第3章 几何光学的基本原理
- 格式:ppt
- 大小:5.38 MB
- 文档页数:80
第三章__几何光学的基本原理第三章几何光学的基本原理3.眼睛E和物体PQ之间有一块折射率为1.5的玻璃平板(如图所示),平板的厚度d为30cm。
求物体PQ的像QP''与物体PQ之间的距离2d为多少?已知:1=n,51.='n,cmd30=求:?=2d解:由图可知12iQNQQdsin='=,设xQN=,即光线横向的偏移,则12ixdsin=(1)在入射点A处,有21inin sinsin'=在出射点B处,有12inin'='sinsin,因此可得11ii'=即出射线与入射线平行,但横向偏移了x。
由图中几何关系可得:()()21221iiidiiABx-=-=sincossin收集于网络,如有侵权请联系管理员删除收集于网络,如有侵权请联系管理员删除又因为 1i 和2i 很小,所以 12≈i cos , ()2121i i i i -≈-sin 而 21i n ni '= ,所以 1121i ni n ni '='=则 ()⎪⎭⎫ ⎝⎛'-=-=11211i n i d i i d x ,即 ⎪⎭⎫ ⎝⎛'-'=n n di x 11 (2) (2)式代入(1)式得 cm d d n n i i d d 1031511511112==⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛'-'≈.. 6.高5cm 的物体距凹面镜顶点12cm ,凹面镜的焦距是10cm ,求像的位置及高度,并作光路图。
已知:cm y 5=, cm s 12-=,cm f 10-=' 求:?='s ?='y 作光路图解:根据 f s s '='+111得601121101111-=+-=-'='s f s ,cm s 60-='∴又据 n ns s y y '⋅'=' ,而 n n -='所以得 cm y s s y 2551260-=⨯---='-=' 光路图(cm r cm rf 20102-=∴-==',Θ)C为圆心。
第三章几何光学的基本原理干涉和衍射现象揭示了光的波动性。
光既然具有波动性,那么,所有光学现象都应该能用波动概念来解释,包括光的直线传播现象在内。
但是直线传播,尤其是反射,折射成像等问题,如果不用波长、相位等波动的概念,而代之以光线和波面等概念,并用几何学方法来研究将更为方便。
这就是几何光学的研究内容。
由于这只有在波面线度远比波长大时才适用,因此本章所讲述的内容仅以成像的一级近似理论为限,因为这种近似有很大的实用意义。
3.1 光线的概念3.1.1 光线与波面“光线”只能表示光的传播方向,不可以误认为是从实际光束中借助于有孔光阑分出的一个狭窄部分,那么,在极限情况下,选用任意小的孔,就能得到像几何线那样的所谓“光线”,但是由于衍射作用,实际上要分出任意窄的光束是不可能的。
通过半径为R的圆孔的实际光束,其传播范围不可比避免的要扩大,其角宽度由衍射角θ∝λ/R决定[见(2-23)?的情况下,由衍射引起的扩大已不显著,光的传播过程才不用以次波叠式]。
只有在R l加的原理来分析,而只用光线来表示光的传播方向。
我们说“光束由无数光线构成”,不过是说明光沿着无数不同的方向传播罢了。
光波在介质中沿着光线传播时,相位不断地改变,但是同一波面上所有点的相位是相同的。
在各向同性介质中,光的传播方向总是和波面的法向方向相重合。
在许多实际情况中,人们经常考虑的只是光的传播方向问题,而不去考虑相位。
这时波面就只是垂直于光线的几何平面或曲面。
在这种极限情况下,实际上是把光线和波面都看做是抽像的数学概念。
对许多实际问题,特别是光学技术成像和照明工程等问题,借助于上述光线(有时用波面)的概念,并应用某些基本实验定律及几何定律,就可以进行所有必要的计算而不必涉及光的本性问题。
这部分以几何定律和某些基本实验定律为基础的光学称为几何光学(或光线光学)。
反映光的波动性的那部分光学称为波动光学。
在第1、2章波动光学中主要考虑的是波长、振幅和相位;这一章几何光学所考虑的主要将是光线和波面。
由图可知 d ? QQ QN sin i i 设QN x ,即光线横向的偏移,则d ? sin i i (1) 在出射点B 处,有 n sini ? nsin^ ,因此可得 i 1 i 1 第三章几何光学的基本原理 3.眼睛E 和物体PQ 之间有一块折射率为1.5的玻璃平板(如图所示),平板的厚 度d 为30cm 求物体PQ 的像PQ 与物体PQ 之间的距离d ?为多少? 已知:n 1, n 1.5, d 30cm在入射点 A 处,有 nsinh n sin i ?即出射线与入射线平行,但横向偏移了x由图中几何关系可得:dx AB sin i1 i? sin i t i ?cosi?而 ni i n i ?, 则 x d i 1 i 2 n . 所以i 2 iln d i i i i,即n (2)式代入(1)式得 d 26.高5cm 的物体距凹面镜顶点 并作光路图1 i i n d . n 1 i 1 i 1 n 1.5 1d Id 10cm 1.5 3 12cm ,凹面镜的焦距是10cm,求像的位置及高度, 求:s ?y ? 作光路图 1 1 1解:根据— f s s 11 1 1 1 1 刁曰 —得s f s10 12 60 s60cmy s n又据— — —,而 n ny s n所以得ys y 60 5 25cm s 12 光路图(r f 2 10cm, r 20cm7. 一个5cm 高的物体放在球面镜前10cm 处,成1cm 高的虚像。
求:(1)此镜的 曲率半径;(2)此镜是凸面镜还是凹面镜?已知: y 5cm , y 1cm , s 10cm已知:y 10cm根据反射镜_y_解: y得: s 上s 1 - 10y51 1 2又由s s r刁曰r,得r ss2cm5cm >0 ,所以此镜是凸面镜。
求:r ?此镜是凸面镜还是凹面镜?8. 某观察者通过一块薄玻璃去看在凸面镜中他自己的像。