解析几何总复习
- 格式:ppt
- 大小:4.39 MB
- 文档页数:35
一、解析几何题型分析:
1. 直线问题:主要考察直线的性质及其特征,如平行、垂直、中心弦定理等。
2. 圆形问题:主要考察圆形的性质及其特征,如圆心角定理、外切内接定理等。
3. 正多面体问题:主要考察正多面体的性质及其特征,如三角形内心定理、四面体最大最小化原理等。
4. 三角形问题:主要考察三角形的性质及其特征,如勾股定理、海伦-泰勒斯定理等。
5. 几何评价法问题: 主要是透过几何图型来评价各部分之间的大小或者数量上的差异,例如由于不同图彩之间存在一些明显差异,所以能够根据这些差异来作出正确判断或者作出正确估测。
二、解法收拾:
1. 第一步应该是将所有信息数字化,即将所有信息由文字表述方式数字化;
2. 第二步应该是根据所数字化后的信息来选用适合的几何方法;
3. 第三步应该是根据前两部中所使用方法来进行相应的代数或者几何运算;
4. 最后一步应该是核对并汇总前三部中所得到的信息,然后作出最合适书写样子上呈上。
高中数学解析几何复习题集附答案高中数学解析几何复习题集附答案一、直线的方程在解析几何中,我们经常需要求解直线的方程。
直线的一般方程可以表示为Ax + By + C = 0,其中A、B、C为常数,且A和B不同时为0。
下面我们通过一些例题来复习直线的方程的求解方法。
例题1:已知直线L1经过点(2,3)和(4,1),求直线L1的方程。
解析:首先我们可以求出直线L1的斜率k。
直线L1的斜率可以通过两个已知点的坐标计算出来:k = (y2 - y1) / (x2 - x1) = (1 - 3) / (4 - 2) = -1接下来,我们可以使用点斜式的形式来表示直线L1的方程:y - y1 = k(x - x1)将已知点(2,3)代入方程中,得到:y - 3 = -1(x - 2)化简得到直线L1的方程为:y = -x + 5因此,直线L1的方程为y = -x + 5。
例题2:已知直线L2过点(3,-2)且与直线L1: 2x - 3y + 4 = 0 平行,求直线L2的方程。
解析:由于直线L2与直线L1平行,所以它们具有相同的斜率。
直线L1的斜率为:k = 2 / (-3) = -2/3因此,直线L2的斜率也为-2/3。
再结合已知直线L2过点(3,-2),我们可以使用点斜式来表示直线L2的方程:y - y1 = k(x - x1)将已知点(3,-2)代入方程中,得到:y - (-2) = (-2/3)(x - 3)化简得到直线L2的方程为:3y + 2x + 10 = 0因此,直线L2的方程为3y + 2x + 10 = 0。
二、直线和平面的交点在解析几何中,我们经常需要求解直线和平面的交点。
我们可以通过直线的方程和平面的方程来求解交点的坐标。
下面我们通过一些例题来复习直线和平面交点的求解方法。
例题3:已知直线L3的方程为2x - y + 3z - 7 = 0,平面Q的方程为x + y - z + 4 = 0,求直线L3与平面Q的交点坐标。
专题七、解析几何1、解析几何(椭圆、双曲线、抛物线)1、椭圆18y 16x 22=+的离心率为( )A.31 B. 21C. 33D. 222、设F 1,F 2是椭圆E :22221x y a b +=(a >b >0)的左、右焦点,P 为直线x =32a上一点,△F 2PF 1是底角为30°的等腰三角形,则E 的离心率为( )A. 21B. 32C. 43D. 543、中心在原点,焦点在x 轴上的双曲线的一条渐近线经过点P (4,-2),则它的率心率为( )A.6B.5 C.26 D. 25 4、已知直线l 过抛物线C 的焦点,且与抛物线C 的对称轴垂直,l 与C 交于A ,B 两点,|AB |=12,P 为C 的准线上的一点,则△ABP 的面积为( ) A.18 B.24 C.36 D.485、等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y 2=16x 的准线交于A ,B 两点,|AB|=34,则C 的实轴长为( ) A.2 B. 22 C.4 D.86、已知抛物线y 2=2px (p >0)的焦点为F ,点P 1(x 1,y 1),P 2(x 2,y 2),P 3(x 3,y 3)在抛物线上,且2x 2=x 1+x 3,则有( )A.|FP 1|+|FP 2|=|FP 3|B.|FP 1|2+|FP 2|2=|FP 3|2C.2|FP 2|+|FP 1|=|FP 3|D.|FP 2|2+|FP 1|²|FP 3|7、双曲线221102x y -=的焦距为( ) A . 23 B. 24 C.33 D. 34 8、已知一正方形的两顶点为双曲线C 的两焦点,若另外两个顶点在双曲线上,则双曲线C 的离心率e =( ) A.13+ B.12+ C.215+ D. 2122+9、已知F 1、F 2是椭圆191622=+y x 的两焦点,过点后的直线交椭圆于A ,B 两点,若|AB|=5,则|AF 1|+|BF 1|=( )A.16B.11C.10D.910、设抛物线y 2=8x 的焦点为F ,准线为l,P 为抛物线上一点,P A ⊥l ,点A 为垂足,如果直线AF 的斜率为-3,那么|PF |=A. 34B. 8C. 38D.1611、已知双曲线1366422=+y x 的焦点为F 1,F 2,点P 在双曲线上,且 ∠F 1PF 2=60°,则△F 1PF 2的面积为( )A.18B. 324C. 336D.3212、已知双曲线C :12222=+by a x (a >0,b >0)半焦距为c ,若直线y =2x 与双曲线的一个交点A 横坐标为c ,则双曲线的离心率为( ) A.222+ B. 2122+ C. 13+ D.12+13、双曲线112422=-y x 的焦点到其渐近线的距离是( ) A. 32 B.2 C. 3 D.114、已知椭圆12222=+by a x (a >b >0),左焦点F (-C.0),右顶点B (a.0)与短轴的一个端点C 的连线构成的三角形恰好为直角三角形,则该椭圆的离心率是( ) A.221+- B. 231+- C. 21D.215、已知抛物线y 2=2px (p >0)上一点M (1,m )(m >0)到其焦点的距离为5,双曲线 1222=-y ax (a >0)的顶点为A ,若双曲线的一条渐近线与直线AM 平行,则实数a =( )A. 251B. 91C. 51D. 3116、设F 1, F 2分别为双曲线12222=-by a x (a >0,b >0)的左,右焦点,若双曲线右支上存在点P ,满足|PF 2|=|F 1F 2|,且F 2到直线PF 1的距离等于双曲线的实轴长,则该双曲线的渐近线方程为( )A.3x ±4y =0B.3x ±5y =0C.4x ±3y =0D.5x ±4y =0 17、过抛物线y 2=2px (p >0)的焦点F 作倾斜角为45°的直线交抛物线于A ,B 两点,若|AB|=8,则P=( )A.8B.6C.4D.2。
解析几何复习题-数学试题(一)选择题1、从点P(m, 3)向圆(x + 2)2 + (y +2)2 = 1引切线, 则一条切线长的最小值为A.B.5 C.D.2、若曲线x2-y2 = a2与(x-1)2 + y2 = 1恰有三个不同的公共点, 则a的值为A.-1 B.0 C.1 D.不存在3、曲线有一条准线的方程是x = 9, 则a的值为A.B.C.D.4、参数方程所表示的曲线是A.椭圆的一部分B.双曲线的一部分C.抛物线的一部分, 且过点D.抛物线的一部分, 且过点5、过点(2, 3)作直线l, 使l与双曲线恰有一个公共点, 这样的直线l共有A.一条B.二条C.三条D.四条6、定义离心率为的椭圆为“优美椭圆”, 设(a > b > 0)为“优美椭圆”, F、A分别是它的左焦点和右顶点, B是它的短轴的一个端点, 则ÐABF为A.60° B.75° C.90° D.120°7、在圆x2 + y2 = 5x内, 过点有n条弦的长度成等差数列, 最小弦长为数列的首项a, 最大弦长为an, 若公差, 则n的取值集合为A.B.C.D.8、直线与圆x2 + y2 = 1在第一象限内有两个不同的交点, 则m的取值范围是A.1 < m < 2 B.C.D.9、极坐标方程表示的曲线是A.椭圆B.抛物线C.圆D.双曲线10、设a, b, c是ABC中ÐA, ÐB, ÐC所对边的边长, 则直线sinA·x + ay + c = 0与bx-sinB·y + sinC = 0的位置关系是A.平行B.重合C.垂直D.相交但不垂直(二)填空题11、有下列命题:(1)到两个定点的距离的和等于常数的点的轨迹是椭圆;(2)到两个定点的距离的和等于差的绝对值为常数的点的轨迹为双曲线;(3)到定直线和定点F(-c, 0)的距离之比为(c > a > 0)的点的轨迹为双曲线;(4)到定点。
解析几何复习1(直线2014.1)1.(1)经过点)4,3(),2,1(B A -的直线l 的点方向式方程是 (2)已知)4,3(),2,1(B A -,则线段AB 的中垂线的点法向式方程是2.直线2-=x 与直线0533=+-y x 的夹角为3.已知直线30x y +=与直线10kx y -+=的夹角为60 ,则实数k =4.经过点P )1,0(且与直线03=-x y 的夹角为030的直线方程是5.经过点(3,1)A B --和点且与直线032:=-+y x l 垂直的直线方程6.已知直线l 经过点)1,1(,若点)4-3()2,1(,和B A -到l 的距离相等,则l :7. 过点(1,2)且在两坐标轴上的截距相等的直线的方程8.与直线2360x y +-=关于点()1-1,对称的直线是______________9.过点(1,2)且与原点距离最大的直线方程是__________10.过点)3,2(P 的直线l ,且倾斜角的正弦值为53,则直线l 的方程为11.过点)3,2(P 的直线l ,且倾斜角直线x y 2=倾斜角的2倍,则直线l 的方程为12.直线023)2(:1=++-m my x m l ,06:2=++my x l ,若21l l ⊥,则实数=m13.双曲线116922=-y x 的一个焦点到渐近线的距离为14.已知直线l 过点P (1,2),且l 与x 轴正半轴和y 轴的正半轴交点分别是A 、B , (1)若三角形AOB 的面积是4,求直线l 的方程。
(2)求△ABO 的面积的最小值及此时直线l 的方程.15.已知△ABC 的顶点A(0,8),B(0,-1), ∠ACB 的平分线CE 所在直线方程: x+y-2=0, 求(1)AC 边所在直线方程. (2)求C 点的坐标 (3)求ABC ∆面积S复习卷2(圆的方程2014.1)1.已知(3,4)(5,6)P Q -、两点,则以线段PQ 为直径的圆的方程是2.圆:06422=+-+y x y x 和圆:0622=-+x y x 交于,A B 两点,则直线AB 的 方程是3.圆1C :422=+y x 和2C :0248622=-+-+y x y x 的位置关系是_______4.圆2)4()3(22=++-y x 关于直线0=+y x 的对称圆的方程是5.斜率为1的直线l 被圆422=+y x 截得的弦长为2,则直线l 的方程为6.过点M (0,4),被圆4)1(22=+-y x 截得的线段长为32的直线方程为7.若(2,1)p -为圆C:22(1)25x y -+=的弦AB 的中点, 则直线AB 的方程为8.过点P(2,1)且与圆x 2+y 2-2x +2y +1=0相切的直线的方程为9.已知方程222(2)20a x a y ax a ++++=表示的曲线是圆,则实数a 的值是 .10.圆220x y Ax By +++=与直线220(0)Ax By A B +=+≠的位置关系是11..圆034222=-+++y x y x 上到直线01=++y x 的距离为2的点共有( ).A .1个B 。
高中数学一轮总复习解析几何重点知识整理解析几何是高中数学中的一门重要的分支,它通过代数方法研究几何问题,是数学与几何相结合的产物。
在高中数学的学习中,解析几何占据着很重要的地位。
本文将为大家总结解析几何的重点知识,并进行整理。
一、直线与圆的方程在解析几何中,直线和圆是最基本的几何图形。
直线的方程可以通过点斜式、两点式、截距式等不同的表达方式来表示。
其中最常用的是点斜式,表示为 y - y₁ = k(x - x₁)。
其中 (x₁, y₁) 是直线上的一点,k 是直线的斜率。
圆的方程有两种形式,一是标准方程:(x - a)² + (y - b)² = r²,其中 (a,b) 是圆心坐标,r 是半径;二是一般方程:x² + y² + Dx + Ey + F= 0。
二、直线与圆的交点直线与圆的交点是解析几何的一个重要概念。
当直线与圆相交时,可以通过解方程的方法求得交点的坐标。
例如,已知直线 L: 2x + y - 3 = 0 和圆 C: x² + y² - 4x - 2y - 8 = 0,求直线 L 与圆 C 的交点坐标。
解:将直线的方程代入圆的方程中,得到 x² + (2x + 3)² - 4x - 2(2x + 3) - 8 = 0。
整理得到 5x² + 10x - 10 = 0,解得 x₁ = 1,x₂ = -2。
将 x 的值代入直线的方程中,得到 y₁ = 1,y₂ = 5。
所以直线 L 和圆 C 的交点坐标为 (1, 1) 和 (-2, 5)。
三、圆与圆的位置关系圆与圆之间的位置关系有三种情况:相离、相切、相交。
当两个圆相离时,它们的半径之和小于两圆之间的距离。
当两个圆相切时,它们的半径之和等于两圆之间的距离。
当两个圆相交时,它们的半径之和大于两圆之间的距离。
四、直线与平面的位置关系直线与平面之间的位置关系有两种情况:平行和相交。
综合复习题一、填空题1. __只有大小的量______________________________________ 叫做数量 ;2. __既有大小又有方向的量______________________________________ 叫做矢量 ;3. __模等于1的矢量___________________________________ 叫做单位矢量 ;4. 平行于同一直线的一组矢量叫做 _共线_______________ 矢量 ;5. 平行于同一平面的一组矢量叫做 __共面_______________ 矢量 ;6. 两矢量共线的充要条件是它们线性 ___相关________________ ;7. 三矢量不共面的充要条件是它们线性 ______无关___________ ;8. __________方向角的余弦__________________________ 叫做方向余弦 ;9. 两矢量a⊥b充要条件是 ____a_*b=0____________________ ;10. 三矢a,b,c量共面的充要条件是 ______(a×b)*c=0_______________ ;11. 两矢量a∥b的充要条件是 _a×b=0,或对应分量成比例 ;12. 矢量与坐标轴所成的角叫做 _方向角;13. 把平面上的一切单位矢量归结到共同的始点,则它们的终点构成____单位圆 ;14. 把空间中一切单位矢量归结到共同的始点,则它们的终点构成单位球面__ ;15. 方程叫做空间曲线的 ______________ 方程 ;16. 坐标平面yOz的方程是 _____________________________ ;17. 坐标平面xOz的方程是 ______________________________ ;18. 坐标平面xOy的方程是 _____________________________ ;19. 方程叫做曲面的 ______________________ 方程 ;20. 空间直线的标准方程为______________________________ ;21. 两平面A i x+B i y+C i z+D i=0 (i=1, 2)相互垂直的充要条件是___________________ ;22. 点M0(x0, y0, z0)到平面Ax+By+Cz+D=0的距离是 _______ ;23. 平面的一般方程是 _________________________ ;24. 直线的方向余弦cosα, cosβ, cosγ满足的关系式为_________ ;25. 给定直线l:==和平面π:Ax+By+Cz+D=0, 则l与π相交的充要条件是 ________________________ ;26. 直线l与平面π平行的充要条件是 _____________________ ;27. 直线l在平面π上的充要条件是_______________________;28. 给定l i:== (i=1, 2), 则l1与l2异面的充要条件是___________________________ ;29. 直线l1与l2相交的充要条件是 ________________________ ;30. 直线l1与l2平行的充要条件是 _________________________ ;31. 直线l1与l2重合的充要条件是 _________________________ ;32. 空间中通过同一直线的所有平面的集合叫做 ____________ ;33. 空间中平行于同一平面的所有平面的集合叫做 __________ ;34. 在空间, 由平行于定方向且与一条定曲线相交的一族平行直线所产生的曲面叫做____________________;35. 在空间, 过一定点且与定曲线相交的一族直线所产生的曲面叫做___________ ;36. 在空间, 一曲线绕定直线旋转一周所产生的曲面叫做 __________________ ;37. 在直角坐标系下, 椭球面的标准方程是 ________________________ ;38. 在直角坐标系下, 单叶双曲面的标准方程是 ____________________ ;39. 在直角坐标系下, 双叶双曲面的标准方程是 ____________________ ;40. 在直角坐标系下, 椭圆抛物面的标准方程是 ____________________ ;41. 在直角坐标系下, 双曲抛物面的标准方程是 ____________________ ;42. 柱面、锥面、椭球面、单叶(双叶)双曲面、椭圆(双曲)抛物面中是直纹曲面的有 ___________ _____________________;43. 单叶双曲面过一定点的直母线有 ___________ 条;44. 满足条件Φ (X, Y)≠0的方向叫做二次曲线的 ___________ ;45. 没有实渐近方向的二次曲线叫做 __________________ 型曲线;46. 有两个实渐近方向的二次曲线叫做 __________________ 型曲线;47. 只有一个实渐近方向的二次曲线叫做 __________________ 型曲线;48. 有唯一 __________________ 的二次曲线叫做中心二次曲线;49. 没有中心的二次曲线叫做 __________________ 二次曲线;50. 有一条中心直线的二次曲线叫做 __________________ 二次曲线;51. 二次曲线F (x, y)=0的奇点(x0, y0)满足的条件是 ________________ ;52. 二次曲线一族平行弦中点的轨迹叫做二次曲线的 _______________ ;53. ___________ 二次曲线的直径都过二次曲线的中心;54. 无心二次曲线的直径都 ___________ 二次曲线的渐近方向;55. 线心二次曲线的直径只有一条,即二次曲线的 ___________ ;56. 二次曲线垂直于其共轭弦的直径叫做二次曲线的 ______________ ;57. 二次曲线的特征根都是 ____________________________ ;58. 二次曲线特征根不能 ____________________________ ;59. 中心二次曲线至少有 ________________________ 条主直径;60. 非中心二次曲线中只有 ______________________ 条主直径;61. ___________ 二次曲线可分类为椭圆、虚椭圆、双曲线、点、二条相交直线;62. ____________________________ 二次曲线的图像是抛物线;63. ___________ 二次曲线可分类为两平行直线、两平行共轭虚直线、两重合直线;二、判断题(正确的打“√”,错误的打“×”)1. 若, 共线,, 共线,则, 也共线; ()2. 若, , 共面,, , 共面,则, , 共面;()3. , , 中,若, 共线, 则, , 共面; ()4.平行于同一方向的两矢量相等;()5. 位移、力、速度和加速度都是数量; ()6. 所有零矢量都相等; ()7. 自由矢量就是方向和模任意的矢量; ()8. 零矢量的方向一定; ()9.在自由矢量的意义下, 平行于同一平面的一组矢量不能在同一平面上;()10. 彼此平行且有共同始点的一组矢量一定在同一条直线上; ()11. 若≠,则表示与同方向的单位矢量; ()12. 若⊥,则 |+|=|-|; ()13. 若, 同向,则 |+|=||+||; ()14. 若, 反向,则 |-|=||+||; ()15. 若, 反向, 且||≥||,则 |+|=||-||; ()16. 若, 同向, 且||≥||,则 |-|=||-||; ()17. 第I卦限内点 (x, y, z) 的符号为 (+, ―, ―); ()18. 第II卦限内点 (x, y, z) 的符号为 (+, +, ―);()19. 第III卦限内点 (x, y, z) 的符号为 (-, +, ―); ()20. 第IV卦限内点 (x, y, z) 的符号为 (-, ― ,+); ()21. 射影矢量=(射影) ;()22. 射影=|| cos∠(, );()23. 射影(+)=射影+射影;()24. 射影(λ)=λ射影;()25. 在{O;,,,}下, =X+Y+Z, 则射影=Y; ()26. 两坐标面xOy与yOz所成二面角的平分面方程是x+y=0; ()27. 两坐标面xOy与yOz所成二面角的平分面方程是x-z=0; ()28. 两坐标同xOy与xOz所成二面角的平分面方程是x+z=0; ()29. 两坐标面xOy与xOz所成二面角的平分面方程是y-z=0; ( )30. 两坐标面xOz与yOz所成二面角的平分面方程是x-y=0; ( )31. (+)⋅=⋅+⋅; ()32. (λ)⋅=⋅(λ);()33. ⋅=2;()34. -(×)=×;()35. ×+×=(+)×;()36. 平面的矢量式参数方程为=+u+v;()37. 平面的坐标式参数方程为()38. 平面的一般方程为Ax+By+Cz+D=0;()39. 平面的法式方程为x cosα+y cosβ+zcosγ+p=0;()40. 平面的截距式方程为++=0;()41. 空间直线与平面的位置关系有相交和平行两种;()42. 空间两直线的位置关系有平行、重合、相交三种;()43. 两平面的位置关系有平行、相交、重合三种;()44. 点到平面的离差等于点到平面的距离;()45. 平面Ax+By+Cz+D=0通过原点的充要条件是D=0; ()46. 将椭圆绕x轴所得旋转曲面方程为:++=1;()47. 将椭圆绕y轴所得旋转曲面方程为:++=1; ()48. 将双曲线绕z轴所得旋转曲面方程为:+-=1;()49. 将双曲线绕y轴所得旋转曲面方程为:--=1;()50. 将抛物线绕z轴所得旋转曲面方程为:x2+y2=2pz;()51. 二次曲线的中心就是它的奇点;()52. 若M是二次曲线的奇点, 则该二次曲线过M的切线是唯一的; ()53. 二次曲线的一族平行弦中点的轨迹是一条直线;()54. 经过移轴变换可以消去二次曲线方程中的xy 项;()55. 在任意转轴变换下, 二次曲线新旧方程的一次项系数满足;()56. F(x, y)=xF1(x, y)+yF2(x, y) +F3(x, y);()57. F(x, y)=Φ(x, y)+2a13x+2a23y+a33;()58. 在直线方程Ax+By+C=0中, 若A, B, C与三个实数成比例,则该直线为虚直线;()59. 二次曲线的奇点满足F1 (x, y)=F2 (x, y)=F3 (x, y)=0;()60. Φ (x, y)=x (a11x+a12y)+y (a12x+a22y);()三、选择题(从四个备选答案中选出唯一正确的一个)1. 两个矢量是否相等,由它们的()决定.A. 始点;B. 模;C. 方向;D. 模和方向.2. 若, , 共面,, , 共面,则, , ()共面.A. 不一定;B. 一定; B. 一定不; D. 共线.3. 把平行于某一直线的一切矢量归结到共同的始点,则它们的终点构成()A. 一点;B. 线段;C. 直线;D. 射线.4. 下列等式中不成立的是()A.+=+;B. ⋅=⋅;C. ×=×;D. λ (μ)=μ (λ).5. 关于零矢量的描述不正确的是()A. 模不定;B.方向不定;C. 模为0;D.模定方向不定.6. 非零矢量与的下列关系中不正确的是()A. =;B. =;C. ||=;D. ||=1.7. 第VIII卦限的点 (x, y, z) 的符号是()A. (+, +, +);B. (―, ―, ―)C. (+, ―, ―)D. (-, +, +).8. 下列等式中错误的是()A. ⋅=||||cos∠(, );B. ⋅=||射影;C. ⋅=||射影;D. ⋅=||⋅||9. 下列等式错误的是()A. ⋅=||2;B. 2=||2;C. ||=;D. =.10. ×+×+×=()A. 0;B. 3;C. 1;D. .11. ⋅+⋅+⋅=()A. 0;B. 3;C. ;D. 1.12. 若, , 两两相互垂直,且模均为1,则++的模为()A.; B.3; C.0; D. 1.13. 下列运算不满足交换律的是()A. 矢性积;B. 数性积;C. 矢量加法;D. 数量乘法.14. 方程在空间表示()A. yOz面;B. xOy面;C. z轴;D. x轴.15. 在空间,y轴的方程不能写成()A. B. ; C. y=0; D. ==.16. 平面的矢量式参数方程是()A. ++=1;B. Ax+By+Cz+D=0;C. x cosα+y cosβ+z cosγ-p=0;D.=+u+v.17. 平面的法式方程是()A. ++=1;B. Ax+By+Cz+D=0;C. x cosα+y cosβ+z cosγ-p=0;D. =+u+v.18. 平面的截距式方程是()A. ++=1;B. Ax+By+Cz+D=0;C. x cosα+y cosβ+z cosγ-p=0;D. =+u+v.19. 平面的一般方程是()A. ++=1;B. Ax+By+Cz+D=0;C. x cosα+y cosβ+z cosγ-p=0;D. =+u+v.20. 平面的法式方程中的常数项必满足()A. ≤0;B. ≥0;C. <0;D.>0.21. 将平面方程Ax+By+Cz=0化为法式方程时,法式化因子的符号()A. 任选;B. 与B异号;C. 与A异号;D.与C异号.22. 点M0与平面π间的离差δ=-2, 则M0到π的距离d为()A. -2;B. 2;C.-1;D. 1.23. 直线的坐标式参数方程是()A. ==;B.C. D.==.24. 直线的标准方程是()A. ==;B.C. D.==.25. 直线的两点式方程是()A. ==;B.C. D.==.26. 直线的一般方程是()A. ==;B.C. ;D.==.27. 直线通过原点的条件是其一般方程中的常数项D1, D2满足()A. D1=D2=0;B. D1=0, D2≠0;C. D1≠0, D2=0;D. D1≠0, D2≠0.28. 直线的方向角α, β, γ不满足关系式()A. cos2α+cos2β+cos2γ=1;B. sin2α+sin2β+sin2γ=1;C. sin2α+sin2β+sin2γ=2;D. cos2(π-α)+cos2(π-β)+cos2(π-γ)=1.29. 两平面2x+3y+6z+1=0与4x+6y+12z+1=0之间的距离是()A. 0;B.C.D..30. 设直线与此同时三坐标面的夹角为λ, μ, v, 则下列式子中不成立的是()A. sin2λ+sin2μ+sin2ν=1;B. cos2λ+cos2μ+cos2ν=2;C. cos2λ+cos2μ+cos2ν=1;D. sin2(π-λ)+sin2(π-μ)+sin2(π-ν)=1.31. 关于x-x0, y-y0, z-z0的二次齐次方程表示()A. 柱面;B. 顶点在(x0, y0, z0)的锥面;C. 旋转曲面;D.平面.32. 将曲线Γ: 绕y轴旋转一周所得旋转曲面的方程为()A. F=0;B. F=0;C. F=0;D. F=0.33. 将曲线Γ:绕x轴旋转一周所得旋转曲面的方程为()A. F;B. F=0;C. F=0;D. F=0.34. 将曲线Γ:绕z轴旋转一周所得旋转曲面的方程为()A. F;B. F=0;C. F=0;D. F=0.35. 将曲线Γ:绕z轴旋转一周所得旋转曲面的方程为()A. x2+y2=2z;B. x2+z2=2y;C. y2+z2=2x;D. y2=.36. 下列方程中表示单叶双曲面的是()A. ++=1;B. +-=1;C. +-=-1;D. --=1.37. 椭球面++=1与xOy坐标面的交线方程为()A. +=1;B.;C. z=0;D. .38. 下列方程中表示双叶双曲面的是()A. --=-1;B. -+=1;C. --+=1;D. +-=1.39. 下列方程中表示双曲抛物面的是()A. x2+y2=2z;B. 3x2-2y2=z;C. x2-y2=z2;D. x2+y2=z2.40. 二次曲线方程通过移轴变换后不变的是()A. 二次项系数;B. 一次项系数;C. 常数项;D. 都不变.41. 二次曲线方程通过转轴变换后不变的是()A. 二次项系数;B. 一次项系数;C. 常数项;D. 都不变.42. 下列曲面中是直纹曲面的是()A. 椭球面;B. 柱面;C. 球面;D. 双叶双曲面.43.已知二次曲线方程中Φ(x,y)=x2+2x y+y2,则I2=()A. 1;B. 0;C. -1;D. 2.44.已知二次曲线方程中Φ(x,y)=x2+2x y+y2,则I1=()A. 1;B. 0;C. -1;D. 2.45. 中心二次曲线至少有()条主直径.A. 1;B. 2;C. 3;D. 4.46. 二次曲线的奇点()是它的中心.A. 不一定;B. 一定不;C. 一定;D. 以上都不对.47. 有奇点的二次曲线一定是()A. 中心曲线;B. 无心曲线;C. 线心曲线;D.圆.48. 二次曲线的特征根()A不全为0; B. 全不为0; C.全为0; D. ≥0.49. 二次曲线的特征根()A. 都是虚数;B. 都是实数;C. 一实一虚;D. 全为0.50. 椭圆+=1的一对共轭直径的斜率k与k'满足()A. kk'=;B. kk'=-;C. kk'=-;D. kk'=.51. 二次曲线在直角坐标变换下的半不变量为()A. I1;B. I2;C. I3;D. K1.52. 简化方程为I1 y2+=0的二次曲线是()A. 中心曲线;B. 无心曲线;C. 线心曲线;D. 圆.53. 二次曲线表示两条直线(实的或虚的,不同的或重合的)的充要条件是()A. I1=0;B. I2=0;C.I3=0;D. K1=0.四、计算题1. 求通过点P (1, 1, 1)且与直线l1:==, l2: ==都相交的直线方程.2. 求异面直线l1:==与l2: ==的公垂线方程.3. 求通过直线且与平面x-4y-8z+12=0垂直的平面方程.4. 求通过点A (-3, 0, 1)和B (2, -5, 1)的直线方程.5. 求平行于平面3x+2y+z=0且在x轴上截距等于-2的平面.6. 已知一平面过M0(x0, y0, z0) (z0≠0), 且在x轴、y轴上的截距分别为a, b(ab≠0), 求其方程.7. 求二次曲线x2-2xy+y2-1=0 的渐近方向,并指出其类型.8. 求二次曲线2x2+xy-y2-x+y-1=0的渐近线.9. 如图,求直角△ABC的斜边AC绕直角边AB旋转所得圆锥面的方程(∠BAC=α).10. 求二次曲线F (x, y) ≡x2-2xy+y2-4x=0 的主方向与主直径.11. 求椭圆+=1 的主方向与主直径.12. 求双曲线-=1的主方向与主直径.13. 在双曲抛物面-=z上求平行于平面3x+2y-4z=0的直母线.14. 求二次曲面F(x, y, z)≡2xy+2xz+2yz+9=0 的主方向与主径面.15. 求二次曲面F(x, y, z)≡5x2+2y2+2z2-2xy+2xz-4yz-4y-4z+4=0的奇向.16. 求以直线==为轴, 半径为r的圆柱面方程.17. 求二次曲面-+=1 与三坐标面的交线方程,并指出其名称.18. 已知各锥面的顶点在原点,准线为,求锥面的方程.19. 求二次曲线x2-xy-y2-x-y=0 与x2+2xy+y2-x+y=0的公共直径.五、证明题1. ⊥的充要条件是⋅=0.2. //的充要条件是×=.3. (⋅)2+(×)2=22.4. 若×+×+×=, 则, , 共面.5. 若二次曲线的I1=0, 则I2<0.6. 二次曲线的特征根不全为0.7. 二次曲线的特征根全是实数.8. 由二次曲线的特征根λ≠0确定的主方向X:Y是二次曲线的非渐近方向.9. 由二次曲线的特征根λ=0确定的主方向X:Y是二次曲线的渐近方向.10. 在任意转轴变换下, 二次曲线新旧方程的一次项系数满足.11. 二次曲线x2+2xy+ay2+x+by-4=0有一条中心直线的充要条件是a=b=1.12. 两条二次曲线x2-xy+y2+2x-4y=0与 5x2+4xy+2y2-24x-12y+18=0 的中心在直线x+2y-4=0上.13. 两条二次曲线x2-2xy+y2+4x-4y-3=0 与x2-xy+y2+2x-4y=0的公共直径为x-y+2=0.14. 中心二次曲线ax2+2hxy+ay2=d 的两条主直径为x2-y2=0.15. 二次曲线两不同特征根确定的主方向相互垂直.16. 已知直线l:与π:4x-3y+7z-7=0, 试证直线l在平面π上.17. 试证两直线==与==为异面直线.六、化简二次曲线方程,并作出图形.1. x2-3xy+y2+10x-10y+21=0.2. 2xy-4x-2y+3=0.3. x2-xy+y2+2x-4y=0.4. x2+6xy+y2+6x+2y-1=0.5. 5x2+8xy+5y2-18x-18y+9=0.6. x2-2xy+y2+2x-2y-3=0.7.x2+2xy+y2+2x+y=0.综合复习题答案一、1. 只有大小的量;2. 既有大小、又有方向的量;3. 模等于1的矢量;4. 共线矢量;5. 共面矢量;6. 相关;7. 无关;8. 方向角的余弦;9. =0;10. ()=0, 或线性相关;11. ×=,或对应分量成比例;12. 方向角;13. 单位圆;14. 单位球面;15. 一般;16. x=0;17. y=0;18. z=0;19. 参数;20. ==;21. A1A2+B1B2+C1C2=0;22. d=;23.Ax+By+Cz+D=0 (A, B, C不全为0);24. cos2α+cos2β+cos2γ=1;25.AX+BY+CZ≠0;26. AX+BY+CZ=0, Ax0+By0+Cz0+D≠0;27. AX+BY+C=0, Ax0+By0+Cz0+D=0;28. ∆=≠0;29. ∆=0, X1:Y1:Z1≠X2:Y2:Z2;30. ∆=0, X1:Y1:Z1=X2:Y2:Z2 ≠ (x2-x1):(y2-y1):(z2-z1);31. ∆=0, X1:Y1:Z1 = X2:Y2:Z2=(x2-x1):(y2-y1):(z2-z1);32. 有轴平面束;33.平行平面束;34. 柱面;35. 锥面;36. 旋转曲面;37. ++=1 (a≥b≥c>0);38. +-=1 (a>0, b>0, c>0);39. +-=-1 (a>0, b>0, c>0);40. +=2z (a>0, b>0);41. -=2z (a>0, b>0);42. 柱面,锥面,单叶双曲面,双曲抛物面;43. 两条;44. 非渐近方向;45. 椭圆;46. 双曲;47. 抛物;48. 中心;49. 无心;50. 线心;51. F1 (x0, y0)=F2 (x0, y0)=F3 (x0, y0)=0;52. 直径;53. 中心;54. 平行于;55. 中心直线;56. 主直径;57. 实数;58. 全为零;59. 两;60. 一;61. 中心;62. 无心;63. 线心;二、1. √;2. ×;3. √;4. ×;5. ×;6. √;7. ×;8. ×;9. ×; 10. √;11. √; 12. √; 13. √; 14. √; 15. √; 16. √; 17. ×; 18. ×; 19. ×; 20. ×;21. √; 22. √; 23. √; 24. √; 25. √; 26. ×; 27. √; 28. ×; 29. √; 30. √;31. √; 32. √; 33. √; 34. √; 35. √; 36. √; 37. √; 38. √; 39. ×; 40. ×;41. ×; 42. ×; 43. √; 44. ×; 45. √; 46. √; 47. √; 48. √; 49. √; 50. √;51. ×; 52. ×; 53. √; 54. ×; 55. √; 56. √; 57. √; 58. ×; 59. √; 60. √.三、1. D;2. A;3. C;4. C;5. A;6. B;7. C;8. D;9. D; 10. D; 11.B; 12. A; 13. A; 14. C; 15. C; 16. D; 17. C; 18. A; 19. B; 20. A;21. A; 22. B; 23. B; 24. A; 25. D; 26. C; 27. A; 28. B; 29. D; 30. C;31. B; 32. D; 33.A; 34. B; 35.A; 36.B; 37.D; 38. C; 39. B; 40. A;41. C; 42. B; 43. B; 44. D; 45. B; 46. C; 47. C; 48. A; 49. B; 50. C;51. D; 52. C; 53. C.四、1. ==;2.(z轴);3. 4x+5y-2z+12=0;4. ==;5. 3x+2y+z+6=0;6.设所求平面在z轴上的截距为c≠0,则所求平面方程为++=1, 因平面过M0 (x0, y0, z0),于是++=1, = (1--), 故所求平面为++ (1--)=1;7. (-1):1, 抛物型;8. 3x+3y-2=0, 6x-3y-1=0;9. 提示:取A为原点,AB为z轴, ABC所在平面为yOz面建立坐标系, 设B的坐标为(0, 0,a), 则AC的方程为, 从而得锥面方程为ctg2α (x2+y2)-z2=0 (0≤z≤a);10. (-1):1(非渐近主方向), 1:1(渐近主方向), x-y-1=0;11. 1:0, 0:1, x=0, y=0;12. 1:0, 0:1, x=0, y=0;13. 与;14. 1:1:1及与平面x+y+z=0平行的一切方向;x+y+z=0及过中心(0, 0, 0)且垂直于x+y+z =0 的一切平面;15. 0:1:1;16. (ny-mz)2+(lz-nx)2+(mx-ly)2=r2 (l2+m2+n2);17. (双曲线); (椭圆); (双曲线);18. --=0;19. 5x+5y+2=0;20. 2x+3y+z+4=0.五、略.六、1. 由坐标变换公式得:-=1(双曲线).2. 由坐标变换公式得:x'2-y'2=1 (双曲线).3. 由坐标变换公式得:+=1 (椭圆).4. 由坐标变换公式得:-=1 (双曲线).5. 由坐标变换公式得:x'2+=1 (椭圆).6. 由坐标变换公式得:y'2=2 (一对平行直线).7. 由坐标变换公式得:y'2=-x (抛物线).。
大学《空间解析几何》期末考试复习第一节 空间直角坐标系与向量的概念思考题:1. 求点与轴,平面及原点的对称点坐标. 解:关于轴的对称点为,关于平面的对称点为,关于原点的对称点为.2. 下列向量哪个是单位向量? (1),(2),(3). 解:(1), 不是单位向量. (2), 是单位向量. (3), 不是单位向量.3. 自由向量具有什么样的特征?答:自由向量的特征是大小相等,方向相同,但起点不定. 4. 试举几个现实生活中能用向量描述的量? 答:如力,速度,位移,力矩等.5. 与向量平行的单位向量有几个? 如何去求?试举例说明.答:与向量平行的单位向量有两个,一个与同向,一个与反向.例如:若={1,1,1},则与平行的单位向量为),,(z y x M x xOy ),,(z y x M x ),,(1z y x M --xOy ),,(2z y x M -),,(3z y x M ---k j i r ++={}1,0,121-=a ⎭⎬⎫⎩⎨⎧=31,31,31b 13111222≠=++=r r ∴1)21(0)21(222=-++=a a ∴33)31()31()31(222=++=bb ∴a a a aa a. 习作题:1. 求平行于={1,1,1}的单位向量. 解:与平行的单位向量为.2. 求起点为,终点为的向量的坐标表达式及.解:==,.3. 求点到点之间的距离. 解:距离.4. 求使向量与向量平行.解:由得得. 5. 求与轴反向,模为10的向量的坐标表达式. 解: ==.6. 求与向量={1,5,6}平行,模为10的向量的坐标表达式. 解:, 故 .第二节 向量的点积与叉积{}1,1,131±=±a a aa {}1,1,131±=±a a )1,2,1(A )1,18,19(--B AB ||AB AB j i k j i 2020)11()218()119(--=-+--+--{20,20,0}--2200)20()20(||222=+-+-=AB )15,10,5(1M )45,35,25(2M 775)1545()1035()525(222=-+-+-==d λ}5,1,{λ=a }50,10,2{=b b a //5051012==λ51=λy a a j j 10)(10-=-⋅{0,10,0}-a b }6,5,1{6210==a a a {}6,5,16210100±=±=a b思考题:1. 若为单位向量,则是单位向量吗?答:不一定是.因为,若不垂直,则不是单位向量.2. 向量, 问有关系吗? 答:, 故.3. 如何求同时垂直于向量的向量?答:因为既垂直于又垂直于,故(为常数). 习作题: 1. 求点的向径与坐标轴之间的夹角.解:设与, , 轴之间的夹角分别为,则, , . , , . 2.求同时垂直于向量和轴的单位向量.解:记, 故同时垂直于向量与轴的单位向量为. 3. 求与平行且满足的向量.a 与b b a ⨯^^),(sin ),(sin b a ba b a b a ==⨯a 与b b a ⨯a a a ⋅=2a a 与2a a a ⋅=2 22||a a =b a 与c b a ⨯a b )(b a c ⨯=λλ)1,2,1(M OMOM x y z γβα,,211)2(11cos 22=++==α22cos ==OM β21cos ==OM γ3π=∴α4π=β3π=γ{}8,6,3-=a y {}3,0,8010863--=-=⨯=kj ij a b a y {}3,0,8731--±=±b b k j i a ++=1=⋅x a x解:因, 故可设,再由得,即,从而.4. ,,,求,,,及,,,.解:依题意,,,,故,,.,,,.5. ,求及. 解:,. 6. 证明向量与向量垂直. 证明:, , 即与垂直.平面与直线 思考题:1. 写出下列平面方程:(1)平面, (2)过轴的平面,(3)平行与的平面, (4)与,,轴正向截距相等的平面.x a //{}λλλλ,,==a x 1=⋅x a 1=++λλλ31=λ⎭⎬⎫⎩⎨⎧=31,31,31x {}0,0,1=a {}0,1,0=b )1,0,0(=c b a ⋅c a ⋅c b ⋅a a ⨯b a ⨯c a ⨯c b ⨯i a =j b =k c =0=⋅=⋅j i b a 0=⋅=⋅k i c a 0=⋅=⋅k j c b 0=⨯=⨯i i a a k j i b a =⨯=⨯j k i c a -=⨯=⨯i k j c b =⨯=⨯}}{{1,2,2,21,1==b a ,b a ⋅b a ⨯6122121=⨯+⨯+⨯=⋅b a }{0,3,3122211-==⨯kj ib a }{1,0,1=a }{1,1,1-=b 01110)1(1=⨯+⨯+-⨯=⋅b a 2π),(^=∴b a a b xOy z zox x y z解:(1),(2)(为常数), (3) (为常数), (4) . 2. 用一般式表示空间直线的表达式是否惟一,直线与有何关系?答:用一般式方程表示空间直线的表达式不唯一,因为过两平面相交直线的任意两个不同的平面的联立方程组均可表示这条直线.直线与平行.3. 在什么条件下,可以确定一个平面的方程?答:只要给出的条件能确定平面内的一点和垂直于平面的一个非零向量,即可确定一个平面的方程. 4. 在什么条件下,可以确定一条直线的方程?答:只要给出的条件能确定直线上的一点和平行于直线的一个非零向量,即可确定一条直线的方程.5. 由直线的一般式方程化为直线的点向式方程的关键点及主要步骤是什么?答:关键点是确定直线的方向向量.主要步骤是:①定点,由一般式方程任取直线上一点;②定向,由两平面的法向量的叉积求得直线的方向向量,最后写出点向式方程.0=z 0=+by ax b a ,c y =c a z y x =++)0(>a ⎩⎨⎧=+++=+++0,022221111D z C y B x A D z C y B x A ⎩⎨⎧=-=+32,0y x y x ⎩⎨⎧=+=-032,0y x y x ⎩⎨⎧=-=+320y x y x ⎩⎨⎧=+=-0320y x y x6. 若平面方程为,则满足下列条件的平面有何特点,且作图形:(1), (2), (3), (4). 答:(1)平面过原点, (2)平面过轴,(3)平面平行于坐标面, (4)平面即为坐标面. 以上各题图形如下:0=+++D Cz By Ax 0=D 0==D A 0==B A 0===D B A 0=++Cz By Ax 0=+Cz By x 0=+D Cz xOy 0=z xOy xyz O(1)( 2)7. 在直线方程中有的分母为零时应如何理解?答:分母为零时,应理解为分子也为零.习作题 :1. 写出过点且以为法向量的平面方程. 解:平面的点法式方程为.2. 求过三点的平面方程. 解:设所求平面方程为,将的坐标代入方程,可得,故所求平面方程为.3. 求过点且与平面平行的平面方程. 解:依题意可取所求平面的法向量为,pz z n y y m x x 000-=-=-()3,2,10M {}1,2,2=n ()()()032212=-+-+-z y x ()()()01,0,0,1,0,0,0,1C B A 0=+++d cz by ax C B A ,,d c b a -===1=++z y x ()1,0,01243=++z y x }2,4,3{=n从而其方程为, 即 .4. 写出过点且以为方向向量的直线方程. 解:方程为.5. 求过两点的直线方程.解:取直线的方向向量,则直线的方程为. 6. 求过点且与直线平行的直线的方程. 解:依题意,可取的方向向量为,则直线L 的方程为. 7. 求直线的点向式方程.解:令=0,可解得直线上一点,取直线的方向向量,所以直线的点向方程为:.8. 求直线与平面的夹角.解:直线的方向向量,平面的法向量. 设直线与平面的夹角为,则, 故 .()()()0120403=-+-+-z y x 2243=++z y x ()1,1,10M {}2,3,4=a 213141-=-=-z y x ()()2,1,2,1,2,1B A s {}1,1,1AB ==-111211-=--=-z y x ()1,1,1433221-=-=-z y x L L {}4,3,2=s 413121-=-=-z y x ⎩⎨⎧=+-=++032,1z y x z y x z 012(,,0)33M {}{}3,1,21,1,1-⨯=s k j i kj i34312111--=-=3132431-=--=-z y x 23121z y x =-=-0=+-z y x {}2,3,2=s {}1,1,1-=n ϕ()()511111232121312sin 222222=+-+⋅++⨯+-⨯+⨯=⋅⋅=ns n s ϕ511arcsin =ϕ第四节 曲面与空间曲线思考题:1. 方程代表何曲面,分别与平面和的交线为何?答:方程代表圆锥面,与平面的交线是坐标面内的两条角平分线,与平面=1 的交线是平面=1内的双曲线,与平面=2的交线是平面=2内的圆.几种常见的二次曲面的名称及直角坐标系下的方程如何? 答:(1)球面 方程为, (2)柱面 母线平行于轴的柱面方程为,母线平行于轴的柱面方程为,母线平行于轴的柱面方程为,(3)旋转曲面 以轴为旋转轴的旋转曲面的方程为,以轴为旋转轴的旋转曲面的方程为222y x z +=1,0==y x 2=z 222x y z +=0=x ⎩⎨⎧==0,22x y z yOzy⎩⎨⎧+==,1122x z y y z ⎩⎨⎧==+2,422z y x z ()()()2202020R z z y y x x =-+-+-x ()0,=z y f y ()0,=z x g z ()0,=y x h x (),22=+±x z y f y, 以轴为旋转轴的旋转曲面的方程为.投影柱面是如何定义的?其主要用途是什么?答:过空间曲线上的每一点作同一坐标面的垂线所形成的柱面, 称为关于这一坐标面的投影柱面,其主要用途是确定空间曲线的范围. 习作题:指出下列方程所表示的几何图形的名称 ,并画草图.(1) (2), (3), (4).答:(1)平行于轴的直线, (2)母线平行于轴的椭圆柱面, (3)以轴为旋转轴的旋转抛物面, (4)两相交平面. 各题图形如下:()0,22=+±y z x g z ()0,22=+±z y x h C C ⎩⎨⎧=+=-,02,05z x 254322=+y x z y x 422=+022=-x z y z z yzOzxyO5 -2分别求曲线在面及面的投影. 解:消去变量,得, 故曲线在面内的投影曲线为 消去变量,得=1,.故曲线在面内的投影为 .求绕轴旋转所得旋转曲面的方程? 解:方程为. ⎩⎨⎧=+=1,22z y x z xOy yOz z 122=+y x xOy ⎩⎨⎧==+,1,122zy x x z 12≤y yOz ⎩⎨⎧==0,1x z )11(≤≤-y 2y z =z 22y x z +=x y zO (3)xyz O (4)4.曲线绕轴旋转所得旋转曲面方程及名称为何? 答:旋转曲面方程为,它称为旋转抛物面.5. 画出曲面与所围空间图形.⎩⎨⎧==0,52y x z x x z y 522=+221y x z --=22y x z +=。
空间解析几何练习题1. 求点),,(c b a M 分别关于(1)xz 坐标面(2)x 轴(3)原点 对称点的坐标.2. 设 )2,,3(x A -与)4,2,1(-B 两点间的距离为29,试求x .3. 证明 )3,2,1(A )5,1,3(B )3,4,2(C 是一个直角三角形的三个顶点.4. 设ABC ∆的三边a BC =,b CA =,c AB =,三边的中点依次为D ,E,F ,试用向量c b a表示 AD ,BE ,CF ,并证明:0=++CF BE AD .5. 已知:k j i a 2+-=,k j i b -+=3求b a 32+,b a 32-.6. 已知:向量a 与x 轴,y 轴间的夹角分别为060=α,0120=β求该向量a 与z 轴间的夹角γ.7. 设向量a 的模是5,它与x 轴的夹角为4π,求向量a 在x 轴上的投影. 8. 已知:空间中的三点)2,1,0(-A ,)5,3,1(-B ,)2,1,3(--C 计算:AC AB 32-,AC AB 4+.9. 设{}1,0,2-=a ,{}2,2,1--=b 试求b a -,b a 52+,b a +3. 10. 设:{}1,2,2-=a ,试求与a 同方向的单位向量.11. 设:k j i a 253++=,k j i b 742--=,k j i c 45-+=,c b a u -+=34试求(1)u 在y 轴上的投影;(2)u 在x 轴和z 轴上的分向量;. 12. 证明:22)()(b a b a b a -=-⋅+. 13. 设:{}1,0,3-=a ,{}3,1,2--=b 求b a ⋅,∧⋅)(b a .14. 设→→→→-+=k j x i a 2,→→→→+-=k j i b 23且→→⊥b a 求x 15. 设{}2,1,0-=a ,{}1,1,2-=b 求与a 和b 都垂直的单位向量.16. 已知:空间中的三点)0,1,1(A ,)3,1,2(-B ,)2,1,2(-C 求ABC ∆的面积.17. (1)设a ∥b 求b a ⋅ (2)1==求b a ⋅18. 3=5=,试确定常数k 使b k a +,b k a -相互垂直.19. 设向量a 与b 互相垂直,∧⋅)(c a 3π=,∧⋅)(c b 6π=1=2=3=b ++.20. 设:k j i a 53+-=,k j i b 32+--=求b a ⋅21. 设:k j i a --=63,k j i b 54-+=求(1)a a ⋅;(2))3()23(b a b a -⋅+;(3)a 与b 的夹角.22. 设:∧⋅)(b a 6π=1=3=,.23. 设:{}2,1,1-=a ,{}1,2,1--=b ,试求:(1)b a ⋅;(2)b a ⨯;(3)∧⋅)cos(b a .24. 3=26=72=,求b a ⋅.25. 设a 与b 相互垂直,3=4=,试求(1))()(b a b a -⨯+;(2))2()3(b a b a -⨯-. 26. 设:0=++c b a 证明:a c c b b a ⨯=⨯=⨯27. 已知:k j i a -+=23,k j i b 2+-=,求(1)b a ⨯;(2))32()2(b a b a -⨯+;(3)i b a ⨯+)((4)b i a +⨯. 28. 求与{}1,2,2=a {}6,10,8---=b 都垂直的单位向量.29. 已知:{}1,6,3--=a ,{}5,4,1-=b ,{}12,4,3-=c 求c b a b c a )()(⋅+⋅在向量c 上的投影. 30. 设:d c b a ⨯=⨯,d b c a ⨯=⨯且c b ≠,d a ≠证明d a -与c b -必共线. 31. 设:b a 3+与b a 57-垂直,b a 4-与b a 27-垂直,求非零向量a 与b 的夹角.32. 设:{}6,3,2-=a {}2,2,1--=b 向量c 在向量a 与b 423=,求向量c 的坐标.33. 4=3=,∧⋅)(b a 6π=求以b a 2+和b a 3-为边的平行四边形面积.34. 求过点)1,2,7(0-P ,且以{}3,4,2-=n 为法向量的平面方程.ﻩ35. 过点)1,0,1(0-P 且平行于平面53=--z y x 的平面方程. ﻩ36. 过点)2,3,1(-M 且垂直于过点)1,2,2(-A 与)1,2,3(B 的平面方程. 37. 过点)2,1,3(-A ,)1,1,4(--B ,)2,0,2(C 的平面方程.38. 过点)1,1,2(0P 且平行于向量{}1,1,2=a 和{}3,2,3-=b 的平面方程.39. 过点M o (1,1-,1)且垂直于平面01201=+++=+--z y x z y x 及的平面方程. 40. 将平面方程 01832=+-+z y x 化为截距式方程,并指出在各坐标轴上的截距.41. 建立下列平面方程(1)过点(3-,1,2-)及z 轴;(2)过点A(3-,1,2-)和B(3,0,5)且平行于x 轴; (3)平行于x y 面,且过点A(3,1,5-);(4)过点P 1(1,5-,1)和P 2(3,2,2-)且垂直于x z 面. 42. 求下列各对平面间的夹角(1),62=+-z y x 32=++z y x ;(2)09543=--+z y x ,07662=-++z y x . 43. 求下列直线方程(1)过点(2,1-,3-)且平行于向量{}123,,--=s ; (2)过点M o (3,4,2-)且平行z 轴; (3)过点M 1(1,2,3)和M 2(1,0,4); (4)过原点,且与平面0623=-+-z y x 垂直. 44. 将下列直线方程化为标准方程(1)⎩⎨⎧=--+=-+-084230432z y x z y x ; (2)⎩⎨⎧-=+=422z y y x ; (3)⎩⎨⎧=+=-+00123z y z x45. 将下列直线方程化成参数式方程(1)⎩⎨⎧-==-+-250125z y z y x ; (2)⎪⎩⎪⎨⎧=-+=-025126y z x .46. 求过点(1,1,1)且同时平行于平面012=+-+z y x 及012=+-+z y x 的直线方程.47. 求过点(3,1,2-)且通过直线12354zy x =+=-的平面方程. 48. 求通过两直线211111-=-+=-z y x 与 112111-=+=--z y x 的平面方程. 64.求下列各对直线的夹角 (1)74211+=-=-z y x ,131256--=-=+z y x ; (2)⎩⎨⎧=-+-=-+-012309335z y x z y x ,⎩⎨⎧=-++=+-+0188302322z y x z y x .49. 证明直线31141+=-=-z y x 与 ⎩⎨⎧=--+=++0207z y x z y x 相互平行. 50. 设直线 l的方程为:nz y x 42311+=--=- 求n为何值时,直线l 与平面052=+--z y x 平行?51. 作一平面,使它通过z 轴,且与平面0752=--+z y x 的夹角为3π.52. 设直线l在平面01:=+++z y x π 内,通过直线⎩⎨⎧=+=++0201:1z x z y l与平面π的交点,且与直线l1垂直、求直线l 的方程. 53. 求过点(1,2,1)而且与直线⎩⎨⎧=-+-=+-+01012z y x z y x 与 ⎩⎨⎧=+-=+-02z y x z y x 平行的平面方程. 54. 一动点到坐标原点的距离等于它到平面04=-z 的距离,求它的轨迹方程.55. 直线⎩⎨⎧=-+=-+023012:z x y x l 与平面012:=--+z y x π 是否平行?若不平行,求直线l与平面π的交点,若平行,求直线l 与平面π的距离.56. 设直线l经过两直线35811:1--==--z y x l ,⎪⎩⎪⎨⎧--=+=+=tz t y tx l 101152143:2 的交点,而且与直线l 1与l 2都垂直,求直线l 的方程. 57. 已知直线:⎩⎨⎧=-+-=+-+04201:1z y x z y x l 及点 )213(,,-p 过点p作直线l与直线l 1垂直相交,求直线l的方程.58. 方程:019224222=-+--++z y x z y x 是否为球面方程,若是球面方程,求其球心坐标及半径. 59. 判断方程:11462222=-+-++z y x z y x 是否为球面方程,若是球面方程,求其球心坐标及半径.60. 将曲线:⎩⎨⎧==052y xz 绕x 轴旋转一周,求所成的旋转曲面方程.61. 将曲线:⎩⎨⎧==+0369422z y x 绕y 轴旋转一周,求所成的旋转曲面方程.62. 说明下列旋转曲面是怎样形成的(1)10343222=++z y x ; (2)24222=+-z y x ; (3)1222=--z y x ; (4)222)(y x a z +=-. 63. 指出下列方程在空间中表示什么样的几何图形(1)14322=+y x ; (2)13222=-y x ; (3)x z 42=; (4)13422=+z y .自测题 (A )(一) 选择题1.点M)5,1,4(-到 x y 坐标面的距离为( )A.5 B.4 C.1 D.422.点A )3,1,2(-关于y z 坐标面的对称点坐标 ( ) A.)3,1,2(-- B .)3,1,2(-- C.)3,1,2(- D .)3,1,2(-- 3.已知向量{}{}{}3,1,4,2,2,2,1,5,3--==-=c b a ,则=+-c b a 432( )A .{}16,0,20B .{}20,4,5-C .{}20,0,16- D.{}16,0,20- 4.设向量k j i a 424--=,k j i b 236+-=,则)3)(23(b a b a +-=( ) A.20 B .16- C.32 D.32-5.已知:→→-AB prj D C B A CD,则)2,3,3(),1,1,1(),7,1,5(),3,2,1(= ( )A.4 B .1 C.21D.2 6.设=-⨯+-+=+-=)()(22b a b a k j i b k j i a ,则, ( ) A .k j i 53++- B.k j i 1062++- C.k j i 1062-- D .k j i 543++ 7.设平面方程为0=-y x ,则其位置( )A .平行于x 轴 B.平行于y 轴 C.平行于z 轴 D.过z 轴. 8.平面0372=++-z y x 与平面0153=-++z y x 的位置关系( ) A.平行 B.垂直 C.相交 D.重合 9.直线37423zy x =-+=-+与平面03224=---z y x 的位置关系( ) A.平行 B .垂直 C.斜交 D .直线在平面内 10.设点)0,1,0(-A 到直线⎩⎨⎧=-+=+-07201z x y 的距离为( )A.5 B .61 C.51 D.81 (二) 填空题1.设=--x B x A ,则,两点间的距离为,,与29)421()2,,3(_________.2.设c b a u 23-+-=,c b a v +-=2,则=-v u 32_______________. 3.当m=_____________时,k j i 532+-与k j m i 23-+互相垂直.4.设kj i a ++=2,kj i b 22+-=,kj i c 243+-=,则)(b a prj c += .4. 设k j i a +-=2,k j i b 32-+=,则)2()2(b a b a -⨯+=_________. 5. 与)0,3,4()1,2,3(--B A 和等距离的点的轨迹方程为_______________. 6. 过点),,(715,),,(204-且平行于z 轴的平面方程_______________. 7. 设平面:03222,01=--+=+-+z y x z y x 与 平行,则它们之间的距离_________.8. 过点),,(382-且垂直平面0232=--+z y x 直线方程为______________. 10.曲面方程为:44222=++z y x ,它是由曲线________绕_____________旋转而成的.(三) 解答题1.求平行于{}的单位向量2,3,6-=a .2.已知作用于一点的三个力{}{}{}5,4,3,3,2,1,4,3,2321-==--=F F F 求合力的大小与方向.3. 如果{}1,1,2-=a ,{}1,2,1-=b 求a 在b 上的投影.4. 用向量方法,求顶点在)4,4,3(),5,3,1(),1,1,2(-----的三角形的三个内角. 5. 设k i a 2+-=,k j i b -+=2,k j i c 22++=,试将下列各式用k j i ,,表示. (1) c b a ⨯⨯)(; (2))()(c a b a ⨯⨯⨯.6. 求经过点(1,2,0)且通过z 轴的平面方程.7. 在平面02=--z y x 上找一点p,使它与点),5,1,2()1,3,4(-)3,1,2(--及之间的距离相等. 8. 求过 )1,0,0(),0,1,0(),0,0,1( 的圆的方程,并求该圆在坐标平面xoy 上的投影曲线方程. 9.求过点(1,2,1)且同时平行0132=-++z y x 和053=+-+z y x 两平面的直线方程. 10.方程:12222=++z y x 表示什么图形?自测题(B)(一) 选择题1.设{}{}{}0,2,1,3,1,1,1,3,2-=-=-=c b a ,则=⨯⨯c b a )(( ) A .8 B .10 C.{}1,1,0-- D.{}21,1,22.设{}{}2,2,2,2,1,1-=-=b a ,则同时垂直于a 和b 的单位向量( ) A.}0,21,21{± B.}0,21,21{± C.}0,2,2{± D.}0,2,2{±3.若==-+=b a b k j i a ,则,14//236( ) A.)4612(k j i -+± B.)612(j i +± C.)412(k i -± D.)46(k j -± 4.若ϕ的夹角与,则3121321)2,1,2(),1,2,2(),1,1,1(M M M M M M M ( ) A .6π B .2π C.3π D.4π5.过)320()231(),412(321,,和,,,,M M M ---,的平面方程( ) A.015914=--+z y x B.06872=--+z y x C .015914=-+-z y x D.015914=-++z y x 6.求平面062=-+-z y x 与平面052=-++z y x 的夹角( ) A.2π B .6π C.3π D .4π 7.直线⎩⎨⎧=+++=+++0022221111D z C y B x A D z C y B x A 各系数满足( )条件,使它与y 轴相交.A.021==A A B.2121D D B B =C.021==C CD.021==D D 8.设点⎩⎨⎧=-+-=+-+-04201)2,1,3(z y x z y x l M o ,直线,则M O 到l 的距离为( )A .223 B .553 C.453 D.229.直线夹角为与平面62241312=++-=-=-z y x z y x ( ) A.30o B .60o C .90o D .65arcsin10.过点)5,2,1(---且和三个坐标平面都相切的球面方程( )A .22225)1()1()1(=+++++z y x B.22225)5()5()5(=+++++z y x C.22225)2()2()2(=+++++z y x D.22225)5()5()5(=-+-+-z y x (二) 填空题1.设k j i a 32+-=,j i b +=2,k j i c ++-=,则c b a 与+是否平行__________. 2.设}8,5,3{=a ,}7,4,2{--=b ,}4,1,5{-=c ,则c b a -+34在x 轴上的投影_________________.3.化简:=⨯--⨯+++⨯++a c b b c b a c c b a )()()(__________________.4.直线 ⎩⎨⎧=---=-+-01205235:z y x z y x l 和平面 07734:=-+-z y x π的___________位置关系.5.过直线⎩⎨⎧=+-+=-+-025014z y x z y x 且与x 轴平行的平面方程___________________.6.原点==+-k kz y x ,则,的距离为到平面262)0,0,0(_________________. 7.与平面0522=+++z y x ,且与三个坐标面所构成的四面体体积为1的平面方程_____________________.8.动点到点(0,0,5)的距离等于它到x 轴的距离的曲面方程为________________. 9.曲面方程:259916222=--z y x 则曲面名称为________________.10.曲线⎪⎩⎪⎨⎧-+-=--=2222)1()1(2y x z yx z 在y z 面上的投影方程______________. (三) 解答题1.设}0,1,1{},1,1,0{},1,1,1{===c b a 并令c z b y a x d ++=(x ,y ,z 为数量) 求 (1)d ; (2)当z y x d ,,}3,2,1{时,=. 2.求平行于}2,3,6{-=a 的单位向量.3.确定k值,使三个平面:328,1423,23=--=++=+-z y x z y x z y kx 通过同一条直线.4.已知两个不平行的向量a 与b ,2=⋅b a 1=4=,设)(3)(2Xa b b a c -⨯=,求(1))(c b a +⋅; (; (3)的夹角余与c b 弦. 5.求以向量i k k j j i +++,,为棱的平行六面体的体积. 6.垂直平分连接)3,5,2(),1,3,4(B A -的线段的平面方程.7.求与平面4362=+-z y x 平行平面,使点)8,2,3(为这两个平面公垂线中点.8.在平面02=--z y x 上找一点p 使它与点)3,1,2()1,3,4(),5,1,2(---及之间的距离相等. 9.方程:0448422=-+-+y x y x 表示什么曲面?9. 方程组⎩⎨⎧=-++=--++0122046222z y x y x z y x 图形是什么?若是一个圆,求出它的中心与半径.参考答案 参考答案练习题1.(1)),,(c b a -; (2)),,(c b a --; (3)),,(c b a ---.2.51-==x x 或. 3.算出距离后,证明满足勾股定理 4.略5.k j i b a ++=+1132; k j i b a 75732+--=-.6.13545或=γ. 7.225. 8.}13,4,11{4},18,8,11{32-=+-=-AC AB AC AB .9.}5,2,7{3},12,10,9{52},1,2,1{--=+--=+=-b a b a b a . 10.单位向量为}31,32,32{-.11.(1)7; (2)u 在x 轴的分向量i 13,u 在z 轴的分向量k 9-; (3)299=u.12.利用数量积运算法则. 13.9-=⋅b a ; 70359arccos)(-=∧πb a . 14.x =4. 15.单位向量:)24(211k j i ++±. 16.1723=∆ABC S .17.(1)若a 与b 同向,则b a b a ⋅=⋅,若a 与b反向,则b a b a ⋅-=⋅;(2))cos(b a ∧.18.53±=k . 19.3617+=++c b a . 20.16=⋅b a .21.(1)46; (2)2-; (3)4838arccos)(-=∧πb a . 22.23. 23.(1)3; (2)k j i 333--; (3)21.24.30±。
2024年高考数学平面解析几何的复习方法总结一、复习前的准备1. 了解考纲:仔细阅读高考数学的考纲,明确平面解析几何部分的重点和难点,有针对性地进行复习。
2. 整理知识框架:将平面解析几何的知识点进行整理和归纳,建立知识框架,便于全面复习和查漏补缺。
3. 完善笔记:对之前学过的平面解析几何知识进行复习,逐一检查自己的笔记是否完整,如有漏洞或不理解的地方,及时补充或向同学、老师请教。
4. 制定学习计划:合理分配复习时间,将平面解析几何的复习内容分成小块,按照计划逐一进行复习。
二、基础知识的复习1. 了解基础概念:回顾平面解析几何的基本概念,如点、直线、平面等,并熟悉它们之间的关系和性质。
2. 复习坐标系:重点复习直角坐标系和极坐标系的原理和使用方法,能够熟练转换坐标系和进行坐标计算。
3. 复习向量:回顾向量的定义、运算法则和性质,同时重点理解向量的几何意义和应用。
4. 复习直线与圆的方程:回顾直线的一般方程、斜截式方程和点斜式方程的互相转换,同时复习圆的标准方程和一般方程的建立方法。
三、常见题型的练习1. 直线与圆的方程的联立:熟练掌握直线与圆的方程的联立方法,能够灵活运用,解决实际问题。
2. 直线与圆的位置关系:理解直线与圆的位置关系,掌握直线与圆的切点、交点等性质,能够准确判断直线与圆的位置关系。
3. 三角形的性质:回顾三角形的基本性质,如三角形的内心、外心、重心、垂心等,并理解它们之间的联系,能够应用这些性质解决三角形相关问题。
4. 镜面对称与旋转:通过练习镜面对称和旋转的题目,理解镜面对称和旋转的概念,并能够快速判断图形的镜面对称性和旋转对称性。
5. 预习未学内容:对于一些未学过的内容(如圆锥曲线、二次函数等),可以进行简单的预习,了解基本概念和性质,为高考后的复习打下基础。
四、真题的训练与模拟考试1. 做高考真题:通过做历年高考真题,了解平面解析几何在高考中的考查点和形式,熟悉解题思路和答题技巧,查漏补缺,增强信心。
期末专题复习—解析几何 姓名 1、已知实数,x y 满足:221x y +=,则x y +的取值范围是( A )(A )⎡⎣(B )[]1,1- (C )⎡⎣ (D )(2、若圆0104422=---+y x y x 上至少有三个不同的点到直线0:=+by ax l 的距离为22,则直线l 的倾斜角的取值范围是( )A.⎥⎦⎤⎢⎣⎡4,12ππB.⎥⎦⎤⎢⎣⎡125,12ππC.⎥⎦⎤⎢⎣⎡3,6ππD.⎥⎦⎤⎢⎣⎡2,0π 3、直线2+=x y 与曲线1222=-xx y 的交点个数为( C )A .0B .1C .2D .34、已知圆O :2240x y +-=,圆C :222150x y x ++-=,若圆O 的切线l 交圆C 于,A B 两点,则OAB ∆面积的取值范围是( )A.]152,72[B.]8,72[C.]152,32[D.]8,32[**5、设圆C Q l y x P y x l y x C ∈∈=-+=+使得存在点点直线,),(,063:,3:0022,使60=∠OPQ (O 为坐标原点),则0x 的取值范围是 ( C )A .[1,21-]B .[0,1]C .]56,0[D .]23,21[6、已知曲线C :x =4-y 2(-2≤y ≤2)和直线y =k (x -1)+3只有一个交点,则实数k 的取值范围7、已知平面内两定点,A B 及动点P ,设命题甲是:“PA PB +是定值”,命题乙是:“点P 的轨迹是以,A B 为焦点的椭圆”,那么 ( B )A .甲是乙成立的充分不必要条件B .甲是乙成立的必要不充分条件C .甲是乙成立的充要条件D .甲是乙成立的非充分非必要条件8、过椭圆22221x y a b+=(0a b >>)的左焦点1F 作x 轴的垂线交椭圆于点P ,2F 为右焦点,若1260F PF ∠=,则椭圆的离心率为 ( )A .12 D .139、已知椭圆2222:1(0)x y E a b a b+=>>的右焦点为(3,0)F ,过点F 的直线交椭圆于,A B 两点.若AB 的中点坐标为(1,1)-,则E 的方程为 ( )A .2214536x y += B .2213627x y += C .2212718x y += D .221189x y += 10、已知1F ,2F 是椭圆的两个焦点,若椭圆上存在点P ,使得12PF PF ⊥,则椭圆的离心率的取值范围是( )A. ,15⎫⎪⎪⎣⎭B. 2⎫⎪⎪⎣⎭C. 0,5⎛ ⎝⎦D. 0,2⎛ ⎝⎦11、已知椭圆C :22143x y +=的左、右焦点分别为12,F F ,椭圆C 上点A 满足212AF F F ⊥. 若点P 是椭圆C 上的动点,则12F P F A ⋅的最大值为( )B.233C. 94D.154 12、已知椭圆22221(0)x y a b a b+=>>左顶点C ,A 为椭圆在第一象限的点,直线OA 交椭圆于另一点B ,椭圆的左焦点为1F ,若直线1AF 交BC 于M ,且2BM M C =,则椭圆的离心率为 ( )A.13 B . 12C. 3D . 213、已知12,F F是椭圆的左右焦点,椭圆离心率1e =,以椭圆的右焦点2F 为圆心作一个圆,使此圆过椭圆中心并交椭圆于点,M N ,则12F MF ∠=( ) A.30︒ B. 45︒ C. 60︒ D. 90︒**14、椭圆22142x y +=上有不关于...x .轴对称...的两点,P Q ,椭圆焦点为12,F F ,O 为原点,N 为PQ 中点,若12OP OQ k k ⋅=-,则12NF NF k k ⋅的值为 ( A ) A.12-B.12C.2-D.不确定 15、已知椭圆221169x y +=上任一点P ,直线:60l x y +-=与两坐标轴分别交于,A B ,则△ABP 面积的最小值为_________16、椭圆22192x y +=的焦点为12,F F ,点P 在椭圆上1||4PF =,12F PF ∠的小大为 .17、如图,已知12F F 、是椭圆115172222=+y x 的左、右焦点,A 是椭圆短轴的一个端点,P 是椭圆上任意一点,过1F 引12F PF ∠的外角平分线的垂线,垂足为Q ,则AQ 的最大值为 32 .**18、已知椭圆()222210x y a b a b+=>>的右焦点为F ,过F 作斜率为ba 的直线与椭圆交于,A B 两点,若2FB FA ≥,则椭圆的离心率e 的取值范围是,15⎫⎪⎪⎣⎭. 19、与双曲线116922=-y x 有共同的渐近线,且经过点()32,3-的双曲线的方程为( )A.194422=-y x B .194422=-x y C .149422=-x y D .149422=-y x 20、过双曲线焦点且与实轴垂直的弦的长等于焦点到渐近线的距离,则双曲线的离心率为( ) A .5B .2C D .221、设12,F F 是双曲线2222:1(0,0)x y C a b a b-=>>的两个焦点,P 是C 上一点,若a PF PF 6||||21=+,且12PF F ∆的最小内角为30,则C 的离心率为( ) A .2 B .23 C .3 D .26 22、已知A 、B 、P 是双曲线12222=-by a x 上的不同三点,且A B ,关于坐标原点对称,若直线PA 、PB 的斜率乘积32=⋅PB PA k k ,则该双曲线的离心率等于( )A .25B .26 C .2 D .315**23、双曲线222x y a -=的左、右顶点分别为1A 、2A ,P 为其右支上一点,且12124A PA PA A ∠=∠,则12PA A ∠等于( )A .36πB .18πC .12πD .6π24、已知1F 、2F 为双曲线22221(0,0)x y a b a b-=>>的左右焦点,A 为曲线的右顶点,直线2AF 的垂直平分线交双曲线于点P ,12||3||PF PF =,则双曲线的离心率为25、已知双曲线22221(0,0)x y a b a b-=>>的两个焦点为1F 、2F ,顶点分别为1A 、2A ,过点2F 与双曲线的一条渐近线平行的直线交双曲线另一条渐近线与点M,,若点M 在以线段1A 2A 为直径的圆内,则双曲线的离心率的取值范围为26、已知有公共焦点的椭圆与双曲线中心为原点,焦点在x 轴上,左、右焦点分别为12F F 、,且它们在第一象限的交点为P ,12PF F △是以1PF 为底边的等腰三角形,若双曲线的离心率的取值范围为()1,2.则该椭圆的离心率的取值范围是 )52,31( . 27、抛物线281x y -=的准线方程是( ). A . 321=x B . 2=y C . 321=y D . 2-=y 28、一个动圆与定圆F :1)2(22=++y x 相内切,且与定直线l :3=x 相切,则此动圆的圆心M 的轨迹方程是( )A .x y 82=B .x y 42=C .x y 42-=D .x y 82-=29、设O 为坐标原点,F 为抛物线x y 42=的焦点,A 为抛物线上的一点,若4-=⋅AF OA ,则点A 的坐标为( )A .(2,22±) B .(1,±2) C .(1,2) D .(2,22) 30、设抛物线22y x =的焦点为F,过点M 的直线与抛物线相交于A B 、两点,与抛物线的准线相交于点C ,2BF =则BCF ∆与ACF ∆的面积之比BCF ACFSS ∆∆=( )A .12B .23 C. 47 D .45**31、抛物线24y x =的焦点为F ,点,A B 在抛物线上,且2π3AFB ∠=,弦AB 中点M 在准线l 上的射影为||||,AB M M M ''则的最大值为 (D )A B C D32、已知直线:21l y x =-与抛物线2:2(0)C y px p =>交于A 、B 两点,若抛物线上存在点M ,使△MAB 的重心恰好是抛物线C 的焦点F ,则p =33、已知点(),0P a ,对于抛物线22y x =上任一点Q ,都有PQ a ≥,则实数a 的取值范围__________34、已知椭圆)0(12222>>=+b a b y a x 的右焦点为F ,M 为上顶点,O 为坐标原点,若△OMF 的面积为21,且椭圆的离心率为22.(1)求椭圆的方程;(2)是否存在直线l 交椭圆于P ,Q 两点, 且使点F 为△PQM 的垂心?若存在,求出直线l 的方程;若不存在,请说明理由.。
解析几何复习讲义一. 圆的定义:1.方程x 2+y 2+ax +2ay +2a 2+a -1=0表示圆,则a 的取值范围是 二.圆方程的求解:2.求圆的方程:(1)经过坐标原点和点P (1,1),并且圆心在直线2x +3y +1=0上; (2)已知一圆过P (4,-2)、Q (-1,3)两点,且在y 轴上截得的线段长为43,求圆的方程.3.已知圆C 与圆0222=-+x y x 相外切,并且与直线03=+y x 相切于点)3,3(-Q ,求圆C 的方程三.直线与圆的位置关系4.已知直线l 过点)0,2(-,当直线l 与圆x y x 222=+有两个交点时,其斜率k 的取值范围是5.过圆x 2+y 2-2x+4y- 4=0内一点M (3,0)作圆的割线l ,使它被该圆截得的线段最短,则直线l 的方程 四.圆与圆的位置关系:6.若圆2221:240C x y m x m +-+-=与圆2222:24480C x y x m y m ++-+-=相交,则m 的取值范围是 .五.轨迹方程的求解:7.已知△ABC 的顶点B (0,0),C (5,0),AB 边上的中线长|CD |=3,则顶点A 的轨迹方程为 . 8.已知圆C :(x -3)2+y 2=100及点A (-3,0),P 是圆C 上任意一点,线段P A 的垂直平分线l 与PC 相交于点Q ,求点Q 的轨迹方程. 六.圆锥曲线的定义:①轨迹方程的求解(定义法)9.动圆M 与圆C 1:(x+1)2+y 2=36内切,与圆C 2:(x-1)2+y 2=4外切,求圆心M 的轨迹方程 10.设P 为双曲线-42xy 2=1上一动点,O 为坐标原点,M 为线段OP 的中点,则点M 的轨迹方程是 . ②定义解决最值:11.(1)抛物线C:y 2=4x 上一点P 到点A(3,42)与到准线的距离和最小,则点 P 的坐标为______________ (2)抛物线C: y 2=4x 上一点Q 到点B(4,1)与到焦点F 的距离和最小,则点Q 的坐标为 。
(完整word 版)大一上学期解析几何复习题(原创)一、填空题(6×4 = 24分)1.已知向量{1,2,1},{0,1,1},a b =-=那么a b 与夹角(,)a b ∠ . 2.设有两向量,,13,19,24a b a b a b ==+=如果,求a b -= .3.直线2111341x y z --+==与平面32150x y z --+=的位置关系是.4.以曲线:Γ220y pzx ⎧=⎨=⎩绕z 轴旋转的曲面为 5.球坐标为3(2,,)43ππ的点的直角坐标为6.通过点(4,1,2)-且与直线241131x y z -++==-垂直的平面方程为 .二、选择题(4×3 = 12分)1.设有三向量,,a b c 满足0a b c ++=,那么a b ⨯=( ). A .b a ⨯ B . c b ⨯ C .b c ⨯ D.a c ⨯2.过点A(1,1,1)和点B (2,0,2)的空间直线方程为().A .111111-=-=-z y x B .22022-==-z y x C .12112+==-z y x D .242224--=+=--z y x 3.如果,0,a c b c c ⨯=⨯≠且那么( )A .a b =B .a ,b 共线C .a b -和c 线D 。
()a b c -⊥4.下列方程中哪个方程表示的图形是双叶双曲面( )A .2222221x y z a b c +-=B .2222221x y z a b c -+=C .2222221x y z a b c++=-D .222221x y z a b c-+=-三、计算题(共5小题56分)1设平行四边形对角线为2a m n =+,34b m n =-,而1,2,(,)30m n m n ==∠=,求该平行四边形的面积。
(10分)2.求通过点(1,0,2)P -且与平面3210x y z -+-=平行,又与直线13421x y z--==- 相交的直线方程.(12分)3.⎪⎩⎪⎨⎧=+=1222y x x z 绕z 轴旋转的曲面方程(10分) 4.一个半径为a 的圆在一直线上无滑动地滚动,求圆上一点P 的轨迹方程。
解析几何复习提纲1、圆的标准方程:以点),(b a C 为圆心,r 为半径的圆的标准方程是_____________. 特例:圆心在坐标原点,半径为r 的圆的方程是:___________.2、点与圆的位置关系:1. 设点到圆心的距离为d ,圆半径为r : (1)点在圆上_____; (2)点在圆外____; (3)点在圆内______.2.给定点),(00y x M 及圆222)()(:r b y a x C =-+-. ①M 在圆C 内22020)()(r b y a x <-+-⇔ ②M 在圆C 上_________________ ③M 在圆C 外_______________3、圆的一般方程:022=++++F Ey Dx y x .当0422>-+F E D 时,方程表示一个圆,其中圆心________,半径__________. 当0422=-+F E D 时,方程表示一个点__________. 当0422<-+F E D 时,方程无图形(称虚圆).4、直线与圆的位置关系: 直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种(1)相离⇔没有公共点⇔__________(2)相切⇔只有一个公共点⇔0d r ∆=⇔= (3)相交⇔有两个公共点⇔____________相离 相切 相交(其中:22BA C Bb Aa d +++=)5、两圆的位置关系设两圆圆心分别为O 1,O 2,半径分别为r 1,r 2,d O O =21。
(1)条公切线外离421⇔⇔+>r r d ;MM(2)条公切线外切321⇔⇔+=r r d ; (3)____________________________; (4)____________________________; (5)无公切线内含⇔⇔-<<210r r d ;外离 外切 相交 内切 内含称 椭圆双曲线象1.椭圆的性质:椭圆方程(1)范围:,椭圆落在组成的矩形中。
《解析几何》知识点复习1解析几何是数学中的一个重要分支,它通过代数方法来研究几何图形的性质。
下面我们来系统地复习一下解析几何的一些关键知识点。
一、坐标系坐标系是解析几何的基础,它为我们描述点的位置提供了一种精确的方式。
1、直角坐标系直角坐标系也称为笛卡尔坐标系,由两条互相垂直的数轴组成,分别称为 x 轴和 y 轴。
坐标轴的交点称为原点,坐标用有序数对(x, y) 来表示。
2、极坐标系在极坐标系中,一个点的位置由极径和极角来确定。
极径表示点到极点的距离,极角表示极轴与线段的夹角。
二、直线直线是解析几何中最简单也是最基本的图形之一。
1、直线的方程(1)点斜式:已知直线上一点(x₁, y₁) 且直线的斜率为 k,则直线方程为 y y₁= k(x x₁) 。
(2)斜截式:如果直线斜率为 k 且在 y 轴上的截距为 b,则直线方程为 y = kx + b 。
(3)两点式:已知直线上两点(x₁, y₁) 和(x₂, y₂),则直线方程为(y y₁)/(y₂ y₁) =(x x₁)/(x₂ x₁) 。
(4)截距式:如果直线在 x 轴和 y 轴上的截距分别为 a 和 b,则直线方程为 x/a + y/b = 1 。
2、直线的位置关系(1)平行:两条直线斜率相等。
(2)垂直:两条直线斜率的乘积为-1 。
3、点到直线的距离公式点(x₀, y₀) 到直线 Ax + By + C = 0 的距离为:d =|Ax₀+By₀+ C| /√(A²+ B²) 。
三、圆圆是一种常见的几何图形。
1、圆的方程(1)标准方程:(x a)²+(y b)²= r²,其中(a, b) 为圆心坐标,r 为半径。
(2)一般方程:x²+ y²+ Dx + Ey + F = 0 ,其中 D²+ E² 4F> 0 时表示圆。
2、圆与直线的位置关系通过判断圆心到直线的距离 d 与半径 r 的大小关系来确定:(1)d > r ,相离。
解析几何知识点总结大全解析几何知识点总结有哪些?对数学几何的定义、法则、公式、定理等,理解了的要记住,暂时不理解的也要记住,在记忆的基础上、在应用它们解决问题时再加深理解。
一起来看看解析几何知识点总结,欢迎查阅!几何知识点总结大全1过两点有且只有一条直线2两点之间线段最短3同角或等角的补角相等4同角或等角的余角相等5过一点有且只有一条直线和已知直线垂直6直线外一点与直线上各点连接的所有线段中,垂线段最短7平行公理经过直线外一点,有且只有一条直线与这条直线平行8如果两条直线都和第三条直线平行,这两条直线也互相平行9同位角相等,两直线平行10内错角相等,两直线平行11同旁内角互补,两直线平行12两直线平行,同位角相等13两直线平行,内错角相等14两直线平行,同旁内角互补15定理三角形两边的和大于第三边16推论三角形两边的差小于第三边17三角形内角和定理三角形三个内角的和等于18018推论1直角三角形的两个锐角互余19推论2三角形的一个外角等于和它不相邻的两个内角的和20推论3三角形的一个外角大于任何一个和它不相邻的内角21全等三角形的对应边、对应角相等22边角边公理有两边和它们的夹角对应相等的两个三角形全等23角边角公理有两角和它们的夹边对应相等的两个三角形全等24推论有两角和其中一角的对边对应相等的两个三角形全等25边边边公理有三边对应相等的两个三角形全等26斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等27定理1在角的平分线上的点到这个角的两边的距离相等28定理2到一个角的两边的距离相同的点,在这个角的平分线上29角的平分线是到角的两边距离相等的所有点的集合30等腰三角形的性质定理等腰三角形的两个底角相等31推论1等腰三角形顶角的平分线平分底边并且垂直于底边32等腰三角形的顶角平分线、底边上的中线和高互相重合33推论3等边三角形的各角都相等,并且每一个角都等于6034等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35推论1三个角都相等的三角形是等边三角形36推论2有一个角等于60的等腰三角形是等边三角形37在直角三角形中,如果一个锐角等于30那么它所对的直角边等于斜边的一半38直角三角形斜边上的中线等于斜边上的一半39定理线段垂直平分线上的点和这条线段两个端点的距离相等40逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42定理1关于某条直线对称的两个图形是全等形43定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a+b=c 47勾股定理的逆定理如果三角形的三边长a、b、c有关系a+b=c,那么这个三角形是直角三角形48定理四边形的内角和等于36049四边形的外角和等于36050多边形内角和定理n边形的内角的和等于(n-2)18051推论任意多边的外角和等于36052平行四边形性质定理1平行四边形的对角相等53平行四边形性质定理2平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3平行四边形的对角线互相平分56平行四边形判定定理1两组对角分别相等的四边形是平行四边形57平行四边形判定定理2两组对边分别相等的四边形是平行四边形58平行四边形判定定理3对角线互相平分的四边形是平行四边形59平行四边形判定定理4一组对边平行相等的四边形是平行四边形60矩形性质定理1矩形的四个角都是直角61矩形性质定理2矩形的对角线相等62矩形判定定理1有三个角是直角的四边形是矩形63矩形判定定理2对角线相等的平行四边形是矩形64菱形性质定理1菱形的四条边都相等65菱形性质定理2菱形的对角线互相垂直,并且每一条对角线平分一组对角 66菱形面积=对角线乘积的一半,即S=(ab)267菱形判定定理1四边都相等的四边形是菱形68菱形判定定理2对角线互相垂直的平行四边形是菱形69正方形性质定理1正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1关于中心对称的两个图形是全等的72定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79推论1经过梯形一腰的中点与底平行的直线,必平分另一腰80推论2经过三角形一边的中点与另一边平行的直线,必平分第三边81三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)2S=Lh83(1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84(2)合比性质如果a/b=c/d,那么(ab)/b=(cd)/d85(3)等比性质如果a/b=c/d=…=m/n(b+d+…+n0),那么(a+c+…+m)/(b+d+…+n)=a/b86平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例 87推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91相似三角形判定定理1两角对应相等,两三角形相似(ASA)92直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93判定定理2两边对应成比例且夹角相等,两三角形相似(SAS)94判定定理3三边对应成比例,两三角形相似(SSS)95定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96性质定理1相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97性质定理2相似三角形周长的比等于相似比98性质定理3相似三角形面积的比等于相似比的平方99任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101圆是定点的距离等于定长的.点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆 106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线 107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三个点确定一条直线110垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧111推论1①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧112推论2圆的两条平行弦所夹的弧相等113圆是以圆心为对称中心的中心对称图形114定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等115推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等116定理一条弧所对的圆周角等于它所对的圆心角的一半117推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等118推论2半圆(或直径)所对的圆周角是直角;90的圆周角所对的弦是直径 119推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形120定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角121①直线L和⊙O相交d?r②直线L和⊙O相切d=r③直线L和⊙O相离d?r122切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线 123切线的性质定理圆的切线垂直于经过切点的半径124推论1经过圆心且垂直于切线的直线必经过切点125推论2经过切点且垂直于切线的直线必经过圆心126切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角127圆的外切四边形的两组对边的和相等128弦切角定理弦切角等于它所夹的弧对的圆周角129推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等130相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等131推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项132切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项133推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等134如果两个圆相切,那么切点一定在连心线上135①两圆外离d?R+r②两圆外切d=R+r③两圆相交R-r?d?R+r(R?r)④两圆内切d=R-r(R?r)⑤两圆内含d?R-r(R?r)136定理相交两圆的连心线垂直平分两圆的公共弦137定理把圆分成n(n3):⑴依次连结各分点所得的多边形是这个圆的内接正n边形⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形138定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆139正n边形的每个内角都等于(n-2)180/n140定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形 141正n边形的面积Sn=pnrn/2p表示正n边形的周长142正三角形面积3a/4a表示边长143如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360,因此k(n-2)180/n=360化为(n-2)(k-2)=4144弧长计算公式:L=nR/180145扇形面积公式:S扇形=nR/360=LR/2146内公切线长=d-(R-r)外公切线长=d-(R+r)解析几何方法总结然而相对于导数需要较强的技巧和想法来讲,解析几何更重要考察的是心里素质。