小升初毕业班找规律专项练习题.pdf
- 格式:pdf
- 大小:197.66 KB
- 文档页数:3
小升初:找规律专题练习解题策略:(1)观察,实验,归纳,猜想和验证的综合考察;(2)以退为进的解题过程;(3)是抽象思维能力和计算能力,形象思维能力等的综合考察;(4)积累经验也是非常必要的。
以退为进:数字类找规律例1已知数列1,2,4,8,16,32……,求这个数列中第10项是多少。
练习:1、已知数列3,9,27,81……,求这个数列的第7项是多少?例2.观察下面左、右两列等式的关系(先计算)计算:例3、求和:例4、 的积中有多少个奇数字,多少个偶数字?思路分析:如此大的因数,不可能按一般方法列竖式去乘,一定存在着某些规律,使问题得到简化。
例5、 计算:变式练习:计算(1)751531311⨯+⨯+⨯+……+201120091⨯(2)1、观察下列算式:23451=+⨯ ,24462=+⨯,25473=+⨯,24846⨯+=,请你在观察规律之后并用你得到的规律填空:250___________=+⨯, 第n 个式子呢? ___________________2、观察下列顺序排列的等式:9×0+1=19×1+2=119×2+3=219×3+4=319×4+5=41……猜想:第n 个等式(n 为正整数)应为 .3、一个两位数的个位数是a ,十位数字是b ,请用代数式表示这个两位数是__________________。
如何表示baba 呢?4、观察下列各式:31=3,32=9,33=27,34=81,35=243,36=729…你能从中发现底数为3的幂的个位数有什么规律吗?根据你发现的规律回答:32004的个位数字是 .5、观察下列各式,你会发现什么规律?3×5=15,而15=241-。
5×7=35,而35=261-……11×13=143,而143=2121-将你猜想到的规律用只含一个字母的式子表示出来:__________6、问题:你能比较20052006和20062005的大小吗?7、一群整数朋友按照一定的规律排成一排,可排在□位置的数跑掉了,请帮它们把跑掉的朋友找回来。
六年级数学小升初找规律练习题目2345形。
照此规律闪烁,下一个呈现出来的图形是8、如下图是小明用火柴搭的1条、2条、3条“金鱼”……,则搭n 条“金鱼”需要火柴 根。
……9、如图,在图1中,互不重叠的三角形共有4个,在图2中,互不重叠的三角形共有7个,在图3中,互不重叠的三角形共有10个,……,则在第n 个图形中,互不重叠的三角形共有个(用含n 的代数式表示)。
A B C D1条2条3条610、小的黑、白两种颜色的棋子摆设如下图所示的正方形图案,则第n 个图案需要用白色棋子 ( )枚(用含有n 的代数式表示)11、右图是一回形图,其回形通道的宽和OB 的长均为1, 回形线与射线OA 交于,,,321A A A ….若从O 点到1A 点的回形线为第1圈(长为7),从1A 点到2A 点的回形线为第2圈,…,依此类推.则第10圈的长为 。
7三层二杈树二层二杈树一层二杈树12、在计算机程序中,二杈树是一种表示数据结层二杈树的结点总数是3,是7七层二杈树的结点总数是 。
13、瑞士中学教师巴尔末成功地从光谱数据、591216⋯⋯32362125、、中得到巴尔末公式,从而打开了光谱奥妙的大门。
请你按这种规律写出第七个数据是_________。
14、观察下列数表:1 2 3 4 … 第一行 2 3 4 5 … 第二行 3 4 5 6 … 第三行84 5 6 7 … 第四行 第 第 第 第 一 二 三 四 列 列 列 列根据表中所反映的规律,猜想第6行与第6列的交叉点上的数应为______,第n 行(n 为正整数)与第n 列的交叉点上的数应为_________。
15、在数学活动中,小明为了求2341111122222n++++⋅⋅⋅+的值(结果用n 表示),设计如图2-11-1所示的几何图形。
(12341111122222n ++++⋅⋅⋅+的值为(2)请你利用图2-11-2,再设计一个能求2341111122222n ++++⋅⋅⋅+的值的几何图形。
2023-2024学年人教版六年级下册数学小升初专题训练:探索规律一、单选题1.把一些正方形纸片按规律拼成如下的图案,第( )个图案中恰好有365个纸片。
A.73B.81C.91D.932.正方形图1作如下操作:第1次:分别连接各边中点如图2,得到5个正方形;第2次:将图2左上角正方形按上述方法再分割如图3,得到9个正方形,……,以此类推,根据以上操作,若要得到53个正方形,需要操作的次数是( )A.12B.13C.14D.153.按如图的方法堆放小球。
第15堆有( )个小球。
A.95B.105C.110D.1204.用边长是1厘米的等腰三角形拼成等腰梯形如图:……按照这样的规律,第n个等腰梯形是由( )个这样的三角形拼成的。
A.2n B.3n C.2n+1D.2n+35.把一些规格相同的杯子叠起来(如图),4个杯子叠起来高20厘米,6个杯子叠起来高26厘米。
n个杯子叠起来的高度可以用下面( )的关系式来表示。
A.6n﹣10B.3n+11C.6n﹣4D.3n+86.用小棒摆六边形,按这个规律摆4个六边形需要( )根小棒。
A.23B.22C.21D.20二、判断题7.如图所示:,摆9个这样的三角形需21根小棒。
( )8.按0、1、3、6、10、15……的规律,下一个数应该是21。
( )9.用火柴棒按下图所示搭正方形,搭一个正方形用4根火柴棒,搭n个正方形用4n根火柴棒。
( )10.因为1÷A=0.0909…;2÷A=0.1818…;3÷A=027272…;所以4÷A=0.3636…。
( )11.根据33×4=132,333×4=1332,3333×4=13332,可知33333×4=133332。
( )12.按□□○▲□□○▲□□○▲……的规律排列,第35个是▲。
( )三、填空题13.观察图形的规律,第8个图形一共由 个小三角形组成。
小升初第二:找律解策略:(1)察,,,猜想和的合考察;(2)以退的解程;(3)是抽象思能力和算能力,形象思能力等的合考察;(4)累也是非常必要的。
以退:数字找律1、观察下列算式: 1 5 4 32, 2 6 4 42, 3 7 4 52, 4 8 4 62,请你在观察规律之后并用你得到的规律填空:___ ___ _____ 50 2 , 第 n 个式子呢 ?___________________2、用算器算下列各式,并将果填写在横上。
(回家独立完成)①1×7×15873=② 2×7×15873=③3×7×15873=④ 4×7×15873=你了什么律?把你的律用的言写出来:3、察下列序排列的等式: 9×0+1=19×1+2=119×2+3=219×3+4=319×4+5=41⋯⋯猜想:第 n 个等式 (n 正整数 ) .4、一个两位数的个位数是a,十位数字是 b,用代数式表示个两位数是__________________。
如何表示 baba 呢?推广之。
5、察下列各式: 3 1 =3,3 2 =9,3 3 =27,3 4 =81, 3 5 =243,3 6 =729⋯你能从中底数 3 的的个位数有什么律?根据你的律回答: 3 2004的个位数字是.6、察下列各式,你会什么律?3×5=15,而 15= 421。
5×7=35,而 35=62 1⋯⋯11×13= 143,而 143= 1221将你猜想到的律用只含一个字母的式子表示出来:__________7、:你能比20052006和 20062005的大小?以退:了解决个,我先把它抽象成数学,写出它的一般形式,即比 n n+1和 (n+1)n的大小( n 正整数) ,我从 n=1,n=2,n=3 ⋯⋯些的情况入手,从中律,,猜出。
小升初数学重难点突破——探索规律问题专项1:积、商、分数的变化规律1.两个数相乘,一个因数扩大到原来的4倍,另一个因数不变,积( );两个数相乘,一个因数增加它的4倍,另一个因数缩小到原来的15,积( )。
2.两个数相除,被除数不变,除数扩大到原来的2倍,商( );一个比,它的前项扩大到原来的3倍,后项不变,比值( );一个分数,分子扩大到原来的n 倍,要使分数值不变,分母( )。
专项2:小数点的移动引起的变化规律3.一个小数,它的小数点向右移动两位后得到的数比原来大2.97,这个小数是( )。
4.一个小数,它的小数点向左移动一位后得到的数与原数的和是3.85,这个小数是( )。
专项3:一列数中的规律5.根据规律在( )里填上合适的数。
(1)4,7,10,13,( ),( ),…(2)2,6,18,( ),( ),…(3)1,4,9,16,( ),( ),…6.一列数:3,5,7,11,13,15,17,19。
(1)如果其中缺少一个数,那么这个数是几?应补在何处?(2)如果其中多了一个数,那么这个数是几?为什么?专项4:探索算式的规律7.观察下面一组算式的前三个,直接写出后三个算式的得数。
21×9=189321×9=28894321×9=3888954321×9=654321×9=7654321×9=8.根据发现的规律填空。
15×11=16523×11=25347×11=51766×11=726规律:__________________________________________________ _______________________________________________________ 25×11=()33×11=()56×11=()89×11=()专项5:循环的规律9.把37化成小数,小数点后面第200位的数字是( )。
小升初数学--规律专题1、有A、B、C、D,4张透明胶片,请你根据字母和图形关系将第四幅图补充完整.2、如图,每个图案都是由若干个棋子摆成,依此规律,第100个图案中棋子的总个数是( )。
3、一列数1,2,2,3,3,3,4,4,4,4,……中的第35个数为( )。
4、用同样大小的黑色棋子按如图所示的方式摆图形,按照这样的规律摆下去,则第2010个图形需棋子( )枚。
5、用火柴棒连续摆这个图形,摆一个这样的图形需要4根火柴棒,如果像这样一直摆下去……连续排20个图形需要( )根火柴棒,用100根火柴棒可以摆成( )个这样的图形。
6、你喜欢吃拉面吗?拉面馆的师傅,用一根很粗的面条,把两头捏合在一起拉伸,再捏合,反复几次,就把这根很粗的面条拉成许多细的面条,如下面的草图所示:这样捏合到第( )次后可拉出128根细面条。
7、一串数排成一行,它们的规律是:头两个数都是1,从第三个数开始,每一个数都是它前面两个数之和,则这串数的前2008个数中有( )个偶数。
8、我国将于2008年主办第29届奥运会。
按每四年举行一次,则第39届奥运会将在()年举行。
9、张老师把72张号码是1-72的卡片,依次发给A、B、C、D四个同学,第68号卡片发给了同学( )。
10、观察下面一列数的规律,在括号内填数。
1、2、4、7、11、()、22。
11、观察上面图形规律:当n=( )时,图形中“口"的个数是“。
”的个数的3倍。
12、观察按下顺序排列的等式:9x0+1=01,9x1+2=11,9x2+3=21 ,9x3+4=31,9x4+5=41按以上各式成立的规律,写出第12个等式是:( )。
13、有一列数1,1,2,3,5,8,13,21,34,55......,从第三个数开始,每个数都是它前两个数之和。
那么在前1000个数中,有( )个奇数。
14、找规律,下图空缺的数是( )。
15、自然数按一定的规律排列如下:从排列规律可知,99排在第( )行第( )列。
2024年人教版六年级下册数学小升初专题训练:探索规律一、单选题1.1、4、9、a 、25、36……在这组数中a 是( )。
A .18B .16C .142.按下面的规律,第15个图形一共有( )个 • 。
A .60B .100C .2253.将小正方体按下图方式摆放在地上,接着往下摆,第6组小正方体有( )个面露在外面。
A .23B .25C .274.按照1,12,14,18,☆……的规律,☆代表的数是( )。
A .110B .116C .1125.根据999×2+2=2000,999×3+3=3000,999×4+4=4000,可知999×5+5=( )。
A .5000B .6000C .70006.如图,……如果有n 个三角形,需要( )根小棒。
A .3B .2n+1C .2n+2二、填空题7.,摆7个六边形需要 根小棒,摆n 个六边形需要 根小棒。
8.按规律填一填,24,32,40, ,56, , 。
9.已知9×0.7=6.3,99×0.77=76.23,999×0.777=776.223,9999 ×0.7777=7776.2223,那么99999×0.77777= 。
10.“37”是个有趣的数,你瞧:37×3=111,37×6=222。
写出下面两题的结果:37×9= ,37×15= 。
11.唐唐在桌面上用小正方体按下图方式摆放。
摆1个小正方体有5个面露在外面,摆2个小正方体有8个面露在外面……摆n 个小正方体有 个面露在外面。
12.林林用火柴棒在桌面上摆图形(如下图),已经摆了3个正方形。
照这样继续摆下去,要摆出6个正方形,一共需要 根火柴棒。
13.已知:2+ 23=22×23,3+ 38=32×38,4+ 415=42×415,5+ 524=52×524,按照这个规律,下一个式子是 。
小升初小学数学《找规律》大题量练习总复习试卷练习题一一、选择题1.按照下面3幅图的规律继续画图,则第12幅图形长()厘米。
A.48B.52C.92D.962.用同一块木板搭斜坡,当斜坡与地面成()时,物体滚得远一些。
A.90°B.60°C.45°3.礼堂里50名同学排成一列,按“1”“2”“3”循环报数,最后一名同学报“()”。
A.1B.2C.34.甲乙两个秋千的绳长分别是3米、4米。
王燕在这两个秋千上各荡了1分钟,他在这两个秋千上荡的次数是()。
A.一样多B.甲多C.乙多5.如图,横、竖各有12个方格,每个方格都有1个数。
已知横行上任意3个相邻数之和为20,竖列上任意3个相邻数之和为21。
图中已经填入3、5、8和x四个数,那么x代表的数是()。
A.4B.5C.6D.76.接着摆什么?。
()A.长方体B.圆柱体C.正方体7.一个弹力球从24米的高处落下,如果每次弹起的高度总是它落下高度的一半,第3次弹起()米。
A.3B.6C.128.已知1÷A=0.09,2÷A=0.18,3÷A=0.27,4÷A=0.36,那么()÷A=0.63。
A.8B.7C.6D.59.有一部80集的电视剧,每周的周一到周五,每日播1集,周六、周日每日播2集。
已知第一集是周二播出,最后一集将在周()播出。
A.一B.六C.日D.二10.4.3050505……小数部分的第82位数字是()。
A.4B.3C.0D.511.自然数按一定的规律在下表中排列,从排列规律可知,99排在()。
A.第2行第7列B.第2行第8列C.第2行第9列D.第2行第10列12.接着摆什么?。
()A.长方体B.圆柱体C.正方体13.照这样摆下去,第6幅点子图有()个点子。
A.12B.13C.14D.1514.有两个秋千,小红分别在两个秋千上荡了1分钟。
小红1分钟内荡秋千的次数与()有关。
人教版六年级下册数学小升初分班考必刷专题:探索规律一、单选题1.,遮住了()颗黑珠子。
A.3B.4C.5D.62.观察下面的点阵图形,根据圆点的变化,探究其规律,则第8个图形中圆点的个数为()。
A.25B.26C.27D.293.用九根同样长的小棒,最多可以拼成()个正三角形.A.3B.4C.5D.64.观察下列各图,它们是按一定规律排列的。
根据规律,第n个图形中五角星的个数是()。
A.4n B.4n+1C.3n+1D.3n+45.用火柴棒按照如图的方法摆正方形(每条边摆1根火柴棒),照这样摆8个正方形共需要()根火柴棒。
A.19B.22C.24D.256.古希腊的数学家毕达哥拉斯在没有纸笔的时代,用沙子在沙滩上画呀画,发现了数与形的规律。
照下面的图形排列规律,第12组图形里共有()个正方形的顶点。
A.48B.37C.24D.36二、填空题7.如下图是用火柴棒摆出的一系列三角形图案,按这种方式摆下去,当每边上摆根火柴时,需要的火柴棒总数是63根。
8.小明用□和■两种小正方形按下图所示的规律摆正方形,小明发现在他摆的一个小正方形中,■比□多9个。
小明摆这个正方形,用了 个■。
9.有一串数:11,12,22,12,13,23,33,23,23,14,24,24,34,44,34,24,14……这串数从左往右第 个数是1010。
10.贝贝用小棒按照下图的方式摆图形,摆1个八角形用8根小棒,摆2个八边形需要15根小棒,摆4个八边形需要 根小棒,……摆a 个八边形需要 根小棒。
11.用若干个小正方体摆成下面的几何体,第⑤组有 个小正方体。
12.1+3+5的结果正好是边长3的正方形中小方格的个数,9+11+13+15的结果可以看成是边长8的正方形减去边长 的正方形后剩下小方格的个数。
13.如下图所示,第一组图形由4个小正方形组成,观察图形的变化规律,第5组图形一共有个小正方形,第 组图形有28个小正方形。
14.悦悦按这样的顺序摆三角形,如果摆60个三角形,一共要用 根小棒。