高分子分离膜与膜分离技术
- 格式:ppt
- 大小:10.49 MB
- 文档页数:141
膜分离技术膜分离技术是一种重要的分离技术,通过膜将混合物中不同分子大小、形状、电荷和极性等特性的物质分离出来。
它广泛应用于各种领域,如环境保护、医药制造、食品加工、化学工业和电子行业等。
本文将介绍膜分离技术的工作原理、分类和应用,并探讨其未来的发展前景。
一、膜分离技术的基本原理膜分离技术利用膜作为分离介质,将混合物分离成两个或更多的组分,其中其中至少有一种组分通过膜而另一种组分不直接通过。
根据膜分离的机制可以分为以下三种类型:1、压力驱动膜分离技术压力驱动膜分离技术是指通过施加压力将混合物推动到膜上,以实现分离的技术。
膜的孔径大小、膜的材质和压力差均会影响分离效果。
该技术主要包括超滤、逆渗透和微滤等。
超滤是指利用孔径大小在10-100纳米的超滤膜去除溶液中的高分子物质。
逆渗透是利用高压驱动水通过0.1纳米左右的逆渗透膜,将混合物中的水增量分离出来,这是制取纯水的主要技术之一。
微滤是利用孔径在0.1-10微米的微滤膜去除悬浮物、细菌和微生物等。
2、电力驱动膜分离技术电力驱动膜分离技术是利用电场将混合物推动到膜上,实现分离的技术。
例如电渗析技术是利用电场和离子之间的电荷作用,将含有离子的溶液通过电场驱动到离子交换膜中,使得原来溶液中的阴离子和阳离子在两侧集中,最终通过两个极板分别收集。
3、扩散驱动膜分离技术扩散驱动膜分离技术是指利用分子间的扩散速率的大小差异,将混合物中的混合物分离的技术。
例如气体分离、液体浓缩和溶液析出等。
二、膜分离技术的分类根据膜的性质和分离机制的不同,可以将膜分离技术分为以下几种类型:1、纳滤技术纳滤技术是利用孔径在10-100纳米的纳滤膜,将分子大小在10-100纳米之间的物质分离出来。
纳滤技术主要应用于制备高分子材料、微电子器件制造和水处理等领域中。
2、超滤技术超滤技术是利用孔径在0.01-0.1微米之间的超滤膜,将分子大小在1000道100万道之间的物质分离出来。
超滤技术主要应用于蛋白质提取、水处理、生物制品制备和废水处理等领域中。
膜分离技术膜分离技术是一种新型高效、精密分离技术,它是材料科学与介质分离技术的交叉结合,具有高效分离、设备简单、节能、常温操作、无污染等优点,广泛应用于工业领域,尤其在食品、医药、生化领域发展迅猛。
据统计,膜销售每年以10%~20%的速度增长,而最大的市场为生物医药市场。
一膜分离技术1.1原理膜分离技术是一种使用半透膜的分离方法,在常温下以膜两侧压力差或电位差为动力,对溶质和溶剂进行分离、浓缩、纯化。
膜分离技术主要是采用天然或人工合成高分子薄膜,以外界能量或化学位差为推动力,对双组分或多组分流质和溶剂进行分离、分级、提纯和富集操作。
现已应用的有反渗透、纳滤、超过滤、微孔过滤、透析电渗析、气体分离、渗透蒸发、控制释放、液膜、膜蒸馏膜反应器等技术,其中在食品、药学工业中常用的有微滤、超滤和反渗透种。
1.2特点膜分离技术具有如下特点, (1)膜分离过程不发生相变化,因此膜分离技术是一种节能技术;2)膜分离过程是在压力驱动下,在常温下进行分离,特别适合于对热敏感物质,如酶、果汁、某些药品的分离、浓缩、精制等。
(3)膜分离技术适用分离的范围极广,从微粒级到微生物菌体,甚至离子级都有其用武之地,关键在于选择不同的膜类型;(4)膜分离技术以压力差作为驱动力,因此采用装置简单,操作方便。
1.3分类超滤的截留相对分子质量在1000~10000之间,选择某一截留相对分子质量的膜可以将杂质与目标产物分离。
超滤技术在生化产品分离中应用最早、最为成熟,已广泛应用于各种生物制品的分离、浓缩。
纳滤膜具有纳米级孔径,截留相对分子质量为200~1000,能使溶剂、有机小分子和无机盐通过。
纳滤可以采用两种方式提取抗生素,一是用溶剂萃取抗生素后,萃取液用纳滤浓缩,可改善操作环境;二是对未经萃取的抗生素发酵液进行纳滤浓缩,除去水和无机盐,再用萃取剂萃取,可减少萃取剂用量。
微滤是发展最早、制备技术最成熟的膜形式之一,孔径在0.05~10um 之间,可以将细菌、微粒、亚微粒、胶团等不溶物除去,滤液纯净,国际上通称为绝对过滤。
食品中的高新技术------膜分离技术高新技术在食品工业中的应用加快了食品新资源的选育,提高了加工转化效率,加快了新品的研发,完好地保存了食品原有的色香味和营养素,对推动食品工业跨越式发展、改变落后面貌、提高产品技术含量以及增强产品在国际市场上的竞争力有着不可估量的作用。
在食品行业中应用了许多的高新技术,现主要介绍膜分离技术。
该技术是指利用天然或人工合成的具有选择性的薄膜,在常温下以膜两侧的压力差或电位差为动力,对双组分或多组分的溶质和溶剂进行分离、浓缩、纯化等的技术。
目前,膜分离技术主要应用于有效成分的分离、浓缩、精制和除菌以及食品的加工等。
1 膜分离技术研究情况简介膜的研究开始于1978年Abble、Nollet首创osmosis一词,用来描述水通过半透膜的渗透现象。
1960年,美国加利福尼亚大学S.Loeb和S.Sourirajan成功制得了世界上第一张高脱盐率、高通透量的可用于海水脱盐的不对称醋酸纤维素反渗透膜,开始了膜分离技术的研究;80年代末实现了工业化;到90年代,中压、低压和超低压高脱盐聚酰胺复合膜进入市场,使反渗透技术的发展有了更广阔的前景。
我国的膜技术始于20世纪70年代中空纤维和卷式反渗透元件的研究,并在80年代初步工业化。
膜分离技术在食品工业中的应用始于20世纪60年代末,首先是应用于乳品加工和啤酒的无菌过滤,随后应用于果汁生产、料质无菌超滤、酒类精制和酶制剂的提纯和浓缩方面。
由于膜分离技术所具有的优点,使其在食品工业中日益受到重视,应用前景也越来越广阔。
2 膜分离技术的特点该技术引入食品工业领域后,其特殊的优点使得它在食品行业的应用中取得了其他分离加工方式无法比拟的成绩。
2.1 由于膜具有选择性,它能选择性地透过某些物质而阻挡另外一些物质的透过,所以选择合适的膜可以有效地进行物质的分离、提纯和浓缩,其分离颗粒小至纳米级,分离系数高达三位数,因此是一个高效的分离过程。
2.2 分离过程不发生相变化。
膜分离技术在制药和化学工业中的应用随着科学技术的发展和工业化程度的提高,人们对于高效、环保、低成本的工业生产方式的需求日益增加。
膜分离技术是一种采用高分子膜作为分离界面,利用溶质的差异性从混合溶液中进行分离的技术。
它具有结构简单、容易控制和操作、不需要高能耗的特点,因此被广泛应用于制药和化学工业。
一、膜分离技术在制药工业中的应用在制药工业中,膜分离技术主要被用于制备纯度高、活性好的药物成分。
例如,常用的超滤膜可以将药物中的蛋白质、多肽等高分子物质从溶液中分离出来,从而提高药品的纯度和疗效。
此外,反渗透膜还可以用于制备无菌注射液、口服制剂等高品质的制剂。
膜分离技术还可以应用于药物分子的纯化、浓缩和分离等一系列过程。
二、膜分离技术在化学工业中的应用在化学工业中,膜分离技术具有广泛的应用。
其中,最为常见的是膜过滤、膜萃取和膜透析。
膜过滤可以用于分离反应物和产物中的悬浮物、固体颗粒等,从而提高反应的效率和纯度。
膜萃取则主要应用于化学热力学分离、溶液提纯、有机合成等场合,可以有效地将溶液中的目标分子与其他组分分离出来。
膜透析则常用于分离生物领域中的蛋白质、酶等大分子物质。
在工业生产中,膜分离技术可用于提高化工反应的选择性、减少污染物排放、提高产物收率等。
例如,纳滤技术可以用于微量控制、无菌处理和废物净化等方面,而反渗透技术则可以用于制备高纯度的化学品、水处理等方面。
三、膜分离技术在环保领域中的应用膜分离技术的应用不仅局限于制药和化学工业中,还可以用于环保领域。
例如,在水处理方面,膜分离技术被广泛应用于去除水中的有机物、离子和微生物等污染物,从而达到净化水质的目的。
在空气净化方面,膜分离技术也可以用于处理有害气体和粉尘,减少空气污染。
总体而言,膜分离技术是一种高效、环保、低成本的分离技术,具有广泛的应用前景。
随着科学技术的不断发展,膜分离技术也将不断完善,助力更多行业走向高效、低污染的绿色工业生产模式。
膜分离技术膜分离技术是材料科学和过程工程科学等诸多学科交叉结合、相互渗透而产生的新领域,是当代新型高效的共性技术,特别适合于现代工业对节能、低品位原材料再利用和消除环境污染的需要,成为实现经济可持续发展战略的重要组成部分。
膜分离技术推广应用的覆盖面在一定程度上反映一个国家过程工业,能源利用和环境保护的水平。
膜分离技术以选择性透过膜为分离介质。
在常温下以膜两侧压力差或电位差为动力,对溶质和溶剂进行分离、浓缩、纯化。
膜分离技术主要是采用天然或人工合成高分子薄膜,以外界能量或化学位差为推动力,对双组分或多组分流质和溶剂进行分离、分级、提纯和富集操作。
现已应用的有反渗透、纳滤、超过滤、微孔过滤、透析电渗析、气体膜分离、渗透蒸发、控制释放、液膜、膜蒸馏膜反应器等技术。
膜分离技术作为新的分离净化和浓缩方法,与传统分离操作(如蒸发、萃取、沉淀、混凝和离子交换等)相比较,其过程大多为无相变化,可以在常温下操作,具有能耗低、效率高、工艺简单、投资小和污染轻等优点。
1.微滤(MF)Microfiltration,其特点:对称细孔高分子膜,孔径0.03~10 nm,滤除≥50 nm的颗粒,以压力差为分离驱动力,透过物质:水、溶剂和溶解物,被截留物质:悬浮物、细菌和微粒子。
2.超滤(UF)Ultrafiltration,其特点:非对称结构的多孔膜,孔径l~20 nm,滤除5~100 nm的颗粒,以压力差为分离驱动力,透过物质:溶剂、离子和小分子,被截留物质:蛋白质、各类酶、细菌和乳胶。
3.纳滤(NF)Nanofiltration,其特点:1 nm的微孔结构,滤除相对分子质量在200~2000,以压力差为分离驱动力,透过物质:水、溶剂、相对分子质量<200,被截留物质:溶质、二价盐、糖和染料 (相对分子质量200~1000)。
4.反渗透(RO)Reverse Osmosis,其特点:带皮层的不对称膜、复合膜(<l nm),用于水溶液中溶解性盐的脱除,以压力差为分离驱动力,透过物质:水、溶剂,被截留物质:无机盐、糖类、氨基酸和BOD。
膜分离技术教学目的与要求:1、了解和熟悉膜分离技术的原理2、掌握膜分离技术的主要操作步骤重点与难点:掌握膜分离技术的主要操作步骤教学方法:多媒体一、膜分离的概念利用膜的选择性(孔径大小),以膜的两侧存在的能量差作为推动力,由于溶液中各组分透过膜的迁移率不同而实现分离的一种技术。
1.膜的概念(1)在一种流体相间有一层薄的凝聚相物质,把流体相分隔开来成为两部分,这一薄层物质称为膜。
(2)膜本身是均一的一相或由两相以上凝聚物构成的复合体(3)被膜分开的流体相物质是液体或气体(4)膜的厚度应在0.5mm以下,否则不能称其为膜。
2、膜分离技术的类型和定义膜分离过程的实质是物质透过或被截留于膜的过程,近似于筛分过程,依据滤膜孔径大小而达到物质分离的目的,故而可以按分离粒子大小进行分类:(1)微滤:以多孔细小薄膜为过滤介质,压力为推动力,使不溶性物质得以分离的操作,孔径分布范围在0.025~14μm之间;(2)超滤:分离介质同上,但孔径更小,为0.001~0.02 μm,分离推动力仍为压力差,适合于分离酶、蛋白质等生物大分子物质;(3)反渗透:是一种以压力差为推动力,从溶液中分离出溶剂的膜分离操作,孔径范围在0.0001~0.001 μm之间;(由于分离的溶剂分子往往很小,不能忽略渗透压的作用,故而成为反渗透);(4)纳滤:以压力差为推动力,从溶液中分离300~1000小分子量的膜分离过程,孔径分布在平均2nm;(5)电渗析:以电位差为推动力,利用离子交换膜的选择透过性,从溶液中脱除或富集电解质的膜分离操作;3、膜的分类按孔径大小:微滤膜、超滤膜、反渗透膜、纳滤膜按膜结构:对称性膜、不对称膜、复合膜按材料分:合成有机聚合物膜、无机材料膜4、膜材料的特性对于不同种类的膜都有一个基本要求:(1)耐压:膜孔径小,要保持高通量就必须施加较高的压力,一般模操作的压力范围在0.1~0.5Mpa,反渗透膜的压力更高,约为1~10MPa(2)耐高温:高通量带来的温度升高和清洗的需要(3)耐酸碱:防止分离过程中,以及清洗过程中的水解;(4)化学相容性:保持膜的稳定性;(5)生物相容性:防止生物大分子的变性;(6)成本低;5、各种膜材料(1)有机高分子膜:纤维素酯膜、缩合系聚合物(聚砜类)、聚烯烃及其共聚物、脂肪族或芳香族聚酰胺类聚合物、全氟磺酸共聚物和全氟羧酸共聚物、聚碳酸酯;(2)无机多孔膜:陶瓷膜二、膜组件管式、中空纤维、螺旋卷绕式、平板式共同的特点(1)尽可能大的膜表面积(2)可靠的支撑装置(3)可引出透过液(4)膜表面浓度差极化达到最小三、超滤和反渗透目的:将溶质通过一层具有选择性的薄膜,从溶液中分离出来分离时的推动力都是压强,由于被分离物质的分子量和直径大小差别及膜孔结构不同,其采用的压强大小不同。
中药有效成分常用的提取和分离方法及其特点和应用中药有效成分常用的提取方法有溶剂法、水蒸气蒸馏法、升华法等。
以下是这些方法的特点和应用:✧溶剂法:根据中药中各成分在溶剂中的溶解性,选用对活性成分溶解度大、对不需要溶出成分溶解度小的溶剂,而将有效成分从药材组织内溶解出来的方法。
常用的提取溶剂有水、亲脂性有机溶剂(如乙醚、氯仿等)和亲水性有机溶剂(如乙醇、甲醇等)。
溶剂法适用于提取各种中药成分,如生物碱、黄酮类、苷类、鞣质等。
✧水蒸气蒸馏法:适用于具有挥发性、能随水蒸气蒸馏而不被破坏、在水中稳定且难溶或不溶于水的药材成分的提取。
此法常用于提取挥发油、某些小分子香豆素和醌类化合物等。
✧升华法:主要用于具有升华性的物质的分离,如某些小分子香豆素和醌类化合物等。
升华法是利用固体物质受热直接气化,遇冷后又凝固为固体化合物的原理进行分离。
至于中药有效成分的分离方法,主要包括多种色谱技术、膜分离技术等✧色谱法:色谱法是一种利用物质在两相中的分配系数不同而进行分离的方法。
常用的色谱技术包括薄层色谱、柱色谱、高效液相色谱等。
色谱法适用于分离各种极性不同的中药成分,如生物碱、黄酮类、苷类等。
✧膜分离技术:膜分离技术是利用天然或人工合成的高分子薄膜,以外界能量或化学位差为推动力,对双组分或多组分的溶质和溶剂进行分离、分级、提纯和富集的方法。
常用的膜分离技术包括超滤、微滤、纳滤等。
膜分离技术适用于分离大分子物质和小分子物质,如蛋白质、多糖等。
这些方法的选择取决于目标成分的性质、药材的特性和所需产品的纯度等因素。
在实际应用中,常常需要根据具体情况选择合适的提取和分离方法,或者将多种方法联合使用以达到最佳效果。
膜分离技术的原理和应用随着科技技术的不断发展,人类对于生命科学的研究也越来越深入。
其中,膜分离技术就是生命科学中的一项重要技术。
那么膜分离技术是什么?它是如何工作的?又在哪些领域得到了应用?下面我们就来深入探讨一下。
一、膜分离技术的基本原理膜分离技术是一个将物质分离和纯化的过程。
这个过程基于物质分子大小和化学特性的不同而进行。
其本质就是从溶液中分离出特定的物质,而进一步的纯化则可以通过渗透压、电性等天然现象来实现。
膜分离技术的原理基于膜的选择性,膜可以选择性地让一些小于其孔径的溶质通过,而阻止大于或等于其孔径的溶质通过,其选择性是基于相互作用力的。
其中,可以选择基于吸附力的透析膜、基于分子大小的渗透膜、以及基于分子电荷的离子交换膜等。
二、膜分离技术的应用领域膜分离技术在生命科学的很多领域得到了应用,具体应用如下:1.生物医学在生物医学领域,膜分离技术有着广泛的应用。
比如,它可以用于生物反应器的分离、酶的纯化、病原体的去除、蛋白质、激素的纯化等。
2.食品与饮料在食品和饮料领域中,膜分离技术也扮演着重要角色。
例如,它可以用于乳制品工业、饮料工业、果汁加工、酿酒业等。
3.水处理在水处理中,膜分离技术也有重要的应用。
比如,可以使用微过滤与超滤膜进行悬浮物的去除,反渗透膜和离子交换膜则可以去除水中的有害离子和重金属离子。
4.化学工业膜分离技术也可以用于化学工业。
例如,可以用于膜分离、膜萃取、膜反应、膜过滤等,可以用于分离、纯化、分子分级等。
三、膜分离技术的发展趋势目前,膜分离技术在生命科学领域中的应用越来越广泛。
未来,随着科技技术的不断进步,膜分离技术也将会得到更多的发展。
从技术角度来看,膜性能的提高是一个重要的趋势。
比如,为了摆脱基于空隙的效率限制,高分子纳米孔膜被开发出来,它们能够提供比传统低聚物和陶瓷膜更高的分离效率。
此外,疏水性、高渗透性、低粘附、抗污性等方面的改进也是开发新膜的关键。
从应用角度来看,膜分离技术的应用领域将会越来越广泛。