HPLC测定苦地丁中6种生物碱含量
- 格式:docx
- 大小:37.08 KB
- 文档页数:2
43二○○九年·第五期研究报告HPLC 检测苦参中苦参碱和氧化苦参碱的含量黄华树 1 叶能胜 1 郝晓丽 1 刘妮 1 谷学新 1* 范国强 2(1.首都师范大学化学系北京 100048(2.北京同仁堂股份有限公司科学研究所北京 100011摘要建立 HPLC 法测定苦参中苦参碱和氧化苦参碱含量。
色谱柱采用Aichrom NH 2 (250×4.6mm,5μm ,流动相为乙腈 -乙醇 -3%磷酸溶液 (80∶ 10∶ 10 ,流速 :1.0 mL/min,检测波长 :210nm ,进样量为10μL ,柱温 :30℃。
苦参碱在0.5~10μg/mL范围内有良好的线性关系 (r=0.9998,氧化苦参碱在0.5~10μg/mL范围内有良好的线性关系 (r=0.9997。
苦参碱平均加标回收率为 100.42%(n=5, RSD 为1.91%; 氧化苦参碱平均加标回收率为 100.26%(n=5, RSD 为 2.03%。
该方法操作简单、重现性好、检测灵敏度、准确度高, 且样品分离效果好。
本方法适用于苦参药材中苦参碱和氧化苦参碱的含量测定。
关键词高效液相色谱法苦参苦参碱氧化苦参碱苦参是常用中药之一,具有清热燥湿、祛风杀虫、利尿之功效,为临床常用中药,用于热痢,便血,黄疸尿闭,赤白带下,阴肿阴痒,湿疹,皮肤瘙痒疥癣麻风 ; 外治滴虫性阴道炎。
苦参植物中主要含有生物碱、挥发油、黄酮类化合物和脂肪酸。
其中生物碱类的主要药效成分苦参碱和氧化苦参碱具有抗肿瘤、抗肝纤维化、抗乙肝病毒、对异常肝细胞凋亡的阻断、平喘和抑菌作用 [1,2]。
高效液相色谱法(High Performance Liquid Chroma-tography , HPLC 是中药质量控制研究中的常用方法[3,4],应用 HPLC 法测定苦参中苦参碱和氧化苦参碱的含量已有报道,田娟 [5]等和汪文来 [6]等分别用高效液相色谱法测定不同产地的苦参中苦参碱和氧化苦参碱的含量,灵敏度较高,操作简单,但是杂质干扰较大。
HPLC法鉴定不同产地黄连饮片中含生物碱的研究摘要】目的:研究高效液相色谱法(HPLC)在不同产地黄连饮片中生物碱检测中的价值。
方法:选择HPLC法分别检测各区域黄连中生物碱情况。
结果:不同区域黄连中小檗碱、黄连碱、表小檗碱、巴马汀生物碱以及总含量具有一定差别,其中四川洪雅县的黄连生物碱含量较高,而云南德钦县较低。
结论:HPLC在不同区域黄连生物碱的检验中效果显著,操作较为方便,具有一定重复性,鉴定结果的准确率较高,值得广泛推广及应用。
【关键词】生物碱;黄连;高效液相色谱法;饮片【中图分类号】R927.2 【文献标识码】A 【文章编号】2095-1752(2018)21-0362-01黄连属于常见的中药饮片,具有泻火解毒、清热燥湿的功效,取得了较高的临床价值。
黄连的主要成分为生物碱,若能够准确掌握黄连中有效成分,选择疗效确切的鉴定方式在保证饮片质量中具有重要意义。
临床上常采取紫外分光光度计或者薄层扫描方式进行鉴定,虽然取得过一定检验价值,但效果并不明显[1]。
其中薄层扫描鉴定结果的准确性较低,而紫外分光光度计仅能够检出黄连中生物碱的总含量。
随着鉴定技术不断完善,临床认为采取HPLC法鉴定效果显著,不仅能够检出各生物碱含量,同时能够保证结果准确[2]。
因此本文展开研究,探讨HPLC法在不同区域黄连生物碱的检验中的价值,现作出如下报道。
1.资料与方法1.1 仪器与试剂日本日立公司生产的高效液相色谱仪器、色谱柱、超声波清洗器、电子分析天平、色谱数据工作站、乙腈色谱纯试剂、盐酸小檗碱以及双蒸水等。
1.2 方法将盐酸小檗碱判定为对照,按照HPLC法分别检测黄连中各生物碱含量。
1.3 色谱条件色谱柱为4.6mm*250mm,5um;流动相50:50的乙腈-0.1%磷酸液体,与0.1g/100ml的十二烷基磺酸钠混合,柱温设置为30℃,检验波长345nm,流速1.0ml/min。
1.4 配置溶液将100℃干燥后的盐酸小檗碱放入流动相中,浓度设置成240.6ug/ml;取0.1g黄连粉末,放置于锥形瓶中,加入流动相(80ml),采取超声处理,频率200W,功率40kHz,时间控制35min左右。
HPLC法同时测定云连药材中6种生物碱的含量潘正;高运玲;江生;范刚;张艺;曹纬国【期刊名称】《中国药房》【年(卷),期】2017(028)024【摘要】OBJECTIVE:To develop a method for simultaneous determinationof 6 alkaloids in Coptis teeta.METHODS:The determination was performed on XtimateTM C18 with mobile phase consisted of 30 mmol/L ammonium bicarbonate [containing 0.1% triethylamine and 0.7% ammonia-acetonitrile (gradient elution)] at the flow rate of 1.0 mL/min.The detection wavelength was set at 270 nm,the column temperature was 30 ℃,and the sample size was 10 μL.RESULTS:The linear ranges ofjateorrhizine,columbamine,epiberberine,coptisine,palmatine hydrochloride and berberine hydrochloride were 0.85-16.96 mg/L (r=0.999 9),1.25-24.96 mg/L(r=0.999 8),2.05-40.96 mg/L(r=0.999 9),3.65-72.96 mg/L(r=0.999 9),2.88-57.60 mg/L(r=0.999 9) and 13.25-264.96 mg/L(r=0.9999),respectively.RSDs of precision,stability and reproducibility tests were all lower than 3.0%.Recoveries were 97.14%-102.14% (RSD=1.93%,n=6),97.00%-102.00% (RSD=2.06%,n=6),98.18%-101.82 % (RSD=1.79%,n=6),96.15%-101.28% (RSD=2.06%,n=6),96.88%-101.88% (RSD=1.87%,n=6),99.31%-103.76% (RSD=1.89%,n=6),respectively.CONCLUSIONS:The method is simple,accurate,stability and reproducible,and can be used for simultaneous determination of 6 alkaloids in Coptis teeta.%目的:建立同时测定云连药材中6种生物碱含量的方法.方法:色谱柱为XtimateTMC18,流动相为30 mmol/L碳酸氢铵溶液(含0.1%三乙胺和0.7%氨水)-乙腈(梯度洗脱),流速为1.0 mL/min,检测波长为270 nm,柱温为30℃,进样量为10μL.结果:药根碱、非洲防己碱、表小檗碱、黄连碱、盐酸巴马汀、盐酸小檗碱的检测质量浓度线性范围分别为0.85~16.96 mg/L(r=0.999 9)、1.25~24.96 mg/L (r=0.999 8)、2.05~40.96 mg/L (r=0.999 9)、3.65~72.96 mg/L (r=0.999 9)、2.88~57.60mg/L(r=0.999 9)、13.25~264.96 mg/L(r=0.999 9);精密度、稳定性、重复性试验的RSD<3.0%;加样回收率分别为97.14%~102.14% (RSD=1.93%,n=6)、97.00%~102.00% (RSD=2.06%,n=6)、98.18%~101.82%(RSD=1.79%,n=6)、96.15%~101.28% (RSD=2.06%,n=6)、96.88%~101.88%(RSD=1.87%,n=6)、99.31%~103.76% (RSD=1.89%,n=6).结论:该方法操作简便,精密度、稳定性、重复性好,可用于云连药材中6种生物碱含量的同时测定.【总页数】4页(P3408-3411)【作者】潘正;高运玲;江生;范刚;张艺;曹纬国【作者单位】重庆医科大学中医药学院,重庆400016;重庆邮电大学生物学院,重庆400065;重庆市食品药品检验所,重庆401121;成都中医药大学民族药学院,成都611130;成都中医药大学民族药学院,成都611130;重庆医科大学中医药学院,重庆400016【正文语种】中文【中图分类】R917【相关文献】1.HPLC法测定藏药材铁棒锤、榜嘎中酯型生物碱的含量 [J], 陈燕;易进海;刘云华;德吉;扎西2.HPLC法测定延胡索药材中季胺型生物碱的含量 [J], 范斌;刘泓;杨亚莉3.HPLC法测定黄连药材及其炮制品中六种生物碱的含量 [J], 阳勇;罗维早;孙建彬;王欣;花雷;李隆云;覃瑶4.HPLC法测定藏药材铁棒锤、榜嘎中双酯型生物碱的含量 [J], 陈燕;易进海;刘云华;德吉扎西5.HPLC法同时测定延胡索药材中3种生物碱类成分的含量 [J], 郭明珠;姚洁纯因版权原因,仅展示原文概要,查看原文内容请购买。
HPLC同时测定复方藤乌软膏中6种乌头类生物碱含量目的建立高效液相色谱法(HPLC)同时测定复方藤乌软膏中6种乌头类生物碱含量的方法。
方法色谱柱为Agilent XDB-C18柱(250 mm×4.6 mm,5 μm);流動相A为乙腈-四氢呋喃(25∶8),B为0.1 mol/L醋酸铵溶液(每1000 mL 加冰醋酸0.5 mL),梯度洗脱;流速:1 mL/min;检测波长:235 nm;柱温:25 ℃。
结果乌头碱在0.072~0.648 μg具有良好的线性关系(r=0.999 5),平均回收率为99.29%,RSD=1.25%;新乌头碱在0.062~0.648 μg具有良好的线性关系(r=0.999 5),平均回收率为99.12%,RSD=0.85%;次乌头碱在0.064~0.384 μg 具有良好的线性关系(r=0.999 8),平均回收率为99.57%,RSD=1.07%;苯甲酰乌头原碱在0.056~0.672 μg具有良好的线性关系(r=0.999 2),平均回收率为98.11%,RSD=0.61%;苯甲酰新乌头原碱在0.055~0.993 μg具有良好的线性关系(r=0.999 9),平均回收率为99.27%,RSD=1.10%;苯甲酰次乌头原碱在0.078~0.702 μg具有良好的线性关系(r=0.999 8),平均回收率为99.08%,RSD=1.38%。
结论本方法操作简便、灵敏度高、重复性好,结果准确,可作为复方藤乌软膏中乌头类生物碱的含量测定方法。
Abstract:Objective To establish an HPLC method for the simultaneous determination of the 6 aconitum alkaloids in compound Tengwu Ointment. Methods Chromatographic column was Aglient XDB-C18 column (4.6 mm × 250 mm,5 μm),with the mobile phase A of acetonitrile- tetrahydrofuran (25∶8),phase B was 0.1 mol/L ammonium acetate solution (0.5 mL acetic acid added to the 1000 mL)with gradient elution;the flow rate was 1 mL/min;the detection wavelength was set at 235 nm;the column temperature was 25 ℃. Results Aconitine was in the good linear range of 0.072-0.648 μg (r=0.999 5),with the average recovery of 99.29%,RSD=1.25%. Mesaconitine was in the good linear range of 0.062-0.648 μg (r=0.999 5),with the average recovery of 99.12%,RSD=0.85%. Hypaconitine was in the good linear range of 0.064-0.384 μg (r=0.999 8),with the average recovery of 99.57%,RSD=1.07%. Benzoylaconine was in the good linear range of 0.056-0.672 μg (r=0.999 2),with the average recovery of 98.11%,RSD=0.61%. Benzoylmesaconine was in the good linear range of 0.055-0.993 μg (r=0.999 9),with the average recovery of 99.27%,RSD=1.10%. Benzoylhypaconine was in the good linear range of 0.078-0.702 μg (r=0.999 8),with the average recovery of 99.08%,RSD=1.38%. Conclusion This method is simple,sensitive,repeatable and accurate,which can be used for determination of aconitum alkaloids in compound Tengwu Ointment.Key words:compound Tengwu Ointment;aconitine;mesaconition;hypaconitine;benzoylaconine;benzoylmesaconine;benzoylhypaconine;HPLC復方藤乌软膏是山东大学附属省立医院骨伤科专家与药学人员遵循中医药理论共同研制的传统中药制剂,由鸡血藤、生川乌、生草乌、自然铜等组成,具有消肿止痛、续筋接骨等功效,主要用于治疗运动劳损、急性扭伤、挫伤、闪伤及轻度骨折引起的疼痛,临床应用30余年疗效较好。
HPLC法测定黄连药材及其炮制品中六种生物碱的含量阳勇;罗维早;孙建彬;王欣;花雷;李隆云;覃瑶【摘要】An HPLC method to determine six alkaloids of the Coptidis for Chinese Pharmacopoeia of 2015 Edition was established through C18 column. The mobile phase was CH3CN-0.25 mol·L-1 NH4Ac (36:64) (containing 8 mmol·L-1 SDS and adjusting pH 9.3 with ammonia) at the flow rate of 1 mL·min-1, the detective wavelength was 270 nm and the column temperature was 35 oC. The linear ranges of jatrorrhizine hydrochloride, columbamine hydrochloride, epiberberine hydrochloride, coptisine hydrochloride, palmatine hydrochloride and berberine hydrochloride were 0.006 96-0.233, 0.004 75-0.152, 0.003 30-0.528, 0.006 31-1.010, 0.004 71-0.753, 0.017 8-2.884 μg·mL-1, respectively. The average recoveries were 99.65%, 98.59%, 98.49%, 98.66%, 98.64%, 98.63% and RSD were 0.03%、0.15%、0.21%、0.12%、0.28%、0.23%, respectively. The method is simple and accurate, and can be used to determine the contents of jatrorrhizine, columbamine, epiberberine, coptisine, palmatine and berberine in the Coptidis.%目的:测定黄连药材及其炮制品中盐酸药根碱、盐酸非洲防己碱、盐酸表小檗碱、盐酸黄连碱、盐酸巴马汀和盐酸小檗碱的含量,制定2015年版《中国药典》中黄连及其炮制品的质量标准.方法:以十八烷基硅烷键合硅胶为填充剂;乙腈-0.25 mol·L-1乙酸铵和8 mmol·L-1十二烷基硫酸钠(SDS)水溶液(氨水调节pH 9.3)(36:64)为洗脱剂,流速1 mL·min-1,检测波长270 nm,柱温35℃.结果:盐酸药根碱、盐酸非洲防己碱、盐酸表小檗碱、盐酸黄连碱、盐酸巴马汀、盐酸小檗碱的线性范围依次为0.006 96-0.233、0.004 75-0.152、0.003 30-0.528、0.006 31-1.010、0.004 71-0.753、0.017 8-2.884μg·mL-1;加样回收率依次为99.65%、98.59%、98.49%、98.66%、98.64%、98.63%,RSD依次为0.03%、0.15%、0.21%、0.12%、0.28%、0.23%.结论:该方法简便、准确、可靠,可作为2015年版《中国药典》(一部)黄连质量标准中的含量测定方法.【期刊名称】《世界科学技术-中医药现代化》【年(卷),期】2015(017)003【总页数】7页(P596-602)【关键词】黄连;HPLC;生物碱;含量测定【作者】阳勇;罗维早;孙建彬;王欣;花雷;李隆云;覃瑶【作者单位】重庆市中药研究院重庆 400065;重庆市中药研究院重庆 400065;重庆市中药研究院重庆 400065;第三军医大学大坪医院野战外科研究所药剂科重庆400042;重庆市中药研究院重庆 400065;成都中医药大学中药学院成都 610072;重庆市中药研究院重庆 400065;重庆市中药研究院重庆 400065;重庆市中药研究院重庆 400065;太极集团有限公司重庆 401147【正文语种】中文【中图分类】R284.1黄连为毛茛科植物黄连 Coptis chinensis Franch.、三角叶黄连Coptis deltoidea C. Y. Cheng et Hsiao或云连Coptis teeta Wall. 的加工品[1],其化学成分主要为生物碱类物质[2-5]。
一测多评法测定苦参中5种生物碱的含量[通信作者] *梁生旺,Tel:(020)39352172,Email:swliang371@163. com 苦参的主要活性成分为生物碱类、黄酮类合物。
研究表明,苦参中的生物碱类具有抗炎、抗心律失常、抗肿瘤、免疫调节等多方面的药理作用。
目前苦参的质量评价多以苦参碱和氧化苦参碱作为指标,此外苦参中槐果碱、氧化槐果碱以及槐定碱也具有较高的含量。
中药的多成分、多功效的作用特点,决定着单一成分难以表达中药的质量,因此,多成分多指标含量测定是当前国际上广泛认可的质量评价模式。
将5种生物碱同时测定运用于苦参药材的质量评价,能使结果更具准确性和科学性。
为了方便日常苦参药材质量评价研究工作,本研究尝试使用“一测多评”法,以氧化苦参碱为参照物,计算氧化苦参碱与苦参碱、槐果碱、氧化槐果碱以及槐定碱的相对校正因子,建立苦参药材的一测多评多指标质量控制方法。
1 材料Waters 29962695,Agilent 1200,Shimadzu LC20A,Sartorius BP211D 1/10万电子天平,KQ500E超声波清洗仪(昆山市超声仪器有限公司)。
乙腈(欧普森色谱纯);无水乙醇(天津科密欧色谱纯);其他试剂为分析纯;水为超纯水;苦参碱对照品(批号110805200508),氧化苦参碱对照品(批号110780201007),槐定碱对照品(批号110784200804),氧化槐果碱对照品(批号111652200301)均购自中国食品药品检定研究院;槐果碱对照品(成都曼斯特生物科技有限公司,批号11052422)。
苦参药材和饮片采购自山西、内蒙古、贵州、广西等地,经广东药学院生药教研室李书渊教授鉴定为苦参S. flavescens药材。
2 方法与结果2.1 一测多评方法学考察2.1.1 色谱条件[1] InertsilNH2色谱柱(4.6 mm×250 mm,5 μm),流动相为乙腈无水乙醇3%磷酸溶液(80∶10∶10);流速1.0 mL·min-1;柱温30 ℃;检测波长210 nm;进样量20 μL。
HPLC法同时检测苦参碱杀虫剂中生物碱含量吕美;王利涛;许欣欣;韩冠媛;王豪帅;于爽【摘要】目的建立高效液相色谱法同时测定苦参碱杀虫剂中苦参碱、氧化苦参碱、槐定碱和槐果碱含量的方法.方法高效液相色谱法测定生物碱,色谱条件:色谱柱,Wondasil C18(4.6mm×250mm,5μm);流动相,乙腈-0.05mol/L磷酸二氢钾水溶液(三乙胺2%,15∶85,v/v);流速,1.0ml/min,检测波长:205nm.结果苦参碱、氧化苦参碱、槐定碱和槐果碱分别在0.076~0.5,0.084~0.4,0.12~0.44,0.20~0.49μg/ml浓度范围内呈良好线性关系(R2>0.998),含量分别为:0.70%,0.28%,0.60%,0.01%.结论本实验建立的HPLC法能快速同时测定苦参碱杀虫剂中4种生物碱的含量,可用于快速测定药品或环境中的生物碱.【期刊名称】《济宁医学院学报》【年(卷),期】2017(040)004【总页数】3页(P268-270)【关键词】苦参碱杀虫剂;生物碱;高效液相色谱法;含量测定【作者】吕美;王利涛;许欣欣;韩冠媛;王豪帅;于爽【作者单位】济宁医学院药学院,日照 276826;济宁医学院药学院,日照 276826;济宁医学院药学院,日照 276826;济宁医学院药学院,日照 276826;济宁医学院药学院,日照 276826;济宁医学院药学院,日照 276826【正文语种】中文【中图分类】R917苦豆子[学名Sophora alopecuroides L],为豆科(Leguminosae sp.)槐属(Sophora),草本植物,主要分布于中国北方的荒漠、半荒漠地区[1-5],主要成分有蛋白质、糖类、有机酸、黄酮类、色素和生物碱[6]。
生物碱属于喹诺里西啶(Quinolizidine)生物碱,包括苦参碱、氧化苦参碱、槐果碱、槐定碱等多种生物碱,以苦参碱和氧化苦参碱含量最高,并且苦豆子生物碱具有清热解毒,抗菌消炎、止痛及杀虫等作用[7-8]。
6种黄连饮片中6种生物碱的RP—HPLC含量测定及与“治消渴”药效学的谱—效关系分析建立生品、姜炙、醋炙、酒蒸、酒炙、萸炙6種黃连饮片中6种生物碱(盐酸药根碱、盐酸非洲防己碱、盐酸表小檗碱、盐酸黄连碱、盐酸巴马汀、盐酸小檗碱)的含量测定方法,并结合药效学结果探索其与药效学研究结果及中医疗效之间的关系。
采用Welch XtimateTMC18(4.6 mm×250 mm,5 μm)色谱柱,以0.1%三乙胺溶液(用碳酸氢铵和氨水调节pH 10)为流动相A,乙腈为流动相B,进行梯度洗脱(0~15 min,10%~25%B;15~25 min,25%~30%B;25~40 min,30%~45%B),流速1.0 mL·min-1,柱温30 ℃,检测波长270 nm。
6种生物碱分别在0.85~16.96 mg·L-1(r=0.999 7),1.25~24.96 mg·L-1(r=0.999 9),2.05~40.96 mg·L-1(r=0.999 9),3.65~72.96 mg·L-1(r=0.999 9),2.88~57.06 mg·L-1(r=0.999 8),13.25~264.96 mg·L-1(r=0.999 6)呈现良好的线性关系,平均加样回收率(n=9)分别为102.4%(RSD 1.2%),101.8%(RSD 1.3%),100.3%(RSD 1.8%),100.7%(RSD 1.8%),101.2%(RSD 1.5%),97.90%(RSD 2.0%)。
测定6种黄连饮片共36个批次的6种生物碱的平均质量分数分别为3.55,4.49,9.12,19.17,15.69,62.56 mg·g-1。
该文建立含量测定方法准确性高、重复性好,可用于6种黄连饮片中6种生物碱的含量测定。
采用主成分分析、分层聚类分析对含量测定及前期药效学研究结果进行数据分析,结果表明酒蒸、酒炙、萸炙3种黄连饮片与生品黄连饮片存在明显差异,酒蒸饮片与生品饮片具有最大的差异,其差异主要与血清甘油三酯(TG)、空腹血糖水平(FBG)有关,另外,盐酸非洲防己碱是6种生物碱成分中影响最大的生物碱成分。
HPLC法同时测定苦豆子总碱中槐定碱、苦参碱和槐果碱的含量药物分析杂志ChinJPharmAnal2006,26(5)一671一HPLC法同时测定苦豆子总碱中槐定碱,苦参碱和槐果碱的含量耿革霞一,孙英华,向柏,何仲贵(1.沈阳药科大学药学院,沈阳110016;2.石家庄制药集团中诺药业,石家庄050051) 摘要目的:建立同时测定苦豆子总碱中槐定碱,苦参碱及槐果碱含量的HPLC测定法.方法:色谱柱为Hypemil—NH柱(4.6mm×200mm,5in),流动相为乙腈一磷酸缓冲液(1.0mL磷酸加入到1000mL水中,三乙胺调pH2.5)一无水乙醇(80:10:10),检测波长为220nm,柱温35℃,流速1.0mI?min一,进样量20.结果:槐定碱,苦参碱,槐果碱分别在13.0~108.0ing.L~,11.4~95.2mg?L和4.6~82.1mg?L浓度范围内呈良好的线性关系,r 分别为0.9999,0.9996,0.9999.平均回收率(n:9)分别为99.41%,100.0%,100.6%.结论:可通过HPLC法同时测定苦豆子总碱中槐定碱,苦参碱和槐果碱的含量,并可用该方法进行苦豆子药材及含苦豆子的成药的质量控制.关键词:苦豆子总碱;槐定碱;苦参碱;槐果碱;HPLC法中图分类号:R917文献标识码:A文章编码:0254—1793(2006)05-0671一o3 HPLCsimultaneousdeterminationofthecontentsofsophoridine, matrineandsophocarpineintotalalkaloidofSophoraalopecuroidesL.GENGGe—xia一,SUNYing—hua,XIANGBai,HEZhong—gui'(1.SchoolofPharmacy,ShenyangPharmaceuticalUniversity,Shenyang110016,China;2.ShijiazhuangPharmaceuticalGroupZhongnuoPhamaCo.,Ltd.,Shijiazhuang050051,C hina)Abstract0bjective:ToestablishanHPLCmethodforsimultaneousdeterminationoftheconte ntsofsophoridine,matrineandsophocarpineintotalalkaloidofSophoraalopecuroidesL.Method:Chromatogr aphicconditionincludedHypersilNH2(4.6mm×200mm,5p.m)columnandmobilephaseconsistingofamixtureofacetonitrile—triethyl—aminephosphatebuffer(1.0mLphosphoricacidaddedto1000mLwater,adjustedtopH2.5wi thtriethylamine)一anhydrousalcohol(80:10:10).Thedetectionwavelengthwas220nm.Theflowratewas1.0m L?min~.Result:Themethodhasagoodlinearityandcorrelationcoefficient:thesophoridinewasl3.0—108.0mg?L一,thematrinewas11.4—95.2mg?L—andthesophocarpine4.6—82.1mg?L一.Themeanrecoveries(n=9)wel'~99.41%,100.0%and100.6%respectively.Conclusion:Thismethodissimple,rapidandaccu rateassayforthedeterminationofsophoridine,matrineandsophocarpineintotalalkaloidofSophoraalopecur oidesL.,andsuitablefor qualitycontrolintheproductionofSophoraalopecuroidesL.Keywords:SophoraalopecuroidesL.;sophoridine;matrine;sophocarpine;HPLC苦豆子(Sophoraalopecuroides)为豆科槐属植物,其味苦,性寒,广泛分布于我国的内蒙古,山西,陕西,甘肃,新疆及西藏等地.我国苦豆子资源蕴藏丰富,药用其根,根茎,全草及种子,具有清热燥湿,止痛,杀虫的功效,在民间其临床应用已很久.苦豆子中富含生物碱,其主要成分为氧化槐果碱,氧化苦参碱,槐定碱,槐果碱,苦参碱,苦豆碱和金雀花碱等20多种生物碱….近年来的多项研究表明其总生物碱或其单体生物碱有多方面的生物活性,大力开发和推广苦豆子生物碱的临床使用有很大的经济价值和社会价值.目前已经有了关于苦豆子中生物碱的种类及其含量分析的报道,但由于苦豆子中各生物碱单体的化学结构和极性较接近,对生物碱单体的分离和含量测定一直是该产品质量标准的难点.本文建立了用HPLC法同时测定苦豆子总碱中槐定碱,苦参碱,槐果碱(化学结构式见图1)3种主要十通迅作者Tel:(024)23986320,23986321:E—mail:***************..——672--——药物分析杂志ChinJPharmAnal2006,26(5)生物碱的方法,该方法分离度好,专属性强,准确度高,可用于苦豆子类产品的质量控制.勰勰勰^BC图1槐定碱(A),苦参碱(B)和槐果碱(C)的化学结构式Fig1Thechemicalstructuresofsophoridine(A),matrine(B)andsoph? ocarpine(C)1仪器与试药苦豆子总碱(批号:030301,030406,030602),槐定碱对照品(批号:2003—01),苦参碱对照品(批号:2003—01),槐果碱对照品(批号:2003—01),氧化苦参碱对照品(批号:2003—01)均由宁夏博尔泰力药业股份有限公司提供,含量均为99.6%.高效液相色谱仪[L一2130泵,AutosamplerL一2200型自动进样器,uV—VISDetectorL一2420紫外分光光度检测器(日本日立公司)];pHS一3C型酸度计(上海雷磁仪器厂).2色谱条件色谱柱:Hypersil—NH2柱(4.6mm×200mm,5m);流动相:乙腈一磷酸缓冲液(1.0mL磷酸加人1000mL水中,三乙胺调pH2.5)一无水乙醇(80:10:10);检测波长:220am;柱温35oC;流速: 1.0mL?min~.3方法与结果3.1线性关系考察精密称取苦豆子总碱0.1050g,置100mL量瓶中,加0.1mol?L盐酸20mL使溶解,并加流动相定容.精密吸取上述溶液1mL,置10mL量瓶中, 并加流动相定容,摇匀,用0.45m微孔滤膜滤过, 作为样品溶液.精密称取槐定碱,苦参碱,槐果碱对照品21.6. 19.1,22.8mg,分别置10mL量瓶中,加0.1mol?L的盐酸2mL使溶解,并加流动相定容,摇匀,作为对照品储备液I.精密吸取上述对照品储备液I 各2mL,置10mL量瓶中加流动相定容,作为对照品储备液Ⅱ.精密吸取槐定碱,苦参碱储备液Ⅱ各0.3,0.5,1.0,1.5,2.0,2.5mL,槐果碱储备液110.1,0.2,0.4,0.9,1.3,1.8mL,置10mL量瓶中,加流动相定容,摇匀,以0.45m微孔滤膜滤过,取续滤液20,按上述色谱条件进行分析.以质量浓度为横坐标(),峰面积值为纵坐标(y)进行线性回归,得槐定碱,苦参碱,槐果碱的回归方程分别为:y:8.305×10X一1.004r=0.9999Y:9.519×10X一1.788×10r=0.9996Y:2.062×10X一2.645×10r=0.9999线性范围分别为13.0~108.0mg?L~,11.4~95.2mg?L一和4.6~82.1mg?L~.3.2精密度试验分别精密吸取槐定碱,苦参碱,槐果碱对照品储备液lI1.9,1.8,0.3mL,置10mL量瓶中,加流动相定容得混合对照品溶液.以0.45m微孔滤膜滤过,取续滤液20L,按上述色谱条件重复进样6次,记录峰面积.槐定碱,苦参碱,槐果碱峰面积的RSD分别为1.28%,1.30%, 1.67%.3.3稳定性试验在室温条件下,取苦豆子总碱样品溶液,按0,2,4,6,8,10,12h时间间隔,分别测定色谱峰峰面积.槐定碱,苦参碱,槐果碱峰面积的RSD分别为0.53%,0.42%,0.79%.表明样品溶液在12h内稳定性良好.3.4重复性试验按"3.1"项下方法制备样品溶液5份,按上述色谱条件进行分析,测得苦豆子总碱样品中槐定碱,苦参碱,槐果碱的含量分别为37.53%,32.72%,6.29%;RSD分另U为1.30%,1.51%,0.94%.3.5回收率试验取已知含量的苦豆子总碱样品9份,每份30IIlg,精密称定.分别精密加人槐定碱, 苦参碱,槐果碱对照品溶液,使对照品的加入量分别为槐定碱5,l0,15mg;苦参碱4,8,12mg;槐果碱1, 2,3mg,按"3.1"项下方法制备含对照品为高,中,低3种浓度的样品溶液,每组样品3份,以0.45微孔滤膜滤过,在上述色谱条件下取续滤液20进样分析,测定回收率.结果槐定碱,苦参碱,槐果碱的平均回收率(,l=9)分别为99.4l%,100.0%, 100.6%.3.6样品测定精密吸取样品溶液,以0.45m微孔滤膜滤过,取续滤液20,按上述色谱条件进样分析;'另取3种对照品适量,按"3.2"项下方法配制成含槐定碱,苦参碱,槐果碱分别为82.08,68.58,l3.68mg?L一的混合对照品溶液,同法测定,色谱图见图2.按外标法以峰面积计算供试品中槐定碱,苦参碱,槐果碱的含量,结果见表1.药物分析杂志ChinjPharmAnal2006,26(5)一673—025*******ttminAB图2对照品(A)和样品(B)的色谱图Fig2Chromatogramsofreferencesubstances(A)andsample(B)I.槐定碱(sophocarpine)2.苦参碱(nl~'ine)3.槐果碱(帅ph0ridine)表13批样品的含量测定结果(%,n=5)Tab1Determinedresultsofsamples4结果与讨论4.1苦豆子总碱原料药已收载于国家药品标准.4],原标准中采用薄层色谱法对槐定碱,苦参碱和氧化苦参碱加以鉴别,并用高效液相色谱法测定槐定碱的含量.通过高效液相色谱法对苦豆子总碱所含生物碱成分的分离可知该几批样品中氧化苦参碱的含量较少,其对照品色谱图见图3,在苦豆子总碱色谱图相同的位置没有明显的氧化苦参碱色谱峰,测定结果与文献[5]报道一致.4.2色谱条件的选择过程中,曾经试用过ODS—c..色谱柱,采用反相离子对色谱条件进行分离,但由于苦豆子总碱中的几种主要生物碱成分在该色谱条件下峰位较集中,虽然试用过多种离子对试剂并对流动相组成进行了反复摸索,但仍不能达到较好的分离效果.4.3使用氨基柱,以乙腈一磷酸三乙胺缓冲盐一无水乙醇为流动相的色谱系统中,缓冲盐的pH及浓度对分离情况有较大影响.在一定pH范围内,随pH升高保留时间延长,分离效果得以改善.在缓冲盐浓度较低时,增加缓冲盐浓度可以得到较好的分离结果.02550min图3氧化苦参碱对照品的色谱图Fig3Thestandardchromatogramofoxymatrine4.4对苦豆子总碱中单体生物碱的含量测定结果表明,在苦豆子总碱中槐定碱,苦参碱,槐果碱的含量较高,分别约为38%,32%,6%,此3种单体生物碱合计约占苦豆子总碱总量的76%.参考文献1QINXue—gong(秦学功),YUANYing—jin(元英进).Studieson extractionofalkaloidsinseedofSophoraalopecuroides(苦豆子种子中生物碱的冷浸提取实验研究).ChinTraditHerbDrl(中草药),2001,32(7):6042SONJZ,XuHX,Tians】,eta1.Determinationofquinolizidinealka- loidsintraditionalChineseherbaldrugsbynonaqueouscapillary eleetrophoresis.JC/womamgrA,1999,857:3033NationalDrugStandard(国家药品标准).StateFoodandDrugAd- ministration,PBChina(国家食品药品监督管理局).WS一10001 (HD一1391)一20034DrugSpecificationPromulgatedbytheStateDrugAdministration,PB China[国家药品监督管理局标准(试行)].StateDrugAdministra. tion,PBChina(国家药品监督管理局),2002ZD一01215ZONGLi(宗莉),LIl<aIlg—le(李康乐),MAY ao—zhong(马耀忠),et.ThedeterminationofmatrinealkaloidsinKexielingtabletsbyHPLC(克泻灵片中苦参碱类生物碱的HPLC分析).., Mod铆zPharm(中国现代应用药学),1998,15(6):38 (本文于2005年5月18日修改回)。
HPLC 测定苦黄颗粒中苦参碱的含量摘要:目的建立苦黄颗粒中苦参碱含量的HPLC 测定法。
方法采用高效液相色谱法。
氨基柱(4.6 mm×250 mm,5μm);乙腈-无水乙醇-3% 磷酸溶液(32 : 5: 3),流速1.0 mL•min-1,检测波长为203 nm,柱温35℃,进样量5 μL。
结果测得线性范围0.2060-0.4120μg (r=0.999 9),平均回收率为100.6%,RSD 为1.76%(n=6)。
结论本方法简便可行,重现性好,结果可靠,可用于苦黄颗粒的质量控制。
关键词:HPLC ;苦黄颗粒;苦参碱Determination of Matrine in Kuhuang Granules by HPLCWang Chun-fang1,Dong Wei2,(1. Wang Chun-fang, Nanjing University of Traditional Chinese Medicine,Nanjing 210009, China; 2.Dong Wei , Lei Yunshang Pharmaceutical Limited Company, Suzhou 215009,China)Abstract :Objective To establish an HPLC method for the determination of matrine in Kuhuang Granules. Methods HPLC method was adopted. The determination was performed on a Inertsil NH2 column(4.6 mm×250 mm,5μm)using acetonitrile-absolute ethylalcohol -3%phosphoric acid(32:5:3)as mobile phase. The flow rate was 1.0 mL·min-1 and the detection wavelength was 203 nm. Column temperature was 35 ℃. The injection volumn was 5 μL.Results There was a good linearity within the range of 0.2060-0.4120μg(r=0.999 9). The average recovery was 100.6%, RSD=1.76%( n=5). Conclusion This method was proved to be simple, accurate and can be used for quality control of Kuhuang Granules.Key words: HPLC; Kuhuang Granules; matrine目录苦参为豆科植物苦参(Sophora flavescens Ait.)的干燥根,始载于《神农本草经》,列为中品。
苦地丁化学成分研究肖扬;杨春娟;钟明亮;蒋学春;刘高峰【摘要】对罂粟科紫堇属植物苦地丁(Corydalis bungeana Turcz.)进行化学成分研究,从其95%乙醇提取物中共分离得到10个化合物.经理化和波谱分析分别鉴定为紫堇灵(1),乙酰紫堇灵(2),原阿片碱(3),8-oxocory-noline (4),neoechinulinA(5),7’-(3’,4’-dihydroxyphenyl)-N-[(4-methoxyphenyl)ethyl] propenamide (6),山柰酚(7),氮-反式-对-香豆酰基酪胺(8),槲皮素(9),天师酸(10).其中化合物5,6,8,10为首次从紫堇属植物中分离得到,化合物4,7和9是首次从该植物中分离得到.【期刊名称】《天然产物研究与开发》【年(卷),期】2013(025)012【总页数】5页(P1665-1668,1689)【关键词】苦地丁;生物碱;黄酮;脂肪酸【作者】肖扬;杨春娟;钟明亮;蒋学春;刘高峰【作者单位】哈尔滨医科大学药学院,哈尔滨150081;哈尔滨医科大学药学院,哈尔滨150081;中国医学科学院北京协和医学院药用植物研究所,北京100193;哈尔滨医科大学药学院,哈尔滨150081;哈尔滨医科大学附属第二医院药学部,哈尔滨150086【正文语种】中文【中图分类】R284.1;Q946.91IntroductionCorydalis bungeana Turcz. belongs to family Papaveraceae and is a perennial herb with violet to pink flowers distributing in the northern and eastern parts of China,the southeast of Mongolia,the northern part of the Korean peninsula and the far east of Russia[1].The dried whole plant of Corydalis bungeana Turcz. were used as a folk medicine in China for treatment of influenza,upper respiratory tract infections,bronchitis,tonsillitis,acute nephritis,and pyelonephritis[1]. Previous phytochemical investigations indicated that alkaloids were its main components,such as corynoline,12-hydroxycorynoline,sanguinarine,acetylcorynoline,protopine and so on[2]. Modern pharmacological studies showed that alkaloids as corynoline,acetylcorynoline,and protopine could significantly impede liver damage caused by CCl4 in mice [3]. Some isoquinoline alkaloids isolated from Corydalis bungeana Turcz.also had bacteriostatic activity[4]. In this paper,ten compounds were isolated from the 95% ethanol extract of Corydalis bungeana Turcz,and were identified as corynoline (1),acetylcorynoline (2),protopine (3),8-oxocorynoline(4),neoechinulin A (5),7'-(3',4'-dihydroxyphenyl)-N-[(4-methoxyphenyl) ethyl] propenamide(6),kaempferol (7),n-trans-p-coumaroyltyramine(8),quercetin (9),tianshic acid (10),respectively.To the best of our knowledge,compounds 5,6,8,10 were obtained from the genus for the first time,and compounds 4,7 and 9 were isolated from this plant for the first time.ExperimentalGeneralSilica gel (H,200-300 mesh,Qingdao Haiyang Chemical Co. Ltd. Qingdao,China)and silica gel (GF254,Qingdao Haiyang Chemical Co. Ltd. Qingdao,China)were used for column chromatography (CC)and TLC,respectively.Sephedax LH-20 (Pharmacia Fine Chemical Co.Ltd.Sweden)and ODS (71-154 mesh,Fuji Silysia Chemical Ltd.Japan)were used during the isolation.Preparative HPLC analysis was carried out on Agilent 1260 series HPLC with a YMC-Pack ODS-A colum n (20 mm× 250 mm,5 μm). D-101 Macroporous Resin (Tianjin big Jun Ltd.China)was used to isolate 95% EtOH crude extract. NMR spectra were recorded on Bruker Avance Ⅲ600 (600 MHz for1H NMR and 150 MHz for13C NMR)with TMS as internal standard,the chemical shif t values (δ)were reported in ppm and coupling constants (J)in Hz.Mass data were obtained on Agilent 6400 QQQ-LC/MS mass spectrometer.Plant materialsCorydalis bungeana Turcz. was collected from Tianyi medicinal materials Sci-Tech Co. Ltd. of Harbin,Heilongjiang Province,China,in August,2010 and identified by Professor Zhenyue Wang in School of Heilongjiang University of Chinese Medicine. A voucher specimen was deposited in the herbarium of Harbin Medical University,Harbin,China.Extraction and isolationCorydalis bungeana Turcz. (10 kg),was cut into pieces and then extracted for three times with 95%EtOH under reflux,3 h for each time. Thecombined filtrate was concentrated under vacuum at 50 ℃using a rotary evaporator to afford a residue as 95% EtOH crude extract (800 g).95% EtOH crude extract was then subjected to D-101 Macroporous Resin column chromatography,eluting with 30% EtOH,60% EtOH and 95% EtOH,namely fraction A,fraction B,and fraction C. Fraction C was then subjected to column chromatography on a silica gel,eluting with dichloromethane-methanol (from 30∶1 to 1∶1,v/v),and was fractionated into sixty fractions (Fr.1→60).Sixty fractions (Fr.1→60)were collected based on TLC analysis.Fr.9,Fr.22 were purified by recrystallization from dichloromethane-meth anol (30 ∶1,v/v)to give compound 1 (500 mg)and compound 2 (30 mg),and Fr.45 was purified by recrystallization from dichloromethane-methanol (20 ∶1,v/v)to give compound 3 (22 mg),respectively.Fraction B was separated on an ODS open tube column using a gradient eluent of MeOH-H2O (10∶90-100∶0,v/v).Ten subfractions(subFr.1→10)were collected based on TLC analysis.SubFr.2 was subjected to preparative HPLC on a YMC-PACK ODS-A C18 column(20 × 250 mm,5 μm)eluting with MeOH-H2O (45∶55,v/v)to give compound 5 (tR = 23.0 min,15 mg)and compound 4 (tR = 40.0 min,11 mg). SubFr.3 was purified by Sephadex LH-20 column chromatography eluting with MeOH to give subFr.3-1 and subFr.3-2. SubFr.3-1 was successively purified on a Sephedax LH-20 column,eluting with MeOH to afford compound 7 (10.2 mg). SubFr.3-2 was purified by recrystallization from MeOH to give compound 6 (8.3 mg). SubFr.4 was subjected to preparative HPLC on aYMC-PACK ODS-A C18 column (20 × 250 mm,5 μm)eluting with MeOH-H2O (45 ∶55,v/v)to give compound 8 (tR = 20.0 min,13 mg)and compound 9(tR = 33.0 min,18 mg). SubFr.6 was successively purified on a Sephedax LH-20 column,eluting with MeOH to afford compound 10 (16.7 mg).IdentificationCorynoline (1) C21H21NO5,colorless granular crystal;ESI-MS m/z:368.2[M+H]+;1H NMR (CDCl3,600 MHz)δ:6.92 (1H,d,J =7.8 Hz,H-10),6.79(1H,d,J =7.8 Hz,H-9),6.66 (1H,s,H-4),6.64(1H,s,H-1),5.90-6.00 (4H,m,2 ×-O-CH2-O-,2,3-,7,8-),4.04,3.44 (2H,d,J = 15.6 Hz,H-6),3.95 (1H,dd,J =4.2,1.8 Hz,H-11),3.30 (1H,d,J=1.8 Hz,H-14),3.16 (1H,d,J = 17.2 Hz,H-12α),3.09 (1H,dd,J =17.2,4.2 Hz,H-12β),2.21(3H,s,5-NCH3),1.14 (3H,s,CH3-13).13 CNMR(CDCl3,125 MHz,)δ:107.8 (C-1),145.4 (C-2),148.1 (C-3),101.1 (2-O-CH2-O-3),112.8 (C-4),128.0 (C-4a),54.4 (C-6),117.0 (C-6a),142.9(C-7),145.2 (C-8),101.4 (7-O-CH2-O-8),109.5(C-9),118.7 (C-10),136.2 (C-10a),76.3 (C-11),36.9 (C-12),125.4 (C-12a),41.0 (C-13),69.9 (C-14),43.3 (C-5-NCH3),23.5 (CH3-13). The NMR and MS data were in accordance with those reported in the literature[5],and identified 1 as corynoline.Acetylcorynoline (2) C23 H23 NO6,white crystal;ESI-MS m/z:410.2[M+H]+;1H NMR (MeOD,600 MHz)δ:6.96 (1H,d,J=8.4 Hz,H-10),6.67 (1H,d,J =8.4 Hz,H-9),6.88 (1H,s,H-4),6.58 (1H,s,H-1),5.90-5.93 (4H,m,2 ×-O-CH2-O-,2,3-,7,8-),5.18 (1H,dd,J = 7.8,6.6 Hz,H-11),3.88,3.51 (2H,d,J = 16.2 Hz,H-6),3.53 (1H,s,H-14),2.96 (1H,dd,J =15.6,7.8 Hz,H-12α),2.89(1H,dd,J =15.6,6.6 Hz,H-12β),2.39 (3H,s,5-NCH3),1.78 (3H,s,COCH3),1.23 (3H,s,CH3-13).13 C NMR (MeOD,125 MHz)δ:107.5 (C-1),150.8 (C-2),152.0 (C-3),102.4 (2-O-CH2-O-3),111.1 (C-4),129.0 (C-4a),51.4 (C-6),114.5 (C-6a),148.2 (C-7),148.7 (C-8),102.6 (7-O-CH2-O-8), 109.5 (C-9),121.7 (C-10),134.7 (C-10a),77.1 (C-11),34.0 (C-12),126.3 (C-12a),43.7(C-13),71.6 (C-14),43.8 (C-5-NCH3),28.3(CH3-13),172.5,21.2 (OAc). The NMR and MS data were in accordance with those reported in the literature[6],and identified 2 as acetylcorynoline.Protopine (3) C20 H19 NO5,white amorphous powder;ESI-MS m/z:354.4 [M + H]+;1H NMR(CDCl3,600 MHz)δ:6.90 (1H,s,H-1),6.64 (1H,s,H-4),6.67 (1H,d,H-12),6.68 (1H,d,H-11),5.95 (2H,s,H-15),5.92 (2H,s,H-16),1.92 (3H,s,7-NCH3).13 C NMR (CDCl3,125MHz)δ:108.5(C-1),146.7 (C-2),148.4 (C-3),110.8 (C-4),136.6 (C-4a),32.2 (C-6),41.8 (C-7-NCH3),51.2(C-8),146.4 (C-9),146.2 (C-10),107.1 (C-11),125.5 (C-12),129.4 (C-12a),46.9 (C-13),195.3(C-14),133.1 (C-14a),101.2 (C-15). The NMR and MS data were in accordance with those reported in the literature[7],and identified 3 as protopine.8-Oxocorynoline (4) C21 H19 NO6,white amorphous powder;ESI-MSm/z:382.1 [M + H]+,1H NMR(MeOD,600 MHz)δ:7.61 (1H,d,J =8.4 Hz,H-11),6.41 (1H,d,J =8.4 Hz,H-12),6.54 (1H,s,H-1),6.41 (1H,s,H-4),6.00,5.88 (1H×2,s,9-OCH2-O-10),5.84,5.81 (1H ×2,s,2-O-CH2-O-3),4.29 (1H,s,H-14),4.11 (1H,dd,J=11.4,7.2 Hz,H-6),3.45 (3H,s,5-NCH3),2.97 (2H,m,H-5),1.47 (3H,s,CH3-13).13 C NMR (MeOD,125 MHz)δ:106.6(C-1),148.3 (C-2),148.7 (C-3),102.5(2-O-CH2-O-3),109.3 (C-4),131.0 (C-4a),36.4(C-5),74.6 (C-6),164.9 (C-8),149.0 (C-9),149.1 (C-10),103.3 (7-O-CH2-O-8),112.0 (C-11),120.7 (C-12),137.1 (C-12a),45.1 (C-13),70.0 (C-14),38.6 (C-7-NCH3),25.0 (CH3-13).The NMR and MS data were in accordance with those reported in the literature[8],and identified 4 as 8-oxocorynoline.Neoechinulin A (5) C19 H21 N3O2,light yellow amorphous powder;ESI-MS m/z:322.2 [M-H]-,1H NMR (DMSO,600 MHz)δ:11.04 (1H,s,NH-1),8.65 (1H,s,NH-14),8.32 (1H,s,NH-11),7.41(1H,d,J =7.8 Hz,H-7),7.19 (1H,d,J =7.8 Hz,H-4),7.08 (1H,s,H-6),7.01 (1H,s,H-5),6.89(1H,s,H-8),6.08 (1H,dd,J =17.2,10.8 Hz,H-16),5.02(2H,dd,J =16.8,10.8Hz,H-17),4.15(1H,q,J =7.2 Hz,H-12),1.47 (6H,s,2 × CH3-15),1.37 (3H,d,J = 7.2 Hz,CH3-12).13 C NMR(DMSO,125 MHz)δ:143.9 (C-2),103.3 (C-3),125.9 (C-3a),118.8 (C-4),119.5 (C-5),120.7(C-6),111.5 (C-7),135.1 (C-7a),110.0 (C-8),124.9 (C-9),159.8 (C-10),50.5 (C-12),166.3(C-13),39.1 (CH3-15),145.1 (C-16),111.5 (C-17),27.4 (C-18),27.4 (C-19),19.6 (CH3-12).The NMR and MS data werein accordance with those reported in the literature[9],and identified 5 as neoechinulin A.7'-(3',4'-Dihydroxyphenyl)-N-[(4-methoxyphenyl)ethyl]propenamide (6) C18 H19 NO4,light yellow amorphous powder;ESI-MS m/z:314.2 [M +H]+,1H NMR (DMSO,600 MHz)δ:7.97 (1H,t,J=6.0 Hz,NH),7.31 (1H,d,J =15.6 Hz,H-7'),7.11 (1H,d,J=1.8 Hz,H-2'),7.01 (2H,d,J=7.8Hz,H-2,6),6.98 (1H,dd,J =7.8,1.8 Hz,H-6'),6.78 (1H,d,J=7.8 Hz,H-5'),6.68 (2H,d,J=7.8 Hz,H-3,5),6.43 (1H,d,J =15.6 Hz,H-8'),3.80(3H,s,OMe),3.32 (2H,t,J =7.2 Hz,H-8),2.64(2H,t,J =7.2 Hz,H-7).13 C NMR (DMSO,125 MHz)δ:126.4 (C-1),129.4 (C-2),115.1 (C-3),155.6 (C-4),115.1 (C-5),129.4 (C-6),34.4 (C-7),40.6 (C-8),129.5 (C-1'),121.4 (C-2'),147.7(C-3'),148.1 (C-4'),119.0 (C-5'),110.8 (C-6'),115.6 (C-7'),138.8 (C-8'),165.3 (C-9').The NMR and MS data were in accordance with those reported in the literature[10],and identified 6 as 7'-(3',4'-dihydroxyphenyl)-N-[(4-methoxyphenyl)ethyl]propenamide. Kaempferol (7) C15 H10 O6,yellow powder;ESI-MS m/z:287.2[M +H]+,1H NMR (MeOD,600 MHz)δ:8.07 (2H,d,J=8.4 Hz,H-3',5'),6.90 (2H,d,J=8.4 Hz,H-2',6'),6.38 (1H,d,J =1.2 Hz,H-8),6.17 (1H,d,J=1.2 Hz,H-6).13 C NMR (MeOD,125 MHz)δ:148.3 (C-2),137.3 (C-3),177.6 (C-4),162.7 (C-5),99.5 (C-6),165.7 (C-7),94.7(C-8),158.5 (C-9),104.8 (C-10),123.9 (C-1'),130.9 (C-2'),117.8 (C-3'),160.7 (C-4'),117.8(C-5'),130.9 (C-6'). The NMR and MS data were in accordance with those reported in the literature[11],and identified 7 as kaempferol.N-trans-p-coumaroyltyramine (8) C17 H17 NO3,white solid;ESI-MSm/z:284.3 [M +H]+,1H NMR(MeOD,600 MHz)δ:7.44 (1H,d,J =15.6 Hz,H-7'),7.39 (2H,d,J =7.8 Hz,H-2',6'),7.05 (2H,d,J =7.8 Hz,H-2,6),6.79 (2H,d,J =7.8 Hz,H-3',5'),6.72 (2H,d,J=7.8 Hz,H-3,5),6.38 (1H,d,J =15.6 Hz,H-8'),3.46 (2H,t,J =7.2 Hz,H-8),2.75 (2H,t,J=7.2 Hz,H-7).13C NMR (MeOD,125 MHz)δ:128.0 (C-1),131.6 (C-2),116.2 (C-3),157.1 (C-4),116.2 (C-5),131.6 (C-6),36.0(C-7),42.7(C-8),132.7 (C-1'),131.6 (C-2'),116.7 (C-3'),160.7 (C-4'),116.7 (C-5'),131.6(C-6'),142.0 (C-7'),118.7 (C-8'),169.5 (C-9'). The NMR and MSdata were in accordance with those reported in the literature[12],and identified 8 as Ntrans-p-coumaroyltyramine.Quercetin (9) C15H10O7,yellow powder;ESI-MS m/z:303.2[M +H]+,1H NMR (MeOD,600 MHz)δ:7.73 (1H,d,J =2.4 Hz,H-2'),7.63 (1H,dd,J =8.4,2.4 Hz,H-6'),6.88 (1H,d,J =8.4 Hz,H-5'),6.38 (1H,d,J=1.8 Hz,H-8),6.18 (1H,d,J =1.8 Hz,H-6).13C NMR (MeOD,125 MHz)δ:146.4 (C-2),137.4 (C-3),177.5 (C-4),162.7 (C-5),99.5(C-6),165.8 (C-7),94.6 (C-8),158.4 (C-9),104.7 (C-10),124.4 (C-1'),121.9 (C-2'),149.0(C-3'),148.2 (C-4'),116.5 (C-5'),116.2 (C-6').The NMR and MS data were in accordance with those reported in the literature[13],and identified 9 as quercetin.Tianshic acid (10) C18 H34 O5,white powder;ESIMS m/z:329.2 [M-H]-,1H NMR (MeOD,600 MHz)δ:5.73(1H,dd,J = 15.6,6.0 Hz,H-10),5.67 (1H,dd,J =15.6,5.4 Hz,H-9),4.05 (1H,q,J=6.0 Hz,H-8),3.90 (1H,t,J =6.0 Hz,H-11),3.41 (1H,m,H-12),2.28 (2H,t,J =7.2 Hz,H-2),0.91 (3H,t,J =7.2 Hz,H-18).13 C NMR (MeOD,125 MHz)δ:177.9 (C-1),35.2 (C-2),26.2 (C-3),30.4 (C-4),30.6 (C-5),26.6 (C-6),38.5 (C-7),73.2 (C-8),131.3 (C-9),136.8 (C-10),76.7(C-11),76.0 (C-12),33.8 (C-13),26.8 (C-14),30.7 (C-15),33.3 (C-16),23.9 (C-17),14.6 (C-18). The NMR and MS data were in accordance with those reported in the literature[14],and identified 10 as tianshic acid.References【相关文献】1 Xie C,Veitch NC,Houghton PJ,et al. Flavonoid glycosides and isoquinolinone alkaloids from Corydalis bungeana.Phytochemistry,2004,65:3041-3047.2 Niu LL,Xie ZS,Cai TX,et al. Preparative isolation of alkaloids from Corydalis bungeana Turcz.by high-speed countercurrent chromatography using stepwise elution. J Sep Sci,2011,34:987-994.3 Wei HL,Liu GT. Protective action of corynoline,acetylcorynoline and protopine against experimental liver injury in mice.Acta Pharmaceutica Sinica,1997,32:331-336.4 Liu XJ,Zhang HL,Tan ZC,et al.Microcalorimetric study on the bacteriostatic activity of isoquinoline alkaloids. J Therm Anal Calorim,2007,89:907-911.5 Ma WG,Fukushi Y,Tahara S. Fungitoxic alkaloids from Hokkaido Corydalis species.Fitoterapia,1999,70:258-265.6 Zeng WG,Liang WZ,Tu GS. Chemical study of alkaloids from Corydalis bungeana.Planta Med,1987,53:418-420.7 Xu W,Song QS,Wang P,et al.Chemical constituents of the leaves and twigs of Ficushispida.Nat Prod Res Dev(天然产物研究与开发),2010,22:1003-1005.8 Zhang GL,Pan WE,Peng SL,et al. Studies on the medical isoquinoline alkaloidsⅠ. Alkaloids of corydalis trachycarpa maxim.Nat Prod Res Dev(天然产物研究与开发),1989,2:1-5.9 Li Y,Li XF,Kim SK,et al.Golmaenone,a new diketopiperazine alkaloid from the Marine-Derived fungus Aspergillus sp..Chem Pharm Bull,2004,52:375-376.10 Anis E,Anis I,Ahmed S,et al.α-Glucosidase inhibitory constituents from Cuscuta reflexa. Chem Pharm Bull,2002,50:112-114.11 Liao LP,Li pounds from leaf of Ilex purpurea Hassk.J China Pharm Univ,2004,35:205-206.12 Duan CL,Yong YJ,Jiang Y,et al.Liposoluble chemical constituents from the fibrous root of Ophiopogon japonicas. J Chin Pharm Sci,2009,18:236-239.13 Wang DY,Liu EG,Feng YJ.Study on the Flavonoid Constituents from the Bark of Myrica ruba.Lishizhen Med Mater Med Res,2008,19:1149-1150.14 Sang SM,Lao AN,Wang YS,et al. Antifungal constituents from the seeds of Allium fistulosum L..J Agric Food Chem,2002,50:6318-6321.。
HPLC测定苦地丁中6种生物碱含量
杨春娟;韩思莹;梁迪;王淑红
【期刊名称】《哈尔滨医科大学学报》
【年(卷),期】2014(48)2
【摘要】目的建立苦地丁中6种生物碱类成分的HPLC含量测定方法,为苦地丁
的质量评价提供参考方法。
方法采用HPLC法同时测定苦地丁中6种生物碱类成
分的含量,分别为原阿片碱,紫堇灵,NeoechinulinA,乙酰紫堇灵,7’-(3’,4'-dihydroxyphenyl)-N-[(4-methoxyphenyl)-ethyl]propenamide,8-oxo—corynoline。
色谱柱为DiamonsilTM C18column(5μm,
250mm×4.6mm);甲醇(A)-0.02mol/L磷酸二氢钾(B)梯度洗脱;流速1.0mL/min;检测波长289nm;柱温为室温。
结果6个生物碱类成分在相
应的线性范围内均呈良好的线性关系。
平均回收率为97.9%-99.6%,RSD值
均〈3.0%。
结论该分析方法准确、灵敏、高效,可用于苦地丁中生物碱的含量
测定。
【总页数】4页(P110-113)
【关键词】苦地丁;生物碱;HPLC;含量测定
【作者】杨春娟;韩思莹;梁迪;王淑红
【作者单位】哈尔滨医科大学药学院药物化学与分析化学教研室
【正文语种】中文
【中图分类】R284.1
【相关文献】
1.酸性染料比色法测定苦地丁中总生物碱的含量 [J], 伍蔚萍
2.HPLC法测定朱布仁-7中苦地丁的含量 [J], 乔桂芳
3.酸性染料比色法测定苦地丁中总生物碱的含量 [J], 刘延红
4.HPLC-MS/MS法同时测定参附强心丸中制附子6种生物碱含量 [J], 刘言浩;谢海棠;梁大虎;孙华;吴子静;张袁祥;李超;董健;李红金;韩诚正
5.RP-HPLC法测定苦地丁及其复方制剂中紫堇灵的含量 [J], 黄阁;赵怀清;李发美因版权原因,仅展示原文概要,查看原文内容请购买。