二轮复习—解析几何
- 格式:doc
- 大小:1.06 MB
- 文档页数:9
二轮复习解析几何微重点15 离心率的范围问题1.(2022·南充质检)已知F 1(-c ,0),F 2(c ,0)是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,若椭圆上存在一点P 使得PF 1--→·PF 2--→=c 2,则椭圆C 的离心率的取值范围为( )A.⎝⎛⎦⎤33,32 B.⎣⎡⎦⎤33,22 C.⎣⎡⎦⎤3-1,32 D.⎣⎡⎭⎫22,1 2.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,点P 在双曲线的右支上,且|PF 1|=4|PF 2|,则此双曲线的离心率e 的最大值为( )A.43B.53 C .2 D.733.已知双曲线M :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,以线段F 1F 2为直径的圆O 与双曲线M 在第一象限交于点A ,若tan ∠AF 2F 1≤2,则双曲线M 的离心率的取值范围为( )A .[3,+∞)B .(1,3]C .(1,5]D .[5,+∞)4.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0),直线x =2a 与C 交于A ,B 两点(A 在B 的上方),DA →=AB →,点E 在y 轴上,且EA ∥x 轴.若△BDE 的内心到y 轴的距离不小于4a 3,则C 的离心率的最大值为( ) A.62 B.103 C. 2 D.3965.(多选)(2022·重庆育才中学模拟)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,长轴长为4,点P (2,1)在椭圆内部,点Q 在椭圆上,则以下说法正确的是( )A .|QF 1|+|QF 2|=4B .当离心率为24时,|QF 1|的最大值为2+22C .椭圆C 离心率的取值范围为⎝⎛⎭⎫0,12D .存在点Q 使得QF 1--→·QF 2--→=06.(多选)已知O 为坐标原点,双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右焦点为F ,l 是C 的一条渐近线,以F 为圆心,a 为半径的圆与l 交于A ,B 两点,则( )A .过点O 且与圆F 相切的直线与双曲线C 没有公共点B .C 的离心率的最大值是 2C .若F A →·FB →>0,则C 的离心率的取值范围是⎝⎛⎭⎫62,2 D .若OA →=AB →,则C 的离心率为1737.(2022·湖南六校联考)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右焦点为F (26,0),点Q 是双曲线C 的左支上一动点,圆O :x 2+y 2=1与y 轴的一个交点为P ,若|PQ |+|QF |+|PF |≥13,则双曲线C 的离心率的取值范围为______________.8.(2022·温州模拟)如图,椭圆C 1:x 2a 21+y 2b 21=1(a 1>b 1>0)和C 2:x 2a 22+y 2b 22=1有相同的焦点F 1,F 2,离心率分别为e 1,e 2,B 为椭圆C 1的上顶点,F 2P ⊥F 1B ,且垂足P 在椭圆C 2上,则e 1e 2的最大值是________.。
文科解析几何 2014期末1. (本题共14分)丰台已知抛物线C :22y px =(0p >)的焦点F (1,0),O 为坐标原点,A ,B 是抛物线C 上异于O 的两点.(Ⅰ)求抛物线C 的方程;(Ⅱ)若直线OA ,OB 的斜率之积为12-,求证:直线AB 过x 轴上一定点.2.(本小题共14分)海淀 已知椭圆C :22221(0)x y a b a b+=>>的离心率为12,右焦点为F ,右顶点A 在 圆F :222(1)(0)x y r r -+=>上.(Ⅰ)求椭圆C 和圆F 的方程;(Ⅱ)已知过点A 的直线l 与椭圆C 交于另一点B ,与圆F 交于另一点P .请判断是否存在斜率不为0的直线l ,使点P 恰好为线段AB 的中点,若存在,求出直线l 的方程;若不存在,说明理由.3.(本题满分14分)朝阳已知椭圆C 两焦点坐标分别为1(2,0)F -,2(2,0)F ,一个顶点为(0,1)A -.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)是否存在斜率为(0)k k ≠的直线l ,使直线l 与椭圆C 交于不同的两点,M N ,满足AM AN =. 若存在,求出k 的取值范围;若不存在,说明理由.4.(本小题共13分)东城 已知椭圆22221x y a b +=(0)a b >>的离心率为32,右焦点为(3,0). (Ⅰ)求椭圆方程;(Ⅱ)过椭圆右焦点且斜率为k 的直线与椭圆交于点11(,)A x y ,22(,)B x y , 若1212220x x y y a b+=,求斜率k 的值.5.(本小题满分14分)西城已知,A B 是抛物线2:W y x =上的两个点,点A 的坐标为(1,1),直线AB 的斜率为(0)k k >.设抛物线W 的焦点在直线AB 的下方.(Ⅰ)求k 的取值范围;(Ⅱ)设C 为W 上一点,且AB AC ⊥,过,B C 两点分别作W 的切线,记两切线的交点为D . 判断四边形ABDC 是否为梯形,并说明理由.6.(本小题满分13分)昌平 已知椭圆2222:1(0)x y C a b a b+=>>的焦距为23,过焦点且垂直于长轴的直线被椭圆截得的弦长为1,过点(3,0)M 的直线l 与椭圆C 交于两点,A B .(Ⅰ)求椭圆的方程;(Ⅱ)设P 为椭圆上一点,且满足+=uu r uu u r uu u r OA OB tOP (O 为坐标原点),求实数t 的取值范围.7.(本小题满分14分)石景山 已知椭圆:()过点(20),,且椭圆的离心率为. (Ⅰ)求椭圆的方程;(Ⅱ)若动点在直线上,过作直线交椭圆于两点,且为线段MN 的中点,再过作直线.证明:直线恒过定点,并求出该定点的坐标.答案:1.解:(Ⅰ)因为抛物线22y px =的焦点坐标为(1,0),所以1,22p p ==. 得到抛物线方程为24y x =.----------------------------------4分(Ⅱ)①当直线AB 的斜率不存在时设A 22(,),(,)44t t t B t - 因为直线,OA OB 的斜率之积为12-,所以221244tt t t -=-化简得232t =. 所以(8,),(8,)t B t -,此时直线AB 的方程为8x =.----------------7分②当直线AB 的斜率存在时设直线的方程为,(,),(,)A A B B y kx b A x y B x y =+联立方程24y x y kx b⎧=⎨=+⎩化简得2440ky y b -+=.------------------9分 根据韦达定理得到4A B b y y k=,因为直线,OA OB 的斜率之积为12-, 所以得到12A B A B y y x x =-即20A B A B x x y y +=.--------------------11分 得到222044A B A B y y y y +=, 化简得到0A B y y =(舍)或32A B y y =-.--------------------12分 又因为432,8A B b y y b k k==-=-,所以8,(8)y kx k y k x =-=-. 上所述,直线AB 过定点(8,0).-------------------------14分2. (本小题共14分)解:(Ⅰ)由题意可得1c =, ----------------------------------1分 又由题意可得12c a =,所以2a =, --------------2分 所以2223b a c =-=, ----------------------------------3分所以椭圆C 的方程为22143x y +=. ---------------------------------4分 所以椭圆C 的右顶点(2,0)A , --------------------------------5分 代入圆F 的方程,可得21r =,所以圆F 的方程为22(1)1x y -+=. ------------------------------6分 (Ⅱ)法1:假设存在直线l :(2)y k x =-(0)k ≠满足条件, -----------------------------7分由22(2),143y k x x y =-⎧⎪⎨+=⎪⎩得2222(43)1616120k x k x k +-+-=----------------------------8分 设11(,)B x y ,则21216243k x k +=+, ---------------------------------9分 可得中点22286(,)4343k k P k k -++, --------------------------------11分 由点P 在圆F 上可得2222286(1)()14343k k k k --+=++ 化简整理得20k = --------------------------------13分 又因为0k ≠,所以不存在满足条件的直线l . --------------------------------14分 (Ⅱ)法2:假设存在直线l 满足题意.由(Ⅰ)可得OA 是圆F 的直径, -----------------------------7分所以OP AB ⊥. ------------------------------8分 由点P 是AB 中点,可得||||2OB OA ==. --------------------------------9分设点11(,)B x y ,则由题意可得2211143x y +=. --------------------------------10分 又因为直线l 的斜率不为0,所以214x <, -------------------------------11分所以22222211111||3(1)3444x x OB x y x =+=+-=+<,-------------------------------13分 这与||||OA OB =矛盾,所以不存在满足条件的直线l . --------------------------14分3..解:(Ⅰ)设椭圆方程为22221(0)x y a b a b+=>>.则依题意 2c =,1b =,所以2223a b c =+= 于是椭圆C 的方程为2213x y += ….4分 (Ⅱ)存在这样的直线l . 依题意,直线l 的斜率存在 设直线l 的方程为y kx m =+,则 由2213x y y kx m ⎧+=⎪⎨⎪=+⎩得222(31)6330k x kmx m +++-=因为2222364(31)(33)0k m k m ∆=-+->得22310k m -+>……………… ①设1122(,),(,)M x y N x y ,线段MN 中点为00(,)P x y ,则12221226313331km x x k m x x k ⎧+=-⎪⎪+⎨-⎪=⎪+⎩于是000223,3131km m x y kx m k k =-=+=++ 因为AM AN =,所以AP MN ⊥. 若0m =,则直线l 过原点,(0,0)P ,不合题意.若0m ≠,由0k ≠得,0011y k x +=-,整理得2231m k =+…② 由①②知,21k <, 所以11k -<< 又0k ≠,所以(1,0)(0,1)k ∈- . ….14分4.(共13分)解:(Ⅰ)依题意有3c =,又32c a =,即2a =,221b a c =-=. 故椭圆方程为2214x y +=. …………………………………………………5分 (Ⅱ)因为直线AB 过右焦点(3,0),设直线AB 的方程为 (3)y k x =-. 联立方程组2214(3).x y y k x ⎧+=⎪⎨⎪=-⎩,消去y 并整理得2222(41)831240k x k x k +-+-=. 故21228341k x x k +=+,212212441k x x k -=+.212122(3)(3)41k y y k x k x k -=-⋅-=+. 又1212220x x y y a b +=,即121204x x y y +=.所以22223104141k k k k --+=++, 可得22k =±.…………………………………13分 5.(本小题满分14分)(Ⅰ)解:抛物线2y x =的焦点为1(0,)4. ……………… 1分 由题意,得直线AB 的方程为1(1)y k x -=-, ……………… 2分 令 0x =,得1y k =-,即直线AB 与y 轴相交于点(0,1)k -. ……………… 3分 因为抛物线W 的焦点在直线AB 的下方,所以 114k ->,解得 34k <. 因为 0k >,所以 304k <<. ………… 5分 (Ⅱ)解:结论:四边形ABDC 不可能为梯形. ……………… 6分 理由如下:假设四边形ABDC 为梯形. ……………… 7分 由题意,设211(,)B x x ,222(,)C x x ,33(,)D x y ,联立方程21(1),,y k x y x -=-⎧⎨=⎩ 消去y ,得210x kx k -+-=, 由韦达定理,得11x k +=,所以 11x k =-. ……………… 8分 同理,得211x k=--. ……………… 9分 对函数2y x =求导,得2y x '=,所以抛物线2y x =在点B 处的切线BD 的斜率为1222x k =-, ……………… 10分抛物线2y x =在点C 处的切线CD 的斜率为2222x k =--. ………………11分 由四边形ABDC 为梯形,得//AB CD 或//AC BD .若//AB CD ,则22k k =--,即2220k k ++=, 因为方程2220k k ++=无解,所以AB 与CD 不平行. ………………12分若//AC BD ,则122k k -=-,即22210k k -+=, 因为方程22210k k -+=无解,所以AC 与BD 不平行. ……………13分所以四边形ABDC 不是梯形,与假设矛盾.因此四边形ABDC 不可能为梯形. ……………14分 6(本小题满分13分)解:(I )因为所求椭圆的方程为22221(0)x y a b a b+=>>,焦距为223c =,所以3c =. 设过焦点且垂直于长轴的直线为x c =.因为过焦点且垂直于长轴的直线l 被椭圆截得的弦长为1, 代入椭圆方程解得:2b y a=±,即212b a =. 由22223,,1,2c a b c b a ⎧⎪=⎪⎪=+⎨⎪⎪=⎪⎩解得2,1,3.a b c ⎧=⎪=⎨⎪=⎩所以所求椭圆的方程为: 2214x y +=. ……… 6分 (Ⅱ)设过点(3,0)M 的直线l 的斜率为k ,显然k 存在. (1)当0k =时,0+==uu r uu u r r uu u r OA OB tOP ,所以0t =.(2)当0k ≠时,设直线l 的方程为(3)y k x =-. 由22(3),14=-⎧⎪⎨+=⎪⎩y k x x y 消y 并整理得2222(14)243640k x k x k +-+-=.当2422244(14)(364)0k k k ∆=-+->时,可得2105k <<. 设112200(,),(,),(,)A x y B x y P x y ,则21222414k x x k +=+,212236414k x x k -⋅=+. 因为OA OB tOP +=uu r uu u r uu u r , 所以121200(,)(,)++=x x y y t x y . 所以20122124()(14)k x x x t t k =+=+ , 012122116()[()6](14)k y y y k x x k t t t k -=+=+-=+. 由点P 在椭圆上得222222222(24)1444(14)(14)k k t k t k +=++. 解得222236991414k t k k ==-++. 因为2105k <<,所以24045k <<.所以291145k <+<.所以2511914k <<+. 所以295914k <<+.所以299514k -<-<-+.所以2909414k<-<+. 所以204t <<.所以(2,0)(0,2)t ∈- . 综合(1) (2)可知(2,2)t ∈- ………13分。
2023年高考数学二轮复习专题解析几何1.直线的倾斜角与斜率的关系(1)倾斜角α的取值范围: .倾斜角为α(α≠90°)的直线的斜率k = ,当倾斜角为=α90°的直线斜率 .当∈α 时,k >0且k 随倾斜角α的增大而增大.当∈α 时时,k <0且k 随倾斜角α的增大而增大.(1)两点P 1(x 1,y 1),P (x 2,y 2)间的距离:|P 1P 2|= . (2)点P (x 0,y 0)到直线l :Ax +By +C =0的距离d = . (3)两条平行线间的距离:两条平行线Ax +By +C 1=0与Ax +By +C 2=0间的距离d = . 二.圆的方程 1.圆的方程形式:(1)标准方程: ,圆心坐标为 ,半径为 .(2)一般方程: ( ),圆心坐标为 ,半径r = . 2.点与圆的位置关系(1)几何法:利用点到圆心的距离d 与半径r 的关系判断:d >r ⇔点在圆外,d =r ⇔点在圆上;d <r ⇔点在圆内.(2)代数法:将点的坐标代入圆的标准(或一般)方程的左边,将所得值与r 2(或0)作比较,大于r2(或0)时,点在圆外;等于r2(或0)时,点在圆上;小于r2(或0)时,点在圆内.3.直线与圆的位置关系直线l :Ax+By +C=0(A2+B2≠0)与圆:(x-a)2+(y-b)2=r2(r>0)的位置关系如下表.位置关系几何法:根据d=与r的大小关系代数法:联立消元得一元二次方程,根据判别式Δ的符号相交d<r Δ>0相切d=r Δ=0相离d>r Δ<0 4.圆与圆的位置关系表现形式位置关系几何表现:圆心距d与r1、r2的关系代数表现:两圆方程联立组成的方程组的解的情况相离d>无解外切d=一组实数解相交<d<两组不同实数解内切d=(r1≠r2)一组实数解内含≤d<(r1≠r2)无解三.椭圆、双曲线、抛物线的定义及几何性质椭圆双曲线抛物线定义在平面内与两定点F1、F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫.||P F1|+|P F2|=2a(2a>|F1F2|=2c)在平面内动点P与两个定点F1、F2(|F1F2|=2c>0)的距离之差的绝对值为常数2a(0<2a<2c),则点P的轨迹叫.||P F1|-|PF2||=2a(2a<|F1F2|)在平面内定点F和定直线l,(点F直线l上),P到l距离为d,|PF|=d标准方程焦点在x轴上焦点在x轴上焦点在x轴正半轴上图象几何性质范围|x|≤,|y|≤|x|≥,y∈R x≥,y∈R 顶点,对称性关于、和对称关于对称例1:(1)经过两点A (4,2y +1),B (2,-3)的直线的倾斜角为3π4,则y =(2)直线x sin α-y +1=0的倾斜角的变化范围是 (3)经过点P (3,2)且在两坐标轴上的截距相等;(4)经过点A (-1,-3),倾斜角等于直线y =3x 的倾斜角的2倍.【变式训练1】(1)若直线l 的斜率为k ,倾斜角为α,且α∈⎣⎡⎭⎫π6,π4∪⎣⎡⎭⎫2π3,π,则k 的取值范围是________.(2)直线l 过点M (-1,2)且与以点P (-2,-3)、Q (4,0)为端点的线段恒相交,则l 的斜率范围是(3)△ABC 的三个顶点为A (-3,0),B (2,1),C (-2,3),求: ①BC 所在直线的方程;②BC 边上中线AD 所在直线的方程;③BC 边的垂直平分线DE 所在直线的方程.考向2:两条直线的位置关系及距离公式例2:(1)若直线l 1:mx -y -2=0与直线l 2:(2-m )x -y +1=0互相平行,则实数m 的值为(2)已知直线l 1:2ax +(a +1)y +1=0,l 2:(a +1)x +(a -1)y =0,若l 1⊥l 2,则a = (3)已知点P (4,a )到直线4x -3y -1=0的距离不大于3,则a 的取值范围是________.(4)若两平行直线3x -2y -1=0,6x +ay +c =0之间的距离为21313,则c 的值是________.【变式训练2】 (1)“a =-1”是“直线ax +3y +3=0和直线x +(a -2)y +1=0平行”的 条件。
《高考解析几何二轮复习资料》第一讲 《直线与圆篇》类型一 直线方程[例1](2012年高考浙江卷)设a ∈R ,则“a =1”是“直线l 1:ax +2y -1=0与直线l 2:x +(a +1)y +4=0平行”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件练习1.在平面直角坐标系xOy 中,已知A (0,-1),B (-3,-4)两点,若点C 在∠AOB 的平分线上,且|OC →|=10,则点C 的坐标是________.类型二 圆的方程[例2](2012年杭州五校联考)过圆x 2+y 2=4外一点P (4,2)作圆的两条切线,切点分别为A 、B ,则 △ABP 的外接圆的方程是( )A .(x -4)2+(y -2)2=1B .x 2+(y -2)2=4C .(x +2)2+(y +1)2=5D .(x -2)2+(y -1)2=5练习2.(2012年长春高三摸底)已知关于x ,y 的方程C :x 2+y 2-2x -4y +m =0. (1)当m 为何值时,方程C 表示圆;(2)在(1)的条件下,若圆C 与直线l :x +2y -4=0相交于M 、N 两点,且|MN |=455,求m 的值.类型三 直线与圆的位置关系[例3](2012年高考天津卷)设m ,n ∈R ,若直线(m +1)x +(n +1)y -2=0与圆(x -1)2+(y -1)2=1相切,则m +n 的取值范围是( )A .[1-3,1+ 3 ]B .(-∞,1- 3 ]∪[1+3,+∞)C .[2-22,2+2 2 ]D .(-∞,2-2 2 ]∪[2+22,+∞)练习3.由直线y =x +2上的点P 向圆C :(x -4)2+(y +2)2=1引切线PT (T 为切点),当|PT |最小时,点P 的坐标是( ) A .(-1,1) B .(0,2) C .(-2,0)D .(1,3)练习4.(2012·临沂一模)直线l 过点(4,0)且与圆(x -1)2+(y -2)2=25交于A 、B 两点,如果|AB |=8,那么直线l 的方程为________.练习5.直线y =kx +3与圆(x -1)2+(y +2)2=4相交于M 、N 两点,若|MN |≥23,则k 的取值范围是( )A.⎝⎛⎭⎫-∞,-125B.⎝⎛⎦⎤-∞,-125C.⎝⎛⎭⎫-∞,125D.⎝⎛⎦⎤-∞,125 高考真题1.(2012年高考江苏卷)在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2-8x +15=0,若直线y =kx-2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是________.2.[2012·陕西卷] 已知圆C :x 2+y 2-4x =0,l 是过点P (3,0)的直线,则( )A .l 与C 相交B .l 与C 相切 C .l 与C 相离D .以上三个选项均有可能3.[2012·重庆卷] 对任意的实数k ,直线y =kx +1与圆x 2+y 2=2的位置关系一定是( ) A .相离 B .相切 C .相交但直线不过圆心 D .相交且直线过圆心第二讲 圆锥曲线篇 (一)基础知识部分1、圆锥曲线的定义:(1)8=表示的曲线是 。
二轮专题复习——解析几何一.专题内容分析解析几何:解析几何综合问题(椭圆或抛物线)及基本解答策略+圆锥曲线的定义和几何性质+直线与圆+极坐标、参数方程+线性规划二.解答策略与核心方法、核心思想 圆锥曲线综合问题的解答策略:核心量的选择:常见的几何关系与几何特征的代数化:①线段的中点:坐标公式②线段的长:弦长公式;解三角形③三角形面积: 21底×高,正弦定理面积公式④夹角:向量夹角;两角差正切;余弦定理;正弦定理面积公式⑤面积之比,线段之比:面积比转化为线段比,线段比转化为坐标差之比 ⑥三点共线:利用向量或相似转化为坐标差之比 ⑦垂直平分:两直线垂直的条件及中点坐标公式 ⑧点关于直线的对称,点关于点,直线关于直线对称 ⑨直线与圆的位置关系⑩等腰三角形,平行四边形,菱形,矩形,正方形,圆等图形的特征代数运算:设参、消参重视基本解题思路的归纳与整理但不要模式化,学会把不同类型的几何问题转化成代数形式.三.典型例题分析1.(海淀区2017.4)已知椭圆C :22221(0)x y a b a b+=>>的左、右顶点分别为A ,B ,且||4AB =,离心率为12. (Ⅰ)求椭圆C 的方程;(Ⅱ)设点(4,0)Q , 若点P 在直线4x =上,直线BP 边形APQM 为梯形?若存在,求出点P解法1:(Ⅰ)椭圆C 的方程为22143x y +=.(Ⅱ)假设存在点,P 使得四边形APQM 为梯形.由题可知,显然,AM PQ 不平行,所以AP 与MQ AP MQ k k =.设点0(4,)P y ,11(,)M x y ,06AP y k =,114MQ y k x =-,∴01164y y x =-① ∴直线PB 方程为0(2)2yy x =-, 由点M 在直线PB 上,则011(2)2y y x =-② ①②联立,0101(2)264y x y x -=-,显然00y ≠,可解得1x =又由点M 在椭圆上,211143y +=,所以132y =±,即3(1,)2M ±, 将其代入①,解得03y =±,∴(4,3)P ±.解法2:(Ⅰ)椭圆C 的方程为22143x y +=.(Ⅱ)假设存在点,P 使得四边形APQM 为梯形.由题可知,显然,AM PQ 不平行,所以AP 与MQ 平行, AP MQ k k =, 显然直线AP 斜率存在,设直线AP 方程为(2)y k x =+.由(2)4y k x x =+⎧⎨=⎩,所以6y k =,所以(4,6)P k ,又(2,0)B ,所以632PB k k k ==.∴直线PB 方程为3(2)y k x =-,由223(2)34120y k x x y =-⎧⎨+-=⎩,消y ,得2222(121)484840k x k x k +-+-=.又(2,0)B , 所以212482121k x k +=+,即212242121k x k -=+,∴112123(2)121ky k x k -=-=+.∴22224212(,)121121k k M k k --++.由APMQ k k =可得22212612124264121kk k k k -+=--+, 解得12k =±, ∴3(1,)2M ±,(4,3)P ±,解法3:(Ⅰ)椭圆C 的方程为22143x y +=.(Ⅱ)假设存在点,P 使得四边形APQM 为梯形.由题可知,显然,AM PQ 不平行,所以AP 与MQ 平行, AP MQ k k = . 显然直线MB 存在斜率且斜率不为0,∴设直线MB 方程为2x ty =+(0)t ≠.24x ty x =+⎧⎨=⎩由,得2(4,)P t .∴2163APt k t ==,由22234120x ty x y =+⎧⎨+-=⎩得22(34)120t y ty ++=, 设11(,)M x y ,又因为(2,0)B ,∴121234ty t -=+, ∴211268234t x ty t -+=+=+,即2226812(,)3434t tM t t -+-++.由APMQ k k =,所以22212134683434tt t t t -+=-+-+,解得23t =±解法4:假设存在点,P 使得四边形APQM 为梯形. 由题可知,显然,AM PQ 不平行,所以AP 与MQ 平行, 所以||1||2BM BP =. 过点M 作M H AB ⊥于H ,则有||||BH BQ =∴||1BH =,∴(1,0)H ,即11x =,代入椭圆方程,求得∴(4,3)P ±.2.(东城区2016.4理科)已知抛物线2:2(C y px p =>x 轴)过点F 且与抛物线C 交于,A B 两点,直线OA 与OB 的斜率之积为p -.(Ⅰ)求抛物线C 的方程;(Ⅱ)若M 为线段AB 的中点,射线OM 交抛物线C 于点D ,求证:2OD OM>.备注:以抛物线为背景,核心变量的选择(直线方程的不同形式);几何特征翻译代数关系(先转化再翻译)解:(Ⅰ)因为直线AB 过点F 且与抛物线C 交于,A B 两点,(,0)2PF , 设11(,)A x y ,22(,)B x y ,直线AB (不垂直x 轴)的方程可设为()(0)2py k x k =-≠. 所以2112(0)y px p =>,2222y px =. 因为直线OA 与OB 的斜率之积为p -, 所以1212y y p x x =-. 所以221212()y y p x x =,得 124x x =. ……4分 由2(),22,p y k x y px ⎧=-⎪⎨⎪=⎩ 消y 得22222(2)04k p k x k p p x -++= 其中 22222(2)0k p p k p k =+->V所以2124p x x =, 21222k P P x x k ++=. 所以4p =,抛物线2:8C y x =. ……8分 (Ⅱ)设0033(,),(,)M x y P x y ,因为M 为线段AB 的中点,所以2201222122(2)()22k P P k x x x k k ++=+==,004(2)y k x k =-=. 所以直线OD 的斜率为02022op y kk x k ==+. 直线OD 的方程为222op ky k x x k ==+代入抛物线2:8C y x =的方程, 得22322(2)k x k +=.所以23(2)x k x =+.因为 20k >, 所以23(2)2OD x k OMx ==+>. ……13分 3.(东城区2018.5文科)已知椭圆2222:1(0)x y C a b a b+=>>的右焦点为(1,0)F ,离心率为12.(Ⅰ)求椭圆C 的方程;(Ⅱ),A B 是椭圆C 在y 轴右侧部分上的两个动点,若原点O 到直线ABABF的周长为定值.解:(Ⅰ)椭圆C 的方程为22143x y +=.(Ⅱ)①当AB 垂直于x 轴时,可得 4AF BF AB ++=. ②当AB 不垂直于x 轴时,设AB 的方程为m kx y +=. 因为原点O 到直线AB=223(1)m k =+.由22,1,43y kx m x y =+⎧⎪⎨+=⎪⎩得222(34)84120k x kmx m +++-=,即222(34)8120k x kmx k +++=.设11(,)A x y ,22(,)B x y ,则122834km x x k -+=+,21221234k x x k=+.所以12|||AB x x =-====24||||34m k k =+. 因为A ,B 在y 轴右侧,所以0mk <,所以24||34mkAB k=-+. 22222111122111(1)(1)3(1)41124(2)42.x AF x y x x x x =-+=-+-=-+=-又所以11||22AF x =-,同理21||22BF x =-. 所以121||||4()2AF BF x x +=-+221844()423434km kmk k -=-=+++. 所以2244||||||443434km kmAF BF AB k k ++=+-=++.综上,△ABF 的周长等于椭圆C 的长轴长4.解法2:作OH AB ⊥于H ,所以||OH =所以2222222211111||||||33(1)344x x AH OA OH x y x =-=+-=+--=,即1||2x AH =, 同理2|B |2x H =, 所以121||||||()2AB AH BH x x =+=+, 又11||22AF x =-,同理21||22BF x =-. 所以.1212111||||||22()4222AF BF AB x x x x ++=-+-++= 综上,△ABF 的周长等于椭圆C 的长轴长4.解析几何选择填空题练习:1.(2018年全国3卷)设12,F F 是双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点,O 是原点.过2F作C 一条渐近线的垂线,垂足为P.若1|||PF OP = ,则C 的离心率为( )2分析:由题可知22||,||PF b OF c == ,所以||PO a =, 在2Rt POF ∆中,222||cos ||PF bPF O OF c∠== , 又在12PF F ∆中,2222121212|PF ||FF |||cos 22|PF ||FF |PF PF O +-∠=⋅,=,所以b c = 所以223c a =,所以离心率ce a==.故选C. 解法二:过左焦点作渐近线的垂线,垂足为Q ,利用直角三角形勾股定理建立关系,可求。
解析几何第1讲直线与圆一、单项选择题1.直线l经过两条直线x-y+1=0和2x+3y+2=0的交点,且平行于直线x-2y+4=0,则直线l的方程为()A.x-2y-1=0 B.x-2y+1=0C.2x-y+2=0 D.2x+y-2=02.(2022·福州)已知A(-3,0),B(3,0),C(0,3),则△ABC外接圆的方程为() A.(x-1)2+y2=2B.(x-1)2+y2=4C.x2+(y-1)2=2D.x2+(y-1)2=43.(2022·新高考全国Ⅱ)图1是中国古代建筑中的举架结构,AA′,BB′,CC′,DD′是桁,相邻桁的水平距离称为步,垂直距离称为举,图2是某古代建筑屋顶截面的示意图,其中DD1,CC1,BB1,AA1是举,OD1,DC1,CB1,BA1是相等的步,相邻桁的举步之比分别为DD1OD1=0.5,CC1DC1=k1,BB1CB1=k2,AA1BA1=k3.已知k1,k2,k3成公差为0.1的等差数列,且直线OA的斜率为0.725,则k3等于()A.0.75 B.0.8C.0.85 D.0.94.过圆C:(x-1)2+y2=1外一点P作圆C的两条切线P A,PB,切点分别为A,B,若P A⊥PB,则点P到直线l:x+y-5=0的距离的最小值为()A.1 B. 2C.2 2 D.3 25.与直线x-y-4=0和圆(x+1)2+(y-1)2=2都相切的半径最小的圆的方程是() A.(x+1)2+(y+1)2=2B.(x+1)2+(y+1)2=4C.(x-1)2+(y+1)2=2D .(x -1)2+(y +1)2=46.已知圆O :x 2+y 2=94,圆M :(x -a )2+(y -1)2=1,若圆M 上存在点P ,过点P 作圆O 的两条切线,切点分别为A ,B ,使得∠APB =π3,则实数a 的取值范围是( ) A .[-15,15]B .[-3,3]C .[3,15]D .[-15,-3]∪[3,15]7.已知圆C 1:(x +6)2+(y -5)2=4,圆C 2:(x -2)2+(y -1)2=1,M ,N 分别为圆C 1和C 2上的动点,P 为x 轴上的动点,则|PM |+|PN |的取值范围是( )A .[6,+∞)B .[7,+∞)C .[10,+∞)D .[15,+∞)8.(2022·菏泽质检)瑞士著名数学家欧拉在1765年提出定理:三角形的外心、重心、垂心位于同一直线上.这条直线被后人称为三角形的“欧拉线”.在平面直角坐标系中作△ABC ,|AB |=|AC |,点B (-1,1),点C (3,5),过其“欧拉线”上一点Р作圆O :x 2+y 2=4的两条切线,切点分别为M ,N ,则|MN |的最小值为( ) A. 2B .2 2 C. 3D .2 3二、多项选择题9.已知直线l 过点(3,4),点A (-2,2),B (4,-2)到l 的距离相等,则l 的方程可能是( )A .x -2y +2=0B .2x -y -2=0C .2x +3y -18=0D .2x -3y +6=010.在平面直角坐标系中,圆C 的方程为x 2+y 2-4x =0.若直线y =k (x +1)上存在一点P ,使过点P 所作的圆的两条切线相互垂直,则实数k 的可能取值是( )A .1B .2C .3D .411.(2022·南通)已知P 是圆O :x 2+y 2=4上的动点,直线l 1:x cos θ+y sin θ=4与l 2:x sin θ-y cos θ=1交于点Q ,则( )A .l 1⊥l 2B .直线l 1与圆O 相切C .直线l 2与圆O 截得弦长为2 3D .|PQ |长的最大值为17+212.(2022·龙岩质检)已知点P (x 0,y 0)是直线l :x +y =4上的一点,过点P 作圆O :x 2+y 2=2的两条切线,切点分别为A ,B ,连接OA ,OB ,则( )A .当四边形OAPB 为正方形时,点P 的坐标为(2,2)B .|P A |的取值范围为[6,+∞)C .当△P AB 为等边三角形时,点P 的坐标为(1,3)D .直线AB 过定点⎝⎛⎭⎫12,12三、填空题13.与直线2x -y +1=0关于x 轴对称的直线的方程为__________________.14.过点P (2,2)的直线l 与圆(x -1)2+y 2=1相切,则直线l 的方程为____________________.15.(2022·杭州模拟)在平面直角坐标系中,已知第一象限内的点A 在直线l :y =2x 上,B (5,0),以AB 为直径的圆C 与直线l 的另一个交点为D .若AB ⊥CD ,则圆C 的半径等于________.16.若抛物线y =x 2+ax +b 与坐标轴分别交于三个不同的点A ,B ,C ,则△ABC 的外接圆恒过的定点坐标为________.。
解析几何部分第二轮复习建议北大附中刘福合二、近几年高考解析几何命题特点及命题趋势近几年高考解析几何命题特点:1.题型稳定:近几年高考解析几何试题一直稳定在1(或2)个选择题,1个填空题,1个解答题,分值在24-29分间.2.注重覆盖,重点突出:《考试说明》中涉及到的解析几何知识点20多个,一般考察会在10个以上,其中对直线、圆、圆锥曲线的考察一直是重点,往往通过对知识的重新组合命题,考察时既照顾到全面,更注重突出重点,对支撑数学知识体系的主干知识,考察时保证较高比例的同时保持必需的难度。
近几年的考察集中在下列类型:①与概念相关问题(倾斜角、斜率、距离、平行、垂直、线性规划、圆锥曲线相关概念等)。
②求曲线方程和轨迹(题型确定,类型未定);③直线与圆锥曲线(包括圆)的位置关系问题;④与曲线有关的最(极值)值问题;⑤与曲线有关的几何证明问题(包括垂直、平行、过定点、定值等);⑥探求曲线方程中几何量及参数的数量特征(包括范围、定值等).3.能力立意,渗透数学思想:如11年19题,将直线、圆、椭圆结合起来,考察离心率、弦长、函数最值等知识,考察学生分析、解决问题的能力、推理论证能力、抽象概括能力,考察了数形结合、函数与方程等数学思想.4.题型力求新颖,大题位置固定,小题位置不定:这几年的命题明显重视知识间的联系(包括解析几何内部间的联系以及与向量、函数、方程、不等式等的联系),解答题一般在倒数第二题位置,但填空或选择时有变化.三、最近三年分值及考点分布情况四、复习建议1.进一步强化概念:提高学生应用定义解题的意识.2.强化数形结合:解析几何的研究对象是曲线的方程和方程的曲线,核心是通过坐标系将曲线和方程联系起来,实现二者的双向转化.3.加强基本方法,典型问题的训练:设而不求、整体代换、点差法这些基本方法必须熟练掌握,直线与曲线位置关系、定点、定值、范围等问题必须熟练解题套路.4.突破运算关:直线与圆锥曲线的综合问题一直是高考的热点,解答的关键是坐标化,难点是代数运算和推理,以及参数的处理.5.提高学生等价转化的能力:实现复杂问题简单化,陌生问题熟悉化.例如教给孩子一些常用的解答策略:①没有图形,不妨画个图形,以便直观思考;②“设—列—验”是求轨迹的通法;③消元转化为一元二次函数(方程),判别式,韦达定理,中点,弦长公式等要把握好;④多感悟“设—列—解”,设什么?坐标、方程、角、斜率、截距?列的前提是找关系,解就是转化、化简、变形,向目标靠拢;⑤紧扣题意,联系图形,数形结合;⑥一旦与自己熟悉的问题接轨立即入位.6.指导学生对问题进行较深入的思考和横向联系(椭圆、双曲线、抛物线).7.进一步强调表达的规范,解题步骤书写合理(如不进行对△的判断直接出现韦达定理的结果).8.根据本校的实际情况有针对性地设立专题(如定义、性质的应用,范围、最值问题,定点、定值问题,存在性问题等).解析几何题不但体现考试说明中对运算能力的要求,还很好体现个性品质要求:考生能以平和的心态参加考试,合理支配考试时间,以实事求是的科学态度解答试题,树立战胜困难的信心,体现锲而不舍的精神。
解答题双规范案例之——解析几何问题【重在“巧设”】1.解析几何部分知识点多,运算量大,能力要求高,在高考试题中大都是在压轴题的位置出现,是考生“未考先怕”的题型之一,不是怕解题无思路,而是怕解题过程中繁杂的运算.2.在遵循“设——列——解”程序化运算的基础上,应突出解析几何“设”的重要性,以克服平时重思路方法、轻运算技巧的顽疾,突破如何避繁就简这一瓶颈.【思维流程】【典例】(12分)(2018·全国卷II)设抛物线C:y2=4x 的焦点为F,过F且斜率为k(k>0)的直线l与C交于A,B 两点,|AB|=8.(1)求l的方程.(2)求过点A,B且与C的准线相切的圆的方程.切入点:利用直线方程与抛物线联立,并结合抛物线弦长公式求解.关键点:设出圆心坐标,利用圆的性质求解.【标准答案】【解析】(1)由题意得F(1,0),l的方程为y=k(x-1)(k>0). …………1分①设A(x1,y1),B(x2,y2),由得k2x2-(2k2+4)x+k2=0. …………2分②Δ=16k2+16>0,故x1+x2= .…………3分③所以|AB|=|AF|+|BF|=(x1+1)+(x2+1)= . …4分④由题设知 =8,解得k=-1(舍去),k=1.……5分⑤因此l的方程为y=x-1. ………………6分⑥(2)由(1)得AB的中点坐标为(3,2),所以AB的垂直平分线方程为y-2=-(x-3),即y=-x+5. ………………………8分⑦设所求圆的圆心坐标为(x0,y),则解得或 …………………10分⑧因此所求圆的方程为(x-3)2+(y-2)2=16或(x-11)2+(y+6)2=144.……………………………12分⑨【阅卷现场】第(1)问踩点得分①设出直线方程得1分.②将方程组化为关于x的一元二次方程得1分.③利用根与系数关系求出x1+x2正确得1分,错误不得分④利用抛物线的性质写出|AB|,并用含有斜率k的式子表示出来得1分.⑤求出斜率得1分.⑥写出直线方程得1分.第(2)问踩点得分⑦求出AB的垂直平分线方程得2分.⑧求出圆心坐标得2分.⑨写出圆的方程得2分,每正确一个得1分.。
高中数学学习材料鼎尚图文*整理制作解析几何(见学生用书P132)1.突出解析几何的基本思想:解析几何的实质是用代数方法研究几何问题,通过曲线的方程研究曲线的性质,因此要掌握求曲线方程的思路和方法,它是解析几何的核心之一.求曲线的方程的常用方法有两类:一类是曲线形状明确,方程形式已知(如直线、圆、圆锥曲线的标准方程等),常用待定系数法求方程.另一类是曲线形状不明确或不便于用标准形式表示,一般采用以下方法:(1)直译法:将原题中由文字语言明确给出动点所满足的等量关系直接翻译成由动点坐标表示的等量关系式.(2)代入法:所求动点与已知动点有着相互关系,可用所求动点坐标(x,y)表示出已知动点的坐标,然后代入已知的曲线方程.(3)参数法:通过一个(或多个)中间变量的引入,使所求点的坐标之间的关系更容易确立,消去参数得坐标的直接关系便是普通方程.2.熟练掌握直线、圆及圆锥曲线的基本知识(1)直线和圆①直线的倾斜角及其斜率确定了直线的方向.需要注意的是:(i)倾斜角α的范围是:0≤α<π;(ii)所有的直线必有倾斜角,但未必有斜率.②直线方程的四种特殊形式,每一种形式都有各自成立的条件,应在不同的题设条件下灵活使用.如截距式不能表示平行于x轴,y 轴以及过原点的直线,在求直线方程时尤其是要注意斜率不存在的情况.③讨论点与圆、直线与圆、圆与圆的位置关系时,一般可从代数特征(方程组解的个数)或几何特征(点到圆心的距离、圆心到直线的距离或两圆的圆心距与半径的关系)去考虑,其中几何特征较为简捷、实用.(2)椭圆①完整地理解椭圆的定义并重视定义在解题中的应用.椭圆是平面内到两定点F1,F2的距离之和等于常数2a(2a>|F1F2|)的动点的轨迹.②椭圆的标准方程有两种形式,决定于焦点所在的坐标轴.焦点是F(±c,0)时,标准方程为x2a2+y2b2=1(a>b>0);焦点是F(0,±c)时,标准方程为y2a2+x2b2=1(a>b>0).这里隐含a2=b2+c2,此关系体现在直角三角形OFB(B为短轴端点)中.③深刻理解a,b,c,e,ca的本质含义及相互关系,实际上就掌握了几何性质.(3)双曲线①类比椭圆,双曲线定义,两种标准方程形式.同样要重视定义在解题中的运用,要深刻理解几何量a,b,c,e,ca的本质含义及其相互间的关系.②双曲线的渐近线是区别于椭圆的一道“风景线”,其实它是矩形的两条对角线所在的直线.③双曲线x 2a 2-y 2b 2=±1(a >0,b >0)隐含了一个附加公式c 2=a 2+b 2,此关系体现在△OAB (A ,B 分别为实轴,虚轴的一个端点)中.特别地,当a =b 时的双曲线称为等轴双曲线,其离心率为 2.(4)抛物线①抛物线的定义:平面内到一个定点F 和一条定直线l 的距离相等的点的轨迹(F ∉l ).定义指明了抛物线上的点到焦点与准线的距离相等,并在解题中有突出的运用.②抛物线方程(标准)有四种形式:y 2=±2px 和x 2=±2py (p >0),选择时必须判定开口与对称轴.③掌握几何性质,注意分清2p ,p ,p 2的几何意义.3.掌握直线与圆锥曲线的位置关系的研究方法(1)判断直线l 与圆锥曲线C 的位置关系,可将直线l 的方程代入曲线C 的方程,消去y (也可以消去x )得到一个关于变量x 的一元二次方程ax 2+bx +c =0,然后利用“Δ”法.(2)有关弦长问题,应用弦长公式及韦达定理,设而不求;有关焦点弦长问题,要重视圆锥曲线的定义的运用,以简化运算.(3)有关弦的中点问题,除了利用韦达定理外,要注意灵活运用“点差法”,设而不求,简化运算.(4)有关垂直关系问题,应注意运用斜率关系(或向量方法)及韦达定理,设而不求,整体处理.(5)有关圆锥曲线关于直线l 的对称问题中,若A ,A ′是对称点,则应抓住AA ′的中点在l 上及k AA ′·k 1=-1这两个关键条件解决问题.(6)有关直线与圆锥曲线的位置关系中的存在性问题,一般采用“假设反证法”或“假设验证法”.考点一 求椭圆的离心率求离心率e 的值,只需根据题目条件,寻找一个a ,b ,c 等量的关系式.求离心率e 的取值范围,只需根据题目条件,寻找一个a ,b ,c 的不等关系式.例 1-1(2015·安徽卷)设椭圆E 的方程为x 2a 2+y 2b 2=1(a >b >0),点O 为坐标原点,点A 的坐标为(a ,0),点B 的坐标为(0,b ),点M 在线段AB 上,满足|BM |=2|MA |,直线OM 的斜率为510.(1)求E 的离心率e ;(2)设点C 的坐标为(0,-b ),N 为线段AC 的中点,点N 关于直线AB 的对称点的纵坐标为72,求E 的方程.分析:(1)先由|BM |=2|MA |,得出M ⎝ ⎛⎭⎪⎫23a ,13b ,再根据OM 的斜率建立关于a ,b 的等式求离心率.(2)利用点N 关于直线AB 的对称点的坐标建立关于b ,x 1的等式,再结论(1)中的结论,求出系数a ,b ,即可求出椭圆E 的方程.解析:(1)由题设条件知,点M 的坐标为⎝ ⎛⎭⎪⎫23a ,13b , 又k OM =510,从而b 2a =510.进而得a =5b ,c =a 2-b 2=2b .故e =c a =255.(2)由题设条件和(1)的计算结果可得,直线AB 的方程为x 5b +y b=1,点N 的坐标为⎝ ⎛⎭⎪⎫52b ,-12b . 设点N 关于直线AB 的对称点S 的坐标为⎝ ⎛⎭⎪⎫x 1,72, 则线段NS 的中点T 的坐标为⎝ ⎛⎭⎪⎫54b +x 12,-14b +74. 又点T 在直线AB 上,且k NS ·k AB =-1,从而有⎩⎪⎪⎨⎪⎪⎧54b +x 125b +-14b +74b =1,72+12b x 1-52b =5,解得b =3.所以a =35,故椭圆E 的方程为x 245+y 29=1.例 1-2(2015·陕西卷)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的半焦距为c,原点O 到经过两点(c ,0),(0,b )的直线的距离为12c .(1)求椭圆E 的离心率;(2)如图,AB 是圆M :(x +2)2+(y -1)2=52的一条直径,若椭圆E 经过A ,B 两点,求椭圆E 的方程.分析:(1)直接根据点到直线的距离公式列出关于a ,b ,c 的方程求解离心率e .(2)由题意知,M (-2,1)是线段AB 中点,且|AB |=10,可设出直线AB 的方程,与椭圆方程联立,利用根与系数的关系,中点坐标公式、弦长公式,列出关于直径AB 的等式,求出a 、b 、c ,从而得到椭圆E 的方程.解析:(1)过点(c ,0),(0,b )的直线方程为bx +cy -bc =0, 则原点O 到该直线的距离d =bc b 2+c2=bc a , 由d =12c ,得a =2b =2a 2-c 2,解得离心率c a =32.(2)(方法1)由(1)知,椭圆E 的方程为x 2+4y 2=4b 2.①依题意,圆心M (-2,1)是线段AB 的中点,且|AB |=10.易知,AB 与x 轴不垂直,设其方程为y =k (x +2)+1,代入①得(1+4k 2)x 2+8k (2k +1)x +4(2k +1)2-4b 2=0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-8k (2k +1)1+4k2,x 1x 2=4(2k +1)2-4b 21+4k2. 由x 1+x 2=-4,得-8k (2k +1)1+4k 2=-4,解得k =12. 从而x 1x 2=8-2b 2.于是|AB |=1+⎝ ⎛⎭⎪⎫122|x 1-x 2| =52(x 1+x 2)2-4x 1x 2=10(b 2-2).由|AB |=10,得10(b 2-2)=10,解得b 2=3.故椭圆E 的方程为x 212+y 23=1.(方法2)由(1)知,椭圆E 的方程为x 2+4y 2=4b 2.②依题意,点A ,B ,关于圆心M (-2,1)对称,且|AB |=10.设A (x 1,y 1),B (x 2,y 2),则x 21+4y 21=4b 2,x 22+4y 22=4b 2,两式相减并结合x 1+x 2=-4,y 1+y 2=2,得-4(x 1-x 2)+8(y 1-y 2)=0.易知AB 与x 轴不垂直,则x 1≠x 2,所以AB 的斜率k AB =y 1-y 2x 1-x 2=12. 因此直线AB 的方程为y =12(x +2)+1,代入②得x 2+4x +8-2b 2=0.所以x 1+x 2=-4,x 1x 2=8-2b 2.于是|AB |=1+⎝ ⎛⎭⎪⎫122|x 1-x 2| =52(x 1+x 2)2-4x 1x 2=10(b 2-2).由|AB |=10,得10(b 2-2)=10,解得b 2=3. 故椭圆E 的方程为x 212+y 23=1.考点二 直线与圆锥曲线的位置关系直线与圆锥曲线的综合问题,一般要用到直线和圆锥曲线的位置关系,用待定系数法求直线或圆锥曲线的方程.直线与圆锥曲线的相交相切问题转化为方程联立,根据Δ和根与系数的关系等基础知识与基本方法求解,用到弦长公式,焦点三角形,圆锥曲线的标准方程及其性质等等.例 2-1 (2014·辽宁卷)圆x 2+y 2=4的切线与x 轴正半轴,y 轴正半轴围成一个三角形,当该三角形面积最小时,切点为P (如图),双曲线C 1:x 2a 2-y 2b 2=1过点P 且离心率为 3.(1)求C 1的方程;(2)若椭圆C 2过点P 且与C 1有相同的焦点,直线l 过C 2的右焦点且与C 2交于A ,B 两点,若以线段AB 为直径的圆过点P ,求l 的方程.分析:(1)设切点P (x 0,y 0),(x 0>0,y 0>0),利用相互垂直的直线斜率之间的关系可得切线的斜率和切线的方程,即可得出三角形的面积,利用基本不等式的性质可得点P 的坐标,再利用双曲线的标准方程及其性质即可求出方程.(2)由(1)可得椭圆C 2的焦点.可设椭圆C 2的方程为x 23+b 21+y 2b 21=1(b 1>0).把P 的坐标代入即可得出方程.由题意可设直线l 的方程为x =my +3,A (x 1,y 1),B (x 2,y 2),与椭圆的方程联立即可得出根与系数的关系,再利用向量垂直与数量积的关系即求出m .解析:(1)设切点P (x 0,y 0),(x 0>0,y 0>0),则切线的斜率为-x 0y 0, 可得切线的方程为y -y 0=-x 0y 0(x -x 0), 化为x 0x +y 0y =4.令x =0,可得y =4y 0; 令y =0,可得x =4x 0. ∴切线与x 轴正半轴,y 轴正半轴围成一个三角形的面积S =12·4y 0·4x 0=8x 0y 0.∵4=x 20+y 20≥2x 0y 0,当且仅当x 0=y 0=2时取等号.∴S ≥82=4,此时P (2,2).由题意可得2a 2-2b 2=1,e =c a =1+b 2a 2=3,解得a 2=1,b 2=2.故双曲线C 1的方程为x 2-y 22=1. (2)由(1)可知双曲线C 1的焦点(±3,0),即为椭圆C 2的焦点.可设椭圆C 2的方程为x 23+b 21+y 2b 21=1(b 1>0). 把P (2,2)代入可得23+b 21+2b 21=1,解得b 21=3, 因此椭圆C 2的方程为x 26+y 23=1.由题意可知直线l 的斜率为0时不符合条件,故可设直线l 的方程为x =my +3,设A (x 1,y 1),B (x 2,y 2),联立⎩⎪⎨⎪⎧x =my +3,x 2+2y 2=6,化为(m 2+2)y 2+23my -3=0,∴y 1+y 2=-23m 2+m 2,y 1y 2=-32+m 2. ∴x 1+x 2=m (y 1+y 2)+23=43m 2+2, x 1x 2=m 2y 1y 2+3m (y 1+y 2)+3=6-6m 2m 2+2. ∵AP→⊥BP →,∴AP →·BP →=0, 而AP →=(2-x 1,2-y 1),BP →=(2-x 2,2-y 2), ∴x 1x 2-2(x 1+x 2)+y 1y 2-2(y 1+y 2)+4=0, ∴2m 2-26m +46-11=0,解得m =362-1或m =-⎝ ⎛⎭⎪⎫62-1, 因此直线l 的方程为:x -⎝ ⎛⎭⎪⎫362-1y -3=0或x +⎝ ⎛⎭⎪⎫62-1y -3=0. 例 2-2(2015·浙江卷)已知椭圆x 22+y 2=1上两个不同的点A ,B关于直线y =mx +12对称.(1)求实数m 的取值范围;(2)求△AOB 面积的最大值(O 为坐标原点).分析:(1)由已知,可设出直线AB 的方程为y =-1m x +b ,将直线AB 的方程与椭圆方程联立组成方程组,消去y 转化为关于x 的一元二次方程,根据线段AB 的中点在直线y =mx +12上,直线AB 与椭圆有两个不同交点,利用判别式Δ大于0列不等式求解.(2)利用弦长公式和点到直线的距离公式把△AOB 的面积用一个参数表示,再结合式子特点,用配方法求最值.解析:(1)由题意知m ≠0,可设直线AB 的方程为y =-1m x +b .由⎩⎪⎨⎪⎧x 22+y 2=1,y =-1m x +b ,消去y ,得⎝ ⎛⎭⎪⎫12+1m 2x 2-2b m x +b 2-1=0. 因为直线y =-1m x +b 与椭圆x 22+y 2=1有两个不同的交点,所以Δ=-2b 2+2+4m 2>0,①将AB 中点M ⎝ ⎛⎭⎪⎫2mb m 2+2,m 2b m 2+2代入直线方程y =mx +12,解得b =-m 2+22m 2.②由①②得m <-63或m >63.(2)令t =1m ∈⎝ ⎛⎭⎪⎫-62,0∪⎝⎛⎭⎪⎫0,62, 则|AB |=t 2+1·-2t 4+2t 2+32t 2+12,且O 到直线AB 的距离为d =t 2+12t 2+1. 设△AOB 的面积为S (t ),所以S (t )=12|AB |·d =12-2⎝ ⎛⎭⎪⎫t 2-122+2≤22, 当且仅当t 2=12时,等号成立.故△AOB 面积的最大值为22.考点三 圆锥曲线的最值与取值范围问题圆锥曲线的最值与取值范围问题,先建立一个一元或二元的函数关系式.最后一般都用到函数求值域或基本不等式解决问题.综合性很强,要用到很多知识,如斜率计算公式、根与系数的关系、弦长公式、点到直线的距离公式、三角形的面积计算公式、基本不等式的性质等基础知识以及换元法和转化法等等.例 3-1(2014·北京卷)已知椭圆C :x 2+2y 2=4.(1)求椭圆C 的离心率;(2)设O 为原点,若点A 在直线y =2上,点B 在椭圆C 上,且OA ⊥OB ,求线段AB 长度的最小值.分析:(1)椭圆C :x 2+2y 2=4化为标准方程为x 24+y 22=1,求出a ,c ,即可求椭圆C 的离心率. (2)先表示出线段AB 的长度,再利用基本不等式,求出最小值. 解析:(1)椭圆C :x 2+2y 2=4化为标准方程为x 24+y 22=1,∴a =2,b =2,c =2,∴椭圆C 的离心率e =c a =22.(2)设A (t ,2),B (x 0,y 0),则x 0≠0.∵OA ⊥OB ,∴OA→·OB →=0, ∴tx 0+2y 0=0,∴t =-2y 0x 0. ∵x 20+2y 20=4,∴|AB |2=(x 0-t )2+(y 0-2)2=x 202+8x 20+4≥4+4=8, 当且仅当x 202=8x 20,即x 20=4时等号成立. ∴线段AB 长度的最小值为2 2.例 3-2(2015·山东卷)平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,左、右焦点分别是F 1,F 2.以F 1为圆心、以3为半径的圆与以F 2为圆心、以1为半径的圆相交,且交点在椭圆C 上.(1)求椭圆C 的方程;(2)设椭圆E :x 24a 2+y 24b 2=1,P 为椭圆C 上任意一点.过点P 的直线y =kx +m 交椭圆E 于A ,B 两点,射线PO 交椭圆E 于点Q .(ⅰ)求|OQ ||OP |的值;(ⅱ)求△ABQ 面积的最大值.分析:(1)直接利用椭圆的定义得2a =4,则a =2,又c a =32,a 2-c 2=b 2,可得b =1,从而可求出椭圆方程.(2)(ⅰ)利用O 、P 、Q 三点共线及点P 、Q 分别在椭圆C 、E 上的条件建立等式求解;(ⅱ)先求S △OAB 的最大值,再利用①的结论求S △ABQ 的最大值.解析:(1)由题意知2a =4,则a =2, 又c a =32,a 2-c 2=b 2,可得b =1.所以椭圆C 的方程为x 24+y 2=1.(2)由(1)知椭圆E 的方程为x 216+y 24=1.(ⅰ)设P (x 0,y 0),|OQ ||OP |=λ,由题意知Q (-λx 0,-λy 0).因为x 204+y 20=1,又(-λx 0)216+(-λy 0)24=1,即λ24⎝ ⎛⎭⎪⎫x 204+y 20=1, 所以λ=2,即|OQ ||OP |=2.(ⅱ)设A (x 1,y 1),B (x 2,y 2).将y =kx +m 代入椭圆E 的方程,可得(1+4k 2)x 2+8kmx +4m 2-16=0,由Δ>0,可得m 2<4+16k 2.①则有x 1+x 2=-8km 1+4k 2,x 1x 2=4m 2-161+4k 2.所以|x 1-x 2|=416k 2+4-m 21+4k 2. 因为直线y =kx +m 与y 轴交点的坐标为(0,m ),所以△OAB 的面积S =12|m ||x 1-x 2|=216k 2+4-m 2|m |1+4k 2=2(16k 2+4-m 2)m 21+4k 2=2⎝ ⎛⎭⎪⎫4-m 21+4k 2m 21+4k 2. 设m 21+4k 2=t . 将y =kx +m 代入椭圆C 的方程,可得(1+4k 2)x 2+8kmx +4m 2-4=0,②由Δ≥0,可得m 2≤1+4k 2.由①②可知0<t ≤1,因此S =2(4-t )t =2-t 2+4t ,故S ≤2 3.当且仅当t =1,即m 2=1+4k 2时取得最大值2 3.由(ⅰ)知,△ABQ 面积为3S ,所以△ABQ 面积的最大值为6 3.考点四 圆锥曲线的探索性问题圆锥曲线的探索性问题,一般先假设结论是成立的,然后求解或证明.如果在求证过程中得出矛盾,则结论不成立.例 4-1(2015·北京卷)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,点P (0,1)和点A (m ,n )(m ≠0)都在椭圆C 上,直线P A 交x 轴于点M .(1)求椭圆C 的方程,并求点M 的坐标(用m ,n 表示);(2)设O 为原点,点B 与点A 关于x 轴对称,直线PB 交x 轴于点N .问:y 轴上是否存在点Q ,使得∠OQM =∠ONQ ?若存在,求点Q 的坐标;若不存在,说明理由.分析:(1)根据题目条件列出关于a ,b ,c 的方程组并求解,然后进一步确定点M 的坐标.(2)先假设存在这样的点,再将∠OQM =∠ONQ 转化为|OM ||OQ |=|OQ ||ON |求解点的坐标.解析:(1)由题意得⎩⎪⎨⎪⎧b =1,c a =22,a 2=b 2+c 2,解得a 2=2. 故椭圆C 的方程为x 22+y 2=1.设M (x M ,0).因为m ≠0,所以-1<n <1,直线P A 的方程为y -1=n -1m x .所以x M =m 1-n ,即M ⎝ ⎛⎭⎪⎫m 1-n ,0. (2)因为点B 与点A 关于x 轴对称,所以B (m ,-n ).设N (x N ,0),则x N =m 1+n. “存在点Q (0,y Q )使得∠OQM =∠ONQ ”等价于“存在点Q (0,y Q )使得|OM ||OQ |=|OQ ||ON |”,即y Q 满足y 2Q =|x M ||x N |.因为x M =m 1-n ,x N =m 1+n,m 22+n 2=1, 所以y 2Q =|x M ||x N |=m 21-n 2=2. 所以y Q =2或y Q =- 2.故在y 轴上存在点Q ,使得∠OQM =∠ONQ ,且点Q 的坐标为(0,2)或(0,-2).例 4-2)(2015·四川卷)如图,椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率是22,过点P (0,1)的动直线l 与椭圆相交于A ,B 两点.当直线l 平行于x 轴时,直线l 被椭圆E 截得的线段长为2 2.(1)求椭圆E 的方程;(2)在平面直角坐标系xOy 中,是否存在与点P 不同的定点Q ,使得|QA ||QB |=|P A ||PB |恒成立?若存在,求出点Q 的坐标;若不存在,请说明理由.分析:(1)根据已知条件,列方程组求出a ,b ,即得椭圆E 的方程.(2)先考虑特殊情况,探讨出点Q 的坐标,然后再进行一般性证明.解析:(1)由已知,点(2,1)在椭圆E 上,因此⎩⎪⎨⎪⎧2a 2+1b 2=1,a 2-b 2=c 2,c a =22,解得⎩⎪⎨⎪⎧a =2,b = 2. ∴椭圆E 的方程为:x 24+y 22=1.(2)当直线l 与x 轴平行时,设直线l 与椭圆相交于C ,D 两点.如果存在定点Q 满足条件,则有|QC ||QD |=|PC ||PD |=1,即|QC |=|QD |.所以Q 点在y 轴上,可设Q 点的坐标为(0,y 0).当直线l 与x 轴垂直时,设直线l 与椭圆相交M ,N 两点,则M ,N 的坐标分别为(0,2),(0,-2).由|QM ||QN |=|PM ||PN |,有|y 0-2||y 0+2|=2-12+1, 解得y 0=1或y 0=2.所以若存在不同于点P 的定点Q 满足条件,则Q 点坐标只可能为(0,2).下面证明:对任意直线l ,均有|QA ||QB |=|P A ||PB |.当直线l 的斜率不存在时,由上可知,结论成立.当直线l 的斜率存在时,可设直线l 的方程为y =kx +1,A ,B 的坐标分别为(x 1,y 1),(x 2,y 2).联立⎩⎨⎧x 24+y 22=1,y =kx +1,得(2k 2+1)x 2+4kx -2=0.其判别式Δ=(4k )2+8(2k 2+1)>0,所以,x 1+x 2=-4k 2k 2+1,x 1x 2=-22k 2+1. 因此1x 1+1x 2=x 1+x 2x 1x 2=2k .易知,点B 关于y 轴对称的点B ′的坐标为(-x 2,y 2).又k QA =y 1-2x 1=kx 1-1x 1=k -1x 1, k QB ′=y 2-2-x 2=kx 2-1-x 2=-k +1x 2=k -1x 1, 所以k QA =k QB ′,即Q ,A ,B ′三点共线,所以|QA ||QB |=|QA ||QB ′|=|x 1||x 2|=|P A ||PB |. 故存在与P 不同的定点Q (0,2),使得|QA ||QB |=|P A ||PB |恒成立.。
二轮复习解析几何培优点8 隐圆(阿波罗尼斯圆)问题1.已知圆O :x 2+y 2=1,圆M :(x -a )2+(y -2)2=2.若圆M 上存在点P ,过点P 作圆O 的两条切线,切点为A ,B ,使得P A ⊥PB ,则实数a 的取值范围为( )A .[0,2]B .[-52,1]C .[-2,2]D .[-2,2]2.已知点A (-5,-5)在动直线mx +ny -m -3n =0上的射影为点B ,若点C (5,-1),那么|BC |的最大值为( )A .16B .14C .12D .103.已知O 为坐标原点,点A (cos α,sin α),B ⎝⎛⎭⎫cos ⎝⎛⎭⎫α+π3,sin ⎝⎛⎭⎫α+π3,以OA ,OB 为邻边作平行四边形AOBP ,Q (-2,0),则∠PQO 的最大值为( )A.π6B.π4C.π3D.π24.已知△ABC 是等边三角形,E ,F 分别是AB 和AC 的中点,P 是△ABC 边上一动点,则满足PE →·PF →=BE →·CF →的点P 的个数为( )A .1B .2C .3D .45.(多选)已知AB 为圆O :x 2+y 2=49的弦,且点M (4,3)为AB 的中点,点C 为平面内一动点,若AC 2+BC 2=66,则( )A .点C 构成的图象是一条直线B .点C 构成的图象是一个圆C .OC 的最小值为2D .OC 的最小值为36.(多选)(2022·福州模拟)已知A (-3,0),B (3,0),动点C 满足|CA |=2|CB |,记C 的轨迹为Γ.过A 的直线与Γ交于P ,Q 两点,直线BP 与Γ的另一个交点为M ,则( )A .Q ,M 关于x 轴对称B .△P AB 的面积的最大值为6 3C .当∠PMQ =45°时,|PQ |=4 2D .直线AC 的斜率的范围为[-3,3]7.已知等边△ABC 的边长为2,点P 在线段AC 上,若满足P A →·PB →-2λ+1=0的点P 恰有两个,则实数λ的取值范围是______________.8.已知⊙M :x 2+y 2-2x -2y -2=0,直线l :2x +y +2=0,P 为l 上的动点,过点P 作⊙M 的切线P A ,PB ,切点为A ,B ,当|PM |·|AB |取得最小值时,直线AB 的方程为______________.。
二轮复习——解析几何一.专题内容分析解析几何:解析几何综合问题(椭圆或抛物线)及基本解答策略+圆锥曲线的定义和几何性质+直线与圆+极坐标、参数方程+线性规划二.解答策略与核心方法、核心思想 圆锥曲线综合问题的解答策略: 核心量的选择:常见的几何关系与几何特征的代数化:①线段的中点:坐标公式②线段的长:弦长公式;解三角形③三角形面积: 21底×高,正弦定理面积公式④夹角:向量夹角;两角差正切;余弦定理;正弦定理面积公式⑤面积之比,线段之比:面积比转化为线段比,线段比转化为坐标差之比 ⑥三点共线:利用向量或相似转化为坐标差之比 ⑦垂直平分:两直线垂直的条件及中点坐标公式 ⑧点关于直线的对称,点关于点,直线关于直线对称 ⑨直线与圆的位置关系⑩等腰三角形,平行四边形,菱形,矩形,正方形,圆等图形的特征代数运算:设参、消参重视基本解题思路的归纳与整理但不要模式化,学会把不同类型的几何问题转化成代数形式.三.典型例题分析1.(海淀区2017.4)已知椭圆C :22221(0)x y a b a b+=>>的左、右顶点分别为A ,B ,且||4AB =,离心率为12. (Ⅰ)求椭圆C 的方程;(Ⅱ)设点(4,0)Q , 若点P 在直线4x =上,直线BP 边形APQM 为梯形?若存在,求出点P解法1:(Ⅰ)椭圆C 的方程为22143x y +=.(Ⅱ)假设存在点,P 使得四边形APQM 为梯形.由题可知,显然,AM PQ 不平行,所以AP 与MQ AP MQ k k =.设点0(4,)P y ,11(,)M x y ,06AP y k =,114MQ y k x =-,∴01164y y x =-① ∴直线PB 方程为0(2)2yy x =-, 由点M 在直线PB 上,则011(2)2y y x =-② ①②联立,0101(2)264y x y x -=-,显然00y ≠,可解得1x =又由点M 在椭圆上,211143y +=,所以132y =±,即3(1,)2M ±,将其代入①,解得03y =±,∴(4,3)P ±.解法2:(Ⅰ)椭圆C 的方程为22143x y +=.(Ⅱ)假设存在点,P 使得四边形APQM 为梯形.由题可知,显然,AM PQ 不平行,所以AP 与MQ 平行, AP MQ k k =, 显然直线AP 斜率存在,设直线AP 方程为(2)y k x =+.由(2)4y k x x =+⎧⎨=⎩,所以6y k =,所以(4,6)P k ,又(2,0)B ,所以632PB k k k ==.∴直线PB 方程为3(2)y k x =-,由223(2)34120y k x x y =-⎧⎨+-=⎩,消y ,得2222(121)484840k x k x k +-+-=.又(2,0)B , 所以212482121k x k +=+,即212242121k x k -=+,∴112123(2)121ky k x k -=-=+.∴22224212(,)121121k k M k k --++.由APMQ k k =可得22212612124264121k k k k k -+=--+, 解得12k =±, ∴3(1,)2M ±,(4,3)P ±,解法3:(Ⅰ)椭圆C 的方程为22143x y +=.(Ⅱ)假设存在点,P 使得四边形APQM 为梯形.由题可知,显然,AM PQ 不平行,所以AP 与MQ 平行, AP MQ k k = . 显然直线MB 存在斜率且斜率不为0,∴设直线MB 方程为2x ty =+(0)t ≠.24x ty x =+⎧⎨=⎩由,得2(4,)P t .∴2163APt k t ==,由22234120x ty x y =+⎧⎨+-=⎩得22(34)120t y ty ++=, 设11(,)M x y ,又因为(2,0)B ,∴121234ty t -=+, ∴211268234t x ty t -+=+=+,即2226812(,)3434t tM t t -+-++.由APMQ k k =,所以22212134683434tt t t t -+=-+-+,解得23t =±解法4:假设存在点,P 使得四边形APQM 为梯形. 由题可知,显然,AM PQ 不平行,所以AP 与MQ 平行, 所以||1||2BM BP =. 过点M 作MH AB ⊥于H ,则有||||BH BQ ∴||1BH =,∴(1,0)H ,即11x =,代入椭圆方程,求得∴(4,3)P ±.2.(东城区2016.4理科)已知抛物线2:2(C y px p =>x 轴)过点F 且与抛物线C 交于,A B 两点,直线OA 与OB 的斜率之积为p -.(Ⅰ)求抛物线C 的方程;(Ⅱ)若M 为线段AB 的中点,射线OM 交抛物线C 于点D ,求证:2ODOM>. 备注:以抛物线为背景,核心变量的选择(直线方程的不同形式);几何特征翻译代数关系(先转化再翻译)解:(Ⅰ)因为直线AB 过点F 且与抛物线C 交于,A B 两点,(,0)2PF , 设11(,)A x y ,22(,)B x y ,直线AB (不垂直x 轴)的方程可设为()(0)2py k x k =-≠. 所以2112(0)y px p =>,2222y px =.因为直线OA 与OB 的斜率之积为p -, 所以1212y y p x x =-. 所以221212()y y p x x =,得 124x x =. ……4分 由2(),22,p y k x y px ⎧=-⎪⎨⎪=⎩ 消y 得22222(2)04k p k x k p p x -++= 其中 22222(2)0k p p k p k =+->V所以2124p x x =, 21222k P P x x k ++=. 所以4p =,抛物线2:8C y x =. ……8分 (Ⅱ)设0033(,),(,)M x y P x y ,因为M 为线段AB 的中点,所以2201222122(2)()22k P P k x x x k k ++=+==,004(2)y k x k=-=. 所以直线OD 的斜率为02022op y kk x k ==+. 直线OD 的方程为222op ky k x x k ==+代入抛物线2:8C y x =的方程, 得22322(2)k x k +=.所以23(2)x k x =+.因为 20k >, 所以230(2)2OD xk OM x ==+>. ……13分 3.(东城区2018.5文科)已知椭圆2222:1(0)x y C a b a b+=>>的右焦点为(1,0)F ,离心率为12.(Ⅰ)求椭圆C 的方程;(Ⅱ),A B 是椭圆C 在y 轴右侧部分上的两个动点,若原点O 到直线AB 的距离为3,证明:△ABF的周长为定值.解:(Ⅰ)椭圆C 的方程为22143x y +=.(Ⅱ)①当AB 垂直于x 轴时,可得 4AF BF AB ++=. ②当AB 不垂直于x 轴时,设AB 的方程为m kx y +=. 因为原点O 到直线AB 的距离为3,所以231k=+,即223(1)m k =+.由22,1,43y kx m x y =+⎧⎪⎨+=⎪⎩得222(34)84120k x kmx m +++-=,即222(34)8120k x kmx k +++=.设11(,)A x y ,22(,)B x y ,则122834km x x k -+=+,21221234k x x k=+. 所以222121212||1||1()4AB k x x k x x x x =+-=++-222228121()43434km k k k-=+-⨯++2222226448(34)(34)3k m k k k -+=⨯+ 33=⨯24||||34m k k =+. 因为A ,B 在y 轴右侧,所以0mk <,所以24||34mkAB k=-+. 22222111122111(1)(1)3(1)41124(2)42.x AF x y x x x x =-+=-+-=-+=-又所以11||22AF x =-,同理21||22BF x =-. 所以121||||4()2AF BF x x +=-+221844()423434km kmk k -=-=+++. 所以2244||||||443434km kmAF BF AB k k++=+-=++. 综上,△ABF 的周长等于椭圆C 的长轴长4. 解法2:作OH AB ⊥于H ,所以||3OH =,所以2222222211111||||||33(1)344x x AH OA OH x y x =-=+-=+--=, 即1||2x AH =, 同理2|B |2x H =, 所以121||||||()2AB AH BH x x =+=+, 又11||22AF x =-,同理21||22BF x =-. 所以.1212111||||||22()4222AF BF AB x x x x ++=-+-++= 综上,△ABF 的周长等于椭圆C 的长轴长4.解析几何选择填空题练习:1.(2018年全国3卷)设12,F F 是双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点,O 是原点.过2F作C 一条渐近线的垂线,垂足为P .若1||6|PF OP ,则C 的离心率为( ) 5232 分析:由题可知22||,||PF b OF c == ,所以||PO a =, 在2Rt POF ∆中,222||cos ||PF bPF O OF c∠== , 又在12PF F ∆中,2222121212|PF ||FF |||cos 22|PF ||FF |PF PF O +-∠=⋅,2224(6)b c a +-=,所以2224(6)b b c a c +-=所以223c a = ,所以离心率3ce a==.故选C. 解法二:过左焦点作渐近线的垂线,垂足为Q ,利用直角三角形勾股定理建立关系,可求。
2. 如图,过抛物线y 2=2px (p >0)的焦点F 的直线交抛物线于点A ,B , 交其准线l 于点C ,若BC =2BF ,且AF =3,则此抛物线的方程为_____.分析:∠BCB 1=30°, ∴∠AFx =60°.则△AA 1F 为等边三角形, 过F 作FF 1⊥AA 1于F 1,则F 1为AA 1的中点,设l 交x 轴于K ,则KF =A 1F 1=12AA 1=12AF ,即p =32, ∴抛物线方程为y 2=3x .3. (2018年北京高考)已知椭圆2222:1(0)x y M a b a b +=>>,双曲线2222:1x y N m n-=.若双曲线N 的两条渐近线与椭圆M 的四个交点及椭圆M 的两个焦点恰为一个正六边形的顶点,则椭圆M 的离心率为 ;双曲线N 的离心率为 .解析:连接BF ,根据椭圆的定义可知,||2BE c =,||||2BF EF a +=. 由图中ABCDEF 为正六边形,得60FEB ∠=o . 所以,在直角三角形BFE 中,||EF c =,||3BF c =. 故椭圆的离心率为||||||31(13)cBE BF EF =++.由题可知,双曲线的一条渐近线的方程为3y x =. 所以3ba=.2=.4.在极坐标系Ox 中,方程2sin ρθ=表示的圆为 D(A )(B )(C )(D )5.直线l的参数方程为=,1+3x y tìïïíï=ïî(t 为参数),则l 的倾斜角大小为C A .6π B . 3πC . 32πD .65π6.已知圆C 的参数方程为cos ,sin 2,x y θθ=⎧⎨=+⎩(θ为参数),以原点为极点,x 轴的正半轴为极轴建立极坐标系,直线的极坐标方程为sin cos 1ρθρθ+=,则直线截圆C 所得的弦长是_____________7.设集合210(,)|00x y P x y x m y m ⎧-+>⎫⎧⎪⎪⎪=+<⎨⎨⎬⎪⎪⎪->⎩⎩⎭≠∅, 集合{(,)|22}Q x y x y =-<,若P Q ⊆,则实数m 的取值范围是(A )1(,)3-∞(B )2(,)3-+∞(C )1[,)332-(D )[,)32-+∞答案.提示:由图可知,不等式组所表示的区域非空当且仅当点(m m ,-)位于直线012=+-y x 的下方,即()12+-<m m ,由此解得31<m 。