受力构件构造要求
- 格式:docx
- 大小:91.59 KB
- 文档页数:5
混凝土各构件的配筋率及构造要求
展开全文
1.配筋率:
配筋率是影响构件受力特征的一个参数,控制配筋率可以控制结构构件的破坏形态,不发生超筋破坏和少筋破坏,配筋率又是反映经济效果的主要指标。
控制最小配筋率是防止构件发生少筋破坏,少筋破坏是脆性破坏,设计时应当避免。
2.计算公式:
①配筋率ρ=As/bho
②最小配筋率ρmin=As/bho
③公式说明ho-有效高度ho=h-as(保护层厚度)
④板的配筋面积As=配筋率×板厚×1米板长(1000)得出构造配筋(板厚应减去保护层厚度)
3.框架梁配筋率及配筋要求:
通常配筋率:跨中1%~1.7%,支座1.5%~2%;
4.板:
通常配筋率0.4%~0.8%
5.柱:
通常配筋率1%~3%;
柱主要是受压构件,一般来说,计算引起的配筋不要超过最小配筋率太多。
还有要注意柱的大偏心,小偏心情况,和抗震等级高时角柱配筋。
一般来说,柱必须满足最小轴压比要求,当然是越小越经济。
梁有哪些构造要求梁是建筑结构中承受垂直荷载的构件,具有承重、抗弯、抗剪、抗挠等功能。
在设计和施工时,梁需要满足一定的构造要求,以保证其安全可靠地承担荷载。
1.承载力要求:梁的主要功能是承受上方垂直荷载,因此首先要求梁具有足够的承载能力。
根据设计荷载大小,确定梁的尺寸和截面形状,确保其能够承受荷载而不产生过大的变形和破坏。
2.刚度要求:梁构件的刚度决定了其在荷载作用下的变形情况。
在设计梁时,需考虑到对整个结构的变形控制和限制,以及荷载的合理分配。
合理选择梁截面的高宽比、选用适当材料和断面形状等,确保梁具有足够的刚度。
3.抗弯能力要求:梁在荷载作用下常会发生弯曲,因此需要具备足够的抗弯能力,以防止发生破坏。
通常采用加固措施来增加梁的抗弯能力,如设置钢筋或预应力钢束等。
4.抗剪能力要求:梁在荷载作用下也会发生剪力,因此需要具备足够的抗剪能力。
抗剪能力受到梁的截面形状、剪跨比、布置钢筋以及混凝土的强度等因素的影响。
合理设计梁的截面形状、增加钢筋的配筋率等方式可以提高梁的抗剪能力。
5.抗挠性能要求:梁在荷载作用下会产生挠度,需要具备一定的抗挠性能。
过大的挠度会对建筑物的使用性能和安全性产生不良影响,因此需要采取措施限制梁的挠度。
可以通过控制梁的截面尺寸、加强钢筋配置、采用预应力等方法来提高梁的抗挠性能。
6.可靠性要求:在设计梁结构时,需要考虑结构的可靠性。
通过确保设计的可行性、选择适当的安全系数、合理选用材料和制定适应的施工工艺,以保证梁结构的可靠性和安全性。
7.施工简便性要求:在梁的设计和施工过程中,需要考虑到施工的可行性和简便性。
选用适合施工现场条件的梁形式、合理设计构造连接等,以便在施工中能够有效地实施。
综上所述,梁的构造要求主要包括承载力、刚度、抗弯能力、抗剪能力、抗挠性能、可靠性和施工简便性等方面。
只有满足这些要求,梁才能够安全可靠地承担荷载,保证建筑结构的稳定和使用寿命。
砌体结构受力特点及构造要求张铮陕西建工集团机械施工有限公司陕西西安710032 采用砖、砌块和砂浆砌筑而成的结构称为砌体结构。
砌体结构的优点:砌体材料抗压性能好,保温、耐火、耐久性能好;材料经济,就地取材;施工简便,管理、维护方便。
砌体结构的应用范围广,它可用作住宅、办公楼、学校、旅馆、跨度小于l5m的中小型厂房的墙体、柱和基础。
砌体的缺点:砌体的抗压强度相对于块材的强度来说还很低,抗弯、抗拉强度则更低;黏土砖所需土源要占用大片良田,更要耗费大量的能源;自重大,施工劳动强度高,运输损耗大。
1.砌体材料及砌体的力学性能(1)砌块砖、砌块根据其原料、生产工艺和孔洞率来分类。
烧结普通砖——由黏土、石岩、煤矸石或粉煤灰为主要原料,经焙烧而成的实心或孔洞率不大于规定值且外形尺寸符合规定的砖,称为烧结普通砖;烧结普通砖又分为烧结黏土砖、烧结页岩砖、烧结煤矸石砖和烧结粉煤灰砖。
多孔砖——孔洞率大于25%,孔的尺寸小而数量多,主要用于承重部位的砖称为烧结多孔砖,简称多孔砖。
灰砂砖或粉煤灰砖——以石灰和砂为主要原料,或以粉煤灰、石灰并掺石膏和骨料为主要原料,经坯料制备、压制成型、高压蒸汽养护而成的实心砖,称为蒸压灰砂砖或蒸压粉煤灰砖,简称灰砂砖或粉煤灰砖。
砖的强度等级用“MU”表示,单位为MPa(N/mm2)。
烧结普通砖、烧结多孔砖等的强度等级分MU30、MU25、MU20、MUl5和MUl0五级。
蒸压灰砂砖、蒸压粉煤灰砖的强度等级分MU25、MU20、MUl5和MUl0四级。
(2)砂浆砂浆按组成材料的不同,可分为:纯水泥砂浆;水泥混合砂浆;石灰、石膏、黏土砂浆。
砂浆强度等级符号为“M”。
规范给出了五种砂浆的强度等级,即Ml5、Ml0、M7.5、M5和M2.5。
当验算正在砌筑或砌完不久但砂浆尚未硬结,以及在严寒地区采用冻结法施工的砌体抗压强度时,砂浆强度取0。
(3)砌体按照标准的方法砌筑的砖砌体试件,轴压试验分三个阶段。
受弯构件正截面受弯承载力构造要求梁、板的一般构造受弯构件主要是指各种类型的梁与板,与构件的计算轴线相垂直的截面称为正截面。
结构和构件要满足承载能力极限状态和正常使用极限状态(用相应的变形来表示)。
梁、板正截面受弯承载力计算就是从满足承载能力极限状态出发的,即要求满足M≤MuM是受弯构件正截面的弯矩设计值,它是由结构上的作用所产生的内力设计值,代表外部作用在受弯构件正截面。
Mu是受弯构件正截面受弯承载力的设计值,它是由正截面上材料所产生的抗力,是内在承载能力,相当R(s≤R),这里的下角码u是指承载力极限值。
梁板截面形式与尺寸梁、板常用矩形、工形、工字形、槽形、空心板和环形等对称截面,有时也用不对称截面。
现浇梁、板的截面尺寸宜按下述采用:1 .矩形截面的宽度或T形截面的肋宽b一般取为IOO,120,150,200,250和300mm,以下级差为50mm o2 .矩形和T形截面的高度h一般取为250,300,…80Omm,每次级差为50mm z800mm以上级差为Ioommo3 .板的厚度与跨度、荷载有关,板厚值IOmm为模数,但板的厚不应过小。
梁的截面高宽比h/b,在矩形截面中,一般为2.0~2.5;材料选择与一般构造混凝土强度等级梁、板常用的混凝土强度等级是C20、C25和C30。
钢筋强度等级及常用直径梁的纵向受力钢筋常用二级钢筋及三级钢筋,常用直径是12,14,16,18.20,25。
梁的箍筋常用一级或二级钢筋,常用直径是6,8,10mm。
板内钢筋一般有纵向受拉钢筋与分布钢筋两种。
纵向受拉钢筋常用一级、二级钢筋,直径是6,8,10和12mm,其中现浇板的板面钢筋直径宜不小于8mm,以防施工时钢筋被踩下,分布筋用一级钢筋,常用直径是6,8mm。
混凝土保护层厚度纵向受力钢筋的外表面到截面边缘的垂直距离,称为混凝土保护层厚度。
《混凝土结构设计规范》规定了混凝土保护层的最小厚度。
在室内正常环境下,混凝土最小保护层厚度对梁是25mm,对板是15mm,对柱是30mm o根据2010年新的《混凝土结构设计规范》(GB50010-2010)保护层厚度不再是纵向钢筋(非箍筋)外缘至混凝土表面的最小距离,而是〃以最外层钢筋(包括箍筋、构造筋、分布筋等)的外缘计算混凝土的保护层厚度,这样保护层小一些。
《混凝土结构设计原理》第六章受压构件正截面承载力计算课堂笔记♦主要内容受压构件的构造要求轴心受压构件承载力的计算偏心受压构件正截面的两种破坏形态及英判别偏心受压构件的N厂血关系曲线偏心受压构件正截面受压承载力的计算偏心受压构件斜截面受剪承载力的汁算♦学习要求1.深入理解轴心受压短柱在受力过程中,截而应力重分布的概念以及螺旋箍筋柱间接配筋的概念。
2.深入理解偏心受压构件正截而的两种破坏形式并熟练掌握其判别方法。
3.深入理解偏心受压构件的Nu-Mu关系曲线。
4.熟练掌握对称配筋和不对称配筋矩形截而偏心受压构件受压承载力的计算方法。
5.掌握受压构件的主要构造要求和规定。
♦重点难点偏心受压构件正截而的破坏形态及其判别;偏心受压构件正截面承载力的计算理论:对称配筋和不对称配筋矩形截面偏心受压构件受压承载力的计算方法:偏心受压构件的Nu-Mu关系曲线;偏心受压构件斜截面抗剪承载力的计算。
6.1受压构件的一般构造要求结构中常用的柱子是典型的受压构件。
6.1.1材料强度混凝上:受压构件的承载力主要取决于混凝丄强度,一般应采用强度等级较髙的混凝上,目前我国一般结构中柱的混凝土强度等级常用C30-C40,在髙层建筑中,C50-C60级混凝上也经常使用。
6.1.2截面形状和尺寸柱常见截面形式有圆形、环形和方形和矩形。
单层工业厂房的预制柱常采用工字形截面。
圆形截面主要用于桥墩、桩和公共建筑中的柱。
柱的截面尺寸不宜过小,一般应控制在lo/b^30及l°/hW25°当柱截面的边长在800mm以下时,一般以50mm为模数,边长在800mm以上时,以100mm为模数。
6.1.3纵向钢筋构造纵向钢筋配筋率过小时,纵筋对柱的承载力影响很小,接近于素混凝土柱,纵筋不能起到防止混凝上受压脆性破坏的缓冲作用。
同时考虑到实际结构中存在偶然附加弯矩的作用(垂直于弯矩作用平面),以及收缩和温度变化产生的拉应力,规定了受压钢筋的最小配筋率。
建筑结构与受力分析之钢筋混凝土梁板构造要求钢筋混凝土梁和板是建筑结构中常见的构件,具有较好的抗弯和承载能力。
在设计和施工过程中,需要满足一定的构造要求和受力分析,以确保结构的安全可靠。
本文将详细介绍钢筋混凝土梁和板的构造要求和受力分析。
一、钢筋混凝土梁构造要求1.断面形状:钢筋混凝土梁的断面形状应满足强度、刚度和使用要求。
常见的梁断面形状有矩形、T形、倒T形、L形等。
在选择断面形状时,需要对梁的受力情况、跨度大小、承载能力等进行综合考虑。
2.梁高比:梁高比是指梁高与跨度的比值。
一般情况下,当梁的高度较小时,可以选择较小的截面尺寸,以降低材料消耗和成本。
但是当梁高比较大时,应注意梁截面的选取,以确保强度、刚度和使用要求。
3.钢筋布置:钢筋混凝土梁的钢筋布置应满足受力要求和施工要求。
一般情况下,梁的底面和顶面都需要设置主筋,而侧面通常设置箍筋。
对于受弯矩较大的梁,还需要增设受压区钢筋。
4.梁的开洞要求:在一些场合下,需要在梁中开设洞口以满足管线、设备或通风要求。
在开洞时需要注意保持梁的整体刚度和强度,同时要保证洞口的结构安全。
5.焊接质量:对于需要进行焊接的构件,如连接板、压杆等,需要保证焊缝质量符合相关标准,以确保结构的安全可靠。
焊接时需要选择合适的焊工和焊接方法,并进行相应的质量检验。
二、钢筋混凝土梁受力分析1.弯曲受力:钢筋混凝土梁在使用过程中主要承受弯曲受力。
在受力分析时,需要计算梁的弯矩、剪力和轴力等参数,进而确定钢筋的布置和截面尺寸。
2.承载能力:钢筋混凝土梁的承载能力是指梁在设计荷载下的变形和破坏能力。
在设计过程中,需要根据梁的受力情况和所需的安全系数,确定梁的尺寸、钢筋布置和混凝土的强度等参数。
3.梁的水平力:在一些情况下,梁还需要承受水平荷载和地震力。
在受力分析时,需要考虑梁的抗震性能和水平力传递机制,以确保结构在地震等外力作用下的安全性。
1.厚度和跨度:钢筋混凝土板的厚度应满足承载能力和刚度要求,同时还要考虑施工和使用的方便性。
钢结构工程结构构造要求( 1 )对于普通螺栓连接、铆钉连接、高强度螺栓连接,应计算螺栓(铆钉)受剪、受拉、拉剪联合承载力,以及连接板的承压承载力,并应考虑螺栓孔削弱和连接板撬力对连接承载力的影响。
( 2 )螺栓孔加工精度、高强度螺栓施加的预拉力、高强度螺栓摩擦型连接的连接板摩擦面处理工艺应保证螺栓连接的可靠性。
已施加过预拉力的高强度螺栓拆卸后不应作为受力螺栓循环使用。
( 3 )焊接材料应与母材相匹配。
焊缝应采用减少垂直于厚度方向的焊接收缩应力的坡口形式与构造措施。
( 4 )钢结构设计时,焊缝质量等级应根据钢结构的重要性、荷载特性、焊缝形式、工作环境以及应力状态等确定。
( 5 )钢结构承受动荷载且需进行疲劳验算时,严禁使用塞焊、槽焊、电渣焊和气电立焊接头。
(6 ) 高强度螺栓承压型连接不应用于直接承受动力荷载重复作用且需要进行疲劳计算的构件连接。
( 7 )栓焊并用连接应按全部剪力由焊缝承担的原则,对焊缝进行疲劳验算。
(8)钢结构应根据几何形式、建造过程和受力状态,设置可靠的支撑系统。
在建(构)筑物每一个温度区段、防震区段或分期建设的区段中,应分别设置独立的支撑系统。
对于大跨度平面结构,应根据结构稳定性以及抗震、抗风等性能要求,通过计算设置支撑系统。
( 9 ) 焊接结构设计中不应任意加大焊缝尺寸,应避免焊缝密集交叉。
对直接承受动力荷载的普通螺栓受拉连接应采用双螺母或其他防止螺母松动的有效措施。
( 1 0 )多层和高层钢结构结构计算时应考虑构件的下列变形:①梁的弯曲和剪切变形。
②柱的弯曲、轴向、剪切变形③支撑的轴向变形。
④剪力墙板和延性墙板的剪切变形。
⑤消能梁段的剪切、弯曲和轴向变形。
⑥楼板的变形。
( 1 1 )高层钢结构加强层及上、下各一层的竖向构件和连接部位的抗震构造措施,应按规定的结构抗震等级提高一级。
加强层的竖向构件及连接部位,尚应根据计算结果设计其抗震加强措施。
( 1 2 )大跨度钢结构计算时,应根据下部支承结构形式及支座构造确定边界条件。
受力构件构造要求
按照纵向力在截面上作用位置的不同,纵向受力构件分为轴心受力构件和偏心受力构件。
纵向力作用线与构件轴线重合的构件称为轴心受力构件,否则为偏心受力构件。
偏心受力构件又可分为单向偏心受力构件和双向偏心受力构件。
纵向力可以是拉力,也可以是压力,因此,轴心受力构件可分为轴心受拉构件和轴心受压构件,偏心受力构件可分为偏心受拉构件和偏心受压构件。
建筑工程中,受压构件是最重要最常见的承重构件之一。
1.1材料强度
受压构件的承载力主要取决于混凝土强度,采用较高强度等级的混凝土可以减小构件截面尺寸,节省钢材,因而柱中混凝土一般宜采用较高强度等级,但不宜选用高强度钢筋。
其原因是受压钢筋要与混凝土共同工作,钢筋应变受到混凝土极限压应变的限制,而混凝土极限压应变很小,所以高强度钢筋的受压强度不能充分利用。
《混凝土规范》规定受压钢筋的最大抗压强度为400N/mm2。
一般柱中采用C25及以上等级的混凝土,对于高层建筑的底层柱可采用更高强度等级的混凝土,例如采用C40或以上;纵向钢筋一般采用HRB400和HRB335级热轧钢筋。
1.2截面型式及尺寸要求
钢筋混凝土受压构件通常采用方形或矩形截面,以便制作模板。
一般轴心受压柱以方形为主,偏心受压柱以矩形为主。
当有特殊要求时,也可采用其他形式的截面,如轴心受压柱可采用圆形、多边形等,偏心受压柱还可采用I形、T形等。
为了充分利用材料强度,避免构件长细比太大而过多降低构件承载力,柱截面尺寸不宜过小。
一般应符合≤25及≤30(其中为柱的计算长度,h和
b分别为截面的高度和宽度)。
对于方形和矩形截面,其尺寸不宜小于
250×250mm。
为了便于模板尺寸模数化,柱截面边长在800mm以下者,宜取50mm 的倍数;在800mm以上者,取为100mm的倍数。
1.3配筋构造
(1)纵向受力钢筋
轴心受压构件的荷载主要由混凝土承担,设置纵向受力钢筋的目的有三:一是协助混凝土承受压力,以减小构件尺寸;二是承受可能的弯矩,以及混凝土收缩和温度变形引起的拉应力;三是防止构件突然的脆性破坏。
轴心受压柱的纵向受力钢筋应沿截面四周均匀对称布置,偏心受压柱的纵向受力钢筋布置在弯矩作用方向的两对边,圆柱中纵向受力钢筋宜沿周边均匀布置。
纵向受力钢筋直径d不宜小于12mm,通常采用 12~32mm。
一般宜采用根数较少,直径较粗的钢筋,以保证骨架的刚度。
方形和矩形截面柱中纵向受力钢筋不少于4根,圆柱中不宜少于8根且不应少于6根。
纵向受力钢筋的净距不应小于50mm,偏心受压柱中垂直于弯矩作用平面的侧面上的纵向受力钢筋及轴心受压柱中各边的纵向受力钢筋的中距不宜大于300mm(图4.1.1)。
对水平浇筑的预制柱,其纵向钢筋的最小净距距可按梁的有关规定采用。
受压构件纵向钢筋的最小配筋率应符合表3.2.3的规定。
从经济和施工方便(不使钢筋太密集)角度考虑,全部纵向钢筋的配筋率不宜超过5%。
受压钢筋的配筋率一般不超过3%,通常在0.5 %~2%之间。
偏心受压构件的纵向钢筋配置方式有两种。
一种是在柱弯矩作用方向的两对边对称配置相同的纵向受力钢筋,这种方式称为对称配筋。
对称配筋构造简单,施工方便,不易出错,但用钢量较大。
另一种是非对称配筋,即在柱弯矩作用方向的两对边配置不同的纵向受力钢筋。
非对称配筋的优缺点与对称配筋相反。
在实际工程中,为避免吊装出错,装配式柱一般采用对称配筋。
屋架上弦、多层框架柱等偏心受压构件,由于在不同荷载(如风荷载、竖向荷载)组合下,在同一截面内可能要承受不同方向的弯矩,即在某一种荷载组合作用下受拉的部位在另一种荷载组合作用下可能就变为受压,当这两种不同符号的弯矩相差不大时,为了设计、施工方便,通常也采用对称配筋。
(2)箍筋
受压构件中箍筋的作用是保证纵向钢筋的位置正确,防止纵向钢筋压屈,从而提
高柱的承载能力。
受压构件中的周边箍筋应做成封闭式。
箍筋直径不应小于/4(为纵向钢筋的最大直径),且不应小于6mm。
箍筋间距不应大于400mm及构件截面的短边尺寸,且不应大于15(为纵向受力钢筋的最小直径)。
当柱中全部纵向受力钢筋的配筋率超过3%时,箍筋直径不应小于8mm,间距不应大于10(为纵向受力钢筋的最小直径),且不应大于200mm;箍筋末端应做成135°弯钩且弯钩末端平直段长度不应小于直径的10倍。
在纵向钢筋搭接长度范围内,箍筋的直径不宜小于搭接钢筋直径的0.25倍。
箍筋间距,当搭接钢筋为受拉时,不应大于5(为受力钢筋中最小直径),且
不应大于100mm;当搭接钢筋为受压时,不应大于10,且不应大于200mm。
当搭接受压钢筋直径大于25mm时,应在搭接接头两个端面外100mm范围内各设置2根箍筋。
当柱截面短边尺寸大于400mm且各边纵向受力钢筋多于3根时,或当柱截面短边尺寸不大于400mm但各边纵向钢筋多于4根时,应设置复合箍筋,以防止中间钢筋被压屈(图4.1.2)。
复合箍筋的直径、间距与前述箍筋相同。
当偏心受压柱的截面高度≥ 600mm时,在柱的侧面上应设置直径为10~16mm 的纵向构造钢筋,并相应设置复合箍筋或拉筋。
对于截面形状复杂的构件,不可采用具有内折角的箍筋(图4.1.3)。
其原因是,内折角处受拉箍筋的合力向外,可能使该处混凝土保护层崩裂。