理论力学-静力学03
- 格式:ppt
- 大小:2.83 MB
- 文档页数:70
静力学部分总结姓名:孟庆宇班级:15工9 学号:20150190218静力学是研究物体的受力分析与力系简化及平衡。
平面力系:1、平面汇交力系;2、平面力偶系;3、平面任意力系。
空间力系:1、空间汇交力系;2、空间力偶系;3、空间任意力系。
一、基本概念1、静力学;2、刚体;3、变形体;4、力;5、力系;6、等效力系;7平衡;8、平衡力系;9、平衡条件;10、平衡方程; 11、力系简化;12、合力;13分力;14、二力构件;15、自由体;16非自由体;17、约束;18、约束力;19主动力;20、被动力;21、施力体;22、受力体。
物体在受到力的作用后,产生的效应可以分为两种:(1)外效应也称为运动效应——使物体的运动状态发生改变;(2)内效应也称为变形效应——使物体的形状发生变化。
静力学研究物体的外效应。
材料力学主要研究力对物体的内效应。
23、平面力系;24、平面汇交力系;25、平面力对点的矩;26、平面力偶矩;27、平面任意力系;28、主矢;29、主矩;30、平面力系平衡条件;31、平面力系平衡方程;32、平面物体系统;33、平面物体系统的平衡;34、静定问题;35、超静定问题;36、平面桁架。
37、空间力系;38、空间汇交力系;39、空间力对点、对轴的矩;40、空间力偶矩;41、空间任意力系;42、主矢;43、主矩;43、空间力系平衡条件;44、空间力系平衡方程。
二、基本理论1、五大公理、两个推论及其应用。
2、工程中常见的八大约束类型及约束反力。
(1)光滑约束;(2)柔索约束;(3)圆柱销光滑铰链约束;(4)固定铰支座约束;(5)滚动支座约束;(6)球铰链约束;(7)止推轴承约束;(8)固定端约束。
3、力的投影定理及性质(平面、空间);4、力矩、力偶矩的定义及性质(平面、空间);5、合力投影定理及合力矩定理(平面、空间);6、力的平移定理;7、任意力系的四种简化结果 (平面、空间);(1) 0='RF 0≠O M ;(2) 0≠'R F 0=O M ;(3) 0≠'R F 0≠O M ; (4) 0='RF 0=O M 。
基础部分——静力学第3 章力系的平衡主要内容:§3-7 重心即:力系平衡的充分必要条件是,力系的主矢和对任一点3-2-1 平衡方程的一般形式∑=iF F R ∑=)(i O O F M M 已知∑=iF F R ∑=)(i O O F M M 投影式:平衡方程i即:力系中所有力在各坐标轴上投影的代数和分别等于零;所有力对各坐标轴之矩的代数和分别等于零。
说明:¾一般¾6个3个投影式,3个力矩式;¾一般形式基本形式3-2-2 平面一般力系的平衡方程xy zOF1F2Fn平面内,¾一般形式¾3个2个投影式,1个力矩式;¾ABAzzCC附加条件:不垂直附加条件:不共线Bx二矩式的证明必要性充分性合力平衡AA 点。
B 点。
过ABBx故必有合力为零,力系平衡证毕平面问题3个3个 解题思路BAMFo45l l[例3-1] 悬臂梁,2解:M A 校核:0)(=∑F MB满足!解题思路?AyF AxF[例3-2] 伸臂梁F AxF AyF BF q 解:0=∑x F 0)(=∑F AM3(F −+0=∑yF3(F −+(F −+0)(=∑F AM=∑yF0=∑x F F AxF AyF BF q 思考:如何用其他形式的平衡方程来求解?0=∑x F 3(F −+0)(=∑F AMF AxF F BF q 0)(=∑F BM(F −+二矩式思考练习][练习FFlll F ACB DlllACB DM=F l[思考][思考]lll F ACB DlllACB DF见书P54例3-1—约束lllACB DF—约束CBADEFM—约束—约束—整体平衡局部平衡CB ADEFM研究对象的选取原则¾仅取整体或某个局部,无法求解;¾一般先分析整体,后考虑局部;¾尽量做到一个方程解一个未知力。
qCBAm2m2m2m2MBCM[例3-3] 多跨梁,求:如何选取研究对象?F CqF CFAxF AyM ABAqF'BxF'ByM A F Ax F AyF Bx F By解:先将分布力用合力来代替。
(二)任意力系的合成 1.合成的一般结果以O 点为简化中心,任意力系合成的一般结果为力矢R ’称为原力系的主矢,它的大小和方向与简化中心位置无关;力偶矩矢M 0(或力偶矩M 0)称为原力系对简化中心O 点的主矩,一般地说与简化中心位置有关。
2.合成的最后结果任意力系(包括空间和平面)向一点简化后,其最后合成结果可能出现表4—1—5所列出的几种情况.表中,中心轴是指组成力螺旋的力的作用线。
因平面任意力系是空间任意力系的特殊情况,其向O 点简化的主矩可视为垂直于力系作用平面的一个主矩矢,因此上表4-1-5(除力螺旋外)所述亦可适用于平面任意力系。
当任意力系合成为一合力R 时,则有即合力对任一点(或任一轴如z 轴)之矩,等于力系中各力对同一点(或同一轴)之矩的矢量和(或代数和),并称之为合力矩定理。
对于平面力系,合力矩定理可表示为在计算力对坐标轴之矩时,应用合力矩定理,常可使计算简化。
这时,可先将原力沿坐标轴分解为三个分力,然后计算各分力对坐标轴之矩。
由于平行力系是任意力系的特殊情况,故任意力系的合成结果也适用于平行力系。
(三)力系的平衡条件与平衡方程任意力系平衡的必要和充分条件是:力系的主矢与力系对任一点的主矩都等于零,即据此得出表4—1-6所列出的各组平衡方程。
但应当指出,在空间任意力系和空间平行力系的平衡方程组中,其投影方程亦可用对轴的力矩方程来替代。
当然,该力矩方程必须是独立的平衡方程,即可用它来求解未知量的平衡方程。
3.平行分布的线荷载的合成沿物体中心线分布的平行力,称为平行分布线荷载,简称线荷载。
沿单位长度分布的线荷载称为线荷载集度,以q表示。
其单位为N/m(牛/米)或kN/m(千牛/米)。
同向线荷载合成结果为一合力R,该合力的大小和作用线位置可通过求积分的方法和合力矩定理求得。
均匀分布和线性分布的线荷载的合成结果如图4—1—10所示。
六、物体系统的平衡(一)静定与静不定问题若未知量的数目等于独立平衡方程的数目,则应用刚体静力学的理论,就可以求得全部未知量,这样的问题称为静定问题,如图4-1-11a。
清华大学版理论力学课后习题答案大全第3章静力学清华大学版理论力学课后习题答案大全-----第3章静力学第三章静态平衡问题3-1图示两种正方形结构所受荷载f均已知。
试求其中1,2,3各杆受力。
解决方案:图(a):2f3cos45??F0f3?2f(拉)2f1=f3(拉)f2?2f3cos45??0f2=f(受压)图(b):f3?f3??0f1=0F2=f(张力)FF3f33a451f2f1(a-1)图3-1:练习内容fdaf3f3df2(a-2)f3?f1(b-1)(b-2)f3?3-2图示为一绳索拔桩装置。
绳索的e、c两点拴在架子上,点b与拴在桩a上的绳索ab连接,在点d加一铅垂向下的力f,ab可视为铅垂,db可视为水平。
已知?=0.1rad.,力f=800n。
试求绳ab中产生的拔桩力(当?很小时,tan?≈?)。
联邦调查局人员?dfcbfdb?fdb?练习B的图3-2f(a)(b)晶圆厂解决方案:?fy?0,联邦调查局??被激怒了??外汇?0,fedcos??fdbfdb?fsi?nf?10ftan?从图(a)中的计算结果可以推断,图(b)中的Fab=10fdb=100F=80KN。
3-3起重机由固定塔ac与活动桁架bc组成,绞车d和e分别控制桁架bc和重物w的运动。
桁架bc用铰链连接于点c,并由钢索ab维持其平衡。
重物w=40kn悬挂在链索上,链索绕过点b的滑轮,并沿直线bc引向绞盘。
长度ac=bc,不计桁架重量和滑轮摩擦。
试用角?=∠acb的函数来表示钢索ab的张力fab以及桁架上沿直线bc的压力fbc。
法比?2.fbcwwx习题3-3图(a)―1―解:图(a):?fx?0,fabcos?2?wsin??0,fab?2wsin?2fy?0,fbc?W世界海关组织??fabsin2s?2wsin是FBC吗?W世界海关组织??2.02wwcosw(1cos)2w3-4杆AB及其两端滚轮的整体重心位于点G,滚轮放置在一个倾斜的光滑刚性平面上,如图所示。