振型分解反应谱法
- 格式:doc
- 大小:54.50 KB
- 文档页数:24
振型分解反响谱法振型分解反响谱法是用来计算多自由度体系地震作用的一种方法。
该法是利用单自由度体系的加速度设计反响谱和振型分解的原理,求解各阶振型对应的等效地震作用,然后按照一定的组合原那么对各阶振型的地震作用效应进展组合,从而得到多自由度体系的地震作用效应。
振型分解反响谱法一般可考虑为计算两种类型的地震作用:不考虑扭转影响的水平地震作用和考虑平扭藕联效应的地震作用。
适用条件〔1〕高度不超过40米,以剪切变形为主且质量和刚度沿高度分布比拟均匀的结构,以与近似于单质点体系的结构,可采用底部剪力法计算。
〔此为底部剪力法的适用围〕〔2〕除上述结构以外的建筑结构,宜采用“振型分解反响谱法〞。
〔3〕特别不规那么的建筑、甲类建筑和规规定的高层建筑,应采用时程分析法进展补充计算。
刚重比刚重比是指结构的侧向刚度和重力荷载设计值之比,是影响重力二阶效应的主要参数刚重比=Di*Hi/GiDi-第i楼层的弹性等效刚度,可取该层剪力与层间位移的比值Hi-第i楼层层高Gi-第i楼层重力荷载设计值刚重比与结构的侧移刚度成正比关系;周期比的调整将导致结构侧移刚度的变化,从而影响到刚重比。
因此调整周期比时应注意,当某主轴方向的刚重比小于或接近规限值时,应采用加强刚度的方法;当某主轴方向刚重比大于规限值较多时,可采用削弱刚度的方法。
同样,对刚重比的调整也可能影响周期比。
特别是当结构的周期比接近规限值时,应采用加强结构外围刚度的方法重力二阶效应的影响较大,应该予以考虑。
规下限主要是控制重力荷载在水平作用位移效应引起的二阶效应不致过大,防止结构的失稳截面面积。
长细比长细比=计算长度/回转半径。
所以很显然,减小计算长度或者加大回转半径即可。
这里需要注意的是,计算长度并非实际长度,而是实际长度乘以长度系数,长度系数那么与柱子两端的约束刚度有关。
说白了就是要看与柱相连的梁或者根底是否给力,如果这些构件的刚度越高,那么长度系数就越小,柱子的计算长度也就越短。
盈建科采用振型分解反应谱法振型分解反应谱法是盈建科在结构动力学领域应用的一种方法,该方法可用于分析建筑物在地震作用下的反应,以及评估结构的抗震性能。
本文将详细介绍盈建科采用振型分解反应谱法的原理、步骤和应用案例,以便更好地理解和应用该方法。
首先,我们来了解振型分解反应谱法的原理。
该方法基于振型分解原理,通过将结构动力学问题转化为模态坐标下的一系列单自由度系统,进而求解得到结构的振动模态及其对地震激励的响应。
通过振型分解,我们可以更清晰地了解结构的各个振动模态对地震荷载的响应程度,从而为结构的设计和抗震评估提供依据。
接下来,我们将介绍盈建科采用振型分解反应谱法的具体步骤。
首先,需要确定结构的振型和振型参数。
这可以通过有限元分析、实测数据或者经验公式等方法来获取。
然后,我们可以得到结构的振型矩阵和振型频率。
接下来,需要求解各个模态下的约化质量、模态合成系数和模态质量参与系数。
最后,将得到的各个模态的反应谱与相关地震谱进行叠加计算,得到结构在地震作用下的反应谱。
除了上述步骤,盈建科还将振型分解反应谱法应用于多个工程案例中。
以某高层建筑为例,盈建科使用该方法对其进行抗震性能评估。
通过振型分解反应谱法的分析,我们得到了该建筑在不同振动模态下的反应值,进而评估了其在地震作用下的结构安全性。
通过该方法,我们发现了一些振动模态下结构的薄弱部位,并进行了相应的结构加固设计,确保了建筑在地震中的稳定性和安全性。
总结起来,盈建科采用振型分解反应谱法是一种有效的结构动力学分析方法。
通过该方法,我们可以更清晰地了解结构的振动模态及其对地震荷载的响应,为结构的设计和抗震评估提供依据。
通过应用实例的案例分析,我们证明了该方法在工程实践中的可行性和有效性。
盈建科将继续致力于研究和应用结构动力学领域的先进方法,为建筑行业的发展做出贡献。
附录一振型分解反应谱法振型分解反应谱法作为弹性多自由体系的主要分析方法,很有必要对振型分解反应谱法如有有充分的了解。
本文仅作为大家参考之用,理解上的错误或者不当,敬请谅解。
1 、单自由度体系在地震作用下的运动如图(1)所示,根据达朗贝尔原理有:f c f I f s 0也即:mu cu ku mu g 方程两边同时除以m ,可化为:2u 2 u u u g (3)2c式中,2k/m ,令2m c,为体系阻尼比。
2 、多自由度体系在地震作用下的运动类似于单自由度体系分析过程,体系运动方程为:[m]{u} [c]{u} [k]{u} [m]u g (4)无阻尼体系自由振动时,u g 0,c 0 ,上式即为:[m]{ u} [k]{u} {0} 5)根据方程解的特征,设其解的形式为:{u} { } sin( t ) 6)代入( 5)式有:([k] 2[ m]){ } sin( t ) {0} (7)由于sin( t ) 0则([k] 2[m]){ } {0} 8)另外,{ } {0} ,故特征方程为:[k] 2[m] 0 9)22由(9)式可以求出2,进而可以求得各阶振型对应的圆频率i2,再代入(8)式可求对应于各个i2的特征向量{ i} ,即为振型。
振型:多自由度体系自由振动时,各质点在任意时刻位移比值是一定的,不随时间变化,10)即体系自由振动过程中形状保持不变。
振型是结构形状保持不变的振动形式, 振型的形状是 唯一的。
N 个自由度的体系具有 N 个振型。
则结构的变形总可以表示成这 N 个振型的线性组合:Nu q i ii1其中qi 称为正则坐标。
3、振型的正交性由于 [k]{ }2[m]{ } {0}(11) 则 [k]{ r } r 2[m]{ r } {0}(12)(12)式两边同时左乘 { n }T , (n r ) ,得到:{ n }T[k]{ r }r 2{ n } T[m]{ r }(13)同理,{ r }T [k]{ n }n 2{ r }T[m]{ n } ,该式两边同时转置一次,得到:{ n }T[k]{ r } n 2{ n } T[m]{ r }(14)( 13),( 14)两式左右对应相减,得到:( r 2n 2){ n }T [m]{ r }0 (r n ) (15)因为 r 2n 2所以 { n }T [m]{ r }(r n ) (16) 同理亦有{ n }T[k]{ r } 0(r n )(17)即所说的振型关于质量和刚度矩阵满足正交性质。
振型分解反应谱法可以考虑多阶振型互相耦合的作用,尤其是扭转振型的耦联,如果只是单阶振型,则振型分解反应谱法和底部剪力法应该是一致的。
所以底部剪力法一般用在低层的、简单的、规则的、对称的结构中,如砌体结构住宅楼或者多层框架(新规范要求加上楼梯就又麻烦了)之类。
此外,振型分解反应谱法计算出来的地震剪力都是绝对值,没有方向,在这一点上,底部剪力法算出不同方向地震作用所引起的剪力的方向,比较有物理意义。
振型分解反应谱法:也称规范法,适用于大量的工程计算,该法有侧刚及总刚两种计算方法,分别对应侧刚模型及总刚模型,其主要区别是侧刚模型采用刚性楼板假定的简化刚度矩阵模型。
总刚模型是采用弹性楼板假定的真实结构模型转化成的刚度矩阵模型。
振型分解反应谱法先计算结构的自振振型,选取若干个振型分别计算各个振型的水平地震作用,将各振型水平地震作用于结构上,求其结构内力,最后将各振型的内力进行组合,得到地震作用下的结构内力和变形。
其基本原理就是用“规范”反应谱,先求得各振型的对应的“最大”地震力,组合后得到结构的组合地震作用。
这里面有一个求“广义特征值”而得出结构前几阶振型和频率的重要步骤,在这个过程中程序按力学和数学的法则进行繁多的中间计算,而不输出中间资料,仅将结果值告知设计人。
底部剪力法:底部剪力法(拟静力法)(Equivalent Base Shear Method) 根据地震反应谱理论,以工程结构底部的总地震剪力与等效单质点的水平地震作用相等,来确定结构总地震作用的方法。
一种用静力学方法近似解决动力学问题的简易方法,它发展较早,迄今仍然被广泛使用。
其基本思想是在静力计算的基础上,将地震作用简化为一个惯性力系附加在研究对象上,其核心是设计地震加速度的确定问题。
该方法能在有限程度上反映荷载的动力特性,但不能反映各种材料自身的动力特性以及结构物之间的动力响应,更不能反映结构物之间的动力耦合关系。
但是,拟静力法的优点也很突出,它物理概念清晰,与全面考虑结构物动力相互作用的分析方法相比,计算方法较为简单,计算工作量很小、参数易于确定,并积累了丰富的使用经验,易于设计工程师所接受。
底部剪力法和振型分解反应谱法是两种常用的结构地震响应分析方法,用于计算结构在地震作用下的受力和变形。
它们在原理和应用上有一些异同之处:
底部剪力法(Base Shear Method):
原理:底部剪力法是一种力的平衡方法,基于结构总质量和地震力之间的平衡关系,将地震力按照结构的刚度和相对刚度分配到各个层面或支撑点上,进而计算出结构的受力和变形。
特点:
利用地震力按刚度分配的方法,将地震力分布到结构各层面或支撑点上。
简化了地震响应分析,适用于常规的结构体系。
结构刚度和地震力分配的假设对结果影响较大,需要合理选择地震力分配系数和抗侧刚度分布。
振型分解反应谱法(Mode Superposition Response Spectrum Method):
原理:振型分解反应谱法是基于振型分解和叠加原理,将结构的地震响应分解为各个振型的响应,并利用振型反应谱进行叠加计算得到总体响应。
特点:
将结构的振动特性和地震激励的频谱特性相结合,通过模态分析计算各个振型的响应,然后叠加得到总体响应。
能够考虑结构的多个振型对地震响应的贡献,更加准确地分析结构的动力特性。
需要进行模态分析和振型选择,计算较为复杂,适用于复杂结构和对动力特性分析较为关注的工程。
总体上,底部剪力法是一种力的平衡方法,基于结构刚度和地震力进行分配,适用于常规结构;而振型分解反应谱法则是基于振动特性和频谱分析的方法,适用于复杂结构和对动力特性分析较为关注的工程。
两种方法在实际工程应用中,根据结构类型和分析需求的不同,可灵活选择使用。
底部剪力法和振型分解反应谱法的异同介绍如下:
相同点:
1.都是计算结构地震响应的方法,能够提供结构的地震反应最大
值。
2.都能够考虑结构的非线性特性。
3.都是基于结构自振的响应理论。
不同点:
1.计算方法不同:底部剪力法是一种强迫振动法,采用结构的等
效单自由度体系,通过对结构的受力分析计算结构的动力特性参数,然后将地震荷载转化为等效水平力,计算结构的最大底部剪力。
而振型分解反应谱法则是一种自由振动法,采用结构的振型分解分析,通过对结构的振型响应进行叠加,计算结构的最大位移、加速度和应力等。
2.基本假设不同:底部剪力法基于结构的等效单自由度体系,假
设结构在地震作用下的振动全部由一个等效的质量块完成,而振型分解反应谱法假设结构在地震作用下的振动是由各个振型独立完成的。
3.能够考虑的因素不同:底部剪力法主要考虑结构的刚度、阻尼
和质量等因素,而振型分解反应谱法则主要考虑结构的振型、频率和阻尼等因素。
综上所述,虽然底部剪力法和振型分解反应谱法都是用于计算结构地震响应的方法,但它们的计算方法、基本假设和能够考虑的因素等方
面存在很大的不同。
在实际工程中,应根据具体情况选择合适的方法进行分析。
振型分解反应谱法一、计算地震影响系数α,每个阵型周期不同,α取值不同。
1、根据《抗震》附录A 查城市的地震分组、烈度、及基本地震加速度2、根据地震分组地震烈度和多遇地震、罕遇地震,《抗震》表5.1.4-1查αmax3、根据地震分组和场地类型Ⅳ,《抗震》表5.1.4-2查T g , 8度9度罕遇地震增加0.05S.4、判断Tg< T1< 5 Tg 及,确定计算公式及2η 和γ注:除有专门规定外,建筑结构的阻尼比ζ应取0.05。
这时γ=0.9,η1=0.02,η2=1.0。
5、 最终确定α重力荷载代表值 表格5.1.3楼顶计算 楼板 +下半层墙体重力+活荷载×0+雪荷载×0.5+积灰荷载×0.5每层计算 楼板+上下半墙重量+等效均布活载×0.5(书库、档案活载×0.8)+实际情况的楼活载×1.0二、剪力的计算1、计算2F ji 为质点的地震力,每层剪力为Fji 从上而下的叠加值,绘制每层的剪力图 3、振型叠加:三、考虑地基与结构相互影响,剪力折减。
《抗规》5.2.7剪力折减的条件:1、8度、9度2、Ⅲ、Ⅳ类场地3、箱基或刚性较好的筏基和桩基联合基础4、钢筋混凝土高层建筑5、基本自振周期处于特征周期的1.2倍至5倍的范围内高宽比小于3的结构全高折减,高宽比不小于3的结构底层折减,顶层不折减,中间插值。
四、验算剪重比。
《抗规》5.2.5五、考虑扭转耦联作用。
《抗规》5.2.3边榀构件地震作用乘以放大系数,短边1.15,长边1.05;扭转刚度较小时放大1.3倍。
角部构件同时乘以两个方向的放大系数 )(s T 01.0g T g T 50.6αm ax2αηmax45.0αmax2)(αηαγT T g=max12)]5(2.0[αηηαγg T T --=()ji j j ji iF t XG αγ=S =底部剪力法一、前提条件判断1、不超过40m2、剪切变形为主3、质量刚度院高度比较均匀4、或者近似于单质点的结构体系二、计算重力荷载代表值Geq和地震影响系数α单质点:Geq=Ge多质点:Geq=0.85Ge计算地震影响系数α时8度9度罕遇地震增加0.05S.三、剪力计算T1>1.4Tg时,需计算顶部附加水平地震作用,加在主要屋面位置。
振型分解反应谱法适用条件振型分解反应谱法是结构抗震分析中常用的一种方法,适用于计算结构在地震作用下的响应。
其基本思想是将结构的振型与地震的加速度谱进行分解,并根据结构的特征频率和阻尼比,计算出结构在各个频率下的响应加速度谱。
本文将从振型分解反应谱法的原理、适用条件以及优点等方面进行阐述。
首先,需要明确振型分解反应谱法的基本原理。
振型分解反应谱法是基于结构的振型及地震的加速度谱进行分解,因此对于结构的振型特性要有充分的了解。
一般情况下,可以通过模态分析或实测得到结构的振型以及主要模态参数。
而地震的加速度谱可通过地震地点的加速度记录或根据地震地点的设计地震参数进行计算。
在得到结构的振型和地震的加速度谱后,可以对结构的动力特性进行分析,进而计算出结构在不同频率下的响应加速度谱。
振型分解反应谱法适用于计算结构在地震作用下的响应,其适用条件如下:1.结构线性静力弹性响应:振型分解反应谱法是基于线性弹性理论进行分析的,因此适用于线性静力弹性响应的结构。
对于非线性结构,需要进行合理的线性化处理才能应用该方法。
2.单自由度系统或多自由度系统:振型分解反应谱法适用于单自由度系统和多自由度系统。
对于单自由度系统,可以直接进行分析;对于多自由度系统,需要将结构的多个振型进行叠加计算,得到整个结构的响应。
3.结构模态参数已知:振型分解反应谱法需要结构的振型特性,包括特征频率和阻尼比。
因此需要事先通过模态分析或实测等方法获得结构的振型模态参数。
4.地震加速度谱已知:振型分解反应谱法需要地震的加速度谱,以描述地震动的频率特性。
可以通过地震地点的实测记录或根据设计地震参数进行计算。
5.结构的线性动力特性:振型分解反应谱法适用于具有线性动力特性的结构。
如果结构的振型特征存在非线性特性,需要进行合理的线性化处理才能使用该方法。
振型分解反应谱法具有以下优点:1.能够考虑结构的频率特性:振型分解反应谱法通过分解结构的振型以及地震的加速度谱,能够充分考虑结构的频率特性。
振型分解反应谱法求结构的最大位移和底部最大剪力概述说明以及解释1. 引言1.1 概述本文讨论的是振型分解反应谱法在求解结构的最大位移和底部最大剪力方面的应用。
在工程设计和结构分析中,了解结构的抗震性能是至关重要的,因为地震荷载可能会对结构造成巨大影响。
因此,准确估计结构在地震作用下的位移和剪力变化对于设计可靠、安全稳定的建筑物至关重要。
1.2 文章结构本文共分为五个部分进行详细介绍。
首先,在引言部分我们将概述本文的主题和研究目的。
然后,我们将详细讨论振型分解反应谱法的理论基础、求解过程以及其应用范围与限制。
接着,在第三部分中,我们将探讨如何使用等效静力法原理来求解结构的最大位移,并给出相应的求解步骤和计算公式。
第四部分将重点研究底部最大剪力的求解,包括底部剪力分布特点、剪力计算方法及公式导出过程,并通过数值模拟和实验验证结果对比来进行进一步分析。
最后,我们将在结论与展望部分总结主要研究结论,并对存在问题提出改进方向的展望。
1.3 目的本文的主要目的是介绍和解释振型分解反应谱法在求解结构最大位移和底部最大剪力中的应用。
通过阐述相关理论基础、求解过程以及实例分析,旨在为工程师和研究人员提供一种有效的方法来评估建筑物在地震作用下的抗震性能。
此外,本文还将探讨该方法存在的限制,并提出改进方向,以促进该领域未来的研究和应用发展。
2. 振型分解反应谱法2.1 理论基础振型分解反应谱法是结构动力学中常用的一种分析方法,通过将结构的地震作用响应按照不同振型进行分解,进而求解结构在各个振型下的最大位移和底部最大剪力。
该方法基于以下两个理论基础:首先是振型理论。
振型是描述结构在地震激励下的运动状态的数学函数形式。
结构可通过特征向量与自由振荡频率确定其对应的振型形态。
其次是反应谱理论。
反应谱是一种表征动力响应强度与频率关系的曲线。
通过将地震输入转化为加速度-频率坐标系上的曲线,可以获取到某个特定周期(频率)下结构对地震作用响应的峰值。
简述确定结构地震作用的振型分解反应谱法的基本原理结构地震作用是指当地震发生时,土地和建筑结构受到强烈震动的现象。
这种地震作用对建筑物的安全性、抗震等级和寿命有着重要的影响。
为了研究建筑结构的抗震性能,需要掌握结构地震作用的特点和规律。
振型分解反应谱法是一种最常用的结构地震反应计算方法之一,本文将对其基本原理进行简述。
振型分解反应谱法是一种建筑结构的动力分析方法,其原理是将结构的振动分解为一系列单自由度振动系统的组合。
这些单自由度结构可以看作是理想的固定质量、无阻尼、线性弹性振动系统,其特定振动模式称为振型。
建筑结构的复杂振动模式可以通过这些简单的振型组合表示出来,从而计算建筑结构的反应谱。
在振型分解反应谱法中,先要将建筑结构的振动模式分解为单自由度振动系统,然后对每个单自由度系统进行动力分析。
在单自由度振动系统中,结构包含一个质点及其连接着的刚性弹簧和阻尼器。
在地震激励下,质点会因惯性力而振动,其振动的形式由单自由度系统的振型所决定。
振型由结构的固有振动和阻尼比所决定。
通过计算每个单自由度系统的反应谱,可以获得结构在地震作用下的最大响应。
在振型分解反应谱计算中,每个振型被赋予一个动力增益因子。
该因子测定了该振型对于特定的频率范围内地震激励的放大效应。
动力增益因子的大小受到结构的频率和阻尼比的影响。
因此,结构频谱密度和激励频谱密度的乘积可以得到该振型的放大系数。
通过对不同振型的反应谱进行叠加,可以得到结构的总反应谱。
总反应谱代表结构的响应特性,包括其最大加速度、速度和位移。
同时,当知道入射地震波的激励谱时,可以通过反应谱计算出结构的最大位移、应力和感应力等参数。
总之,振型分解反应谱法是一种有效的结构地震反应计算方法,其基本原理是将结构振动分解为单自由度振动系统,通过计算每个单自由度系统的反应谱来获得结构的总反应谱。
利用振型分解反应谱法可以计算结构地震作用下的反应特性,为建筑结构的抗震设计和评估提供重要依据。
振型分解反应谱法振型分解反应谱法是用来计算多自由度体系地震作用的一种方法。
该法是利用单自由度体系的加速度设计反应谱和振型分解的原理,求解各阶振型对应的等效地震作用,然后按照一定的组合原则对各阶振型的地震作用效应进行组合,从而得到多自由度体系的地震作用效应。
振型分解反应谱法一般可考虑为计算两种类型的地震作用:不考虑扭转影响的水平地震作用和考虑平扭藕联效应的地震作用。
适用条件〔1〕高度不超过40米,以剪切变形为主且质量和刚度沿高度分布比较均匀的结构,以及近似于单质点体系的结构,可采用底部剪力法计算。
〔此为底部剪力法的适用范围〕〔2〕除上述结构以外的建筑结构,宜采用“振型分解反应谱法”。
〔3〕特别不规则的建筑、甲类建筑和标准规定的高层建筑,应采用时程分析法进行补充计算。
刚重比刚重比是指结构的侧向刚度和重力荷载设计值之比,是影响重力二阶效应的主要参数刚重比=Di*Hi/GiDi-第i楼层的弹性等效刚度,可取该层剪力与层间位移的比值Hi-第i楼层层高Gi-第i楼层重力荷载设计值刚重比与结构的侧移刚度成正比关系;周期比的调整将导致结构侧移刚度的变化,从而影响到刚重比。
因此调整周期比时应注意,当某主轴方向的刚重比小于或接近标准限值时,应采用加强刚度的方法;当某主轴方向刚重比大于标准限值较多时,可采用削弱刚度的方法。
同样,对刚重比的调整也可能影响周期比。
特别是当结构的周期比接近标准限值时,应采用加强结构外围刚度的方法标准上限主要用于确定重力荷载在水平作用位移效应引起的二阶效应是否可以忽略不计。
见高规5.4.1和5.4.2及相应的条文说明。
刚重比不满足标准上限要求,说明重力二阶效应的影响较大,应该予以考虑。
标准下限主要是控制重力荷载在水平作用位移效应引起的二阶效应不致过大,防止结构的失稳倒塌。
见高规5.4.4及相应的条文说明。
刚重比不满足标准下限要求,说明结构的刚度相对于重力荷载过小。
但刚重比过分大,则说明结构的经济技术指标较差,宜适当减少墙、柱等竖向构件的截面面积。
长细比长细比=计算长度/回转半径。
所以很显然,减小计算长度或者加大回转半径即可。
这里需要注意的是,计算长度并非实际长度,而是实际长度乘以长度系数,长度系数则与柱子两端的约束刚度有关。
说白了就是要看与柱相连的梁或者基础是否给力,如果这些构件的刚度越高,那么长度系数就越小,柱子的计算长度也就越短。
具体公式你可以去看钢结构标准,我记得长度系数的具体算法是附录D。
至于回转半径,那是个几何概念,你去看看基本的几何手册〔当然要高中以上的〕就明白如何加大回转半径了,大学课本上有。
高层设计的难点在于竖向承重构件〔柱、剪力墙等〕的合理布置,设计过程中控制的目标参数主要有如下七个:一、轴压比:主要为限制结构的轴压比,保证结构的延性要求,标准对墙肢和柱均有相应限值要求,见抗规6.3.7和6.4.6,高规 6.4.2和7.2.14及相应的条文说明。
轴压比不满足要求,结构的延性要求无法保证;轴压比过小,则说明结构的经济技术指标较差,宜适当减少相应墙、柱的截面面积。
轴压比不满足时的调整方法:1、程序调整:SATWE程序不能实现。
2、人工调整:增大该墙、柱截面或提高该楼层墙、柱混凝土强度。
二、剪重比:主要为限制各楼层的最小水平地震剪力,确保周期较长的结构的安全,见抗规5.2.5,高规3.3.13及相应的条文说明。
这个要求如同最小配筋率的要求,算出来的水平地震剪力如果达不到标准的最低要求,就要人为提高,并按这个最低要求完成后续的计算。
剪重比不满足时的调整方法:1、程序调整:在SATWE的“调整信息”中勾选“”后,SATWE按抗规5.2.5自动将楼层最小地震剪力系数直接乘以该层及以上重力荷载代表值之和,用以调整该楼层地震剪力,以满足剪重比要求。
2、人工调整:如果还需人工干预,可按以下三种情况进行调整:1〕当地震剪力偏小而层间侧移角又偏大时,说明结构过柔,宜适当加大墙、柱截面,提高刚度。
2〕当地震剪力偏大而层间侧移角又偏小时,说明结构过刚,宜适当减小墙、柱截面,降低刚度以取得合适的经济技术指标。
3〕当地震剪力偏小而层间侧移角又恰当时,可在SATWE的“调整信息”中的“全楼地震作用放大系数”中输入大于1的系数增大地震作用,以满足剪重比要求。
三、刚度比:主要为限制结构竖向布置的不规则性,防止结构刚度沿竖向突变,形成薄弱层,见抗规3.4.2,高规4.4.2及相应的条文说明;对于形成的薄弱层则按高规5.1.14予以加强。
刚度比不满足时的调整方法:1、程序调整:如果某楼层刚度比的计算结果不满足要求,SATWE自动将该楼层定义为薄弱层,并按高规5.1.14将该楼层地震剪力放大1.15倍。
2、人工调整:如果还需人工干预,可按以下方法调整:1〕适当降低本层层高,或适当提高上部相关楼层的层高。
2〕适当加强本层墙、柱和梁的刚度,或适当削弱上部相关楼层墙、柱和梁的刚度。
四、位移比:主要为限制结构平面布置的不规则性,以防止产生过大的偏心而导致结构产生较大的扭转效应。
见抗规3.4.2,高规4.3.5及相应的条文说明。
位移比不满足时的调整方法:1、程序调整:SATWE程序不能实现。
2、人工调整:只能通过人工调整改变结构平面布置,减小结构刚心与形心的偏心距;调整方法如下:1〕由于位移比是在刚性楼板假定下计算的,最大位移比往往出现在结构的四角部位;因此应注意调整结构外围对应位置抗侧力构件的刚度;同时在设计中,应在构造措施上对楼板的刚度予以保证。
2〕利用程序的节点搜索功能在SATWE的“分析结果图形和文本显示”中的“各层配筋构件编号简图”中快速找到位移最大的节点,加强该节点对应的墙、柱等构件的刚度;也可找出位移最小的节点削弱其刚度;直到位移比满足要求。
五、周期比:主要为限制结构的抗扭刚度不能太弱,使结构具有必要的抗扭刚度,减小扭转对结构产生的不利影响,见高规4.3.5及相应的条文说明。
周期比不满足要求,说明结构的抗扭刚度相对于侧移刚度较小,扭转效应过大,结构抗侧力构件布置不合理。
周期比不满足时的调整方法:1、程序调整:SATWE程序不能实现。
2、人工调整:只能通过人工调整改变结构布置,提高结构的抗扭刚度;总的调整原则是加强结构外围墙、柱或梁的刚度,适当削弱结构中间墙、柱的刚度;利用结构刚度与周期的反比关系,合理布置抗侧力构件,加强需要减小周期方向〔包括平动方向和扭转方向〕的刚度,或削弱需要增大周期方向的刚度。
当结构的第一或第二振型为扭转时可按以下方法调整:1〕SATWE程序中的振型是以其周期的长短排序的。
“结构在两个主轴方向的动力特性(周期和振型)宜相近”。
3〕当第一振型为扭转时,说明结构的抗扭刚度相对于其两个主轴〔第二振型转角方向和第三振型转角方向,一般都靠近X 轴和Y轴〕的抗侧移刚度过小,此时宜沿两主轴适当加强结构外围的刚度,并适当削弱结构内部的刚度。
4〕当第二振型为扭转时,说明结构沿两个主轴方向的抗侧移刚度相差较大,结构的抗扭刚度相对其中一主轴〔第一振型转角方向〕的抗侧移刚度是合理的;但相对于另一主轴〔第三振型转角方向〕的抗侧移刚度则过小,此时宜适当削弱结构内部沿“第三振型转角方向”的刚度,并适当加强结构外围〔主要是沿第一振型转角方向〕的刚度。
5〕在进行上述调整的同时,应注意使周期比满足标准的要求。
6〕当第一振型为扭转时,周期比肯定不满足标准的要求;当第二振型为扭转时,周期比较难满足标准的要求。
六、刚重比:主要是控制在风荷载或水平地震作用下,重力荷载产生的二阶效应不致过大,防止结构的失稳倒塌,见高规5.4.1和5.4.4及相应的条文说明。
刚重比不满足要求,说明结构的刚度相对于重力荷载过小;但刚重比过分大,则说明结构的经济技术指标较差,宜适当减少墙、柱等竖向构件的截面面积。
刚重比不满足时的调整方法:1、程序调整:SATWE程序不能实现。
2、人工调整:只能通过人工调整增强竖向构件,加强墙、柱等竖向构件的刚度。
七、层间受剪承载力比:主要为限制结构竖向布置的不规则性,防止楼层抗侧力结构的受剪承载能力沿竖向突变,形成薄弱层,见抗规3.4.2,高规4.4.3及相应的条文说明;对于形成的薄弱层应按高规5.1.14予以加强。
层间受剪承载力比不满足时的调整方法:1、程序调整:在SATWE的“调整信息”中的“指定薄弱层个数”中填入该楼层层号,将该楼层强制定义为薄弱层,SATWE按高规5.1.14将该楼层地震剪力放大1.15倍。
2、人工调整:如果还需人工干预,可适当提高本层构件强度〔如增大柱箍筋和墙水平分布筋、提高混凝土强度或加大截面〕以提高本层墙、柱等抗侧力构件的抗剪承载力,或适当降低上部相关楼层墙、柱等抗侧力构件的抗剪承载力。
上述几个参数的调整涉及构件截面、刚度及平面位置的改变,在调整过程中可能相互关联,应注意不要顾此失彼。
如果结构竖向较规则,第一次试算时可只建一个结构标准层,待结构的周期比、位移比、剪重比、刚重比等满足之后再添加其它标准层;这样可以减少建模过程中的重复修改,加快建模速度。
自振周期特征周期1、自振周期:是结构本身的动力特性。
与结构的高度H,宽度B有关。
当自振周期与地震作用的周期接近时,共振发生,对建筑造成很大影响,加大震害。
2、特征周期:是建筑场地自身的周期,抗震标准中是通过地震分组和地震烈度查表确定的。
结构的自振周期顾名思义是反映结构的动力特性,与结构的质量及刚度有关,具体对单自由度就只有一个周期,而对于多自由度就有同模型中采用的自由度相同的周期个数,周期最大的为基本周期,设计用的主要参考数据!而特征周期是,在地震影响系数曲线中,水平段与下降段交点的横坐标,反映了地震震级,震源机制〔包括震源深度〕、震中距等地震本身方面的影响,同时也反映了场地的特性;如软弱土层的厚度,类型等场地类别,所以我认为特征周期同时反映了地震动及场地的特性!它在确定地震影响曲线时用到!1.特征周期:是建筑物场地的地震动参数由场地的地质条件决定;2.自振周期有结构子身的结构特点决定用结构力学方法求解;主要指第一振型的主振周期3.结构的自振周期主要是防止与场地的卓越周期重合产生共振;4.卓越周期与特征周期有关;卓越周期由场地的覆盖土层厚度和土层剪切波速计算求解〔见工程地质手册〕。
设计特征周期:抗震设计用的地震影响系数曲线中,反映地震等级,震中距和场地类别等因素的下降段起始点对应的周期值.-----根据其所在地的设计地震分组和场地类别确定.详见抗震标准. 自振周期:是结构本身的动力特性.与结构的H,B有关.当自振周期与地震作用的1/f 接近时,共振发生,对建筑造成很大影响. 另外:目前就场地的有关周期,经常出现场地脉动(卓越)周期,地震动卓越周期和反应谱特征周期等名词。
就以上3个周期概念来说,其确切的含义是清楚的,场地脉动周期是在微小震动下场地出现的周期,也可以说是微震时的卓越周期;地震动卓越周期是在受到地震作用下场地出现的周期,一般情况下它大于脉动周期(一般~2.0)。