目标导航 题型一 题型二 题型三
Z 知识梳理 Z重难聚焦
HISHISHULI
HONGNANJUJIAO IANLITOUXI
D典例透析
圆的渐开线的参数方程及应用 【例1】 已知圆的直径为2,其渐开线的标准参数方程对应的曲线 π π 上两点A,B对应的参数分别 是 和 , 求������, ������两点间的距离. 3 2 分析:先写出圆的渐开线的参数方程,再把点A,B对应的参数分别 代入参数方程可得A,B两点的坐标,然后使用两点之间的距离公式 可得点A,B之间的距离. 解:根据题意可知圆的半径是1, 所以其对应渐开线的参数方程是 ������ = cos������ + ������sin������, (������为参数). ������ = sin������-������cos������ π π 分别把 φ= 和 ������ = 代入,
3 2
可得 A,B 两点的坐标分别为 ������
3+ 3π 3 3-π 6
,
6
, ������
பைடு நூலகம்π 2
,1 .
根据两点之间的距离公式可得 A,B 两点间的距离为
目标导航 题型一 题型二 题型三
Z 知识梳理 Z重难聚焦
HISHISHULI
HONGNANJUJIAO IANLITOUXI
D典例透析
|AB|=
������ = 9(������-sin������), (������为参数). ������ = 9(1-cos������)
目标导航
Z 知识梳理 Z重难聚焦
HISHISHULI
HONGNANJUJIAO IANLITOUXI
D典例透析