在长期工作过程中性能的下降和寿命的缩短。
为解决这一问题,研究者提出使用室温下的离子液体(RTIIs),它具有一系列的优点,诸如好的热稳定性及宽的电化学窗口、不易燃性、高的离子传导性、很低的蒸汽压、毒性小等。
在DSSC 中用离子液体代替液态电解质有利于提高寿命和稳定性,具有广阔的前景。
但离子液体的黏度系数相对较大,影响离子的扩散速率,导致DSSC 的光电转换效率不高,故改进离子液体的性能,也是今后努力的方向。
2.3.2 准固态电解质考虑到液体电解质的不足,准固态电解质和固态电解质的研究越来越受到重视。
一般来讲,准固态电解质是在液体电解质中加入凝胶剂而得到的,可有效地防止电解液的泄露,延长电池的使用寿命。
现在所使用的凝胶剂大概可分为 3 种:低分子的交联剂、聚合物和纳米粒子。
Yang等[17]52采用偏二氟乙烯和六氟丙烯合成的凝胶电解质,其组装的太阳能电池的光电转换效率为6.7%。
Wang等[18]在一种离子液体基电解质(0.5 mol/L I2、0.45 mol/L N-甲基苯并咪唑、溶剂为1-甲基-3-丙基咪唑碘)中一份添加质量分数为5%的二氧化硅纳米粉末(纳米颗粒的直径为12 nm)制备成准固态电解质,测试结果表明,准固态电解质电池的转换效率、离子扩散系数均与液态电解质电池相同。
2.3.3 固态电解质准固态电解质还不是单纯的固态电解质,在微观上仍具有液体的特征,具有较高的流动性,也存在着长期稳定性的问题。
全固态电解质完全克服了液体电解质和准固态电解质易挥发,寿命短和难封装的缺点。
目前对无机P 型半导体材料、有机空穴传输材料和导电聚合物的研究十分活跃。
DSSC 中,无机P 型半导体制备复杂,技术难度大,常用有机空穴材料代替P 型半导体作为空穴传输层,Gratzel 等[19]在1998 年首次用2,2′,7,7′-四(N,N-二对甲苯氨基)-9,9′-螺环二芴(spiro-OMeTAD)作为空穴传输材料用于DSSC 中,低光强下的效率为0.7%。
这种非晶有机半导体空穴传输材料的发现,是光电有机材料领域的一个亮点。
固体电解质代替液体电解质虽然克服了一些问题,但也存在明显的不足,如在半导体氧化物和空穴传输材料的界面处电子的复合速率比较高、传导率低等,这也是今后努力的方向和研究重点。
由于离子液体电解质和凝胶电解质表现出较高的光电转换效率,具有比较广阔的应用前景,所以,电解质发展的终极目标是高效的全固态电解质,提高固态DSSC 电池效率的关键就是解决电解质在光阳极多孔膜中的填充问题。
因此,发展固态-离子液体复合电解质体系也许是一个更为有效、可行的途径。
3 结语染料敏化太阳能电池经过20 年的发展,它的阳极材料、敏化染料、电解质都得到逐步的完善,结合实验室研究并展望未来的染料敏化太阳能电池发展,还需从以下几个方面获得突破。
(1)光阳极膜性能的提高制备电子传导率高、抑制电荷复合的高性能多孔半导体膜,并优化膜的性能;改进制膜的方法,使其工艺更简单、成本更低;寻找其它可代替TiO2的氧化物半导体。
(2)染料敏化效果的提高设计、合成高性能的染料分子,并改善分子结构,提高电荷分离效率,使染料具有更优异的吸收性能和光谱吸收范围;充分利用多种染料的特征吸收光谱的不同,研究染料的协同敏化,拓宽染料对太阳光的吸收光谱。
(3)电解质的研究解决液态电解质封装的问题,同时寻找合适的固态电解质来代替液态电解质,制备高效率全固态的染料敏化太阳能电池是今后重要的研究方向。
相信染料敏化太阳能电池将会具有非常广阔的应用前景。
参考文献:[1] Green M A,Emery K,Hishikawa Y,et a1.Solar cell efficiency tables [J].Progress in Photovoltaics:Research and Applications,2009,17(1):85-94.[2] O’Regan B,Gratzel M.A low-cost high efficiency solar cell based on dye-sensitized colloidal TiO2 films[J].Nature,1991,353(6346):737-740.[3] 赵俊峰,陈建华.染料敏化太阳能电池的研究进展[J].材料导报,2010,24(9):25-28.[4] Watanabe T,Fukayama S,Miyauchi M,et al.Photocatalytic activity and photo-induced wettability conversion of TiO2 thin film prepared by sol-gel process on a soda-lime glass[J].Journal of Sol-Gel Science and Technology,2000,19(1-3):71-76.[5] Liu X Z,Huang Z,Li K X,et a1.Recombination reductionin dye-sensitized solar cells by screen-printed TiO2 underlay-ers[J].Chinese Physics Letters,2006,23(9):2606-2608.[6] 黄晖,罗宏杰,姚熹.水热法制备TiO2薄膜的研究[J].物理学报,2002,51(08):1881-1806.[7] Deki S,Iizuka S,Mizuhata M,et al.Fabrication of nano-structured materials from aqueous solution by liquid phase deposition[J].Journal of Electroanal Chemistry,2005,584(1):38-43.[8] awa K,Katsuta M,Kameda F.TiO2-coated on Al2O3 support prepared by the CVD method for HDS catalysts[J].Catalysis Today,化工进展2012年第31卷,52.1996,29(1-4):215-219.[9] 毅,袁帅,等.纳米TiO2/Ti 管阵列薄膜催化剂的制备和性能[J].化学反应工程与工艺,2008,24(2):147-152.[10] l M .Conversion of sunlight to electric power by nanocrystal-line dye-sensitized solar cells[J] .ournal of Photochemistry and Photobi-ology A,2004,164(1-3):3-14.[11] rg K,Shankar K,Paulose M,et al.Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells [J].Nano Letter,2006,6(2):215-218.[12] 章,吴季怀.金红石型TiO2纳米棒的制备及其在染料敏化太阳电池中的应用[J].无机材料学报,2011,26(2):119-122.[13] ang X Y,Zhang L D,Chen W,et al.Electrochemical fabrication of highly ordered semiconductor and metallic nanowire ar-rays[J].Chemistry of Material,2001,13(8):2511-2515.[14] ei Y,Zhang L D,Fan J C.Fabrication characterization and Raman study of TiO2 nanowire arrays prepared by anodic oxidative hydrolysis of TiCl3[J].Chemical Physics Letters,2001,338(4-6):231-236.[15] rtinson A B F,Hamann T W,Pellin M J,et al.New architectures for dye-sensitized solar cells[J].Chem. Eur. J.,2008,14(15):4458-4467.16] icholas N,Bwana.Effects of the morphology of the electrode nanostructures on the performance of dye-sensitized solar cells[J].Nano Research,2008,1(6):483-489.[17] Yang M R,Teng T H,Wu S H.LiFePO4/carbon cathode materials prepared by ultrasonic spray pyrolysis[J].Power Sources,2006,159 (1):307-311.[18] Wang P,Zakeeruddin S M,Gratzel M.Solidifying liquid elec-trolytes with fluorine polymer and silica nanoparticles for quasi-solid dye-sensitized solar cells[J].Journal of Fluorine Chemistry,2004,125(8):1241-1245.[19] Bach U,Lnpo D,Gratzel M,et al.Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conver-sion efficiencies [J].Nature,1998,395:583-585.。