自适应中值滤波
- 格式:ppt
- 大小:589.50 KB
- 文档页数:6
姓名:郝伟杰学号:201120112012 导师:郭蔚数字图像处理(实验二)实验名称:自适应中值滤波器实验目的:验证自适应中值滤波器的祛除噪声效果。
此算法分为两个层次:A层为A1=Zmed —Zmin,,A2=Zmed—Zmax,如果A1>0且A2<0,则转到B层;否则增大窗口尺寸,如果窗口尺寸<=Smax则重复A层,否则输出Zmed。
B层为B1=Zxy—Zmin,B2=Zxy—Zmax,如果B1>0且B2<0,则输出Zxy,否则输出Zmed。
实验结果:自适应中值滤波器7*7自适应中值滤波器9*9自适应中值滤波器11*11结果分析:自适应中值滤波器能够很好的处理图像的细节和边缘,使图像更加细腻,清晰,给人以良好的视觉冲击,但是我做的程序运行起来比较慢,大约三十多秒,所以有待很好的优化,而且模板我限制到了11*11的之后才达到了课本上的效果,究其原因,我认为是图像的差异造成了结果上的差异。
实验程序:function ZSY1zhongzhi(a,n1) %自适应中值滤波器(此算法感觉较为合理!!!!!!!!!!)%椒盐噪声subplot(2,2,1),imshow(a,[]),title('原图像')a=double(a);[m,n]=size(a);n2=n1-1;n3=(n1-1)/2;b=zeros(m+n2,n+n2);for i=1:mfor j=1:nb(i+n3,j+n3)=a(i,j);endendsubplot(2,2,2),imshow(b,[]),title('扩充后的图像')for i=n3+1:m+n3for j=n3+1:n+n3for m1=3:2:n1m2=(m1-1)/2;c=b(i-m2:i+m2,j-m2:j+m2);%使用7*7的滤波器 Zmed=median(median(c));Zmin=min(min(c));Zmax=max(max(c));A1=Zmed-Zmin;A2=Zmed-Zmax;if(A1>0&&A2<0)B1=b(i,j)-Zmin;B2=b(i,j)-Zmax;if(B1>0&&B2<0)b(i,j)=b(i,j);elseb(i,j)=Zmed;end%elsecontinue;endendendendsubplot(2,2,3),imshow(b,[]),title('中值后的图像') d=ones(m,n);for i=1:mfor j=1:nd(i,j)=b(i+m2,j+m2);endendsubplot(2,2,4),imshow(d,[]),title('处理好的图像')。
10种常用滤波方法
滤波是信号处理领域中常用的技术,用于去除噪声、增强信号的一些特征或改变信号的频谱分布。
在实际应用中,经常使用以下10种常用滤波方法:
1.均值滤波:将像素点周围邻域像素的平均值作为该像素点的新值,适用于去除高斯噪声和椒盐噪声。
2.中值滤波:将像素点周围邻域像素的中值作为该像素点的新值,适用于去除椒盐噪声和激动噪声。
3.高斯滤波:使用高斯核函数对图像进行滤波,通过调整高斯窗口的大小和标准差来控制滤波效果。
适用于去除高斯噪声。
4.双边滤波:通过考虑像素的空间距离和像素值的相似性,对图像进行滤波。
适用于平滑图像的同时保留边缘信息。
5. 锐化滤波:通过滤波操作突出图像中的边缘和细节信息,常用的方法有拉普拉斯滤波和Sobel滤波。
6.中可变值滤波:与中值滤波相似,但适用于非线性信号和背景噪声的去除。
7.分位值滤波:通过对像素值进行分位数计算来对图像进行滤波,可以去除图像中的异常像素。
8.快速傅里叶变换滤波:通过对信号进行傅里叶变换,滤除特定频率的成分,常用于频谱分析和滤波。
9.小波变换滤波:利用小波变换的多尺度分析特性,对信号进行滤波处理,适用于图像去噪和图像压缩。
10.自适应滤波:通过根据信号的局部特征自动调整滤波参数,适用于信号中存在时间和空间变化的情况。
以上是常见的10种滤波方法,每种方法都有不同的适用场景和优缺点。
在实际应用中,选择合适的滤波方法需要根据具体的信号特征和处理需求来确定。
均值滤波与自适应中值滤波的仿真与实现摘要图像是一种重要的信息源,通过图像处理可以帮助人们了解信息的内涵,然而在图像使用和传输过程中,不可避免会受到噪声的干扰,因此为了恢复原始图像,达到好的视觉效果,需要对图像进行滤波操作。
根据噪声种类不同,可以采用不同的滤波方法,均值滤波是典型的线性滤波算法,能够有效滤波图像中的加性噪声,而中值滤波器是能够有效滤除脉冲噪声的非线性滤波器,但传统中值滤波去脉冲噪声的性能受滤波窗口尺寸的影响较大, 在抑制图像噪声和保护细节两方面存在矛盾。
本文首先对不同均值滤波器在处理不同噪声方面的优缺点进行了分析,然后分别用中值滤波器和自适应中值滤波器对被椒盐噪声污染的图像进行了滤波操作,发现自适应中值滤波方法不仅可以有效滤波椒盐噪声,同时还可以有效地克服中值滤波器造成图像边缘模糊的缺点。
1.均值滤波均值滤波是典型的线性滤波算法,它是指在图像上对目标像素给一个模板,该模板包括了其周围的临近像素点和其本身像素点。
再用模板中的全体像素的平均值来代替原来像素值。
均值滤波也称为线性滤波,其采用的主要方法为邻域平均法。
线性滤波的基本原理是用均值代替原图像中的各个像素值,即对待处理的当前像素点(x,y),选择一个模板,该模板由其邻近的若干像素组成,求模板中所有像素的均值,再把该均值赋予当前像素点(x,y),作为处理后图像在该点上的灰度值g(x,y),即g(x,y)=1/m ∑f(x,y), m为该模板中包含当前像素在内的像素总个数。
均值滤波能够有效滤除图像中的加性噪声,但均值滤波本身存在着固有的缺陷,即它不能很好地保护图像细节,在图像去噪的同时也破坏了图像的细节部分,从而使图像变得模糊。
均值滤波主要有算术均值滤波,几何均值滤波,谐波均值滤波以及逆谐波均值滤波,本文只对算术均值滤波,几何均值滤波和逆谐波均值滤波进行研究。
其中几何均值滤波器所达到的平滑度可以与算术均值滤波器相比,但在滤波过程中丢失更少的图象细节。
第29卷 第4期河北理工大学学报(自然科学版)Vol129 No14 2007年11月J ourna l of Hebe i Polytechn ic Un i ver sity(Na tur a l Science Edition)Nov.2007文章编号:1674-0262(2007)04-0111-03自适应中值滤波在数字图像处理中的应用刘伟1,孙丽媛2,王汝梅3(11河北理工大学计算机与自动控制学院,河北唐山063009;21机械工程学院;31冶金与能源学院)关键词:脉冲噪声;自适应中值滤波;掩模摘 要:针对一般中值滤波在滤除脉冲噪声中的不足,提出了自适应中值滤波的方法,论述了其基本原理和具体实现方法,实验证明,此方法对脉冲噪声有很好的滤除效果。
中图分类号:TP391141 文献标识码:A 在数字图像受到噪声污染后,需要对其进行滤波。
针对不同的噪声有不同的滤波方法。
中值滤波对滤除脉冲噪声有很好的效果,但也会损失图像的部分细节,而自适应中值滤波能够在保持图像细节的基础上滤除脉冲噪声。
1 脉冲噪声脉冲噪声也称双极脉冲噪声,它的概率密度函数可由下式给出:P(z)=Pa z=aPb z=b0 其它(1) 如果b>a,灰度值b在图像中将显示为一个亮点,相反,a的值将显示为一个暗点。
若Pa 或Pb为零,则脉冲噪声称为单极脉冲。
脉冲噪声可以是正的,也可以是负的。
标定通常是图像数字化过程的一部分。
因为脉冲干扰通常与图像信号的强度相比较大,因此,在一幅图像中,脉冲噪声总是数字化为最大值(纯黑或纯白)。
这样,通常假设a,b是饱和值,从某种意义上看,在数字化图像中,它们等于所允许的最大值和最小值。
由于这一结果,负脉冲以一个黑点出现在图像中。
由于相同的原因,正脉冲以白点出现在图像中。
对于一个8位图像,这意味着a=0(黑),b=255(白)。
图1为原始图像,图2为受25%双极性脉冲噪声污染的图像。
收稿日期622:20009142 中值滤波中值滤波是一种非线性的空间滤波器,它是将象素邻域内灰度的中值代替该象素的值。
主题:维纳滤波、最小二乘滤波、自适应滤波认知一、维纳滤波1. 维纳滤波是一种经典的线性滤波方法,它是以诺伯特·维纳(Norbert Wiener)命名的,主要用于信号和图像处理领域。
2. 维纳滤波是一种频域滤波方法,它利用信号和噪声的功率谱以及它们之间的相关性来进行滤波处理。
3. 维纳滤波通过最小化信号和噪声的均方误差来实现信号的恢复,能够有效地抑制噪声并增强信号的特征。
4. 维纳滤波的优点是对信噪比较低的图像有很好的处理效果,但缺点是对信噪比较高的图像处理效果较差。
二、最小二乘滤波1. 最小二乘滤波是一种基于统计原理的滤波方法,它通过对信号进行线性估计来实现滤波处理。
2. 最小二乘滤波与维纳滤波类似,都是以最小化均方误差为目标,但最小二乘滤波是基于时域的方法。
3. 最小二乘滤波将信号和噪声视为随机过程,利用信号和噪声的统计特性来进行滤波处理,能够提高信号的估计精度。
4. 最小二乘滤波的优点是对于信号和噪声的统计特性要求不高,处理效果比较稳定,但缺点是需要较强的计算能力和较大的样本量。
三、自适应滤波1. 自适应滤波是基于滑动窗口的滤波方法,它根据信号的局部特性动态调整滤波参数,适用于信号和噪声变化较大的场景。
2. 自适应滤波主要包括自适应均值滤波、自适应中值滤波、自适应加权滤波等不同类型,根据不同的信号特征选择相应的滤波方法。
3. 自适应滤波能够有效地抑制信号中的噪声和干扰,同时保留信号的边缘和细节特征,具有较好的空间适应性。
4. 自适应滤波的优点是能够根据信号的实际情况自动调整滤波参数,适用性广泛;但缺点是计算量大,实时性较差。
维纳滤波、最小二乘滤波和自适应滤波都是常用的信号和图像处理方法,它们各自具有特定的优点和适用场景。
在实际应用中,可以根据信号的特性和处理需求选择合适的滤波方法,以达到更好的处理效果。
对于不同的滤波方法,还可以结合其他技术手段进行改进和优化,以满足不同场景的需求。
北京邮电大学世纪学院毕业设计(论文)题目自适应中值滤波器的设计与实现学号 ********学生姓名王立阳专业名称通信工程所在系(院)通信与信息工程系指导教师鞠磊2012年 6 月 1 日北京邮电大学世纪学院毕业设计(论文)任务书备注1、由指导教师撰写,可根据长度加页,一式三份,教务处、系(院)各留存一份,发给学生一份,任务完成后附在论文内;2、凡审核不通过的任务书,请重新申报。
北京邮电大学世纪学院毕业设计(论文)诚信声明本人声明所呈交的毕业设计(论文),题目《自适应中值滤波器的设计与实现》是本人在指导教师的指导下,独立进行研究工作所取得的成果,除了文中特别加以标注和致谢中所罗列的内容以外,毕业设计(论文)中不包含其他人已经发表或撰写过的研究成果,也不包含为获得北京邮电大学或其他教育机构的学位或证书而使用过的材料。
申请学位论文与资料若有不实之处,本人承担一切相关责任。
本人签名:日期:毕业设计(论文)使用权的说明本人完全了解北京邮电大学世纪学院有关保管、使用论文的规定,其中包括:①学校有权保管、并向有关部门送交学位论文的原件与复印件;②学校可以采用影印、缩印或其它复制手段复制并保存论文;③学校可允许论文被查阅或借阅;④学校可以学术交流为目的,复制赠送和交换学位论文;⑤学校可以公布学位论文的全部或部分内容。
本人签名:日期:指导教师签名:日期:题目自适应中值滤波器的设计与实现摘要图像是一种重要的信息源,通过图像处理可以帮助人们了解信息的内涵。
然而在图像使用传输过程中,不可避免会受到噪声的干扰。
中值滤波器是能够有效滤除脉冲噪声的非线性滤波器,但标准中值滤波去脉冲噪声的性能受滤波窗口尺寸的影响较大, 在抑制图像噪声和保护细节两方面存在矛盾。
本文在研究中值滤波器的基础上,给出了一种能够根据噪声位置进行中值滤波器的自适应中值滤波方法,该方法可以有效地克服中值滤波器造成图像边缘模糊的缺点。
最后通过matlab对所提出方法进行了仿真测试,结果验证了所提方法的有效性。
伺服控制器中常见的数字滤波技术数字滤波技术在伺服控制器中起着至关重要的作用,它可以有效地抑制噪声和抖动,保证信号的准确性和稳定性。
本文将介绍伺服控制器中常见的数字滤波技术,并探讨它们的原理和应用。
1. 移动平均滤波(Moving Average Filter)移动平均滤波是一种简单而常用的滤波技术,其原理是通过取样点附近一定数量的数据点的平均值来平滑数据信号。
移动平均滤波可以实现简单的平滑效果,适用于对信号快速变化不敏感的应用场景。
2. 中值滤波(Median Filter)中值滤波是一种非线性滤波技术,它通过对一组采样数据的中值进行滤波处理,去除了异常值和突发噪声,同时保留了原始信号的边缘信息。
中值滤波适用于处理不规则噪声和脉冲干扰的信号。
3. 低通滤波(Low-pass Filter)低通滤波是一种常见的滤波技术,它能够滤除高频噪声和干扰信号,保留低频信号,从而实现信号的平滑和稳定。
低通滤波器通常采用巴特沃斯滤波器或者滑动平均滤波器来实现。
4. 高通滤波(High-pass Filter)高通滤波是一种能够滤除低频信号而保留高频信号的滤波技术。
在伺服控制器中,常用的高通滤波器有巴特沃斯滤波器和Butterworth滤波器。
高通滤波器主要用于去除直流偏移和低频噪声,保留高频信号。
5. 带通滤波(Band-pass Filter)带通滤波是一种能够滤除低频和高频信号而保留指定频率范围内信号的滤波技术。
带通滤波器常用于频率干扰的去除和信号调谐等应用。
常见的带通滤波器有巴特沃斯滤波器和椭圆滤波器等。
6. 自适应滤波(Adaptive Filter)自适应滤波是一种基于输入信号的特点进行动态调整的滤波技术,它能够根据输入信号的变化来调整滤波器的参数。
自适应滤波器可以自动适应不同的工作环境和输入信号的特点,提供更好的滤波效果。
以上介绍的是在伺服控制器中常见的数字滤波技术,它们在控制系统中起到了重要的作用。
自适应中值滤波
自适应中值滤波是一种非线性滤波技术,用于去除图像中的噪声。
它使用“滑动窗口”来对图像进行处理,该滑动窗口以较小的步长移动到图像上的每个像素,并采用其周围像素的中值作为当前像素的新值。
这允许滤波器根据图像中的噪声情况自动调整其核大小,以便有效地消除噪声而不会损害图像的真实特征。
与其他非线性滤波器相比,自适应中值滤波器更加灵活,可以有效地分离噪声和真实特征,而不会使图像模糊。