有关图像压缩的系列问题
- 格式:doc
- 大小:102.50 KB
- 文档页数:5
图像压缩算法及其数学原理在现代科技的发展下,数字图像已经成为人们生活中不可或缺的一部分。
然而,随着图像的分辨率和色彩深度的提高,图像文件的大小也越来越大,给存储和传输带来了巨大的负担。
为了解决这个问题,图像压缩算法应运而生。
图像压缩算法是一种通过减少图像文件的数据量来实现文件大小减小的技术。
它可以分为有损压缩和无损压缩两种类型。
有损压缩算法是通过牺牲一定的图像质量来实现更高的压缩比。
最常见的有损压缩算法是基于离散余弦变换(Discrete Cosine Transform,DCT)的JPEG算法。
JPEG算法将图像分成8x8的图像块,对每个图像块进行DCT变换,然后将变换系数进行量化和编码。
在量化过程中,DCT变换系数的高频部分被量化为较小的数值,从而减小了数据量。
在编码过程中,采用了熵编码算法,如哈夫曼编码,进一步减小了数据的大小。
虽然JPEG算法可以实现较高的压缩比,但由于数据的丢失,图像质量也会有所损失。
无损压缩算法是通过保持图像质量的前提下实现文件大小减小的技术。
最常见的无损压缩算法是基于预测编码的无损压缩算法,如GIF和PNG算法。
这些算法利用图像中像素之间的相关性进行编码。
在预测编码中,每个像素的值都是通过对其周围像素值进行预测得到的。
然后,将预测误差进行编码和存储。
由于预测误差通常较小,因此无损压缩算法可以实现较小的文件大小,同时保持图像质量不变。
图像压缩算法的数学原理是其实现的基础。
在有损压缩算法中,DCT变换是其中的核心数学原理。
DCT变换是一种将时域信号转换为频域信号的数学变换。
它通过将图像块中的像素值映射到一组频域系数上,从而实现对图像的压缩。
在DCT变换中,高频系数对应于图像的细节信息,而低频系数对应于图像的整体结构。
通过量化和编码高频系数,可以实现对图像细节的压缩。
在无损压缩算法中,预测编码是其中的核心数学原理。
预测编码利用了图像中像素之间的相关性。
通过对像素值进行预测,可以减小预测误差的大小。
学习计算机图像压缩算法在现代社会中,计算机图像已经成为人们生活中不可或缺的一部分。
然而,随着图像文件的增加和传输需求的增长,图像压缩成为了一项重要的技术。
本文将介绍计算机图像压缩算法的基本原理和常见方法,并探讨其在实际应用中的优劣势。
一、图像压缩的基本原理图像压缩是一种将图像文件大小减小以便于存储和传输的技术。
其基本原理是通过减少冗余信息、去除不可察觉的细节和重建丢失的数据来实现。
图像压缩算法根据压缩比率、图像质量和处理速度来选择不同的方法。
二、无损压缩算法无损压缩算法是指压缩过程中不影响图像质量的方法。
其中最著名的算法是Lempel-Ziv-Welch(LZW)算法。
该算法将图像中的重复信息编码为较短的字符序列,从而减小文件大小。
然而,无损压缩算法的缺点是压缩比率相对较低,无法在压缩大小和图像质量之间取得良好的平衡。
三、有损压缩算法相比于无损压缩算法,有损压缩算法能够取得更高的压缩比率,但会在一定程度上降低图像质量。
JPEG是最常用的有损压缩算法之一。
该算法将图像分成不重叠的8×8像素块,通过离散余弦变换和量化来减小文件大小。
JPEG算法能够在高压缩比率下保持较好的图像质量,但在压缩过程中会丢失一些细节和边缘信息。
四、混合压缩算法为了兼顾无损和有损压缩的优势,一些混合压缩算法被提出。
其中一种常见的方法是基于小波变换的压缩算法。
该算法通过对图像进行分解,将高频细节和低频概貌分开处理。
高频细节通过有损压缩算法进行压缩,低频概貌通过无损压缩算法进行压缩。
混合压缩算法能够在较高的压缩比率下保持良好的图像质量,是目前最先进的图像压缩方法之一。
五、图像压缩算法的应用图像压缩算法在各个领域都有广泛的应用。
在互联网领域,图像压缩能够减小网页加载时间和提升用户体验。
在医学影像领域,图像压缩能够减小存储和传输开销,方便医生的诊断。
在无人驾驶领域,图像压缩能够减少数据传输量,提升实时性和响应速度。
总之,学习计算机图像压缩算法对于理解图像处理和传输的原理具有重要意义。
图像压缩原理
图像压缩原理是通过减少图像数据的存储量来实现的。
具体来说,图像压缩原理涉及到以下几个方面。
1. 去除冗余信息:图像中通常存在大量冗余信息,例如连续相同颜色的像素或者相似颜色的像素。
通过将这些冗余信息进行去除或者压缩,可以达到减少图像存储量的目的。
2. 空间域压缩:在空间域压缩中,通过减少像素的数量或者减少像素的位数来减少图像文件的大小。
一种常见的空间域压缩算法是基于四色彩色的量化压缩方法,通过降低每个像素颜色的位数来减少存储空间。
3. 频域压缩:频域压缩是将图像从空间域转换为频域,利用图像在频域中的特性来进行压缩。
其中一种常见的频域压缩方法是基于离散余弦变换(DCT)的压缩方法,它将图像转换为频域信号,并利用频域信号中较小的系数来表示图像。
4. 熵编码:熵编码是一种无损压缩方法,通过对图像数据进行统计分析,利用出现频率较高的数据用较短的码字表示,从而减少图像文件的存储大小。
综上所述,图像压缩通过去除冗余信息、空间域压缩、频域压缩和熵编码等方法来减少图像数据的存储量。
这些方法可以单独应用,也可以结合使用,以达到更好的压缩效果。
1、为什么要对图像数据进行压缩?其压缩原理是什么?答:(1)数字图像如果不进行压缩,数据量是比较大的,例如一幅分辨率为1024×768的静态真彩色图像,其数据量为1024×768×24=2.25(MB)。
这无疑对图像的存储、处理、传送带来很大的困难。
事实上,在图像像素之间,无论在行方向还是列方向,都存在一定的相关性。
也就是说,在一般图像中都存在很大的相关性,即冗余度。
静态图像数据的冗余包括:空间冗余、时间冗余、结构冗余、知识冗余和视觉冗余、图像区域的相同性冗余、纹理的统计冗余等。
图像压缩编码技术就是利用图像数据固有的冗余性和相干性,将一个大的图像数据文件转换为较小的同性质的文件。
(2)其压缩原理: 空间冗余、时间冗余、结构冗余、和视觉冗余。
2、图像压缩编码的目的是什么?目前有哪些编码方法?答:(1)视频经过数字化处理后易于加密、抗干扰能力强、可再生中继等诸多优点,但是由于数字化的视频数据量十分巨大,不利于传输和存储。
若不经压缩,数字视频传输所需的高传输率和数字视频存储所需的巨大容量,将成为推广数字电视视频通信的最大障碍,这就是进行视频压缩编码的目的。
(2)目前主要是预测编码,变换编码,和统计编码三种编码方法。
3、某信号源共有7个符号,概率分别为0.2,0.18,0.1,0.15,0.07,0.05,0.25,试进行霍夫曼编码,并解释是否进行了压缩,压缩比为多少?0000 0001 000 00 111 110 100.05 0.07 0.1 0.2 0.18 0.15 0.250.05×4+0.07×4+0.1×3+0.2×2+0.18×3+0.15×3+0.25×2=2.67。
图像处理中的图像压缩与恢复方法图像压缩是在图像处理领域中非常重要的一项技术。
在计算机视觉、数字通信以及存储等领域中,图像压缩可以大幅减少图像数据的大小,从而提高数据传输速度和存储效率。
同时,图像恢复则是在压缩后的图像还原以及修复中起到重要作用的技术。
在本文中,我们将介绍一些常见的图像压缩与恢复方法。
一. 图像压缩方法1. 无损压缩方法无损压缩方法是一种能够通过压缩图像数据,但不会导致图像失真的技术。
其中,最常见的无损压缩方法为预测编码和霍夫曼编码。
预测编码基于图像中像素之间的冗余性,通过预测后续像素的值,然后用预测值与实际值之间的差值进行编码。
其中,最著名的预测编码算法包括差分编码和游程编码。
霍夫曼编码是一种变长编码方式,利用出现频率较高的像素值分配较短的编码,而较低频率的像素值分配较长的编码。
通过统计每个像素值出现的频率,并根据频率构建霍夫曼树,可以实现对图像数据进行无损压缩。
2. 有损压缩方法有损压缩方法是一种能够通过压缩图像数据,但会导致图像失真的技术。
其中,最常见的有损压缩方法为离散余弦变换(DCT)和小波变换。
DCT是一种将图像从空间域转换到频域的方法,它能够将图像中的冗余信息集中在低频分量中,而将高频细节信息消除或减少。
通过对DCT系数进行量化和编码,可以实现对图像数据进行有损压缩。
小波变换是一种将图像分解成多个不同分辨率的频带的方法,通过对每个不同分辨率的频带进行量化和编码,可以实现对图像数据的有损压缩。
与DCT相比,小波变换可以更好地保留图像的局部细节。
二. 图像恢复方法1. 重建滤波器方法重建滤波器方法是在压缩图像恢复时常用的一种技术。
它是通过在图像的压缩域对被量化或编码的数据进行逆操作,将压缩后的图像数据恢复到原始图像。
常用的重建滤波器方法包括最近邻插值、双线性插值和双立方插值。
最近邻插值是一种简单的插值方法,它通过选择离目标位置最近的像素值来进行插值。
虽然该方法计算速度较快,但会导致图像失真。
计算机图像处理中的图像压缩与图像恢复算法图像压缩和图像恢复算法是计算机图像处理领域中非常重要的技术,它们可以对图像进行有效的压缩和恢复,实现图像数据在存储、传输和显示过程中的高效利用。
本文将介绍图像压缩与图像恢复算法的基本原理和常用方法。
一、图像压缩算法图像压缩算法是通过去除冗余信息和减少图像数据量来实现图像压缩的。
常见的图像压缩算法主要包括无损压缩和有损压缩两种。
1. 无损压缩算法无损压缩算法是指在图像压缩的过程中不丢失原始图像的任何信息,使得压缩后的图像与原始图像完全一致。
常用的无损压缩算法有:(1)Huffman 编码算法:通过构建霍夫曼树将出现频率较高的像素值赋予较短的编码长度,提高编码效率;(2)LZW 压缩算法:通过构建字典表来进行压缩,将图像中重复的像素值用较短的编码表示,进一步减少数据量。
2. 有损压缩算法有损压缩算法是在压缩的过程中有意丢失一定的图像信息,从而实现更高的压缩比。
常用的有损压缩算法有:(1)JPEG 压缩算法:通过离散余弦变换(DCT)将图像转化为频域表示,再利用量化和熵编码等技术对图像数据进行压缩;(2)Fractal 压缩算法:将图像分解为一系列局部细节,并利用自相似性进行压缩。
二、图像恢复算法图像恢复算法是指在图像受到损坏或失真后,通过一系列算法恢复出原始图像的过程。
常见的图像恢复算法主要包括插值算法和去噪算法。
1. 插值算法插值算法是一种用于根据已知图像信息来估计未知像素值的方法。
常见的插值算法有:(1)最近邻插值算法:根据离目标像素最近的已知像素值进行估计;(2)双线性插值算法:利用目标像素周围的已知像素值进行加权平均估计;(3)双三次插值算法:在双线性插值的基础上,通过考虑更多的邻域像素值进行估计。
2. 去噪算法去噪算法可以有效地去除图像中的噪声,恢复出原始图像的清晰度。
常见的去噪算法有:(1)中值滤波算法:利用像素周围邻域像素的中值来估计目标像素值,对于椒盐噪声和脉冲噪声有较好的去除效果;(2)小波去噪算法:利用小波变换将图像分解为不同的频率分量,通过阈值处理来剔除噪声。
图像压缩的开题报告图像压缩的开题报告一、研究背景与意义随着互联网的迅猛发展和数字化技术的普及,图像在我们的生活中扮演着越来越重要的角色。
然而,高分辨率的图像文件占用大量存储空间,给网络传输和存储带来了巨大的压力。
因此,图像压缩技术的研究和应用变得尤为重要。
图像压缩是指通过删除冗余信息和减少图像数据量的方式,将原始图像转换为一个更小的文件。
这不仅可以节省存储空间,还可以提高图像的传输速度和质量。
图像压缩技术的研究不仅对于网络传输和存储有着重要的意义,还对于移动设备、医学影像和视频流媒体等领域具有广泛的应用前景。
二、研究目标与内容本研究的目标是探索和改进图像压缩技术,以提高图像的压缩比和重建质量。
具体而言,我们将从以下几个方面进行研究:1. 基于变换的压缩方法:通过将图像转换到不同的颜色空间或频域,利用变换的性质来减少冗余信息。
常见的变换方法包括离散余弦变换(DCT)和离散小波变换(DWT)等。
2. 预测编码方法:通过利用图像中像素之间的相关性,使用预测模型来减少冗余信息。
常见的预测编码方法包括差分编码和运动补偿编码等。
3. 无损压缩方法:与有损压缩不同,无损压缩方法可以完全还原原始图像,但压缩比相对较低。
我们将研究和改进无损压缩方法,以提高其压缩比和编码效率。
4. 混合压缩方法:结合多种压缩技术,通过分层编码和自适应算法等手段,提高图像的压缩比和重建质量。
三、研究方法与计划本研究将采用实验研究和理论分析相结合的方法,具体计划如下:1. 收集和整理图像压缩领域的相关文献和数据集,了解当前的研究进展和存在的问题。
2. 针对不同的压缩方法,设计和实现相应的算法和模型,并使用合适的评价指标进行性能评估。
3. 通过对比实验和理论分析,发现和解决当前图像压缩技术存在的问题,提出改进和优化的方案。
4. 根据实验结果和理论分析,总结和归纳出图像压缩技术的发展趋势和未来研究方向。
四、预期成果与应用前景通过本研究,我们期望能够提出一种高效的图像压缩方法,以提高图像的压缩比和重建质量。
图形压缩的技巧
1. 降低图像分辨率:调整图像的分辨率可以减小图像的大小。
较低的分辨率会使图像看起来有些模糊,但如果不需要打印图像,则可以选择适当的分辨率来减少文件大小。
2. 压缩图像格式:使用像JPEG、PNG和WebP这样被广泛支持的图像格式,可以有效地减少文件大小。
这些格式都提供一定程度的压缩,但同时也不会影响图像的质量。
3. 剪裁图像:通过剪裁图像来减少文件大小,可以去掉图像中不需要的部分。
剪裁是非常有用的,特别是当你想要在网站上展示缩略图或小图片时。
4. 压缩图像质量:若要减小文件的大小,需要牺牲一些图像的质量。
可以通过减少图像中的颜色、减少像素等方式来进行图像压缩,这可能会导致一些细节丢失或者图像出现失真。
5. 合并图像:如果您需要在一个文件中显示多个图像,则可以将它们合并成一个文件以减少文件的大小。
在某些情况下,这可能还会为图像提供一些良好的组织方式。
图像处理中的图像压缩算法使用方法图像压缩是一种图像处理技术,其目标是通过减少图像数据的存储空间,实现图像文件的压缩,同时尽量保持图像质量不受太大损失。
在图像处理中,常用的图像压缩算法有无损压缩和有损压缩两种。
无损压缩算法通过去除图像中的冗余信息和重复信息来减小文件大小,但不改变图像的视觉质量。
最常见的无损压缩算法是Huffman编码和LZW编码。
在使用这些算法时,首先要通过建立统计模型来找出出现频率较高的像素值或像素组合,并将其赋予较短的编码,出现频率较低的像素值或像素组合则赋予较长的编码。
这样,在存储图像时,可以用较少的位数表示像素值,从而实现对图像文件的无损压缩。
另一种常见的图像压缩算法是有损压缩算法。
与无损压缩相比,有损压缩算法可以更大幅度地减小文件大小,但会引入一定的失真。
最常用的有损压缩算法是JPEG算法。
JPEG算法通过使用离散余弦变换(DCT)将图像转换为频域表示,然后根据频域表示中每个频率分量的重要性进行量化,再经过熵编码得到压缩后的图像文件。
根据JPEG算法的使用方法,我们可以按照以下步骤进行图像的有损压缩:1. 将图像转换为YCbCr颜色空间:JPEG算法首先将RGB图像转换为YCbCr颜色空间,并对亮度通道(Y)和色度通道(Cb和Cr)进行分离。
这是因为人眼对亮度的感知比对色度的感知更为敏感,对图像进行压缩时,可以对色度信号进行更大程度的压缩而不会明显损失图像质量。
2. 分块和DCT:将图像分为8x8大小的非重叠块,对每个块进行离散余弦变换(DCT)。
DCT可以将图像从空域转换为频域,通过将高频信号量化为较低的频率分量,可以实现对图像的有效压缩。
3. 量化:DCT变换后的频率分量通过量化表进行量化。
量化表中包含了不同频率分量的量化步长,这些步长决定了频率分量的值域范围。
较高的量化步长会导致更多的信息丢失,从而达到更高的压缩比,但也会引入更多的失真。
根据用户需求,可以选择不同的量化表来控制压缩比和失真程度。
图像压缩毕业论文图像压缩毕业论文图像压缩作为计算机图形学中的重要研究方向,在现代社会中具有广泛的应用。
本篇毕业论文旨在探讨图像压缩的原理、方法和应用,并对其在实际应用中的优缺点进行分析和比较。
一、图像压缩的原理图像压缩是通过减少图像数据的冗余性来减小图像文件的大小,从而实现存储和传输的效率提升。
其原理主要包括两个方面:无损压缩和有损压缩。
1. 无损压缩:无损压缩是指在压缩过程中不丢失任何图像信息,即压缩后的图像与原始图像完全一致。
常见的无损压缩算法有Run Length Encoding (RLE)、Lempel-Ziv-Welch (LZW) 等。
无损压缩适用于对图像质量要求较高的场景,如医学图像、卫星图像等。
2. 有损压缩:有损压缩是指在压缩过程中会有一定的信息丢失,但在人眼感知上不明显。
有损压缩可以通过去除图像中的冗余信息、降低色彩精度等方式来实现。
常见的有损压缩算法有JPEG、GIF等。
有损压缩适用于对图像质量要求相对较低的场景,如网页图片、社交媒体图片等。
二、图像压缩的方法图像压缩的方法主要包括基于变换的压缩方法和基于预测的压缩方法。
1. 基于变换的压缩方法:基于变换的压缩方法是将图像转换到另一个表示域,通过对表示域的系数进行编码来实现压缩。
其中最常用的方法是离散余弦变换(Discrete Cosine Transform,DCT)。
DCT将图像从空间域转换到频率域,通过保留重要的低频系数,去除高频噪声,从而实现图像压缩。
2. 基于预测的压缩方法:基于预测的压缩方法是通过对图像的像素进行预测来减小冗余信息。
其中最常用的方法是差分编码(Differential Coding)和运动补偿(Motion Compensation)。
差分编码通过计算像素与其邻域像素之间的差异来进行编码,而运动补偿则是利用图像序列中的运动信息来进行编码,从而实现图像压缩。
三、图像压缩的应用图像压缩在现代社会中有着广泛的应用,涉及到许多领域。
有关图像压缩的系列问题主要问题:1、图像为什么需要压缩?2、图像为什么能够压缩?3、被压缩后的图像文件,还能恢复吗?4、有损压缩、无损压缩技术的实现原理是什么?5、常见的图像文件格式都有哪些?+++++++++++++++++++++++++++++++++++++++++++++++++++++++++问题详细解释:1、图像为什么需要压缩?数字图像如果不进行压缩,数据量是比较大的,例如一幅分辨率为1024×768的24位真彩色图像,其数据量为1024×768×24/8=2,359,296 Bytes(约2.36MB)。
这无疑对图像的存储、处理、传送带来很大的困难。
2、图像为什么能够压缩?在图像各像素之间,无论在行方向还是列方向,都存在一定的相关性(比如相邻像素点的颜色有可能相同,或整个图像上存在具有相同颜色的区域),这种相关性也称为冗余度。
静态图像数据的冗余包括:空间冗余、时间冗余、结构冗余、知识冗余和视觉冗余、图像区域的相同性冗余、纹理的统计冗余等。
图像压缩编码技术就是利用图像数据固有的冗余性和相干性,设计相关算法,可将一个大的图像数据文件转换为较小的同性质的文件,并以特有的文件格式存在于电脑中。
3、被压缩后的图像文件,还能恢复吗?根据压缩后文件能否准确恢复原文件,将图像压缩编码技术分为无失真编码技术(又称无损压缩)和有失真编码技术(又称为有损压缩)。
只有通过无损压缩技术实现的图像压缩,其可以被准确复原。
4、有损压缩、无损压缩技术的实现原理是什么?(1)有损压缩有损压缩可以减少图像在内存和磁盘中占用的空间,在屏幕上观看图像时,不会发现它对图像的外观产生太大的不利影响。
因为人的眼睛对光线比较敏感,光线对景物的作用比颜色的作用更为重要,这就是有损压缩技术的基本依据。
有损压缩的特点是保持颜色的逐渐变化,删除图像中颜色的突然变化。
生物学中的大量实验证明,人类大脑会利用与附近最接近的颜色来填补所丢失的颜色。
例如,对于蓝色天空背景上的一朵白云,有损压缩的方法就是删除图像中景物边缘的某些颜色部分。
当在屏幕上看这幅图时,大脑会利用在景物上看到的颜色填补所丢失的颜色部分。
利用有损压缩技术,某些数据被有意地删除了,而被取消的数据也不再恢复。
无可否认,利用有损压缩技术可以大大地压缩文件的数据,但是会影响图像质量。
如果使用了有损压缩的图像仅在屏幕上显示,可能对图像质量影响不太大,至少对于人类眼睛的识别程度来说区别不大。
可是,如果要把一幅经过有损压缩技术处理的图像用高分辨率打印机打印出来,那么图像质量就会有明显的受损痕迹。
(2)无损压缩无损压缩的基本原理是相同的颜色信息只需保存一次。
压缩图像的软件首先会确定图像中哪些区域是相同的,哪些是不同的。
包括了重复数据的图像(如蓝天) 就可以被压缩,只有蓝天的起始点和终结点需要被记录下来。
但是蓝色可能还会有不同的深浅,天空有时也可能被树木、山峰或其他的对象掩盖,这些就需要另外记录。
从本质上看,无损压缩的方法可以删除一些重复数据,大大减少要在磁盘上保存的图像尺寸。
但是,无损压缩的方法并不能减少图像的内存占用量,这是因为,当从磁盘上读取图像时,软件又会把丢失的像素用适当的颜色信息填充进来。
如果要减少图像占用内存的容量,就必须使用有损压缩方法。
无损压缩方法的优点是能够比较好地保存图像的质量,但是相对来说这种方法的压缩率比较低。
但是,如果需要把图像用高分辨率的打印机打印出来,最好还是使用无损压缩。
几乎所有的图像文件都采用各自简化的格式名作为文件扩展名。
从扩展名就可知道这幅图像是按什么格式存储的,应该用什么样的软件去读/写等等。
5、常见的图像文件格式都有哪些?(1)BMP图像文件格式BMP是一种与硬件设备无关的图像文件格式,使用非常广。
它采用位映射存储格式,除了图像深度可选以外,不采用其他任何压缩,因此,BMP文件所占用的空间很大。
BMP文件的图像深度可选1bit、4bit、8bit及24bit。
BMP文件存储数据时,图像的扫描方式是按从左到右、从下到上的顺序。
由于BMP文件格式是Windows环境中交换与图有关的数据的一种标准,因此在Windows环境中运行的图形图像软件都支持BMP图像格式。
典型的BMP图像文件由三部分组成:位图文件头数据结构,它包含BMP图像文件的类型、显示内容等信息;位图信息数据结构,它包含有BMP图像的宽、高、压缩方法,以及定义颜色等信息。
(2)TIFF图像文件格式TIFF (TaglmageFileFormat)图像文件是由Aldus和Microsoft公司为桌上出版系统研制开发的一种较为通用的图像文件格式。
TIFF格式灵活易变,它又定义了四类不同的格式:TIFF-B适用于二值图像:TIFF-G适用于黑白灰度图像;TIFF-P 适用于带调色板的彩色图像:TIFF-R适用于RGB真彩图像。
TIFF支持多种编码方法,其中包括RGB无压缩、RLE压缩及JPEG压缩等。
TIFF是现存图像文件格式中最复杂的一种,它具有扩展性、方便性、可改性,可以提供给IBMPC等环境中运行、图像编辑程序。
TIFF图像文件由三个数据结构组成,分别为文件头、一个或多个称为IFD的包含标记指针的目录以及数据本身。
TIFF图像文件中的第一个数据结构称为图像文件头或IFH。
这个结构是一个TIFF文件中唯一的、有固定位置的部分;IFD图像文件目录是一个字节长度可变的信息块,Tag标记是TIFF文件的核心部分,在图像文件目录中定义了要用的所有图像参数,目录中的每一目录条目就包含图像的一个参数。
(3)GIF文件格式GIF(Graphics Interchange Format)的原义是"图像互换格式",是CompuServe公司在1987年开发的图像文件格式。
GIF文件的数据,是一种基于LZW算法的连续色调的无损压缩格式。
其压缩率一般在50%左右,它不属于任何应用程序。
目前几乎所有相关软件都支持它,公共领域有大量的软件在使用GIF图像文件。
GIF图像文件的数据是经过压缩的,而且是采用了可变长度等压缩算法。
所以GIF的图像深度从lbit到8bit,也即GIF最多支持256种色彩的图像。
GIF格式的另一个特点是其在一个GIF文件中可以存多幅彩色图像,如果把存于一个文件中的多幅图像数据逐幅读出并显示到屏幕上,就可构成一种最简单的动画。
(4)JPEG文件格式JPEG是Joint Photographic Experts Group(联合图像专家组)的缩写,文件后辍名为".jpg"或".jpeg",是最常用的图像文件格式,由一个软件开发联合会组织制定,是一种有损压缩格式,能够将图像压缩在很小的储存空间,图像中重复或不重要的资料会被丢失,因此容易造成图像数据的损伤。
尤其是使用过高的压缩比例,将使最终解压缩后恢复的图像质量明显降低,如果追求高品质图像,不宜采用过高压缩比例。
但是JPEG压缩技术十分先进,它用有损压缩方式去除冗余的图像数据,在获得极高的压缩率的同时能展现十分丰富生动的图像,换句话说,就是可以用最少的磁盘空间得到较好的图像品质。
而且JPEG是一种很灵活的格式,具有调节图像质量的功能,允许用不同的压缩比例对文件进行压缩,支持多种压缩级别,压缩比率通常在10:1到40:1之间,压缩比越大,品质就越低;相反地,压缩比越小,品质就越好。
比如可以把1.37Mb的BMP位图文件压缩至20.3KB。
当然也可以在图像质量和文件尺寸之间找到平衡点。
JPEG格式压缩的主要是高频信息,对色彩的信息保留较好,适合应用于互联网,可减少图像的传输时间,可以支持24bit真彩色,也普遍应用于需要连续色调的图像。
JPEG 格式是目前网络上最流行的图像格式,是可以把文件压缩到最小的格式,在Photoshop软件中以JPEG格式储存时,提供11级压缩级别,以0—10级表示。
其中0级压缩比最高,图像品质最差。
即使采用细节几乎无损的10 级质量保存时,压缩比也可达5:1。
以BMP格式保存时得到4.28MB图像文件,在采用JPG格式保存时,其文件仅为178KB,压缩比达到24:1。
经过多次比较,采用第8级压缩为存储空间与图像质量兼得的最佳比例。
JPEG格式的应用非常广泛,特别是在网络和光盘读物上,都能找到它的身影。
目前各类浏览器均支持JPEG 这种图像格式,因为JPEG格式的文件尺寸较小,下载速度快。
JPEG2000作为JPEG的升级版,其压缩率比JPEG高约30%左右,同时支持有损和无损压缩。
JPEG2000格式有一个极其重要的特征在于它能实现渐进传输,即先传输图像的轮廓,然后逐步传输数据,不断提高图像质量,让图像由朦胧到清晰显示。
此外,JPEG2000还支持所谓的"感兴趣区域" 特性,可以任意指定影像上感兴趣区域的压缩质量,还可以选择指定的部分先解压缩。
JPEG2000和JPEG相比优势明显,且向下兼容,因此可取代传统的JPEG格式。
JPEG2000即可应用于传统的JPEG 市场,如扫描仪、数码相机等,又可应用于新兴领域,如网路传输、无线通讯等等。
(5)PNG图像文件格式PNG(Portable Networf Graphics)的原名称为"可移植性网络图像",是网上接受的最新图像文件格式。
PNG能够提供长度比GIF小30%的无损压缩图像文件。
它同时提供24位和48位真彩色图像支持以及其他诸多技术性支持。
此文件格式可由Fireworks、Photoshop等软件处理。
(6)PCX图像文件格式PCX这种图像文件的形成是有一个发展过程的。
最先的PCX雏形是出现在ZSOFT公司推出的名叫PC PAINBRUSH的用于绘画的商业软件包中。
以后,微软公司将其移植到Windows环境中,成为Windows系统中一个子功能。
先在微软的Windows3.1中广泛应用,随着Windows的流行、升级,加之其强大的图像处理能力,使PCX同GIF、TIFF、BMP图像文件格式一起,被越来越多的图形图像软件工具所支持,也越来越得到人们的重视。
PCX是最早支持彩色图像的一种文件格式,现在最高可以支持256种彩色。
PCX设计者很有眼光地超前引入了彩色图像文件格式,使之成为现在非常流行的图像文件格式。
PCX图像文件由文件头和实际图像数据构成。
文件头由128字节组成,描述版本信息和图像显示设备的横向、纵向分辨率,以及调色板等信息:在实际图像数据中,表示图像数据类型和彩色类型。
PCX图像文件中的数据都是用PCXREL技术压缩后的图像数据。
PCX是PC机画笔的图像文件格式。
PCX的图像深度可选为l、4、8bit。