中考总复习函数综合--知识讲解
- 格式:docx
- 大小:37.43 KB
- 文档页数:3
初三函数全部知识点总结一、函数的概念1. 函数的定义函数是一种对应关系,它把一个自变量的值对应到一个因变量的值上。
一般地,函数f(x)可以表示为y=f(x),其中x为自变量,y为因变量。
2. 自变量与因变量自变量是函数中独立变化的变量,通常用x表示;因变量是根据自变量的取值而定的变量,通常用y表示。
3. 定义域和值域定义域是自变量的所有可能取值的集合;值域是因变量的所有可能取值的集合。
4. 函数的图像函数的图像是函数在平面直角坐标系中的点的集合。
二、函数的表示方法1. 用一个通项公式表示函数函数f(x)有时可以用一个表达式y=f(x)表示。
2. 用函数的图像表示函数函数的图像是函数在平面直角坐标系中的点的集合。
三、常见函数及其性质1. 线性函数线性函数是具有形式y=kx的函数,其中k为常数。
2. 幂函数幂函数是具有形式y=ax^n的函数,其中a和n为常数。
3. 指数函数指数函数是具有形式y=a^x的函数,其中a为正数且不等于1。
4. 对数函数对数函数是指数函数的逆运算。
5. 三角函数三角函数包括正弦函数、余弦函数、正切函数等。
四、函数的性质1. 奇偶性如果对于函数f(x),有f(-x)=f(x),则称f(x)为偶函数;如果对于函数f(x),有f(-x)=-f(x),则称f(x)为奇函数。
2. 增减性如果函数f(x)在区间(a,b)上有f'(x)>0,那么f(x)在区间(a,b)上是增函数;如果函数f(x)在区间(a,b)上有f'(x)<0,那么f(x)在区间(a,b)上是减函数。
3. 最值和零点函数在定义域内可能有最大值、最小值和零点。
4. 对称性有关函数的图像可能有关于y轴对称、关于x轴对称、或者关于原点对称的性质。
五、函数的运算1. 基本函数的运算加减乘除四则运算和复合运算。
2. 复合函数复合函数是一个函数作为另一个函数的自变量而得到的函数。
3. 函数的反函数函数的反函数是满足f(f^(-1)(x))=x和f^(-1)(f(x))=x的函数。
中考函数必备知识点归纳函数是中考数学中的一个重要概念,掌握好函数的知识点对于解决中考数学问题至关重要。
以下是中考必备的函数知识点归纳:1. 函数的概念:函数是一种特殊的关系,它将一个集合中的每一个元素都映射到另一个集合中的一个元素。
在数学中,我们通常用\( y =f(x) \)来表示函数,其中\( f \)是函数名,\( x \)是自变量,\( y \)是因变量。
2. 函数的三要素:定义域、值域和对应法则。
定义域是函数中自变量的所有可能取值的集合;值域是函数中因变量的所有可能取值的集合;对应法则是确定函数值的规则。
3. 函数的表示方法:列表法、图象法和解析法。
列表法通过列出自变量和对应的因变量来表示函数;图象法通过函数的图象来表示函数;解析法通过数学表达式来表示函数。
4. 函数的类型:一次函数、二次函数、反比例函数等。
一次函数的一般形式为\( y = ax + b \);二次函数的一般形式为\( y = ax^2 +bx + c \);反比例函数的一般形式为\( y = \frac{k}{x} \)。
5. 函数的图象:一次函数的图象是直线,二次函数的图象是抛物线,反比例函数的图象是双曲线。
图象的对称性、顶点、焦点等特征是中考中常考的内容。
6. 函数的增减性:函数的增减性是指函数值随自变量变化的趋势。
一次函数和反比例函数具有单调性,即要么一直增加要么一直减少;而二次函数则可能在某个区间内增加,在另一个区间内减少。
7. 函数的极值:极值是指函数在某点的局部最大值或最小值。
二次函数的极值通常出现在对称轴上。
8. 函数的复合:两个函数的复合是指先对自变量进行一个函数的运算,然后再用另一个函数进行运算。
复合函数的求解是中考中的难点。
9. 函数的解析式:解析式是函数的数学表达式,掌握如何根据已知条件求出函数的解析式是中考中的重要技能。
10. 函数的实际应用:函数在实际问题中的应用非常广泛,如速度与时间的关系、成本与产量的关系等,中考中经常会出现将函数应用到实际问题中的题目。
初三数学函数知识点归纳一、函数的概念1. 定义在一个变化过程中,如果有两个变量与,并且对于的每一个确定的值,都有唯一确定的值与其对应,那么我们就说是自变量,是的函数。
2. 函数的表示方法解析法:用数学式子表示两个变量之间的函数关系,如。
列表法:通过列出自变量与函数的对应值来表示函数关系,例如,在研究正方形面积与边长的关系时,可列出时,;时,等表格。
图象法:用图象来表示函数关系,如一次函数的图象是一条直线。
二、一次函数1. 定义形如是常数,的函数叫做一次函数。
当时,叫做正比例函数,正比例函数是特殊的一次函数。
2. 一次函数的图象与性质图象:一次函数的图象是一条直线,叫做直线在轴上的截距。
当,时,图象经过一、二、三象限;当,时,图象经过一、三、四象限;当,时,图象经过一、二、四象限;当,时,图象经过二、三、四象限。
性质当时,随的增大而增大;当时,随的增大而减小。
3. 一次函数的解析式的确定通常采用待定系数法,设出函数解析式,根据已知条件列出关于、的方程组,解方程组求出、的值,从而确定函数解析式。
三、反比例函数1. 定义形如为常数,的函数叫做反比例函数。
2. 反比例函数的图象与性质图象:反比例函数的图象是双曲线。
当时,双曲线的两支分别位于第一、三象限,在每一象限内随的增大而减小;当时,双曲线的两支分别位于第二、四象限,在每一象限内随的增大而增大。
反比例函数图象关于原点对称,它的对称轴是直线和。
3. 反比例函数解析式的确定同样采用待定系数法,设,把已知点的坐标代入求出的值即可确定解析式。
四、二次函数1. 定义形如是常数,的函数叫做二次函数。
2. 二次函数的图象与性质图象:二次函数的图象是一条抛物线。
顶点坐标:。
对称轴:直线。
性质当时,抛物线开口向上,在对称轴左侧随的增大而减小,在对称轴右侧随的增大而增大,函数有最小值;当时,抛物线开口向下,在对称轴左侧随的增大而增大,在对称轴右侧随的增大而减小,函数有最大值。
中考总复习:锐角三角函数综合复习—知识讲解(基础)【考纲要求】1.理解锐角三角函数的定义、性质及应用,特殊角三角函数值的求法,运用锐角三角函数解决与直角三角形有关的实际问题.题型有选择题、填空题、解答题,多以中、低档题出现;2.命题的热点为根据题中给出的信息构建图形,建立数学模型,然后用解直角三角形的知识解决问题. 【知识网络】【考点梳理】考点一、锐角三角函数的概念如图所示,在Rt △ABC 中,∠C =90°,∠A 所对的边BC 记为a ,叫做∠A 的对边,也叫做∠B 的邻边,∠B 所对的边AC 记为b ,叫做∠B 的对边,也是∠A 的邻边,直角C 所对的边AB 记为c ,叫做斜边.BCabc锐角A 的对边与斜边的比叫做∠A 的正弦,记作sinA ,即sin A aA c ∠==的对边斜边;锐角A 的邻边与斜边的比叫做∠A 的余弦,记作cosA ,即cos A bA c ∠==的邻边斜边;锐角A 的对边与邻边的比叫做∠A 的正切,记作tanA ,即tan A aA A b∠==∠的对边的邻边.同理sin B b B c ∠==的对边斜边;cos B aB c∠==的邻边斜边;tan B b B B a ∠==∠的对边的邻边.要点诠释:(1)正弦、余弦、正切函数是在直角三角形中定义的,反映了直角三角形边与角的关系,是两条线段的比值.角的度数确定时,其比值不变,角的度数变化时,比值也随之变化.(2)sinA,cosA,tanA分别是一个完整的数学符号,是一个整体,不能写成,,,不能理解成sin与∠A,cos与∠A,tan与∠A的乘积.书写时习惯上省略∠A的角的记号“∠”,但对三个大写字母表示成的角(如∠AEF),其正切应写成“tan∠AEF”,不能写成“tanAEF”;另外,、、常写成、、.(3)任何一个锐角都有相应的锐角三角函数值,不因这个角不在某个三角形中而不存在.(4)由锐角三角函数的定义知:当角度在0°<∠A<90°之间变化时,,,tanA>0.考点二、特殊角的三角函数值利用三角函数的定义,可求出30°、45°、60°角的各三角函数值,归纳如下:锐角30°45° 160°要点诠释:(1)通过该表可以方便地知道30°、45°、60°角的各三角函数值,它的另一个应用就是:如果知道了一个锐角的三角函数值,就可以求出这个锐角的度数,例如:若,则锐角.(2)仔细研究表中数值的规律会发现:、、的值依次为、、,而、、的值的顺序正好相反,、、的值依次增大,其变化规律可以总结为:当角度在0°<∠A<90°之间变化时,①正弦、正切值随锐角度数的增大(或减小)而增大(或减小),②余弦值随锐角度数的增大(或减小)而减小(或增大).考点三、锐角三角函数之间的关系如图所示,在Rt△ABC中,∠C=90°.(1)互余关系:,;(2)平方关系:;(3)倒数关系:或;(4)商数关系:.要点诠释:锐角三角函数之间的关系式可由锐角三角函数的意义推导得出,常应用在三角函数的计算中,计算时巧用这些关系式可使运算简便.考点四、解直角三角形在直角三角形中,由已知元素(直角除外)求未知元素的过程,叫做解直角三角形.在直角三角形中,除直角外,一共有5个元素,即三条边和两个锐角.设在Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边分别为a、b、c,则有:①三边之间的关系:a2+b2=c2(勾股定理).②锐角之间的关系:∠A+∠B=90°.③边角之间的关系:,,,,,.④,h为斜边上的高.要点诠释:(1)直角三角形中有一个元素为定值(直角为90°),是已知的值.(2)这里讲的直角三角形的边角关系指的是等式,没有包括其他关系(如不等关系).(3)对这些式子的理解和记忆要结合图形,可以更加清楚、直观地理解.考点五、解直角三角形的常见类型及解法已知条件解法步骤Rt△ABC 两边两直角边(a,b)由求∠A,∠B=90°-∠A,斜边,一直角边(如c,a) 由求∠A,∠B=90°-∠A,一边一角一直角边和一锐角锐角、邻边(如∠A,b)∠B=90°-∠A,,锐角、对边(如∠A,a)∠B=90°-∠A,,斜边、锐角(如c,∠A)∠B=90°-∠A,,要点诠释:1.在遇到解直角三角形的实际问题时,最好是先画出一个直角三角形的草图,按题意标明哪些元素是已知的,哪些元素是未知的,然后按先确定锐角、再确定它的对边和邻边的顺序进行计算.2.若题中无特殊说明,“解直角三角形”即要求出所有的未知元素,已知条件中至少有一个条件为边.考点六、解直角三角形的应用解直角三角形的知识应用很广泛,关键是把实际问题转化为数学模型,善于将某些实际问题中的数量关系化归为直角三角形中的边角关系是解决实际应用问题的关键.解这类问题的一般过程是:(1)弄清题中名词、术语的意义,如仰角、俯角、坡度、坡角、方向角等概念,然后根据题意画出几何图形,建立数学模型.(2)将已知条件转化为几何图形中的边、角或它们之间的关系,把实际问题转化为解直角三角形的问题.(3)根据直角三角形(或通过作垂线构造直角三角形)元素(边、角)之间的关系解有关的直角三角形.(4)得出数学问题的答案并检验答案是否符合实际意义,得出实际问题的解.拓展:在用直角三角形知识解决实际问题时,经常会用到以下概念:(1)坡角:坡面与水平面的夹角叫做坡角,用字母表示.坡度(坡比):坡面的铅直高度h和水平距离的比叫做坡度,用字母表示,则,如图,坡度通常写成=∶的形式.(2)仰角、俯角:视线与水平线所成的角中,视线中水平线上方的叫做仰角,在水平线下方的叫做俯角,如图.(3)方位角:从某点的指北方向线按顺时针转到目标方向的水平角叫做方位角,如图①中,目标方向PA,PB,PC的方位角分别为是40°,135°,245°.(4)方向角:指北或指南方向线与目标方向线所成的小于90°的水平角,叫做方向角,如图②中的目标方向线OA,OB,OC,OD的方向角分别表示北偏东30°,南偏东45°,南偏西80°,北偏西60°.特别如:东南方向指的是南偏东45°,东北方向指的是北偏东45°,西南方向指的是南偏西45°,西北方向指的是北偏西45°.要点诠释:1.解直角三角形实际是用三角知识,通过数值计算,去求出图形中的某些边的长或角的大小,最好画出它的示意图.2.非直接解直角三角形的问题,要观察图形特点,恰当引辅助线,使其转化为直角三角形或矩形来解.例如:3.解直角三角形的应用题时,首先弄清题意(关键弄清其中名词术语的意义),然后正确画出示意图,进而根据条件选择合适的方法求解.【典型例题】类型一、锐角三角函数的概念与性质1.如图,在4×4的正方形网格中,tanα=( )(A)1 (B)2 (C) 12(D)52【思路点拨】把∠α放在一个直角三角形中,根据网格的长度计算出∠α的对边和邻边的长度.【答案】B;【解析】根据网格的特点:设每一小正方形的边长为1,可以确定∠α的对边为2,邻边为1,然后利用正切的定义tan∠αα=∠α的对边的邻边,故选B.【总结升华】本题考查锐角三角函数的定义及运用,可将其转化到直角三角形中解答,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.举一反三:【变式】在Rt△ABC中,∠C=90°,若AC=2BC,则sinA的值是( )(A) 12(B)2 (C)55(D)52【答案】选C.因为∠C=90°,522AB=AC +BC =BC ,所以BC BC 5sin A AB 55BC===.类型二、特殊角的三角函数值2.已知a =3,且21(4tan 45)302b bc -++-=°,以a 、b 、c 为边长组成的三角形面积等于( ). A .6 B .7 C .8 D .9【思路点拨】根据题意知4tan 450,130,2b bc -=⎧⎪⎨+-=⎪⎩°求出b 、c 的值,再求三角形面积. 【答案】A ;【解析】根据题意知4tan 450,130,2b bc -=⎧⎪⎨+-=⎪⎩° 解得 4,5.b c =⎧⎨=⎩ 所以a =3,b =4,c =5,即222a b c +=,其构成的三角形为直角三角形,且∠C =90°, 所以162S ab ==. 【总结升华】利用非负数之和等于0的性质,求出b 、c 的值,再利用勾股定理的逆定理判断三角形是直角三角形,注意tan45°的值不要记错. 举一反三: 【变式】 计算:.【答案】原式.3.如图所示,在△ABC 中,∠BAC =120°,AB =10,AC =5,求sinB ·sinC 的值.【思路点拨】为求sin B ,sin C ,需将∠B ,∠C 分别置于直角三角形之中,另外已知∠A 的邻补角是60°,若要使其充分发挥作用,也需要将其置于直角三角形中,所以应分别过点B 、C 向CA 、BA 的延长线作垂线,即可顺利求解. 【答案与解析】解:过点B 作BD ⊥CA 的延长线于点D ,过点C 作CE ⊥BA 的延长线于点E .∵∠BAC =120°,∴∠BAD =60°.∴AD =AB ·cos60°=10×12=5; BD =AB ·sin60°=10×32=53. 又∵CD =CA+AD =10, ∴2257BC BD CD =+=,∴21sin 7BD BCD BC ∠==. 同理,可求得21sin 14ABC ∠=. ∴21213sin sin 71414ABC BCD ∠∠=⨯=. 【总结升华】由于锐角的三角函数是在直角三角形中定义的,因此若要求某个角的三角函数值,一般可以通过作垂线等方法将其置于直角三角形中.举一反三:【变式】如图,机器人从A 点,沿着西南方向,行了个单位,到达B 点后观察到原点O 在它的南偏东60°的方向上,则原来A 的坐标为__________.(结果保留根号).【答案】类型三、解直角三角形及应用4.在△ABC中,∠A=30°,BC=3,AB=33,求∠BCA的度数和AC的长.【思路点拨】由于∠A是一个特殊角,且已知AB,故可以作AC边上的高BD(如图所示),可求得332BD=.由于此题的条件是“两边一对角”,且已知角的对边小于邻边,因此需要判断此题的解是否唯一,要考虑对边BC与AC边上的高BD的大小,而33332BC<<,所以此题有两解.【答案与解析】解:作BD⊥AC于D.(1)C1点在AD的延长线上.在△ABC1中,13BC=,332 BD=,∴13sin2C=.∴∠C1=60°.由勾股定理,可分别求得13 2DC=,92 AD=.∴AC1=AD+DC1=936 22+=.(2)C2点在AD上.由对称性可得,∠BC2D=∠C1=60°,213 2C D C D==.∴∠BC2A=120°,2933 22AC=-=.综上所述,当∠BCA=60°时,AC=6;当∠BCA=120°时,AC=3.【总结升华】由条件“两边一对角”确定的三角形可能不是唯一的,需要考虑第三边上的高的大小判断解是否唯一.5.(2015•茂名)如图,一条输电线路从A地到B地需要经过C地,图中AC=20千米,∠CAB=30°,∠CBA=45°,因线路整改需要,将从A地到B地之间铺设一条笔直的输电线路.(1)求新铺设的输电线路AB的长度;(结果保留根号)(2)问整改后从A地到B地的输电线路比原来缩短了多少千米?(结果保留根号)【思路点拨】(1)过C作CD⊥AB,交AB于点D,在直角三角形ACD中,利用锐角三角函数定义求出CD与AD的长,在直角三角形BCD中,利用锐角三角函数定义求出BD的长,由AD+DB求出AB的长即可;(2)在直角三角形BCD中,利用勾股定理求出BC的长,由AC+CB﹣AB即可求出输电线路比原来缩短的千米数.【答案与解析】解:(1)过C作CD⊥AB,交AB于点D,在Rt△ACD中,CD=AC•sin∠CAD=20×=10(千米),AD=AC•cos∠CAD=20×=10(千米),在Rt△BCD中,BD===10(千米),∴AB=AD+DB=10+10=10(+1)(千米),则新铺设的输电线路AB的长度10(+1)(千米);(2)在Rt△BCD中,根据勾股定理得:BC==10(千米),∴AC+CB﹣AB=20+10﹣(10+10)=10(1+﹣)(千米),则整改后从A地到B地的输电线路比原来缩短了10(1+﹣)千米.【总结升华】解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.已知斜三角形中的SSS,SAS,ASA,AAS以及SSA条件,求三角形中的其他元素是常见问题,注意划归为常见的两个基本图形(高在三角形内或高在三角形外)(如图所示):举一反三:【变式】坐落在山东省汶上县宝相寺内的太子灵踪塔始建于北宋(公元1112年),为砖砌八角形十三层楼阁式建筑.数学活动小组开展课外实践活动,他们去测量太子灵踪塔的高度,携带的测量工具有:测角仪、皮尺、小镜子.(1)小华利用测角仪和皮尺测量塔高.下图为小华测量塔高的示意图.她先在塔前的平地上选择一点A,用测角仪测出看塔顶(M)的仰角α=35°,在点A和塔之间选择一点B,测出看塔顶(M)的仰角β=45°,然后用皮尺量出A ,B 两点间的距离为18.6m ,量出自身的高度为1.6m .请你利用上述数据帮助小华计算出塔的高度(tan35°≈0.7,结果保留整数).(2)如果你是活动小组的一员,正准备测量塔高,而此时塔影NP 的长为am(如图所示),你能否利用这一数据设计一个测量方案?如果能,请回答下列问题:①在你设计的测量方案中,选用的测量工具是:________________________;②要计算出塔的高,你还需要测量哪些数据?________________________________________________________. 【答案】解:(1)设CD 的延长线交MN 于E 点,MN 长为x m ,则ME =(x-1.6)m . ∵β=45°,∴DE =ME =x-1.6.∴CE =x-1.6+18.6=x+17.∵tan tan 35MECE α==°, ∴ 1.60.717x x -=+,解得x =45.∴太子灵踪塔MN 的高度为45m .(2)①测角仪、皮尺;②站在P 点看塔顶的仰角、自身的高度(注:答案不唯一).6.如图,三沙市一艘海监船某天在黄岩岛P附近海域由南向北巡航,某一时刻航行到A处,测得该岛在北偏东30°方向,海监船以20海里/时的速度继续航行,2小时后到达B处,测得该岛在北偏东75°方向,求此时海监船与黄岩岛P的距离BP的长.(参考数据:≈1.414,结果精确到0.1)【思路点拨】过B作BD⊥AP于D,由已知条件得:AB=20×2=40,∠P=75°﹣30°=45°,在Rt△ABD中求出BD=AB=20,在R t△BDP中求出PB即可.【答案与解析】解:过B作BD⊥AP于D,由已知条件得:AB=20×2=40,∠P=75°﹣30°=45°,在Rt△ABD中,∵AB=40,∠A=30,∴BD=AB=20,在R t△BDP中,∵∠P=45°,∴PB=BD=20≈28.3(海里).答:此时海监船与黄岩岛P的距离BP的长约为28.3海里.【总结升华】此题主要考查解直角三角形的有关知识.通过数学建模把实际问题转化为解直角三角形问题.中考总复习:锐角三角函数综合复习—巩固练习(基础)【巩固练习】一、选择题1. 如图所示,在Rt △ABC 中,∠ACB =90°,BC =1,AB =2,则下列结论正确的是 ( ) A .sin A =32 B .tan A =12C .cosB =32D .tan B =3第1题 第2题2.如图,在Rt△ABC 中,∠ACB=90°,CD⊥AB,垂足为D .若AC=5,BC=2,则sin∠ACD 的值为( )A .53B .255 C .52D .233.在△ABC 中,若三边BC 、CA 、AB 满足 BC ∶CA ∶AB=5∶12∶13,则cosB=( )A .125B .512 C .135 D .13124.如图所示,在△ABC 中,∠C=90°,AD 是BC 边上的中线,BD=4,AD=25,则tan ∠CAD 的值是( )A.2B.2C.3D.5第4题 第6题5.一个物体从A 点出发,沿坡度为1:7的斜坡向上直线运动到B ,AB=30米时,物体升高( )米. A .B .3C .D . 以上的答案都不对6.如图,已知:45°<A <90°,则下列各式成立的是( )A.sinA=cosAB.sinA >cosAC.sinA >tanAD.sinA <cosA二、填空题7.若∠α的余角是30°,则cosα的值是 .8.如图,△ABC的顶点都在方格纸的格点上,则sinA=_______.第8题第12题9.计算2sin30°﹣sin245°+t an30°的结果是 .10.已知α是锐角,且sin(α+15°)=32.计算1184cos( 3.14)tan3απα-⎛⎫---++ ⎪⎝⎭的值为 .11.如图,一艘海轮位于灯塔P的北偏东30°方向,距离灯塔80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B处,这时,海轮所在的B处与灯塔P的距离为海里.(结果保留根号)12.如图,正方体的棱长为3,点M,N分别在CD,HE上,CM=12DM,HN=2NE,HC与NM的延长线交于点P,则tan∠NPH的值为.三、解答题13.如图所示,我市某广场一灯柱AB被一钢缆CD固定,CD与地面成40°夹角,且DB=5m,现要在C 点上方2m处加固另一条钢缆ED,那么EB的高为多少米?(结果保留三个有效数字)14. 已知:如图所示,八年级(1)班数学兴趣小组为了测量河两岸建筑物AB和建筑物CD的水平距离AC,他们首先在A点处测得建筑物CD的顶部D点的仰角为25°,然后爬到建筑物AB的顶部B处测得建筑物CD的顶部D点的俯角为15°30′.已知建筑物AB的高度为30米,求两建筑物的水平距离AC(精确到0.1米)(可用计算器查角的三角函数值)15.如图,登山缆车从点A出发,途经点B后到达终点C,其中AB段与BC段的运行路程均为200m,且AB段的运行路线与水平面的夹角为30°,BC段的运行路线与水平面的夹角为42°,求缆车从点A运行到点C的垂直上升的距离.(参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)16. 如图所示,某水库大坝的横断面是梯形,坝顶宽AD=2.5m,坝高4 m,背水坡的坡度是1:1,迎水坡的坡度是1:1.5,求坝底宽BC.【答案与解析】一、选择题1.【答案】D ; 【解析】sinA =BC AB =12,tan A =BC AC =33,cosB =BC AB =12.故选D.2.【答案】A ;【解析】在直角△ABC 中,根据勾股定理可得:AB=2AC BC +2=2(5)2+2=3.∵∠B+∠BCD=90°,∠ACD+∠BCD=90°, ∴∠B=∠ACD. ∴ sin∠ACD=sin∠B=ACAB =53, 故选A .3.【答案】C ;【解析】根据三角函数性质 cosB==,故选C .4.【答案】A ;【解析】∵AD 是BC 边上的中线,BD=4,∴CD=BD=4,在Rt △ACD 中,AC= 22AD -CD =-=222(25)4,∴tan ∠CAD===2.故选A .5.【答案】B ;【解析】∵坡度为1:7,∴设坡角是α,则sinα===,∴上升的高度是:30×=3米.故选B .6.【答案】B ;【解析】∵45°<A <90°,∴根据sin45°=cos45°,sinA 随角度的增大而增大,cosA 随角度的增大而减小, 当∠A >45°时,sinA >cosA ,故选B .二、填空题 7.【答案】21; 【解析】∠α=90°﹣30°=60°,cosα=cos60°=21.8.【答案】;【解析】过C 作CD ⊥AB ,垂足为D ,设小方格的长度为1,在Rt △ACD 中,AC=22CD AD +=25,∴sinA=CD 5=AC 5.9.【答案】21+33; 【解析】2sin30°﹣sin 245°+ t an30°=2×21-(22)2+()2+33=1﹣21+33=21+33.10.【答案】3; 【解析】∵sin60°=32,∴α+15°=60°,∴α=45°,∴原式=22﹣4×22﹣1+1+3=3. 11.【答案】40 ;【解析】解:作PC ⊥AB 于C ,在Rt △PAC 中,∵PA=80,∠PAC=30°,∴PC=40海里,在Rt △PBC 中,PC=40,∠PBC=∠BPC=45°, ∴PB=40海里,故答案为:40.12.【答案】13; 【解析】∵正方体的棱长为3,点M ,N 分别在CD ,HE 上,CM=12DM ,HN=2NE , ∴MC=1,HN=2, ∵DC ∥EH , ∴12PC MC PH NH ==, ∵HC=3, ∴PC=3, ∴PH=6, ∴tan ∠NPH=2163NH PH ==,故答案为:13.三、解答题13.【答案与解析】解:在Rt△BCD中,∠BDC=40°,DB=5 m,∵tanBC BDCDB ∠=.∴BC=DB·tan∠BDC=5×tan40°≈4.195(米).∴EB=BC+CE=4.195+2≈6.20(米).14.【答案与解析】解:如图所示,过D作DH⊥AB,垂足为H.设AC=x.在Rt△ACD中,∠ACD=90°,∠DAC=25°,所以CD=AC·tan∠DAC=x tan 25°.在Rt△BDH中,∠BHD=90°,∠BDH=15°30′,所以BH=DH·tan 15°30′=AC·tan 15°30′=x·tan 15°30′.又CD=AH,AH+HB=AB,所以x(tan 25°+tan 15°30′)=30.所以3040.3tan25tan1530x='+≈°°(米).答:两建筑物的水平距离AC约为40.3米.15.【答案与解析】解:在Rt△ADB中,∵∠ADB=90°,∠BAD=30°,AB=200m,∴BD=AB=100m,在Rt△CEB中,∵∠CEB=90°,∠CBE=42°,CB=200m,∴CE=BC•sin42°≈200×0.67=134m,∴BD+CE≈100+134=234m.答:缆车从点A运行到点C的垂直上升的距离约为234m.16.【答案与解析】解:背水坡是指AB,而迎水坡是指CD.过A作AE⊥BC于E,过D作DF⊥BC于F,由题意可知tanB=1,tan C=1 1.5,在Rt△ABE中,AE=4,tanB=AEBE=1,∴BE=AE=4,在Rt△DFC中,DF=AE=4,tanC=11.5 DFCF,∴CF=1.5DF=1.5×4=6.又∵EF=AD=2.5,∴BC=BE+EF+FC=4+2.5+6=12.5.答:坝底宽BC为12.5 m.。
中考函数综合知识点归纳
函数是数学中的一个重要概念,它描述了两个集合之间的一种对应关系,其中一个集合中的每一个元素都与另一个集合中的一个元素相对应。
在中考中,函数的综合知识点主要包括函数的概念、性质、图像以及函数的应用等方面。
以下是对中考函数综合知识点的归纳:
首先,我们需要了解函数的基本概念。
函数是一个规则,它将一个集合A中的元素(自变量)映射到另一个集合B中的元素(因变量)。
这种映射关系通常用f(x)表示,其中x是自变量,f(x)是因变量。
接下来,我们学习函数的性质,包括单调性、奇偶性、周期性等。
单调性指的是函数值随自变量的增减而增减的特性;奇偶性描述了函数图像关于坐标轴的对称性;周期性则是指函数值在一定间隔后重复出现的特性。
函数的图像是理解函数特性的重要工具。
一次函数、二次函数、反比例函数等都有其特定的图像和性质。
例如,一次函数的图像是直线,二次函数的图像是抛物线,反比例函数的图像是双曲线。
在中考中,函数的应用也非常广泛。
函数可以用于解决实际问题,如速度与时间的关系、成本与产量的关系等。
此外,函数还可以与几何图形结合,解决面积、体积等问题。
最后,中考中还可能涉及到函数的变换,包括平移、伸缩等。
掌握函数图像的变换规律,可以帮助我们更好地理解函数的性质和应用。
结束语:通过以上对中考函数综合知识点的归纳,我们可以看到函数
在数学中的重要性和广泛应用。
掌握这些知识点,不仅有助于我们在中考中取得好成绩,更能为今后的数学学习打下坚实的基础。
中考函数知识点总复习函数是数学中的重要概念,也是中学数学中的难点内容之一、在中考中,函数是常常出现的题型,掌握函数的基本概念和相关的知识点对于取得好成绩至关重要。
下面是对中考函数知识点的总复习。
一、函数的定义和性质1.函数的定义:函数是一种对应关系,每个自变量都有唯一的函数值。
记作f(x)=y。
其中,x为自变量,y为函数值。
2.定义域和值域:函数的定义域是自变量的取值范围,值域是函数值的取值范围。
3.函数图像:函数图像是函数在坐标系中平面上的表示,通常用关联图、曲线图或者折线图表示。
4.单调性:函数的单调性是指函数在区间上是单调递增或者单调递减。
根据函数的单调性,可以对函数的增减区间和极值进行判断。
二、常见函数类型1. 线性函数:线性函数是一次函数,函数的图像是一条直线。
一般形式为y = kx + b,其中k为直线的斜率,b为直线的截距。
2.幂函数:幂函数是一类函数,函数的形式为y=x^n,其中n为常数。
3.指数函数:指数函数是以常数e为底的幂函数,函数的形式为y=a^x,其中a为底数。
4. 对数函数:对数函数是指数函数的反函数,函数的形式为y =loga(x),其中a为底数。
5.三角函数:三角函数是以圆单位长度为自变量的函数,包括正弦函数、余弦函数和正切函数等。
6.反比例函数:反比例函数是一类函数,函数的形式为y=k/x,其中k为常数。
三、函数图像和函数性质的分析1.函数图像的性质:通过函数的图像可以判断函数的单调性、增减区间和极值等。
2.函数解析式分析:通过函数的解析式可以判断函数的类型、定义域和值域等。
3.函数的对称性:函数的对称性包括奇偶性和轴对称性。
四、函数的运算1.函数的加减运算:给定两个函数y1=f1(x)和y2=f2(x),它们的和函数为y=f1(x)+f2(x);差函数为y=f1(x)-f2(x)。
2.函数的乘法运算:给定两个函数y1=f1(x)和y2=f2(x),它们的积函数为y=f1(x)×f2(x)。
2024年中考数学中涉及函数的知识点主要包括函数的概念、函数的性质、函数的图像与性质、函数的应用等方面。
下面将对这些知识点进行详细介绍。
一、函数的概念中考数学中,函数即为一种特殊的对应关系。
设A和B是两个非空集合,在A和B之间的对应关系f,如果对于A中的任意一个元素a,在B中都存在唯一的一个元素b与之对应,那么称f为从A到B的一个函数,记作f:A→B。
其中,A称为函数的定义域,B称为函数的值域。
二、函数的性质1.定义域和值域:函数f:A→B中,定义域A是使得函数有意义的输入值的集合,值域B是函数所有可能的输出值的集合。
2.单调性:若对于定义域内的任意x1和x2,当x1<x2时,有f(x1)<f(x2),则称函数f为递增函数;若对于定义域内的任意x1和x2,当x1<x2时,有f(x1)>f(x2),则称函数f为递减函数。
3.奇偶性:若对于定义域内的任意x,有f(-x)=-f(x),则称函数f为奇函数;若对于定义域内的任意x,有f(-x)=f(x),则称函数f为偶函数。
4.周期性:若存在正数T,对于定义域内的任意x,有f(x+T)=f(x),则称函数f为周期函数,T称为函数f的一个周期。
三、函数的图像与性质1.直线函数:设常数a≠0,称y=a*x+b(a,b为常数)为一次函数或直线函数,它是最简单的函数之一、其图像是一条直线,斜率为a,与坐标轴的交点为(0,b)。
2.幂函数:y=x^a(a为实数)称为幂函数,当a>0时,图像位于一、三象限。
当a<0时,图像位于二、四象限。
3.指数函数:y=a^x(a>0,且a≠1)称为指数函数,当a>1时,图像是上升的曲线;当0<a<1时,图像是下降的曲线。
4. 对数函数: y=loga(x)(a>0且a≠1) 称为对数函数,其中 a 称为底数。
当 0<a<1 时,函数图像在第一、四象限;当 a>1 时,函数图像在第二、三象限。
中考数学函数知识点梳理函数是数学中一种非常重要的概念。
它在中考数学中也是必考的内容之一。
了解函数的概念和性质,掌握函数的基本运算和图像特征对于中考数学的学习至关重要。
本文将对中考数学函数知识点进行梳理和总结。
一、函数的概念函数是一种特殊的对应关系,它将一个数集中的每个元素(称为自变量)映射到另一个数集中的唯一元素(称为因变量)。
函数通常用f(x)表示,其中f表示函数的名称,x表示自变量。
二、函数的表示方法1. 函数的显式表示:y = f(x),其中f(x)表示函数关系,y表示因变量,x表示自变量。
2. 函数的隐式表示:F(x,y) = 0,其中F(x,y)表示函数关系,x和y 是自变量。
三、函数的定义域和值域1. 定义域:函数能够接受的自变量的取值范围,通常用D(f)表示。
2. 值域:函数所有可能的因变量的取值范围,通常用R(f)表示。
四、函数的分类1. 一次函数:y = kx + b,其中k和b为常数,k不等于零。
2. 二次函数:y = ax^2 + bx + c,其中a、b、c为常数,a不等于零。
3. 幂函数:y = x^a,其中a为常数,a不等于零。
4. 指数函数:y = a^x,其中a为正常数且不等于1。
5. 对数函数:y = loga(x),其中a为正常数且不等于1。
五、函数的性质和运算1. 函数的奇偶性:函数f(x)满足f(-x) = f(x)时,称为偶函数;函数f(x)满足f(-x) = -f(x)时,称为奇函数。
2. 函数的单调性:对于函数f(x),如果在定义域上x1 < x2时有f(x1) < f(x2),则称f(x)在区间上是增函数;如果在定义域上x1 < x2时有f(x1) > f(x2),则称f(x)在区间上是减函数。
3. 函数的图像特征:根据函数的定义、性质和运算,可以确定函数的图像特征,如图像的开口方向、对称轴、顶点坐标等。
六、函数的应用函数在实际问题中有着广泛的应用,如数学建模、经济分析、物理问题等。
中考总复习函数综合--知识讲解函数是数学中一个非常重要的概念,也是中考数学中经常考察的内容之一、掌握了函数的概念和基本性质,可以帮助我们更好地解决实际问题。
下面我们就来系统地介绍一下函数的相关知识。
一、函数的定义在数学中,函数的定义是这样的:设有两个集合A和B,如果对于A中的每一个元素x,都有唯一确定的元素y属于B与之对应,则称y是x的函数值,记作y=f(x),其中,x是自变量,y是因变量,f是函数的符号,表示从集合A到集合B的映射。
函数可以用图象、列表、公式等不同形式来指代。
例如,y=x+2就是一个函数的表达式,表示对于集合A中的每一个元素x,都有唯一的元素y满足y=x+2、其他形式的函数也可以通过类似的方式来解释。
二、函数的性质1.定义域和值域:对于函数f(x),A中的元素x的集合称为函数的定义域,B中的元素y的集合则称为函数的值域。
2.单调性:对于函数f(x),如果对于定义域内的任意x1和x2,当x1<x2时,有f(x1)<f(x2),则函数f(x)是严格递增的;当f(x1)>f(x2)时,函数f(x)是严格递减的。
3.最值:对于函数f(x),如果定义域内存在一个元素x0,使得对于任意的x,都有f(x)>=f(x0),则称f(x0)为函数f(x)的最大值;同理,如果对于任意的x,都有f(x)<=f(x0),则称f(x0)为函数f(x)的最小值。
4.奇偶性:对于函数f(x),如果对于定义域内的任意x,都有f(-x)=f(x),则函数f(x)是偶函数;如果对于任意的x,都有f(-x)=-f(x),则函数f(x)是奇函数。
三、常见函数的形式1. 一次函数:一次函数是指坐标系中满足y=kx+b的函数。
其中,k表示斜率,b表示截距。
一次函数的图象是一条直线,斜率k的大小决定了直线的倾斜程度,截距b的大小决定了直线和y轴的交点位置。
2. 二次函数:二次函数是指坐标系中满足y=ax^2+bx+c的函数。
九年级数学专题讲座一、函数专题1. 一次函数知识点回顾一次函数的表达式为公式(公式,公式为常数,公式)。
当公式时,函数为正比例函数公式。
一次函数的图象是一条直线,公式决定直线的倾斜程度(公式,直线从左到右上升;公式,直线从左到右下降),公式决定直线与公式轴的交点(公式)。
题目解析例:已知一次函数公式,求它的图象与公式轴、公式轴的交点坐标。
解:当公式时,公式,解得公式,所以与公式轴交点坐标为公式。
当公式时,公式,所以与公式轴交点坐标为公式。
2. 二次函数知识点回顾二次函数的表达式一般式为公式(公式,公式,公式为常数,公式)。
顶点式为公式(公式为顶点坐标)。
二次函数图象是抛物线,公式决定抛物线的开口方向(公式开口向上;公式开口向下),对称轴为公式(一般式)或公式(顶点式)。
题目解析例:求二次函数公式的顶点坐标和对称轴。
解:对于二次函数公式,其中公式,公式,公式。
对称轴公式。
把公式代入函数得公式,所以顶点坐标为公式。
3. 反比例函数知识点回顾反比例函数表达式为公式(公式为常数,公式)。
图象是双曲线。
当公式时,双曲线在一、三象限;当公式时,双曲线在二、四象限。
题目解析例:已知反比例函数公式,求当公式时公式的值,以及当公式时公式的值。
解:当公式时,公式。
当公式时,公式,解得公式。
二、几何专题1. 三角形知识点回顾三角形内角和为公式。
三角形的分类:按角分为锐角三角形、直角三角形、钝角三角形;按边分为等边三角形、等腰三角形、不等边三角形。
相似三角形的判定定理:两角分别相等的两个三角形相似;两边成比例且夹角相等的两个三角形相似;三边成比例的两个三角形相似。
题目解析例:在公式中,公式,公式,求公式的度数。
解:因为三角形内角和为公式,所以公式。
例:已知公式和公式,公式,公式,判断这两个三角形是否相似。
解:因为在公式和公式中,公式,公式,两角分别相等,所以公式。
2. 四边形知识点回顾平行四边形的性质:对边平行且相等,对角相等,对角线互相平分。
中考函数必备知识点总结一、函数的基本概念1. 函数的定义:函数是一种对应关系,对于每一个自变量(输入),都有且只有一个因变量(输出)与之对应。
2. 自变量和因变量:在函数中,自变量是函数的输入,通常用x表示;因变量是函数的输出,通常用y表示。
3. 定义域和值域:函数的定义域是自变量的取值范围,值域是因变量的取值范围。
4. 函数的图象:函数的图象是自变量和因变量的对应关系在坐标系中的展示,通常是一条曲线或者一组点。
二、函数的表示与表达1. 函数的表示方法:函数可以用等式、表格、图象和文字描述等方式表达。
2. 函数的公式:函数常常用公式来表示,常见的函数公式包括线性函数、二次函数、指数函数、对数函数等。
3. 函数的计算:可以通过函数的公式来计算函数在特定自变量取值下的因变量的取值。
三、函数的性质和运算1. 函数的奇偶性:通过函数的图象或者公式可以判断一个函数的奇偶性,常见的有奇函数和偶函数。
2. 函数的单调性:函数的单调性指的是在定义域内,函数的增减性质。
3. 函数的对称性:函数的对称性通常指的是基于对称中心对称、对称轴对称或者周期对称等性质。
4. 函数的运算:函数之间可以进行加减乘除运算,也可以进行复合运算。
四、函数的应用1. 函数的应用范围非常广泛,例如在数学、物理、经济等多个领域都有函数的应用。
2. 函数的实际问题:函数可以用来描述和解决实际问题,例如速度、加速度、成本、收入等各种实际问题都可以通过函数来描述。
本文总结了中考函数的必备知识点,包括了函数的基本概念、函数的表示与表达、函数的性质与运算、函数的应用等方面。
学生在备考中考数学时,应该重点掌握这些知识点,通过练习和应用来提高自己的函数应用能力,从而取得更好的考试成绩。
中考总复习函数综合--知识讲解函数是数学中一个非常重要的概念,它在数学和科学的各个领域都有广泛的应用。
在中考中,函数的综合运用也是经常出现的考点之一、下面我们就来进行中考总复习函数的知识讲解,提高大家对函数的理解和运用能力。
首先,我们来复习一下函数的定义。
在数学中,函数是一种映射关系,将一个集合的每个元素(称为自变量)映射到另一个集合的元素(称为函数值)。
函数可以用符号“f(x)”表示,其中“f”是函数的名称,而“x”是自变量。
函数的定义域是指所有可以作为自变量的值的集合,而值域则是函数所有可能的函数值的集合。
在函数的运用中,我们会经常遇到的概念包括函数的图像、奇偶性、单调性、最值等。
下面我们将逐一进行讲解。
首先是函数的图像。
函数的图像是函数在坐标系中的表现形式,它可以帮助我们更直观地理解函数的特点。
例如,对于一元一次函数,它的图像是一条直线;对于二次函数,它的图像是一个开口向上或向下的抛物线。
对于函数的图像,我们可以通过选择几个具体的自变量值,求出相应的函数值,然后将这些点连起来,就得到了函数的图像。
其次是函数的奇偶性。
根据函数的定义可以知道,函数的值只与自变量有关,而与自变量是奇数还是偶数无关。
因此,如果一个函数对于任意自变量x都有f(x)=f(-x),那么这个函数就是偶函数;如果对于任意自变量x都有f(x)=-f(-x),那么这个函数就是奇函数。
对于一些特殊的函数,如正弦函数和余弦函数,它们分别是奇函数和偶函数。
接下来是函数的单调性。
一个函数的单调性描述了函数的增减趋势。
如果对于任意自变量x1,x2,当x1<x2时有f(x1)<f(x2),那么这个函数就是增函数;如果对于任意自变量x1,x2,当x1<x2时有f(x1)>f(x2),那么这个函数就是减函数。
对于一个函数的单调性,我们可以通过求导数的方法来判断。
最后是函数的最值。
函数的最大值是函数在定义域内取到的最大的函数值,而最小值则是函数在定义域内取到的最小的函数值。
中考总复习:函数综合—知识讲解(基础)责编:常春芳【考纲要求】1.平面直角坐标系的有关知识平面直角坐标系中各象限和坐标轴上的点的坐标的特征,求点关于坐标轴、坐标原点的对称点的坐标,求线段的长度,几何图形的面积,求某些点的坐标等;2.函数的有关概念求函数自变量的取值范围,求函数值、函数的图象、函数的表示方法;3.函数的图象和性质常见的题目是确定图象的位置,利用函数的图象确定某些字母的取值,利用函数的性质解决某些问题.利用数形结合思想来说明函数值的变化趋势,又能反过来判定函数图象的位置;4.函数的解析式求函数的解析式,求抛物线的顶点坐标、对称轴方程,利用函数的解析式来求某些字母或代数式的值.一次函数、反比例函数和二次函数常与一元一次方程、一元二次方程、三角形的面积、边角关系、圆的切线、圆的有关线段组成综合题.【知识网络】【考点梳理】考点一、平面直角坐标系 1.相关概念(1)平面直角坐标系 (2)象限 (3)点的坐标2.各象限内点的坐标的符号特征3.特殊位置点的坐标 (1)坐标轴上的点(2)一三或二四象限角平分线上的点的坐标 (3)平行于坐标轴的直线上的点的坐标 (4)关于x 轴、y 轴、原点对称的点的坐标 4.距离(1)平面上一点到x 轴、y 轴、原点的距离(2)坐标轴或平行于坐标轴的直线上两点间的距离 (3)平面上任意两点间的距离 5.坐标方法的简单应用(1)利用坐标表示地理位置 (2)利用坐标表示平移 要点诠释:点P(x,y)到坐标轴及原点的距离:(1)点P(x,y)到x 轴的距离等于y ; (2)点P(x,y)到y 轴的距离等于x ; (3)点P(x,y)到原点的距离等于22y x .考点二、函数及其图象 1.变量与常量 2.函数的概念3.函数的自变量的取值范围4.函数值5.函数的表示方法(解析法、列表法、图象法)6.函数图象 要点诠释:由函数解析式画其图像的一般步骤:(1)列表:列表给出自变量与函数的一些对应值;(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点;(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来.考点三、一次函数1.正比例函数的意义2.一次函数的意义3.正比例函数与一次函数的性质4. 一次函数的图象与二元一次方程组的关系5.利用一次函数解决实际问题 要点诠释:确定一个正比例函数,就是要确定正比例函数定义式kx y =(k ≠0)中的常数k ;确定一个一次函数,需要确定一次函数定义式b kx y +=(k ≠0)中的常数k 和b.解这类问题的一般方法是待定系数法.考点四、反比例函数 1.反比例函数的概念2.反比例函数的图象及性质3.利用反比例函数解决实际问题 要点诠释:反比例函数中反比例系数的几何意义,如下图,过反比例函数)0(≠=k xky 图像上任一点),(y x P 作x 轴、y 轴的垂线PM ,PN ,垂足为M 、N ,则所得的矩形PMON 的面积S=PM ∙PN=xy x y =∙.,y xk=∴||k S k xy ==,.考点五、二次函数 1.二次函数的概念2.二次函数的图象及性质3.二次函数与一元二次方程的关系4.利用二次函数解决实际问题 要点诠释:1、两点间距离公式(当遇到没有思路的问题时,可用此方法拓展思路,以寻求解题方法) 如图:点A 坐标为(x 1,y 1),点B 坐标为(x 2,y 2),则AB 间的距离,即线段AB 的长度为()()221221y y x x -+-.2、函数平移规律:左加右减、上加下减.考点六、函数的应用1.一次函数的实际应用2. 反比例函数的实际应用3. 二次函数的实际应用要点诠释:分段函数是指自变量在不同的取值范围内,其关系式(或图象)也不同的函数,分段函数的应用题多设计成两种情况以上,解答时需分段讨论.在现实生活中存在着很多需分段计费的实际问题,因此,分段计算的应用题成了近几年中考应用题的一种重要题型.【典型例题】类型一、用函数的概念与性质解题1.已知一次函数y=(3a-2)x+(1-b),求字母a, b的取值范围,使得:(1)y随x的增大而增大;(2)函数图象与y轴的交点在x轴的下方;(3)函数的图象过第一、二、四象限.【思路点拨】(1)y=kx+b (k≠0)的图象,当k>0时,y随x的增大而增大;(2)当b<0时,函数图象与y轴的交点在x轴的下方;(3)当k<0, b>0时时,函数的图象过第一、二、四象限.【答案与解析】解:a、b的取值范围应分别满足:(1)由一次函数y=kx+b(k≠0)的性质可知:当k>0时,函数值y随x的增大而增大,即3a-2>0,∴23a>, 且b取任何实数.(2)函数图象与y 轴的交点为(0,1-b ), ∵ 交点在x 轴的下方,∴ ,即a≠, b >1.(3)函数图象过第一、二、四象限,则必须满足 .【总结升华】下面是y=kx(k≠0), y=kx+b (k≠0)的图象的特点和性质的示意图,如图1,当k >0时,y 随x 的增大而增大;当b >0时,图象过一、二、三象限,当b=0时,是正比例函数,当b <0时,图象过一、三、四象限;当y=x 时,图象过一、三象限,且是它的角平分线.由于常数k 、b 不同,可得到不同的函数,k 决定直线与x 轴夹角的大小,b 决定直线与y 轴交点的位置,由k 定向,由b 定点.同样,如图2,是k <0的各种情况,请你指出它们的图象的特点和性质.举一反三:【变式】作出函数y=x, 2x y x=,2()y x =的图象,它们是不是同一个函数?【答案】 函数2()y x =的自变量x 的取值范围是x≥0;函数2x y x=在x≠0时,就是函数y=x ;而x=0不在函数2x y x=的自变量x 的取值范围之内.由此,作图如下:可见它们不是同一个函数.类型二、函数图象及性质2.已知:(1)m 为何值时,它是一次函数. (2)当它是一次函数时,画出草图,指出它的图象经过哪几个象限?y 是随x 的增大而增大还是减小? (3)当图象不过原点时,求出该图象与坐标轴交点间的距离,及图象与两轴所围成的三角形面积. 【思路点拨】一次函数应满足:一次项(或自变量)的指数为1,系数不为0. 【答案与解析】(1)依题意:,解得m=1或m=4.∴当m=1或m=4时,它是一次函数.(2)当m=4时,函数为y=2x ,是正比例函数,图象过一,三象限, y 随x 的增大而增大.当m=1时,函数为y=-x-3,直线过二,三,四象限,y 随x 的增大而减小.(3)直线y=-x-3不过原点,它与x 轴交点为A(-3,0), 与y 轴交点为B(0,-3),..∴直线y=-x-3与两轴交点间的距离为,与两轴围成的三角形面积为.【总结升华】(1)某函数是一次函数应满足的条件是:一次项(或自变量)的指数为1,系数不为0.而某函数若是正比例函数,则还需添加一个条件:常数项为0.(2)判断函数的增减性,关键是确定直线y=kx+b (k ≠0)中k 、b 的符号.(3)直线y=kx+b (k ≠0)与两轴的交点坐标可运用x 轴、y 轴上的点的特征来求,当直线y=kx+b (k ≠0)上的点在x 轴上时,令y=0,则,交点为;当直线y=kx+b (k ≠0)上的点在y 轴上时,令x=0,则y=b ,即交点为(0,b).举一反三:【高清课程名称:函数综合1 高清ID 号: 369111 关联的位置名称(播放点名称):经典例题2】 【变式】已知关于x 的方程2(3)40x m x m --+-=. (1)求证:方程总有两个实数根;(2)若方程有一个根大于4且小于8,求m 的取值范围;(3)设抛物线2(3)4y x m x m =--+-与y 轴交于点M ,若抛物线与x 轴的一个交点关于直线y x =-的对称点恰好是点M ,求m 的值. 【答案】证明:(1)22224(3)4(4)1025(5)b ac m m m m m ∆=-=---=-+=-≥0,所以方程总有两个实数根.解:(2)由(1)2(5)m ∆=-,根据求根公式可知,方程的两根为:23(5)2m m x -±-= 即11x =,24x m =-,由题意,有448m <-<,即812m <<.(3)易知,抛物线2(3)4y x m x m =--+-与y 轴交点为M (0,4m -),由(2)可知抛物线与x 轴的交点为(1,0)和(4m -,0),它们关于直线y x =-的对称点分别为(0,1-)和(0, 4m -), 由题意,可得14m -=-或44m m -=-,所以3m =或4m =.3.抛物线y=x 2+bx+c 图象向右平移2个单位再向下平移3个单位,所得图象的解析式为y=x 2﹣2x﹣3,则b 、c 的值为( )A .b=2,c=2B .b=2,c=0C .b=﹣2,c=﹣1D .b=﹣3,c=2 【思路点拨】易得新抛物线的顶点,根据平移转换可得原抛物线顶点,根据顶点式及平移前后二次项的系数不变可得原抛物线的解析式,展开即可得到b ,c 的值. 【答案】B . 【解析】解:由题意得新抛物线的顶点为(1,﹣4), ∴原抛物线的顶点为(﹣1,﹣1),设原抛物线的解析式为y=(x ﹣h )2+k 代入得:y=(x+1)2﹣1=x 2+2x , ∴b=2,c=0. 故选B .【总结升华】抛物线的平移不改变二次项系数的值;讨论两个二次函数的图象的平移问题,只需看顶点坐标是如何平移得到的即可.4.若一次函数y=kx+1的图象与反比例函数1y x=的图象没有公共点,则实数k 的取值范围是 . 【思路点拨】因为反比例函数1y x = 的图象在第一、三象限,故一次函数y=kx+1中,k <0,将解方程组 11y kx y x =+⎧⎪⎨=⎪⎩转化成关于x 的一元二次方程,当两函数图象没有公共点时,只需△<0即可.【答案】1-4k <. 【解析】由反比例函数的性质可知,1y x=的图象在第一、三象限, ∴当一次函数y=kx+1与反比例函数图象无交点时,k <0,解方程组11y kx y x =+⎧⎪⎨=⎪⎩,得kx 2+x-1=0, 当两函数图象没有公共点时,△<0,即1+4k <0, 解得1-4k <, ∴两函数图象无公共点时,1-4k <. 故答案为:1-4k <. 【总结升华】本题考查了反比例函数与一次函数的交点问题.关键是转化成关于x 的一元二次方程,再确定k 的取值范围.类型三、函数综合题5.(2015春•姜堰市校级月考)已知二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,对称轴是直线x=﹣,有下列结论:①ab >0;②a+b+c <0;③b+2c <0;其中正确结论的个数是( )A .0B . 1C . 2D .3 【思路点拨】根据开口方向、对称轴、抛物线与y 轴的交点,确定a 、b 、c 的符号,根据对称轴和图象确定y >0或y <0时,x 的范围,确定代数式的符号. 【答案】C . 【解析】解:①∵开口向下,∴a<0,对称轴在y 轴的左侧,b <0,∴①正确; ②当x=1时,y <0,∴a+b+c<0,②正确;③﹣=﹣,2a=3b,x=﹣1时,y>0,a﹣b+c>0,b+2c>0③错误;故选:C.【总结升华】本题考查的是二次函数图象与系数的关系,掌握二次函数的性质、灵活运用数形结合思想是解题的关键,解答时,要熟练运用抛物线的对称性和抛物线上的点的坐标满足抛物线的解析式.举一反三:【变式】二次函数y=ax2+bx+c的图象如图所示,则一次函数y=bx+b2﹣4ac与反比例函数y=在同一坐标系内的图象大致为()A. B. C. D.【答案】由抛物线的图象可知,横坐标为1的点,即(1,a+b+c)在第四象限,因此a+b+c<0;∴双曲线的图象在第二、四象限;由于抛物线开口向上,所以a>0;对称轴x=>0,所以b<0;抛物线与x轴有两个交点,故b2﹣4ac>0;∴直线y=bx+b2﹣4ac经过第一、二、四象限.故选D.类型四、函数的应用6.(2015•舟山)某企业接到一批粽子生产任务,按要求在15天内完成,约定这批粽子的出厂价为每只6元,为按时完成任务,该企业招收了新工人,设新工人李明第x天生产的粽子数量为y只,y与x满足下列关系式:y=.(1)李明第几天生产的粽子数量为420只?(2)如图,设第x天每只粽子的成本是p元,p与x之间的关系可用图中的函数图象来刻画.若李明第x天创造的利润为w元,求w与x之间的函数表达式,并求出第几天的利润最大,最大利润是多少元?(利润=出厂价﹣成本)(3)设(2)小题中第m天利润达到最大值,若要使第(m+1)天的利润比第m天的利润至少多48元,则第(m+1)天每只粽子至少应提价几元?【思路点拨】(1)把y=420代入y=30x+120,解方程即可求得;(2)根据图象求得成本p与x之间的关系,然后根据利润等于订购价减去成本价,然后整理即可得到W 与x的关系式,再根据一次函数的增减性和二次函数的增减性解答;(3)根据(2)得出m+1=13,根据利润等于订购价减去成本价得出提价a与利润w的关系式,再根据题意列出不等式求解即可.【答案】解:(1)设李明第n天生产的粽子数量为420只,由题意可知:30n+120=420,解得n=10.答:第10天生产的粽子数量为420只.(2)由图象得,当0≤x≤9时,p=4.1;当9≤x≤15时,设P=kx+b,把点(9,4.1),(15,4.7)代入得,,解得,∴p=0.1x+3.2,①0≤x≤5时,w=(6﹣4.1)×54x=102.6x,当x=5时,w最大=513(元);②5<x≤9时,w=(6﹣4.1)×(30x+120)=57x+228,∵x是整数,∴当x=9时,w最大=714(元);③9<x≤15时,w=(6﹣0.1x﹣3.2)×(30x+120)=﹣3x2+72x+336,∵a=﹣3<0,∴当x=﹣=12时,w最大=768(元);综上,当x=12时,w有最大值,最大值为768.(3)由(2)可知m=12,m+1=13,设第13天提价a元,由题意得,w13=(6+a﹣p)(30x+120)=510(a+1.5),∴510(a+1.5)﹣768≥48,解得a=0.1.答:第13天每只粽子至少应提价0.1元.【总结升华】本题考查的是二次函数在实际生活中的应用,主要是利用二次函数的增减性求最值问题,利用一次函数的增减性求最值,难点在于读懂题目信息,列出相关的函数关系式.举一反三:【高清课程名称: 函数综合1 高清ID 号: 369111 关联的位置名称(播放点名称):经典例题3】【变式】抛物线2y ax bx c =++,a >0,c <0,2360a b c ++=.(1)求证:1023b a +>; (2)抛物线经过点1(,)2P m ,Q (1,)n . ① 判断mn 的符号; ② 抛物线与x 轴的两个交点分别为点A 1(,0)x ,点B 2(,0)x (A 在B 左侧),请说明116x <,2112x <<. 【答案】(1)证明:∵ 2360a b c ++=, ∴12362366b a b c c a a a a++==-=-. ∵ a >0,c <0,∴ 0c a <,0c a->. ∴ 1023b a +>.(2)解:∵ 抛物线经过点P 1(,)2m ,点Q (1,)n , ∴ 11 ,42 .a b c m a b c n ⎧++=⎪⎨⎪++=⎩① ∵ 2360a b c ++=,a >0,c <0,∴ 223a b c +=-,223a b c =--. ∴ 1112111()42424312b c m a b c a a a a +=++=+=+-=-<0. 2(2)33a a n abc a c c c =++=+--+=->0. ∴ 0mn <. ② 由a >0知抛物线2y ax bx c =++开口向上.∵ 0m <,0n >,∴ 点P 1(,)2m 和点Q (1,)n 分别位于x 轴下方和x 轴上方.∵ 点A ,B 的坐标分别为A 1(,0)x ,B 2(,0)x (点A 在点B 左侧), ∴ 由抛物线2y ax bx c =++的示意图可知,对称轴右侧的点B 的横坐标2x 满足2112x <<. ∵ 抛物线的对称轴为直线2b x a =-,由抛物线的对称性可1222x x b a +=-,由(1)知123b a -<, ∴ 12123x x +<. ∴ 12221332x x <-<-,即116x <.。
中考总复习:函数综合—知识讲解(提高)【考纲要求】1.平面直角坐标系的有关知识平面直角坐标系中各象限和坐标轴上的点的坐标的特征,求点关于坐标轴、坐标原点的对称点的坐标,求线段的长度,几何图形的面积,求某些点的坐标等.2.函数的有关概念求函数自变量的取值范围,求函数值、函数的图象、函数的表示方法.3.函数的图象和性质常见的题目是确定图象的位置,利用函数的图象确定某些字母的取值,利用函数的性质解决某些问题.利用数形结合思想来说明函数值的变化趋势,又能反过来判定函数图象的位置.4.函数的解析式求函数的解析式,求抛物线的顶点坐标、对称轴方程,利用函数的解析式来求某些字母或代数式的值.一次函数、反比例函数和二次函数常与一元一次方程、一元二次方程、三角形的面积、边角关系、圆的切线、圆的有关线段组成综合题.【知识网络】【考点梳理】考点一、平面直角坐标系 1.相关概念(1)平面直角坐标系 (2)象限 (3)点的坐标2.各象限内点的坐标的符号特征3.特殊位置点的坐标 (1)坐标轴上的点(2)一三或二四象限角平分线上的点的坐标 (3)平行于坐标轴的直线上的点的坐标 (4)关于x 轴、y 轴、原点对称的点的坐标 4.距离(1)平面上一点到x 轴、y 轴、原点的距离(2)坐标轴或平行于坐标轴的直线上两点间的距离 (3)平面上任意两点间的距离 5.坐标方法的简单应用(1)利用坐标表示地理位置 (2)利用坐标表示平移 要点诠释:点P(x,y)到坐标轴及原点的距离:(1)点P(x,y)到x 轴的距离等于y ; (2)点P(x,y)到y 轴的距离等于x ; (3)点P(x,y)到原点的距离等于22y x .考点二、函数及其图象 1.变量与常量 2.函数的概念3.函数的自变量的取值范围4.函数值5.函数的表示方法(解析法、列表法、图象法)6.函数图象 要点诠释:由函数解析式画其图像的一般步骤:(1)列表:列表给出自变量与函数的一些对应值;(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点;(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来.考点三、一次函数1.正比例函数的意义2.一次函数的意义3.正比例函数与一次函数的性质4. 一次函数的图象与二元一次方程组的关系5.利用一次函数解决实际问题 要点诠释:确定一个正比例函数,就是要确定正比例函数定义式kx y =(k ≠0)中的常数k ;确定一个一次函数,需要确定一次函数定义式b kx y +=(k ≠0)中的常数k 和b.解这类问题的一般方法是待定系数法.考点四、反比例函数 1.反比例函数的概念2.反比例函数的图象及性质3.利用反比例函数解决实际问题 要点诠释:反比例函数中反比例系数的几何意义,如下图,过反比例函数)0(≠=k xky 图像上任一点),(y x P 作x 轴、y 轴的垂线PM ,PN ,垂足为M 、N ,则所得的矩形PMON 的面积S=PM •PN=xy x y =•.,y xk=Θ ∴||k S k xy ==,.考点五、二次函数 1.二次函数的概念2.二次函数的图象及性质3.二次函数与一元二次方程的关系4.利用二次函数解决实际问题 要点诠释:1、两点间距离公式(当遇到没有思路的问题时,可用此方法拓展思路,以寻求解题方法) 如图:点A 坐标为(x 1,y 1),点B 坐标为(x 2,y 2),则AB 间的距离,即线段AB 的长度为()()221221y y x x -+-.2、函数平移规律:左加右减、上加下减.3、二次函数的最值如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值),即当abx 2-=时,ab ac y 442-=最值.如果自变量的取值范围是21x x x ≤≤,那么,首先要看ab2-是否在自变量取值范围21x x x ≤≤内,若在此范围内,则当x=ab2-时,a b ac y 442-=最值;若不在此范围内,则需要考虑函数在21x x x ≤≤范围内的增减性,如果在此范围内,y 随x 的增大而增大,则当2x x =时,c bx ax y ++=222最大,当1x x =时,c bx ax y ++=121最小;如果在此范围内,y 随x 的增大而减小,则当1x x =时,c bx ax y ++=121最大,当2x x =时,c bx ax y ++=222最小.4、抛物线的对称变换 ①关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---.②关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++.③关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-.④关于顶点对称2y ax bx c=++关于顶点对称后,得到的解析式是222by ax bx ca =--+-;()2y a x h k=-+关于顶点对称后,得到的解析式是()2y a x h k=--+.⑤关于点()m n,对称()2y a x h k=-+关于点()m n,对称后,得到的解析式是()222y a x h m n k=-+-+-.根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a永远不变.求抛物线的对称图象的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.考点六、函数的应用1.一次函数的实际应用2. 反比例函数的实际应用3. 二次函数的实际应用要点诠释:分段函数是指自变量在不同的取值范围内,其关系式(或图象)也不同的函数,分段函数的应用题多设计成两种情况以上,解答时需分段讨论.在现实生活中存在着很多需分段计费的实际问题,因此,分段计算的应用题成了近几年中考应用题的一种重要题型.【典型例题】类型一、用函数的概念与性质解题1.在平面直角坐标系中,点A的坐标是(4,0),点P是第一象限内的直线y=6-x上的点,O是坐标原点(如图所示):(1)P点坐标设为(x, y) ,写出ΔOPA的面积S的关系式;(2)S与y具有怎样的函数关系,写出这函数中自变量y的取值范围;(3)S与x具有怎样的函数关系?写出自变量x的取值范围;(4)如果把x看作S的函数时,求这个函数解析式,并写出这函数中自变量取值范围;(5)当S=10时,求P的坐标;(6)在直线y=6-x上,求一点P,使ΔPOA是以OA为底的等腰三角形.举一反三:2x+4x+k-1=0有实数根,k为正整数.【变式】已知关于x的一元二次方程2(1)求k的值;y=2x+4x+k-1的图象向下平移8个单位,(2)当此方程有两个非零的整数根时,将关于x的二次函数2求平移后的图象的解析式;(3)在(2)的条件下,将平移后的二次函数的图象在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象,请你结合这个新的图象回答:当直线1y=x+b(b<k)2与此图象有两公共点时,b的取值范围.2.如图,在矩形ABCD中,AB=3,BC=4,点P在BC边上运动,连结DP,过点A作AE⊥DP,垂足为E,设DP=x,AE=y,则能反映y与x之间函数关系的大致图象是( )(A) (B) (C) (D)举一反三:【变式】小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车.车修好后,因怕耽误上课,他比修车前加快骑车速度继续匀速行驶,下面是行驶路程s(m)关于时间t(min)的函数图象,那么符合这个同学行驶情况的图象大致是( ).类型二、函数的综合题3.如图,把Rt △ABC 放在直角坐标系内,其中∠CAB=90°,BC=5,点A 、B 的坐标分别为(1,0)、(4,0),将△ABC 沿x 轴向右平移,当点C 落在直线y=2x -6上时,线段BC 扫过的面积为( ) A .4 B .8C .16D .82举一反三:【变式】在坐标系中,二次函数2(3)3(0)y mx m x m =+-->的图象与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C . (1)求点A 的坐标;(2)当45ABC ∠=︒时,求m 的值;(3)已知一次函数y kx b =+,点P (n ,0)是x 轴上的一个动点,在(2)的条件下,过点P 垂直于x 轴的直线交这个一次函数的图象于点M ,交二次函数2(3)3(0)y mx m x m =+-->的图象于N . 若只有当22n -<< 时,点M 位于点N 的上方,求这个一次函数的解析式.AB CO yx4.(2015•湖北模拟)函数y=和y=在第一象限内的图象如图,点P是y=的图象上一动点,PC⊥x 轴于点C,交y=的图象于点B.给出如下结论:①△ODB与△OCA的面积相等;②PA与PB始终相等;③四边形PAOB的面积大小不会发生变化;④CA=AP.其中所有正确结论的序号是()A.①②③B.②③④C.①③④D.①②④举一反三:【变式】如图,在直角梯形ABCD中,AD∥BC,∠A=90°,AB=BC=4,DE⊥BC于点E,且E是BC中点;动点P从点E出发沿路径ED→DA→AB以每秒1个单位长度的速度向终点B运动;设点P的运动时间为t 秒,△PBC的面积为S,则下列能反映S与t的函数关系的图象是()A .B .C .D .类型三、函数与几何综合题5.如图,将—矩形OABC 放在直角坐际系中,O 为坐标原点.点A 在y 轴正半轴上.点E 是边AB上的—个动点(不与点A 、B 重合),过点E 的反比例函数(0)ky x x=>的图象与边BC 交于点F. (1)若△OAE、△OCF 的而积分别为S 1、S 2.且S 1+S 2=2,求k 的值;(2)若OA=2.0C=4.问当点E 运动到什么位置时,四边形OAEF 的面积最大.其最大值为多少?6.(2015•宿迁)如图,在平面直角坐标系中,已知点A (8,1),B (0,﹣3),反比例函数 y=(x >0)的图象经过点A ,动直线x=t (0<t <8)与反比例函数的图象交于点M ,与直线AB 交于 点N .(1)求k 的值;(2)求△BMN 面积的最大值; (3)若MA⊥AB,求t 的值.7.如图1,已知矩形ABCD的顶点A与点O重合,AD、AB分别在x轴、y轴上,且AD=2,AB=3;抛物线y=﹣x2+bx+c经过坐标原点O和x轴上另一点E(4,0)(1)当x取何值时,该抛物线取最大值?该抛物线的最大值是多少?(2)将矩形ABCD以每秒1个单位长度的速度从图1所示的位置沿x轴的正方向匀速平行移动,同时一动点P也以相同的速度从点A出发向B匀速移动.设它们运动的时间为t秒(0≤t≤3),直线AB与该抛物线的交点为N(如图2所示).①当t=时,判断点P是否在直线ME上,并说明理由;②以P、N、C、D为顶点的多边形面积是否可能为5?若有可能,求出此时N点的坐标;若无可能,请说明理由.。
中考总复习锐角三角函数综合复习--知识讲解锐角三角函数是初中数学中的一个重要内容,也是中考数学考试中常考的内容之一、掌握了锐角三角函数的定义、性质和相关的计算方法,可以帮助我们解决与角度有关的各种问题,如计算角度的大小、求角的三角函数值等。
下面是锐角三角函数的综合复习知识讲解。
1.弧度制和角度制在介绍锐角三角函数之前,我们首先要了解弧度制和角度制。
在角度制中,一个圆的周长被定义为360度,而在弧度制中,一个圆的周长被定义为2π弧度。
所以可以得到以下关系:360度=2π弧度180度=π弧度90度=π/2弧度2.定义对于任意一个锐角A,我们可以在一个单位圆上面取点P,使得∠POA 的顶点为O,点O为圆心,点P在单位圆上。
这样,我们可以定义以下几个锐角三角函数:正弦函数sinA、余弦函数cosA、正切函数tanA、余切函数cotA。
3.性质(1) 正弦函数sinA:在单位圆上,点P的纵坐标就是正弦值sinA。
(2) 余弦函数cosA:在单位圆上,点P的横坐标就是余弦值cosA。
(3) 正切函数tanA:tanA的值等于sinA/cosA。
(4) 余切函数cotA:cotA的值等于cosA/sinA。
(5) 错位现象:sinA等于cos(90度-A),cosA等于sin(90度-A)。
4.基本关系式(1) sin²A + cos²A = 1,即sin²A = 1 - cos²A,cos²A = 1 -sin²A。
(2) tanA = sinA/cosA,cotA = 1/tanA = cosA/sinA。
(3) sin(180度 - A) = sinA,cos(180度 - A) = -cosA。
(4) cos(360度 - A) = cosA,sin(360度 - A) = -sinA。
5.锐角三角函数的值(1)0度、30度、45度、60度、90度的正弦、余弦、正切值是特殊的,需要进行熟记。
中考总复习:函数综合—知识讲解(基础)【考纲要求】1.平面直角坐标系的有关知识平面直角坐标系中各象限和坐标轴上的点的坐标的特征,求点关于坐标轴、坐标原点的对称点的坐标,求线段的长度,几何图形的面积,求某些点的坐标等;2.函数的有关概念求函数自变量的取值范围,求函数值、函数的图象、函数的表示方法;3.函数的图象和性质常见的题目是确定图象的位置,利用函数的图象确定某些字母的取值,利用函数的性质解决某些问题.利用数形结合思想来说明函数值的变化趋势,又能反过来判定函数图象的位置;4.函数的解析式求函数的解析式,求抛物线的顶点坐标、对称轴方程,利用函数的解析式来求某些字母或代数式的值.一次函数、反比例函数和二次函数常与一元一次方程、一元二次方程、三角形的面积、边角关系、圆的切线、圆的有关线段组成综合题.【知识网络】【考点梳理】考点一、平面直角坐标系1.相关概念(1)平面直角坐标系 (2)象限 (3)点的坐标2.各象限内点的坐标的符号特征3.特殊位置点的坐标 (1)坐标轴上的点(2)一三或二四象限角平分线上的点的坐标 (3)平行于坐标轴的直线上的点的坐标 (4)关于x 轴、y 轴、原点对称的点的坐标 4.距离(1)平面上一点到x 轴、y 轴、原点的距离(2)坐标轴或平行于坐标轴的直线上两点间的距离 (3)平面上任意两点间的距离 5.坐标方法的简单应用(1)利用坐标表示地理位置 (2)利用坐标表示平移 要点诠释:点P(x,y)到坐标轴及原点的距离:(1)点P(x,y)到x 轴的距离等于y ; (2)点P(x,y)到y 轴的距离等于x ; (3)点P(x,y)到原点的距离等于22y x +.考点二、函数及其图象 1.变量与常量 2.函数的概念3.函数的自变量的取值范围4.函数值5.函数的表示方法(解析法、列表法、图象法)6.函数图象 要点诠释:由函数解析式画其图像的一般步骤:(1)列表:列表给出自变量与函数的一些对应值;(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点;(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来.考点三、一次函数1.正比例函数的意义2.一次函数的意义3.正比例函数与一次函数的性质4. 一次函数的图象与二元一次方程组的关系5.利用一次函数解决实际问题 要点诠释:确定一个正比例函数,就是要确定正比例函数定义式kx y =(k ≠0)中的常数k ;确定一个一次函数,需要确定一次函数定义式b kx y +=(k ≠0)中的常数k 和b.解这类问题的一般方法是待定系数法.考点四、反比例函数 1.反比例函数的概念2.反比例函数的图象及性质3.利用反比例函数解决实际问题 要点诠释:反比例函数中反比例系数的几何意义,如下图,过反比例函数)0(≠=k xky 图像上任一点),(y x P 作x 轴、y 轴的垂线PM ,PN ,垂足为M 、N ,则所得的矩形PMON 的面积S=PM ∙PN=xy x y =∙.,y xk=∴||k S k xy ==,.考点五、二次函数 1.二次函数的概念2.二次函数的图象及性质3.二次函数与一元二次方程的关系4.利用二次函数解决实际问题 要点诠释:1、两点间距离公式(当遇到没有思路的问题时,可用此方法拓展思路,以寻求解题方法) 如图:点A 坐标为(x 1,y 1),点B 坐标为(x 2,y 2),则AB 间的距离,即线段AB 的长度为()()221221y y x x -+-.2、函数平移规律:左加右减、上加下减.考点六、函数的应用 1.一次函数的实际应用 2. 反比例函数的实际应用 3. 二次函数的实际应用 要点诠释:分段函数是指自变量在不同的取值范围内,其关系式(或图象)也不同的函数,分段函数的应用题多设计成两种情况以上,解答时需分段讨论.在现实生活中存在着很多需分段计费的实际问题,因此,分段计算的应用题成了近几年中考应用题的一种重要题型.【典型例题】类型一、用函数的概念与性质解题1. 已知一次函数y=(3a-2)x+(1-b),求字母a, b 的取值范围,使得: (1)y 随x 的增大而增大;(2)函数图象与y 轴的交点在x 轴的下方;(3)函数的图象过第一、二、四象限. 【思路点拨】(1)y=kx+b (k≠0)的图象,当k >0时,y 随x 的增大而增大;(2)当b <0时,函数图象与y 轴的交点在x 轴的下方; (3)当k <0, b >0时时,函数的图象过第一、二、四象限.【答案与解析】解:a 、b 的取值范围应分别满足:(1)由一次函数y=kx+b(k≠0)的性质可知: 当k >0时,函数值y 随x 的增大而增大,即3a-2>0, ∴23a >, 且b 取任何实数.(2)函数图象与y 轴的交点为(0,1-b ), ∵ 交点在x 轴的下方,∴,即a≠, b >1.(3)函数图象过第一、二、四象限,则必须满足 .【总结升华】下面是y=kx(k≠0), y=kx+b (k≠0)的图象的特点和性质的示意图,如图1,当k >0时,y 随x 的增大而增大;当b >0时,图象过一、二、三象限,当b=0时,是正比例函数,当b <0时,图象过一、三、四象限;当y=x 时,图象过一、三象限,且是它的角平分线.由于常数k 、b 不同,可得到不同的函数,k 决定直线与x 轴夹角的大小,b 决定直线与y 轴交点的位置,由k 定向,由b 定点.同样,如图2,是k <0的各种情况,请你指出它们的图象的特点和性质.举一反三:【变式】作出函数y=x, 2x y x=,2y =的图象,它们是不是同一个函数?【答案】 函数2y =的自变量x 的取值范围是x≥0;函数2x y x=在x≠0时,就是函数y=x ;而x=0不在函数2x y x=的自变量x 的取值范围之内.由此,作图如下:可见它们不是同一个函数.类型二、函数图象及性质2.已知:(1)m为何值时,它是一次函数.(2)当它是一次函数时,画出草图,指出它的图象经过哪几个象限?y是随x的增大而增大还是减小?(3)当图象不过原点时,求出该图象与坐标轴交点间的距离,及图象与两轴所围成的三角形面积. 【思路点拨】一次函数应满足:一次项(或自变量)的指数为1,系数不为0.【答案与解析】(1)依题意:,解得m=1或m=4.∴当m=1或m=4时,它是一次函数.(2)当m=4时,函数为y=2x,是正比例函数,图象过一,三象限,y随x的增大而增大.当m=1时,函数为y=-x-3,直线过二,三,四象限,y随x的增大而减小.(3)直线y=-x-3不过原点,它与x轴交点为A(-3,0),与y轴交点为B(0,-3),..∴直线y=-x-3与两轴交点间的距离为,与两轴围成的三角形面积为.【总结升华】(1)某函数是一次函数应满足的条件是:一次项(或自变量)的指数为1,系数不为0.而某函数若是正比例函数,则还需添加一个条件:常数项为0.(2)判断函数的增减性,关键是确定直线y=kx+b(k≠0)中k、b的符号.(3)直线y=kx+b(k≠0)与两轴的交点坐标可运用x轴、y轴上的点的特征来求,当直线y=kx+b(k ≠0)上的点在x轴上时,令y=0,则,交点为;当直线y=kx+b(k≠0)上的点在y轴上时,令x=0,则y=b,即交点为(0,b).举一反三:【变式】已知关于x的方程2(3)40x m x m--+-=.(1)求证:方程总有两个实数根;(2)若方程有一个根大于4且小于8,求m的取值范围;(3)设抛物线2(3)4y x m x m =--+-与y 轴交于点M ,若抛物线与x 轴的一个交点关于直线y x =-的对称点恰好是点M ,求m 的值. 【答案】证明:(1)22224(3)4(4)1025(5)b ac m m m m m ∆=-=---=-+=-≥0,所以方程总有两个实数根.解:(2)由(1)2(5)m ∆=-,根据求根公式可知,方程的两根为:x = 即11x =,24x m =-,由题意,有448m <-<,即812m <<.(3)易知,抛物线2(3)4y x m x m =--+-与y 轴交点为M (0,4m -),由(2)可知抛物线与x 轴的交点为(1,0)和(4m -,0),它们关于直线y x =-的对称点分别为(0,1-)和(0, 4m -), 由题意,可得14m -=-或44m m -=-,所以3m =或4m =.3.抛物线y=x 2+bx+c 图象向右平移2个单位再向下平移3个单位,所得图象的解析式为y=x 2﹣2x ﹣3,则b 、c 的值为( )A .b=2,c=2B .b=2,c=0C .b=﹣2,c=﹣1D .b=﹣3,c=2 【思路点拨】易得新抛物线的顶点,根据平移转换可得原抛物线顶点,根据顶点式及平移前后二次项的系数不变可得原抛物线的解析式,展开即可得到b ,c 的值. 【答案】B . 【解析】解:由题意得新抛物线的顶点为(1,﹣4), ∴原抛物线的顶点为(﹣1,﹣1),设原抛物线的解析式为y=(x ﹣h )2+k 代入得:y=(x+1)2﹣1=x 2+2x , ∴b=2,c=0. 故选B .【总结升华】抛物线的平移不改变二次项系数的值;讨论两个二次函数的图象的平移问题,只需看顶点坐标是如何4【答案】-k <.本题考查了反比例函数与一次函数的交点问题.关键是转化成关于x的一元二次方程,再确定k的取值范围.类型三、函数综合题5.(2015春•姜堰市校级月考)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=﹣,有下列结论:①ab>0;②a+b+c<0;③b+2c<0;其中正确结论的个数是()A.0 B.1C.2D.3【思路点拨】根据开口方向、对称轴、抛物线与y轴的交点,确定a、b、c的符号,根据对称轴和图象确定y>0或y <0时,x的范围,确定代数式的符号.【答案】C.【解析】解:①∵开口向下,∴a<0,对称轴在y轴的左侧,b<0,∴①正确;②当x=1时,y<0,∴a+b+c<0,②正确;③﹣=﹣,2a=3b,x=﹣1时,y>0,a﹣b+c>0,b+2c>0③错误;故选:C.【总结升华】本题考查的是二次函数图象与系数的关系,掌握二次函数的性质、灵活运用数形结合思想是解题的关键,解答时,要熟练运用抛物线的对称性和抛物线上的点的坐标满足抛物线的解析式.举一反三:【变式】二次函数y=ax2+bx+c的图象如图所示,则一次函数y=bx+b2﹣4ac与反比例函数y=在同一坐标系内的图象大致为()A. B. C. D.【答案】由抛物线的图象可知,横坐标为1的点,即(1,a+b+c)在第四象限,因此a+b+c<0;∴双曲线的图象在第二、四象限;由于抛物线开口向上,所以a>0;对称轴x=>0,所以b<0;抛物线与x轴有两个交点,故b2﹣4ac>0;∴直线y=bx+b2﹣4ac经过第一、二、四象限.故选D.类型四、函数的应用6.(2015•舟山)某企业接到一批粽子生产任务,按要求在15天内完成,约定这批粽子的出厂价为每只6元,为按时完成任务,该企业招收了新工人,设新工人李明第x天生产的粽子数量为y只,y与x 满足下列关系式:y=.(1)李明第几天生产的粽子数量为420只?(2)如图,设第x天每只粽子的成本是p元,p与x之间的关系可用图中的函数图象来刻画.若李明第x 天创造的利润为w元,求w与x之间的函数表达式,并求出第几天的利润最大,最大利润是多少元?(利润=出厂价﹣成本)(3)设(2)小题中第m天利润达到最大值,若要使第(m+1)天的利润比第m天的利润至少多48元,则第(m+1)天每只粽子至少应提价几元?【思路点拨】(1)把y=420代入y=30x+120,解方程即可求得;(2)根据图象求得成本p与x之间的关系,然后根据利润等于订购价减去成本价,然后整理即可得到W 与x的关系式,再根据一次函数的增减性和二次函数的增减性解答;(3)根据(2)得出m+1=13,根据利润等于订购价减去成本价得出提价a与利润w的关系式,再根据题意列出不等式求解即可.【答案】解:(1)设李明第n天生产的粽子数量为420只,由题意可知:30n+120=420,解得n=10.答:第10天生产的粽子数量为420只.(2)由图象得,当0≤x≤9时,p=4.1;当9≤x≤15时,设P=kx+b,把点(9,4.1),(15,4.7)代入得,,解得,∴p=0.1x+3.2,①0≤x≤5时,w=(6﹣4.1)×54x=102.6x,当x=5时,w 最大=513(元); ②5<x≤9时,w=(6﹣4.1)×(30x+120)=57x+228, ∵x 是整数,∴当x=9时,w 最大=714(元); ③9<x≤15时,w=(6﹣0.1x ﹣3.2)×(30x+120)=﹣3x 2+72x+336, ∵a=﹣3<0, ∴当x=﹣=12时,w 最大=768(元);综上,当x=12时,w 有最大值,最大值为768.(3)由(2)可知m=12,m+1=13,设第13天提价a 元,由题意得,w 13=(6+a ﹣p )(30x+120)=510(a+1.5), ∴510(a+1.5)﹣768≥48,解得a=0.1. 答:第13天每只粽子至少应提价0.1元. 【总结升华】本题考查的是二次函数在实际生活中的应用,主要是利用二次函数的增减性求最值问题,利用一次函数的增减性求最值,难点在于读懂题目信息,列出相关的函数关系式. 举一反三:【变式】抛物线2y ax bx c =++,a >0,c <0,2360a b c ++=.(1)求证:1023b a +>; (2)抛物线经过点1(,)2P m ,Q (1,)n .① 判断mn 的符号;② 抛物线与x 轴的两个交点分别为点A 1(,0)x ,点B 2(,0)x (A 在B 左侧),请说明116x <,2112x <<. 【答案】(1)证明:∵ 2360a b c ++=,∴12362366b a b c c a a a a ++==-=-. ∵ a >0,c <0,∴ 0c a <,0ca ->.∴ 1023b a +>.(2)解:∵ 抛物线经过点P 1(,)2m ,点Q (1,)n ,∴ 11 ,42.a b c m a b c n ⎧++=⎪⎨⎪++=⎩① ∵ 2360a b c ++=,a >0,c <0,∴ 223a b c +=-,223ab c =--.∴ 1112111()42424312b c m a b c a a a a +=++=+=+-=-<0.2(2)33a an a b c a c c c =++=+--+=->0.∴ 0mn <.② 由a >0知抛物线2y ax bx c =++开口向上.∵ 0m <,0n >,∴ 点P 1(,)2m 和点Q (1,)n 分别位于x 轴下方和x 轴上方.∵ 点A ,B 的坐标分别为A 1(,0)x ,B 2(,0)x (点A 在点B 左侧),∴ 由抛物线2y ax bx c =++的示意图可知,对称轴右侧的点B 的横坐标2x 满足2112x <<. ∵ 抛物线的对称轴为直线2b x a =-,由抛物线的对称性可1222x x b a +=-,由(1)知123b a -<,∴ 12123x x +<.∴ 12221332x x <-<-,即116x <.。
中考数学函数知识点归纳数学中的函数是指一种将一个或多个输入值映射到唯一的输出值的关系。
在中考数学中,函数是一个重要的知识点,主要涉及函数定义、函数的概念、函数的性质、函数的图像以及函数的应用等内容。
下面是对中考数学函数知识点的详细归纳。
1.函数的定义:函数由定义域、值域和对应关系构成。
定义域是指函数能够接受输入的值的范围,值域是函数所有可能的输出值组成的集合。
函数的对应关系可以用图表、显式公式或者隐式方程表示。
2.函数的概念:函数主要有一次函数、二次函数、幂函数、指数函数、对数函数、三角函数和反三角函数等。
每种函数有其特定的性质和图像。
3.函数的性质:(1)定义域:函数的定义域是指函数的自变量可能取的值的范围。
(2)奇偶性:当函数满足$f(-x)=-f(x)$时,函数是奇函数;当函数满足$f(-x)=f(x)$时,函数是偶函数。
(3)单调性:函数在其定义域内的取值随自变量的增大或减小而单调递增或单调递减。
(4)增减性:函数的一阶导数表示函数在定义域内的取值随自变量的增大或减小而增加或减小。
4.函数的图像:函数的图像是表示函数对应关系的图形。
通过绘制函数的图像,可以观察函数的特征和性质。
例如,一次函数的图像是一条直线,二次函数的图像是一个抛物线。
5.函数的应用:函数在实际问题中的应用非常广泛(1)函数的代数运算:求解函数的和、差、积和商等;(2)函数的零点和方程:解一元一次方程、一元二次方程等;(3)函数的最值:求函数的最大值和最小值;(4)函数的综合应用:利用函数表示实际问题,如距离、速度、面积和体积等。
以上是对中考数学函数知识点的简要归纳。
掌握这些知识点,能够帮助学生在考试中更好地理解和解决与函数相关的问题。
当然,为了更深入地了解函数,学生还需要进行大量的练习和掌握相关的解题技巧。
函数知识点总结(掌握函数的定义、性质和图像)(一)平面直角坐标系1、定义:平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系2、各个象限内点的特征:第一象限:(+,+) 点P (x,y ),则x >0,y >0;第二象限:(-,+) 点P (x,y ),则x <0,y >0;第三象限:(-,-) 点P (x,y ),则x <0,y <0;第四象限:(+,-) 点P (x,y ),则x >0,y <0;3、坐标轴上点的坐标特征:x 轴上的点,纵坐标为零;y 轴上的点,横坐标为零;原点的坐标为(0 , 0)。
两坐标轴的点不属于任何象限。
4、点的对称特征:已知点P(m,n),关于x 轴的对称点坐标是(m,-n), 横坐标相同,纵坐标反号关于y 轴的对称点坐标是(-m,n) 纵坐标相同,横坐标反号关于原点的对称点坐标是(-m,-n) 横,纵坐标都反号5、平行于坐标轴的直线上的点的坐标特征:平行于x 轴的直线上的任意两点:纵坐标相等;平行于y 轴的直线上的任意两点:横坐标相等。
6、各象限角平分线上的点的坐标特征:第一、三象限角平分线上的点横、纵坐标相等。
第二、四象限角平分线上的点横、纵坐标互为相反数。
7、点P (x,y )的几何意义:点P (x,y )到x 轴的距离为 |y|,点P (x,y )到y 轴的距离为 |x|。
点P (x,y )到坐标原点的距离为22y x +8、两点之间的距离:X 轴上两点为A )0,(1x 、B )0,(2x |AB|||12x x -=Y 轴上两点为C ),0(1y 、D ),0(2y |CD|||12y y -=已知A ),(11y x 、B ),(22y x AB|=212212)()(y y x x -+-9、中点坐标公式:已知A ),(11y x 、B ),(22y x M 为AB 的中点则:M=(212x x + , 212y y +) 10、点的平移特征: 在平面直角坐标系中,将点(x,y )向右平移a 个单位长度,可以得到对应点( x-a ,y );将点(x,y )向左平移a 个单位长度,可以得到对应点(x+a ,y );将点(x,y )向上平移b 个单位长度,可以得到对应点(x ,y +b );将点(x,y )向下平移b 个单位长度,可以得到对应点(x ,y -b )。
中考总复习函数综合--知识讲解
函数是数学中的基本概念之一,也是数学建模中常用的工具。
在中考中,函数综合是一个重点复习内容,掌握了函数的性质和应用,能够帮助我们解决各种与函数相关的问题。
下面,我将给大家介绍一些函数的基本知识和应用。
一、函数的定义与性质
函数是将一个集合的每个元素映射到另一个集合的元素上的规则。
在数学中,常常用一个公式或者图像来表示函数。
1.定义域和值域:函数中输入的元素称为自变量,输出的元素称为因变量。
自变量取值的范围称为定义域,而因变量取值的范围称为值域。
2.奇偶性:如果对于定义域内的任意x,函数满足f(x)=f(-x),则称函数为偶函数;如果对于所有定义域内的x,函数满足f(x)=-f(-x),则称函数为奇函数。
3.单调性:如果对于定义域内的任意x1和x2,若x1<x2,则有
f(x1)<f(x2),则称函数为增函数;如果对于定义域内的任意x1和x2,若x1<x2,则有f(x1)>f(x2),则称函数为减函数。
二、函数的表示方法
1.函数关系式:函数可以用关系式表示,如y=f(x)。
2.函数图像:函数的图像是将自变量和因变量的对应关系用平面直角坐标系上的点表示出来的。
3.函数表:函数的输入和输出可以用表的形式表示出来。
三、函数的运算与性质
1.四则运算:对于两个函数f(x)和g(x),我们可以进行加、减、乘、除的运算。
即:
f(x)+g(x):将两个函数对应位置上的值相加;
f(x)-g(x):将两个函数对应位置上的值相减;
f(x)*g(x):将两个函数对应位置上的值相乘;
f(x)/g(x):将两个函数对应位置上的值相除。
2.复合函数:复合函数是指将一个函数作为另一个函数的自变量。
如:f(g(x))表示先对x进行函数g(x)的运算,然后再对得到的结果进行函数
f(x)的运算。
3.反函数:如果一个函数f(x)的值域与定义域相反,即对于f(x)的
每一个值y,存在唯一的x使得f(x)=y,则称f(x)的反函数为f(x)的逆。
四、函数的应用
1. 直线函数:直线函数是一个一次函数,其表达式为y = kx + b,
其中k为斜率,b为截距。
直线函数广泛应用于图像的平移、缩放和旋转
等方面。
2. 二次函数:二次函数是一个二次方程,其表达式为y = ax^2 +
bx + c,其中a、b、c为常数。
二次函数的图像称为抛物线,广泛应用于
自然界中的各种曲线问题。
3.指数函数:指数函数是一个以常数为底的幂函数,其表达式为
y=a^x,其中a为底数。
指数函数广泛应用于描述自然界中的指数增长、衰减等现象。
4.对数函数:对数函数是指指数函数的逆函数,其底数为常数。
对数函数广泛应用于解决指数方程和指数不等式等问题。
以上是关于函数综合的一些基本知识和应用。
通过掌握函数的性质、表示方法和运算规律,我们可以更好地理解函数的概念,并能应用函数解决各种实际问题。
希望以上内容对你的中考复习有所帮助!。