平行四边形单元测试卷
- 格式:doc
- 大小:296.50 KB
- 文档页数:4
八年级数学下册《平行四边形》单元测试卷(附答案)一.选择题(共10小题,满分40分)1.如图,在▱ABCD中,DE平分∠ADC,AD=8,BE=3,则CD=()A.4B.5C.6D.72.如图,在平行四边形ABCD中,AC、BD相交于点O,∠ODA=90°,AC=10cm,BD=6cm,则BC的长为()A.4cm B.5cm C.6cm D.8cm3.下面关于平行四边形的说法中,不正确的是()A.对角线互相平分的四边形是平行四边形B.有一组对边平行,一组对角相等的四边形是平行四边形C.有一组对边相等,一组对角相等的四边形是平行四边形D.有两组对角相等的四边形是平行四边形4.如图,在▱ABCD中,EF∥AD,HN∥AB,则图中的平行四边形(不包括四边形ABCD)的个数共有()A.9个B.8个C.6个D.4个5.如图,▱ABCD中,CE平分∠BCD,交AB于点E,AE=3,BE=5,DE=4,则CE的长为()A.B.C.D.6.如图,在▱ABCD中,对角线AC,BD相交于点O,OE⊥BD交AD于点E,连接BE,若▱ABCD的周长为30,则△ABE的周长为()A.30B.26C.20D.157.如图,平行四边形ABCD的周长为16,AC、BD相交于点O,OE⊥AC交AD于E,则△DCE的周长为()A.4B.6C.8D.108.如图,将▱DEBF的对角线EF向两端延长,分别至点A和点C,且使AE=CF,连接AB,BC,AD,CD.求证:四边形ABCD为平行四边形.以下是证明过程,其顺序已被打乱,①∴四边形ABCD为平行四边形;②∵四边形DEBF为平行四边形,∴OD=OB,OE=OF;③连接BD,交AC于点O;④又∵AE=CF,∴AE+OE=CF+OF,即OA=OC.正确的证明步骤是()A.①②③④B.③④②①C.③②④①D.④③②①9.如图,在▱ABCD中,点M,N分别是AD、BC的中点,点O是CM,DN的交点,直线AB分别与CM,DN的延长线交于点P、Q.若▱ABCD的面积为192,则△POQ的面积为()A.72B.144C.208D.21610.如图,平行四边形ABCD的对角线AC、BD相交于点O,AE平分∠BAD,分别交BC、BD于点E、P,连接OE,∠ADC=60°,,则下列结论:①∠CAD=30°②③S平行四边形ABCD=AB•AC④,正确的个数是()A.1B.2C.3D.4二.填空题(共8小题,满分32分)11.如图,已知▱ABCD中,AD⊥BD,AC=10,AD=4,则BD的长是.12.下列条件能判定四边形ABCD是平行四边形的是.A.AB∥CD,AD∥BC B.AD=BC,AB=CDC.AB∥CD,AD=BC D.∠A=∠C,∠B=∠D13.如图,平行四边形ABCD中,对角线AC、BD相交于点O,若AB=2,BC=3,∠ABC=60°,则图中阴影部分的面积是.14.如图,平行四边形ABCD的顶点A,B,C的位置用数对分别表示为(4,6),(1,3),(5,3),则顶点D的位置用数对表示为.15.如图,▱ABCD的对角线相交于点O,且AB=5,△OCD的周长为23,则▱ABCD的两条对角线长的和.16.如图,在▱ABCD中,AB=5,BC=8,∠ABC和∠BCD的角平分线分别交AD于点E、F,若BE=6,则CF=.17.如图,在平行四边形ABCD中,BD是对角线,E,F分别是边AD,BC上不与端点重合的两点,连接EF,下列条件中使得四边形BFDE是平行四边形的是.(多选)A.AE=CFB.EF经过BD的中点C.BE∥DFD.EF⊥AD18.在如图的网格中,以格点A、B、C、D、E、F中的4个点为顶点,你能画出平行四边形的个数为个.三.解答题(共6小题,满分48分)19.如图,在▱ABCD中,AE平分∠BAD交BD于点E,交BC于点M,CF平分∠BCD交BD于点F.(1)求证:AE=CF;(2)若∠ABC=70°,求∠AMB的度数.20.在▱ABCD中,对角线AC⊥AB,BE平分∠ABC交AD于点E,交AC于点F.(1)求证:AE=AB;(2)若AB=3,BC=5,求AF的长.21.如图,在平行四边形ABCD中,点F是AD中点,连接CF并延长交BA的延长线于点E.(1)求证:AB=AE.(2)若BC=2AE,∠E=31°,求∠DAB的度数.22.如图,点B、C、E、F在同一直线上,BE=CF,AC⊥BC于点C,DF⊥EF于点F,AC=DF.求证:(1)△ABC≌△DEF;(2)四边形ABED是平行四边形.23.如图,在等边△ABC中,D是BC的中点,以AD为边向左侧作等边△ADE,边ED与AB交于点G.(1)求∠CAE的度数;(2)取AB的中点F,连接CF,EF,求证:四边形CDEF是平行四边形.24.在▱ABCD中,点O是对角线BD的中点,点E在边BC上,EO的延长线与边AD交于点F,连接BF、DE如图1.(1)求证:四边形BEDF是平行四边形;(2)若DE=DC,∠CBD=45°,过点C作DE的垂线,与DE、BD、BF分别交于点G、H、P如图2.①当CD=6.CE=4时,求BE的长;②求证:CD=CH.参考答案与解析一.选择题(共10小题,满分40分)1.解:在▱ABCD中,AD=8;∴BC=AD=8,AD∥BC;∴CE=BC﹣BE=8﹣3=5,∠ADE=∠CED;∵DE平分∠ADC;∴∠ADE=∠CDE;∴∠CDE=∠CED;∴CD=CE=5;故选:B.2.解:∵四边形ABCD是平行四边形,AC=10cm,BD=6cm;∴OA=OC=AC=5(cm),OB=OD=BD=3(cm);∵∠ODA=90°;∴AD===4(cm);∴BC=AD=4(cm);故选:A.3.解:A、∵对角线互相平分的四边形是平行四边形;∴选项A不符合题意;B、∵有一组对边平行,一组对角相等的四边形是平行四边形;∴选项B不符合题意;C、∵有一组对边相等,一组对角相等的四边形不一定是平行四边形;∴选项C符合题意;D、∵有两组对角相等的四边形是平行四边形;∴选项D不符合题意;故选:C.4.解:设EF与NH交于点O;∵在▱ABCD中,EF∥AD,HN∥AB;∴AD∥EF∥BC,AB∥NH∥CD;则图中的四边BEON、DFOH、DHNC、BEFC、BAHN、AEOH、AEFD、ONCF都是平行四边形,共8个.故选:B.5.解:∵AE=3,BE=5;∴AB=8;∵四边形ABCD是平行四边形;∴CD=AB=8,AB∥CD,AD=BC;∴∠DCE=∠CEB;∵CE平分∠BCD;∴∠DCE=∠BCE;∴∠BCE=∠BEC;∴BC=BE=5=AD;∵AE2+DE2=9+16=25,AD2=25;∴AE2+DE2=AD2;∴∠AED=90°;∵DC∥CD;∴∠CDE=90°;在△DCE中,由勾股定理可得:CE===4;故选:A.6.解:∵四边形ABCD是平行四边形;∴AB=CD,AD=BC,OB=OD;又∵OE⊥BD;∴OE是线段BD的中垂线;∴BE=DE;∴AE+ED=AE+BE;∵▱ABCD的周长为30;∴AB+AD=15;∴△ABE的周长=AB+AE+BE=AB+AD=15;故选:D.7.解:∵平行四边形ABCD;∴AD=BC,AB=CD,OA=OC;∵EO⊥AC;∴AE=EC;∵AB+BC+CD+AD=16;∴AD+DC=8;∴△DCE的周长是:CD+DE+CE=AE+DE+CD=AD+CD=8;故选:C.8.解:连接BD,交AC于点O,如图所示:∵四边形DEBF为平行四边形;∴OD=OB,OE=OF;又∵AE=CF;∴AE+OE=CF+OF;即OA=OC;∴四边形ABCD为平行四边形;即正确的证明步骤是③②④①;故选:C.9.解:连接MN,如图所示:∵四边形ABCD是平行四边形;∴CD∥AB,AD∥BC,AD=BC;∴∠CDQ=∠Q,∠DCB=∠CBQ;∵点M,N分别是AD、BC的中点;∴DM=CN,CN=BN;∴四边形CDMN是平行四边形;在△CDN和△BQN中;;∴△CDN≌△BQN(AAS);同理可得:△CDM≌△P AM;∴△POQ的面积=四边形ABCD的面积+△COD的面积,O是CM的中点;∵▱ABCD的面积为192;∴四边形CDMN的面积是96;∴△CDM的面积为四边形CDMN的面积的一半,即48;∴△COD的面积为24;∴△POQ的面积=四边形ABCD的面积+△COD的面积=192+24=216.故选:D.10.解:①∵AE平分∠BAD;∴∠BAE=∠DAE;∵四边形ABCD是平行四边形;∴AD∥BC,∠ABC=∠ADC=60°;∴∠DAE=∠BEA;∴∠BAE=∠BEA;∴AB=BE=1;∴△ABE是等边三角形;∴AE=BE=1;∵BC=2;∴EC=1;∴AE=EC;∴∠EAC=∠ACE;∵∠AEB=∠EAC+∠ACE=60°;∴∠ACE=30°;∵AD∥BC;∴∠CAD=∠ACE=30°;故①正确;②∵BE=EC,OA=OC;∴OE=AB=,OE∥AB;∴∠EOC=∠BAC=60°+30°=90°;Rt△EOC中,OC=;∵四边形ABCD是平行四边形;∴∠BCD=∠BAD=120°;∴∠ACB=30°;∴∠ACD=90°;Rt△OCD中,OD=;∴BD=2OD=;故②正确;③由②知:∠BAC=90°;∴S平行四边形ABCD=AB•AC;故③正确;④由②知:OE是△ABC的中位线;∴OE=AB;∵AB=BC;∴OE=BC=AD;故④正确;故选:D.二.填空题(共8小题,满分32分)11.解:∵四边形ABCD是平行四边形;∴AO=CO=AC,DO=BO;∵AC=10;∴AO=5;∵AD⊥DB;∴∠ADB=90°,AD=4;∴DO==3;∴BD=6;故答案为:6.12.解:A.根据AB∥CD,AD∥BC能推出四边形ABCD是平行四边形;B.根据AD=BC,AB=CD能推出四边形ABCD是平行四边形;C.根据AB∥CD,AD=BC能得出四边形是等腰梯形,不能推出四边形ABCD是平行四边形D.根据∠A=∠C,∠B=∠D能推出四边形ABCD是平行四边形;故答案为:ABD.13.解:作AM⊥BC于M,如图所示:则∠AMB=90°;∵∠ABC=60°;∴∠BAM=30°;∴BM=AB=×2=1;在Rt△ABM中,AB2=AM2+BM2;∴AM===;∴S平行四边形ABCD=BC•AM=3;∵四边形ABCD是平行四边形;∴AD∥BC,BO=DO;∴∠OBE=∠ODF;在△BOE和△DOF中;;∴△BOE≌△DOF(ASA);∴S△BOE=S△DOF;∴图中阴影部分的面积=▱ABCD的面积=;故答案为:.14.解:∵平行四边形ABCD的顶点A,B,C的位置用数对分别表示为(4,6),(1,3),(5,3);∴点D坐标为(8,6);故答案为:(8,6).15.解:∵四边形ABCD是平行四边形;∴AB=CD=5;∵△OCD的周长为23;∴OD+OC=23﹣5=18;∵BD=2DO,AC=2OC;∴平行四边形ABCD的两条对角线的和=BD+AC=2(DO+OC)=36;故答案为:36.16.解:如图,设BE与FC的交点为H,过点A作AM∥FC,交BE与点O;∵四边形ABCD是平行四边形;∴AD∥BC,AB∥CD;∴∠ABC+∠DCB+180°;∵BE平分∠ABC,CF平分∠BCD;∴∠ABE=∠EBC,∠BCF=∠DCF;∴∠CBE+∠BCF=90°;∴∠BHC=90°;∵AM∥CF;∴∠AOE=∠BHC=90°;∵AD∥BC;∴∠AEB=∠EBC=∠ABE;∴AB=AE=5;又∵∠AOE=90°;∴BO=OE=3;∴AO===4;在△ABO和△MBO中;;∴△ABO≌△MBO(ASA);∴AO=OM=4;∴AM=8;∵AD∥BC,AM∥CF;∴四边形AMCF是平行四边形;∴CF=AM=8;故答案为:8.17.解:∵四边形ABCD是平行四边形;∴AD∥BC;∵AE=CF,AD=BC;∴DE=BF;∴四边形BFDE是平行四边形;故A选项符合题意;若EF经过BD的中点O;∵AD∥BC;∴∠EDO=∠FBO;在△BOF和△DOE中;;∴△BOF≌△DOE(ASA);∴BF=DE;∴四边形BFDE是平行四边形;故B选项符合题意;∵DE∥BF,BE∥DF;∴四边形BFDE是平行四边形;故C选项符合题意;由EF⊥AD不能判定四边形BFDE是平行四边形;故D选项不符合题意;故答案为:A,B,C.18.解:如图所示:图中平行四边形有▱ABEC,▱BDEC,▱BEFC共3个.故答案为:3.三.解答题(共6小题,满分48分)19.(1)证明:∵四边形ABCD是平行四边形;∴AB∥CD,AB=CD,∠BAD=∠BCD∴∠ABE=∠CDF;∵AE平分∠BAD,CF平分∠BCD;∴∠BAE=∠DCF;∴△ABE≌△CDF(ASA);∴AE=CF;(2)∵四边形ABCD是平行四边形;∴AD∥BC,∠BAD+∠ABC=180°;∵∠ABC=70°;∴∠BAD=110°;∵AM平分∠BAD,AD∥BC;∴∠AMB=∠DAM=55°.20.(1)证明:∵四边形ABCD为平行四边形;∴∠AEB=∠EBC;∵BE平分∠ABC;∴∠ABE=∠EBC;∴∠ABE=∠AEB;∴AE=AB;(2)解:AC⊥AB,AB=3,BC=5;∴AC=;过F点作FH⊥BC,垂足为H;∵BE平分∠ABC,AC⊥AB;∴AF=FH;∵S△ABC=S△ABF+S△BFC;∴AB•AC=AB•AF+BC•FH;即;∴AF=.21.(1)证明:∵四边形ABCD是平行四边形;∴AB=CD,AB∥CD,BC=AD;∴∠E=∠DCF;∵点F是AD中点;∴AF=DF;∵∠EF A=∠CFD;∴△AFE≌△DFC(AAS);∴CD=AE;∴AB=AE;(2)解:由(1)可得AF=DF,BC=AD;∵BC=2AE;∵∠E=31°;∴∠AFE=∠E=31°;∴∠DAB=2∠E=62°.22.证明:(1)∵BE=CF;∴BE﹣CE=CF﹣CE;即BC=EF;又∵AC⊥BC于点C,DF⊥EF于点F;∴∠ACB=∠DFE=90°;在△ABC和△DEF中;;∴△ABC≌△DEF(SAS);(2)由(1)知△ABC≌△DEF;∴AB=DE,∠ABC=∠DEF;∴AB∥DE;∴四边形ABED是平行四边形.23.(1)解:∵△ABC是等边三角形,D是BC的中点;∴AD⊥BC,∠BAC=60°;∴∠DAC=∠BAC=30°;∵△AED是等边三角形;∴∠EAD=60°;∴∠CAE=∠EAD+∠DAC=90°;(2)证明:∵F是等边△ABC边AB的中点,D是边BC的中点;∴CF=AD,CF⊥AB;∵△AED是等边三角形;∴AD=ED;∴CF=ED;∵∠BAD=∠BAC=30°,∠EAG=∠EAD=30°;∴ED⊥AB;∴CF∥ED;∵CF=ED;∴四边形CDEF是平行四边形.24.(1)证明:∵在平行四边形ABCD中,点O是对角线BD的中点;∴AD∥BC,BO=DO;∴∠ADB=∠CBD;在△BOE与△DOF中;;∴△BOE≌△DOF(ASA);∴DF=BE且DF∥BE;∴四边形BEDF是平行四边形;(2)①解:如图,过点D作DN⊥EC于点N;∵DE=DC=6,DN⊥EC,CE=4;∴EN=CN=2;∴DN===4;∵∠DBC=45°,DN⊥BC;∴∠DBC=∠BDN=45°;∴DN=BN=4;∴BE=BN﹣EN=4;②证明:∵DN⊥EC,CG⊥DE;∴∠CEG+∠ECG=90°,∠DEN+∠EDN=90°;∴∠EDN=∠ECG;∵DE=DC,DN⊥EC;∴∠EDN=∠CDN;∵∠DHC=∠DBC+∠BCH=45°+∠BCH,∠CDB=∠BDN+∠CDN=45°+∠CDN;∴∠CDB=∠DHC;∴CD=CH.。
八年级数学(下)第十八章《平行四边形》单元测试卷(时间90分钟 满分100分)班级 学号 姓名 得分一、填空题(共14小题,每题2分,共28分)1.四边形的内角和等于 º,外角和等于 º .2.正方形的面积为4,则它的边长为 ,一条对角线长为 . 3.一个多边形,若它的内角和等于外角和的3倍,则它是 边形.4.如果四边形ABCD 满足 条件,那么这个四边形的对角线AC 和BD 互相垂直(只需填写一组你认为适当的条件).5.如果边长分别为4cm 和5cm 的矩形与一个正方形的面积相等,那么这个正方形的边长为______cm .6.已知菱形两条对角线的长分别为5cm 和8cm ,则这个菱形的面积是______cm . 7.平行四边形ABCD ,加一个条件__________________,它就是菱形.8.等腰梯形的上底是10cm ,下底是14cm ,高是2cm ,则等腰梯形的周长为______cm . 9.已知菱形的一条对角线长为12,面积为30,则这个菱形的另一条对角线的长为 .10.如图,ABCD 中,AE ⊥BC 于E ,AF ⊥DC 于F ,BC=5,AB=4,AE=3,则AF 的长为 .11.如图,梯形ABCD 中,AD ∥BC ,已知AD=4,BC=8,则EF= ,EF 分梯形所得的两个梯形的面积比S 1 :S 2为 .12.下列矩形中,按虚线剪开后,既能拼出平行四边形和梯形,又能拼出三角形的是图形_______(请填图形下面的代号).第10题 第11题13.如图,小亮从A 点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,……照这样走下去,他第一次回到出发地A 点时,一共走了 米.14.如图,依次连接第一个正方形各边的中点得到第二个正方形,再依次连接第二个正方形各边的中点得到第三个正方形,按此方法继续下去,若第一个正方形的边长为1,则第n 个正方形的面积是 .二、填空题(共4小题,每题3分,共12分) 15.如图,ABCD 中,AE 平分∠DAB ,∠B=100°,则∠DAE等于( )A .100°B .80°C .60°D .40°16.某校计划修建一座既是中心对称图形又是轴对称图形的花坛,•从学生中征集到设计方案有等腰三角形、正三角形、等腰梯形、菱形等四种图案,你认为符合条件的是( ) A .等腰三角形 B .正三角形 C .等腰梯形 D .菱形17.一个多边形的每一个内角都等于140°,那么从这个多边形的一个顶点出发的对角线的条数是( )A .6条B .7条C .8条D .9条 18.如图,图中的△BDC′是将矩形ABCD 沿对角线BD 折叠得到的,图中(包括实线、虚线在内)共有全等三角形( )对. A .1 B .2 C .3 D .430°30°30°A第13题第15题第18题三、解答题(共60分)19.(5分)如图,在□ABCD中,DB=CD,∠C=70°,AE⊥BD于点E.试求∠DAE的度数.20.(5分)已知:如图,在△ABC中,中线BE,CD交于点O,F,G分别是OB,OC的中点.求证:四边形DFGE是平行四边形.21.(5分)在一个平行四边形中若一个角的平分线把一条边分成长是2cm和3cm•的两条线段,求该平行四边形的周长是多少?22.(6分)已知:如图,ABCD中,延长AB到E,延长CD到F,使BE=DF 求证:AC与EF互相平分23.(6分)如图,一块正方形地板由全等的正方形瓷砖铺成,这地板的两条对角线上的瓷砖全是黑色,其余的瓷砖是白色的,如果有101块黑色瓷砖,那么瓷砖的总数是多少?24.(6分)顺次连结等腰梯形四边中点所得的四边形是什么特殊的四边形?画出图形,写出已知,求证并证明.已知:求证:证明:25.(6分)如图,△ABC中,点O是AC边上的一个动点,过点O作直线MN•∥BC,•设MN•交∠BCA的平分线于点E,交∠BCA的外角平分线于点F.(1)判断OE与OF的大小关系?并说明理由?(2)当点O运动何处时,四边形AECF是矩形?并说出你的理由.26.(6分)如图,若已知△ABC中,D、E分别为AB、AC的中点,则可得DE∥BC,且DE=12BC.•根据上面的结论:(1)你能否说出顺次连结任意四边形各边中点,可得到一个什么特殊四边形?•并说明理由.(2)如果将(1)中的“任意四边形”改为条件是“平行四边形”或“菱形”或“矩形”或“等腰梯形”,那么它们的结论又分别怎样呢?请说明理由.27.(7分)如图,△ABD、△BCE、△ACF均为等边三角形,请回答下列问题(不要求证明)(1)四边形ADEF是什么四边形?(2)当△ABC满足什么条件时,四边形ADEF是矩形?(3)当△ABC满足什么条件时,以A、D、E、F为顶点的四边形不存在?28.(8分)如图,以△ABC的三边为边在BC的同侧分别作三个等边三角形,•即△ABD•、•△BCE、△ACF,请回答下列问题,并说明理由.(1)四边形ADEF是什么四边形?(2)当△ABC满足什么条件时,四边形ADEF是矩形?(3)当△ABC满足什么条件时,以A、D、E、F为顶点的四边形不存在.参考答案一、填空题1.360 ,360 2.2,22 3.8 4.四边形ABCD 是菱形或四条边都相等或四边形ABCD是正方形等 5. 6.20 7.一组邻边相等或对角线互相垂直 8.24+49.510.41511.6,7512.② 13.120 14.112n -⎛⎫⎪⎝⎭二、选择题15.•D •16.D 17.A 18.D 三、解答题19.∠DAE=20° 20.略 21.14cm 或16cm 22.略 23.2601块 24.略 25.(1)OE=OF ;(2)当点O 运动到AC 的中点时,四边形AECF•是矩形 26.(1)平行四边形;(2)平行四边形,矩形,菱形,正方形 27.(1)平行四边形;(2)满足∠BAC=150º时,四边形ADEF 是矩形;(3)当△ABC 为等边三角形时,以A 、D 、E 、F 为顶点的四边形不存在 28.(1)平行四边形;(2)当∠BAC=150°时是矩形;(3)∠BAC=60°。
平行四边形单元测试卷一、选择题(每题2分,共10分)1. 平行四边形的对边具有什么性质?A. 相等B. 平行C. 垂直D. 以上都不是2. 下列哪个不是平行四边形的性质?A. 对角线互相平分B. 对边相等C. 对角相等D. 内角和为360°3. 平行四边形的面积如何计算?A. 底乘高B. 对角线乘积的一半C. 周长除以4D. 以上都不是4. 如果一个平行四边形的两组对边分别相等,那么这个平行四边形是:A. 矩形B. 菱形C. 梯形D. 不能确定5. 平行四边形的对角线将平行四边形分成:A. 两个三角形B. 两个梯形C. 两个矩形D. 四个小平行四边形二、填空题(每空1分,共10分)1. 平行四边形的对角线_______。
2. 矩形的四个角都是_______。
3. 菱形的对角线_______。
4. 平行四边形的面积公式为_______。
5. 如果一个平行四边形的底为5厘米,高为3厘米,那么它的面积是_______平方厘米。
三、判断题(每题1分,共5分)1. 所有平行四边形都是矩形。
()2. 菱形的四条边都是相等的。
()3. 平行四边形的对角线一定垂直。
()4. 矩形和菱形都是特殊的平行四边形。
()5. 梯形不是平行四边形。
()四、简答题(每题5分,共10分)1. 请简述平行四边形和矩形的区别。
2. 请解释为什么平行四边形的对角线互相平分。
五、计算题(每题10分,共20分)1. 一个平行四边形的底是8厘米,高是4厘米,请计算它的面积。
2. 如果一个平行四边形的对角线长度分别为10厘米和12厘米,且它们相交于中点,求这个平行四边形的面积。
六、解答题(每题15分,共15分)1. 一个平行四边形的对角线互相垂直,且长度分别为12厘米和16厘米。
如果这个平行四边形的面积是96平方厘米,请求出它的底和高。
答案:一、选择题:1-5 BACAD二、填空题:1. 互相平分 2. 直角 3. 垂直且互相平分 4. 底×高 5.15三、判断题:1-5 ×√×√×四、简答题:1. 平行四边形的对边平行且相等,而矩形的四个角都是直角,且对角线相等。
人教版八年级下册数学第18章平行四边形单元测试卷一.选择题(本大题共8小题,共24分。
在每小题列出的选项中,选出符合题目的一项)1. 下列条件中,能判定四边形是平行四边形的条件是( )A. 一组对边平行,一组邻角互补B. 一组对边平行,另一组对边相等C. 一组对边平行,一组对角相等D. 一组对边相等,一组邻角相等2. 下列命题,其中是真命题的为( )A. 对角线相等的四边形是矩形B. 对角线互相垂直的四边形是菱形C. 一组邻边相等的矩形是正方形D. 一组对边平行,另一组对边相等的四边形是平行四边形3. 如下图,公路AC,BC互相垂直,公路AB的中点M与点C被湖隔开.若测得AB的长为1.6km,则M,C 两点间的距离为( )A. 0.5kmB. 0.6kmC. 0.8kmD. 1.2km4. 下列命题是假命题的是( )A. 对角线相等的菱形是正方形B. 对角线互相垂直且平分的四边形是正方形C. 对角线互相垂直的矩形是正方形D. 对角线互相垂直且相等的平行四边形是正方形5. 如图,点E、F、G、H分别是四边形ABCD边AB、BC、CD、DA的中点.则下列说法:①若AC=BD,则四边形EFGH为矩形;②若AC⊥BD,则四边形EFGH为菱形;③若四边形EFGH是平行四边形,则AC与BD互相平分;④若四边形EFGH是正方形,则AC与BD互相垂直且相等.其中正确的个数是( )A. 1B. 2C. 3D. 46. 如图四边ABCD中∠BAD=∠C=90°,AB=AD,AE⊥BC,垂足为E.若线段AE=5,则S=( )四边形ABCDA. 20B. 25C. 18D. 247. 如图,菱形ABCD的两条对角线长分别为AC=6,BD=8,点P是BC边上的一动点,则AP的最小值为( )A. 4B. 4.8C. 5D. 5.58. 如图,在菱形ABCD中,AB=6,∠ABD=30°,则菱形ABCD的面积是( )A. 18B. 18√3C. 36D. 36√3二、填空题(本大题共8小题,共24分)9. 如图,两条射线AM//BN,点C,D分别在射线BN,AM上,只需添加一个条件,即可证明四边形ABCD 是平行四边形,这个条件可以是(写出一个即可).10. 如图,已知菱形ABCD的对角线AC,BD交于点O,E为BC的中点,若OE=3,则菱形的周长为______.11. 如图,在正方形ABCD中,AB=8,AC与BD交于点O,N是AO的中点,点M在BC边上,且BM=6.P 为对角线BD上一点,则PM−PN的最大值为______.12.如图,在▱ABCD中,E、F是对角线AC上两点,AE=EF=CD,∠ADF=90°,∠BCD=63°,则∠ADE 的大小为______.13. 已知正方形ABCD的边长为6,如果P是正方形内一点,且PB=PD=2√5,那么AP的长为.14. 已知两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是.15如图,▱ABCD的顶点C在等边△BEF的边BF上,点E在AB的延长线上,G为DE的中点,连接CG.若AD=3,AB=CF=2,则CG的长为..16. 如图,在△ABC中,∠B=45°,AB的垂直平分线交AB于点D,交BC于点E(BE>CE),点F是AC的中点,连接AE、EF,若BC=7,AC=5,则△CEF的周长为______ .三、解答题(本大题共9小题,共72分。
平行四边形单元测试附解析一、解答题1.如图1,AC 是平行四边形ABCD 的对角线,E 、H 分别为边BA 和边BC 延长线上的点,连接EH 交AD 、CD 于点F 、G ,且//EH AC . (1)求证:AEF CGH ∆≅∆(2)若ACD ∆是等腰直角三角形,90ACD ∠=,F 是AD 的中点,8AD =,求BE 的长:(3)在(2)的条件下,连接BD ,如图2,求证:22222()AC BD AB BC +=+2.(1)如图①,在正方形ABCD 中,AEF ∆的顶点E ,F 分别在BC ,CD 边上,高AG 与正方形的边长相等,求EAF ∠的度数;(2)如图②,在Rt ABD ∆中,90,BAD AD AB ︒∠==,点M ,N 是BD 边上的任意两点,且45MAN ︒∠=,将ABM ∆绕点A 逆时针旋转90度至ADH ∆位置,连接NH ,试判断MN ,ND ,DH 之间的数量关系,并说明理由;(3)在图①中,连接BD 分别交AE ,AF 于点M ,N ,若正方形ABCD 的边长为12,GF=6,BM= 32,求EG ,MN 的长.3.如图,在正方形ABCD 中,点M 是BC 边上任意一点,请你仅用无刻度的直尺,用连线的方法,分别在图(1)、图(2)中按要求作图(保留作图痕迹,不写作法).(1)在如图(1)的AB 边上求作一点N ,连接CN ,使CN AM =;(2)在如图(2)的AD 边上求作一点Q ,连接CQ ,使CQAM .4.已知正方形,ABCD 点F 是射线DC 上一动点(不与,C D 重合).连接AF 并延长交直线BC 于点E ,交BD 于,H 连接CH .在EF 上取一点,G 使ECG DAH ∠=∠. (1)若点F 在边CD 上,如图1,①求证:CH CG ⊥. ②求证:GFC 是等腰三角形.(2)取DF 中点,M 连接MG .若3MG =,正方形边长为4,则BE = . 5.如图1,在矩形纸片ABCD 中,AB =3cm ,AD =5cm ,折叠纸片使B 点落在边AD 上的E 处,折痕为PQ ,过点E 作EF ∥AB 交PQ 于F ,连接BF .(1)求证:四边形BFEP 为菱形;(2)当E 在AD 边上移动时,折痕的端点P 、Q 也随着移动. ①当点Q 与点C 重合时, (如图2),求菱形BFEP 的边长;②如果限定P 、Q 分别在线段BA 、BC 上移动,直接写出菱形BFEP 面积的变化范围. 6.如图1,在正方形ABCD (正方形四边相等,四个角均为直角)中,AB =8,P 为线段BC 上一点,连接AP ,过点B 作BQ ⊥AP ,交CD 于点Q ,将△BQC 沿BQ 所在的直线对折得到△BQC ′,延长QC ′交AD 于点N .(1)求证:BP =CQ ; (2)若BP =13PC ,求AN 的长; (3)如图2,延长QN 交BA 的延长线于点M ,若BP =x (0<x <8),△BMC '的面积为S ,求S 与x 之间的函数关系式.7.如图,ABC ADC ∆≅∆,90,ABC ADC AB BC ︒∠=∠==,点F 在边AB 上,点E 在边AD 的延长线上,且,DE BF BG CF =⊥,垂足为H ,BH 的延长线交AC 于点G .(1)若10AB =,求四边形AECF 的面积; (2)若CG CB =,求证:2BG FH CE +=.8.已知E ,F 分别为正方形ABCD 的边BC ,CD 上的点,AF ,DE 相交于点G ,当E ,F 分别为边BC ,CD 的中点时,有:①AF=DE ;②AF ⊥DE 成立. 试探究下列问题:(1)如图1,若点E 不是边BC 的中点,F 不是边CD 的中点,且CE=DF ,上述结论①,②是否仍然成立?(请直接回答“成立”或“不成立”),不需要证明)(2)如图2,若点E ,F 分别在CB 的延长线和DC 的延长线上,且CE=DF ,此时,上述结论①,②是否仍然成立?若成立,请写出证明过程,若不成立,请说明理由; (3)如图3,在(2)的基础上,连接AE 和BF ,若点M ,N ,P ,Q 分别为AE ,EF ,FD ,AD 的中点,请判断四边形MNPQ 是“矩形、菱形、正方形”中的哪一种,并证明你的结论. 9.如图①,在ABC 中,AB AC =,过AB 上一点D 作//DE AC 交BC 于点E ,以E 为顶点,ED 为一边,作DEF A ∠=∠,另一边EF 交AC 于点F .(1)求证:四边形ADEF 为平行四边形;(2)当点D 为AB 中点时,ADEF 的形状为 ;(3)延长图①中的DE 到点,G 使,EG DE =连接,,,AE AG FG 得到图②,若,AD AG =判断四边形AEGF 的形状,并说明理由.10.如图,ABCD 的对角线,AC BD 相交于点,,6,10O AB AC AB cm BC cm ⊥==,点P 从点A 出发,沿AD 方向以每秒1cm 的速度向终点D 运动,连接PO ,并延长交BC 于点Q .设点P 的运动时间为t 秒. (1)求BQ 的长(用含t 的代数式表示); (2)当四边形ABQP 是平行四边形时,求t 的值; (3)当325t =时,点O 是否在线段AP 的垂直平分线上?请说明理由.【参考答案】***试卷处理标记,请不要删除一、解答题1.(1)证明见解析;(2)62BE =3)证明见解析. 【分析】(1)根据平行四边形的对边平行,结合平行线的性质可证明∠E=∠CGH ,∠H=∠AFE ,再证明四边形ACGE 是平行四边形即可证明AE=CG ,由此可利用“AAS”可证明全等; (2)证明△AEF ≌△DGF (AAS )可得△DGF ≌△CGH ,所以可得12AE DG CGCD ,再结合等腰直角三角形的性质即可求得CD ,由此可得结论;(3)利用等腰直角三角形的性质和平行四边形的性质结合勾股定理分别把22AC BD +和22AB BC +用2CD 表示即可得出结论.【详解】解:(1)证明:∵四边形ABCD 为平行四边形,∴AB//CD ,AD//BC , ∴∠E=∠EGD ,∠H=∠DFG , ∵∠CGH=∠EGD ,∠DFG=∠AFE , ∴∠E=∠CGH ,∠H=∠AFE , ∵//EH AC ,AB//CD , ∴四边形ACGE 是平行四边形, ∴AE=CG ,∴△AEF ≌△CGH (AAS ); (2)∵四边形ABCD 为平行四边形, ∴AB//CD ,AB=CD , ∴∠E=∠EGD ,∠D=∠EAF , ∵F 是AD 的中点, ∴AF=FD ,∴△AEF ≌△DGF (AAS ); 由(1)得△AEF ≌△CGH (AAS ); ∴△DGF ≌△CGH, ∴12AEDG CGCD , ∵ACD ∆是等腰直角三角形,90ACD ∠=,8AD =, ∴242ABCDAD ,∴22AE =, ∴62BE AB BE =+=; (3)如下图,∵四边形ABCD 为平行四边形, ∴CD=AB ,AD=BC ,AC=2OC ,BD=2OD ,∵ACD ∆是等腰直角三角形,90ACD ∠=,AC=CD , ∴222222244()AC BD AC OD AC OC CD ++++==2222222(2)446AC A OC CD AC D C CD C ++=++==, 且222222223CD AD CD AC CD C AB BC D =+=+++=,∴22222()AC BD AB BC +=+ 【点睛】本题考查平行四边形的性质和判定,勾股定理,全等三角形的性质和判定,等腰直角三角形的性质.(1)中解题关键是利用证明四边形ACGE 是平行四边形证明AE=CG ;(2)得出DG CG =是解题关键;(3)中能正确识图,完成线段之间的代换是解题关键. 2.(1)见解析;(2)MN 2=ND 2+DH 2,理由见解析;(3)EG=4,MN=52 【分析】(1)根据高AG 与正方形的边长相等,证明三角形全等,进而证明角相等,从而求出解. (2)用三角形全等和正方形的对角线平分每一组对角的知识可证明结论.(3)设EG=BE=x ,根据正方形的边长得出CE ,CF ,EF ,在Rt △CEF 中利用勾股定理得到方程,求出EG 的长,设MN=a ,根据MN 2=ND 2+BM 2解出a 值即可. 【详解】解:(1)在Rt △ABE 和Rt △AGE 中,AB=AG ,AE=AE , ∴Rt △ABE ≌Rt △AGE (HL ). ∴∠BAE=∠GAE . 同理,∠GAF=∠DAF . ∴∠EAF =12∠BAD =45°; (2)MN 2=ND 2+DH 2.∵∠BAM=∠DAH ,∠BAM+∠DAN=45°, ∴∠HAN=∠DAH+∠DAN=45°. ∴∠HAN=∠MAN , 又∵AM=AH ,AN=AN , ∴△AMN ≌△AHN (SAS ). ∴MN=HN ,∵∠BAD=90°,AB=AD , ∴∠ABD=∠ADB=45°, ∴∠HDN=∠HDA+∠ADB=90°, ∴NH 2=ND 2+DH 2, ∴MN 2=ND 2+DH 2;(3)∵正方形ABCD 的边长为12, ∴AB=AG=12,由(1)知,BE=EG ,DF=FG .设EG=BE=x ,则CE=12-x , ∵GF=6=DF ,∴CF=12-6=6,EF=EG+GF=x+6, 在Rt △CEF 中, ∵CE 2+CF 2=EF 2,∴(12-x )2+62=(x+6)2, 解得x=4, 即EG=BE=4, 在Rt △ABD 中, BD=22AB AD +=122,在(2)中,MN 2=ND 2+DH 2,BM=DH , ∴MN 2=ND 2+BM 2.设MN=a ,则a 2=()()221223232a --+,即a 2=()()229232a-+,∴a=52,即MN =52. 【点睛】本题考查正方形的性质,四边相等,对角线平分每一组对角,以及全等三角形的判定和性质,勾股定理的知识点等. 3.(1)见解析;(2)见解析. 【分析】(1)连接BD ,BD 与AM 交于点O ,连接CO 并延长交于AB ,则CO 与AB 的交点为点N .可先证明△AOD ≌△COD ,再证明△MOB ≌NOB ,从而可得NB =MB ;(2)连接MO 并延长与AE 交于点Q ,连接QC ,则CQ ∥AM .理由如下:由正方形的性质以及平行线等分线段可证QO =MO ,从而可知四边形AQCM 为平行四边形,从而可得CQ ∥AM . 【详解】解:(1)如图(1),连接BD ,BD 与AM 交于点O ,连接CO 并延长交于AB ,则CO 与AB 的交点为点N ,则CN 为所作.理由:在△AOD 与△COD 中,∵AD CDADO CDO OD OD⎧⎪∠∠⎨⎪⎩===,∴△AOD≌△COD(SAS),∴∠OAD=∠OCD,∴∠BAM=∠BCN.在△ABM与△CBN中,∵BAM BCN AB CBABM CBN ∠∠⎧⎪⎨⎪∠∠⎩===,∴△ABM≌△CBN(ASA),∴CN=AM.(2)如图2连接AC、BD交与O点,连接MO并延长与AE交于点Q,连接QC,则CQ为所求的线段.在正方形ABCD中,OA=OB=OC=OD,AD∥BC,∴QO=MO∴四边形AQCM为平行四边形,∴QC∥AM【点睛】本题考查了作图-基本作图,解决此题的关键是利用正方形的性质求解.4.(1)①见解析;②GFC是等腰三角形,证明见解析;(2)4+54﹣5【分析】(1)①只要证明△DAH≌△DCH,即可解决问题;②只要证明∠CFG=∠FCG,即可解决问题;(2)分两种情形解决问题:①当点F在线段CD上时,连接DE.②当点F在线段DC的延长线上时,连接DE.分别求出EC即可解决问题.【详解】(1)①证明:∵四边形ABCD是正方形,∴∠ADB =∠CDB =45°,DA =DC , 在△DAH 和△DCH 中,DA DC ADH CDH DH DH =⎧⎪∠=∠⎨⎪=⎩, ∴△DAH ≌△DCH , ∴∠DAH =∠DCH ; ∵∠ECG=∠DAH , ∴∠ECG=∠DCH ,∵∠ECG+∠FCG=∠FCE=90°, ∴∠DCH+∠FCG=90°, ∴CH ⊥CG.②∵在Rt △ADF 中,∠DFA+∠DAF =90°, 由①得∠DCH+∠FCG=90°,∠DAH =∠DCH ; ∴∠DFA =∠FCG , 又∵∠DFA =∠CFG , ∴∠CFG =∠FCG , ∴GF =GC ,∴△GFC 是等腰三角形(2)BE 的长为 4+25或425- . ①如图①当点F 在线段CD 上时,连接DE .∵∠GFC =∠GCF ,又∵在Rt △FCG 中,∠GEC+∠GFC =90°,∠GCF+∠GCE =90°, ∴∠GCE =∠GEC , ∴EG =GC =FG ,∴G是EF的中点,∴GM是△DEF的中位线∴DE=2MG=6,在Rt△DCE中,CE=22DE DC-=2264-=25,∴BE=BC+CE=4+25.②当点F在线段DC的延长线上时,连接DE.同法可知GM是△DEC的中位线,∴DE=2GM=5,在Rt△DCE中,CE22DE DC-2264-5∴BE=BC﹣CE=4﹣5综上所述,BE的长为4+54﹣25【点睛】本题考查正方形的性质、全等三角形的判定和性质、三角形的中位线定理、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.5.(1)证明过程见解析;(2)①边长为53cm,②225cm S9cm3≤≤.【分析】(1)由折叠的性质得出PB=PE,BF=EF,∠BPF=∠EPF,由平行线的性质得出∠BPF=∠EFP,证出∠EPF=∠EFP,得出EP=EF,因此BP=BF=EF=EP,即可得出结论;(2)①由矩形的性质得出BC=AD=5cm,CD=AB=3cm,∠A=∠D=90°,由对称的性质得出CE=BC=5cm,在Rt△CDE中,由勾股定理求出DE=4cm,得出AE=AD-DE=1cm;在Rt△APE中,由勾股定理得出方程,解方程得出EP=53cm即可;②当点Q与点C重合时,点E离点A最近,由①知,此时AE=1cm;当点P与点A重合时,点E离点A最远,此时四边形ABQE为正方形,AE=AB=3cm,即可得出答案.【详解】解:(1)证明:∵折叠纸片使B 点落在边AD 上的E 处,折痕为PQ ,∴点B 与点E 关于PQ 对称,∴PB =PE ,BF =EF ,∠BPF =∠EPF ,又∵EF ∥AB ,∴∠BPF =∠EFP ,∴∠EPF =∠EFP ,∴EP =EF ,∴BP =BF =EF =EP ,∴四边形BFEP 为菱形;(2)①∵四边形ABCD 是矩形,∴BC =AD =5cm ,CD =AB =3cm ,∠A =∠D =90°,∵点B 与点E 关于PQ 对称,∴CE =BC =5cm ,在Rt △CDE 中,DE =22CE -CD =4cm ,∴AE =AD ﹣DE =5cm -4cm =1cm ;在Rt △APE 中,AE =1,AP =3-PB =3﹣PE ,∴222EP =1(3-EP)+,解得:EP =53cm , ∴菱形BFEP 的边长为53cm ; ②当点Q 与点C 重合时,点E 离点A 最近,由①知,此时AE =1cm ,BP=53cm , 2BFEP 5S =BP AE=cm 3⋅四边形,当点P 与点A 重合时,点E 离点A 最远,此时四边形ABQE 为正方形,AE =AB =3cm , 2ABQE BFEP S =S =9cm 正方形四边形,∴菱形的面积范围:225cm S 9cm 3≤≤.【点睛】本题是四边形综合题目,考查了矩形的性质、折叠的性质、菱形的判定、平行线的性质、等腰三角形的判定、勾股定理、正方形的性质等知识,求出PE 是本题的关键.6.(1)见解析;(2)4.8;(3)1282x x- 【分析】(1)证明△ABP ≌△BCQ 即可得到结论;(2)证明Rt △ABN ≌△Rt △C 'BN 求出DQ ,设AN =NC '=a ,则DN =8﹣a ,利用勾股定理即可求出a ;(3)过Q 点作QG ⊥BM 于G ,设MQ =BM =y ,则MG =y ﹣x ,利用勾股定理求出MQ ,再根据面积相减得到答案.【详解】解:(1)证明:∵∠ABC =90°∴∠BAP +∠APB =90°∵BQ ⊥AP∴∠APB +∠QBC =90°,∴∠QBC =∠BAP ,在△ABP 于△BCQ 中, ABP BCQ AB BCBAP QBC ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABP ≌△BCQ (ASA ),∴BP =CQ ,(2)由翻折可知,AB =BC ',连接BN ,在Rt △ABN 和Rt △C 'BN 中,AB =BC ',BN =BN ,∴Rt △ABN ≌△Rt △C 'BN (HL ),∴AN=NC',∵BP=13PC,AB=8,∴BP=2=CQ,CP=DQ=6,设AN=NC'=a,则DN=8﹣a,∴在Rt△NDQ中,(8﹣a)2+62=(a+2)2解得:a=4.8,即AN=4.8.(3)解:过Q点作QG⊥BM于G,由(1)知BP=CQ=BG=x,BM=MQ.设MQ=BM=y,则MG=y﹣x,∴在Rt△MQG中,y2=82+(y﹣x)2,∴322xyx=+.∴S△BMC′=S△BMQ﹣S△BC'Q=1122BM QG BC QC''⋅-⋅,=1321()88 222xxx+⨯-⨯,=1282x x-.【点睛】此题考查正方形的性质,三角形全等的判定及性质,勾股定理,正确理解题意画出图形辅助做题是解题的关键.7.(1)100;(2)见解析.【分析】(1)先证明四边形ABCD是正方形,再根据已知条件证明△BCF≌△DCE,即可得到四边形AECF的面积=正方形ABCD的面积;(2) 延长BG交AD于点M,作AN⊥MN,连接FG,先证明四边形BCEM是平行四边形,得到BM=CE,证明△BCF≌△GCF,得到BF=GF,∠FGC=∠FBC=90︒,由AN⊥MN,得GM=2MN,根据∠BAC=45︒,BC∥AD得到AM=BF,再证△BFH≌△AMN,得到GM=2FH,由此得到结论.【详解】(1)∵9,0ABC AB BC ︒∠==,∴△ABC 是等腰直角三角形,∵ABC ADC ∆≅∆,∴AB=AD=BC=DC ,∴四边形ABCD 是菱形,∵90ABC ADC ︒∠=∠=,∴四边形ABCD 是正方形,∴∠BCD=90ABC ADC ︒∠=∠=,∴∠CDE=90ABC ADC ︒∠=∠=,∵BF=DE,BC=DC ,∴△BCF ≌△DCE ,∴四边形AECF 的面积=S 正方形ABCD =AB 2=102=100.(2)延长BG 交AD 于点M ,作AN ⊥MN ,连接FG,∵△BCF ≌△DCE ,∴∠BCF=∠DCE ,∴∠FCE=∠BCD=90︒,∵BG ⊥CF ,∴∠FHM=∠FCE=90︒,∴BM ∥CE,∵BC ∥AD,∴四边形BCEM 是平行四边形,∴BM=CE.∵CG CB =,BG ⊥CF ,∴∠BCH=∠GCH,∠CBM=∠CGB,∴△BCF ≌△GCF,∴BF=GF,∠FGC=∠FBC=90︒,∵∠BAC=45︒,∴∠AFG=∠BAC=45︒,∴FG=AG,∵BC ∥AD,∴∠CBM=∠AMB,∴∠AGM=∠CGB=∠CBM=∠AMB,∴AM=AG,∵AN ⊥MN ,∴GM=2MN,∵∠BAD=∠ANM=90︒,∴∠ABM+∠AMN=∠MAN+∠AMN=90︒,∴∠ABM=∠MAN,∵AM=AG=FG=BF,∠BHF=∠ANM=90︒,∴△BFH ≌△AMN,∴FH=MN,∴GM=2FH,∵BG+GM=CE,∴2BG FH CE +=.【点睛】此题是四边形的综合题,考查正方形的判定及性质,全等三角形的判定及性质,等腰三角形的性质,平行四边形的性质,解题中注意综合思想的方法积累.8.(1)成立;(2)成立,理由见试题解析;(3)正方形,证明见试题解析.【解析】试题分析:(1)因为四边形ABCD 为正方形,CE=DF ,可证△ADF ≌△DCE (SAS ),即可得到AF=DE ,∠DAF=∠CDE ,又因为∠ADG+∠EDC=90°,即有AF ⊥DE ;(2)∵四边形ABCD 为正方形,CE=DF ,可证△ADF ≌△DCE (SAS ),即可得到AF=DE ,∠E=∠F ,又因为∠ADG+∠EDC=90°,即有AF ⊥DE ;(3)设MQ ,DE 分别交AF 于点G ,O ,PQ 交DE 于点H ,因为点M ,N ,P ,Q 分别为AE ,EF ,FD ,AD 的中点,可得MQ=PN=12DE ,PQ=MN=12AF ,MQ ∥DE ,PQ ∥AF ,然后根据AF=DE ,可得四边形MNPQ 是菱形,又因为AF ⊥DE 即可证得四边形MNPQ 是正方形.试题解析:(1)上述结论①,②仍然成立,理由是:∵四边形ABCD 为正方形,∴AD=DC ,∠BCD=∠ADC=90°,在△ADF 和△DCE 中,∵DF=CE ,∠ADC=∠BCD=90°,AD=CD ,∴△ADF ≌△DCE (SAS ),∴AF=DE ,∠DAF=∠CDE ,∵∠ADG+∠EDC=90°,∴∠ADG+∠DAF=90°,∴∠AGD=90°,即AF ⊥DE ; (2)上述结论①,②仍然成立,理由是:∵四边形ABCD 为正方形,∴AD=DC ,∠BCD=∠ADC=90°,在△ADF 和△DCE 中,∵DF=CE ,∠ADC=∠BCD=90°,AD=CD ,∴△ADF ≌△DCE (SAS ),∴AF=DE ,∠E=∠F ,∵∠ADG+∠EDC=90°,∴∠ADG+∠DAF=90°,∴∠AGD=90°,即AF ⊥DE ;(3)四边形MNPQ 是正方形.理由是:如图,设MQ ,DE 分别交AF 于点G ,O ,PQ 交DE 于点H ,∵点M ,N ,P ,Q 分别为AE ,EF ,FD ,AD 的中点,∴MQ=PN=12DE ,PQ=MN=12AF ,MQ ∥DE ,PQ ∥AF ,∴四边形OHQG 是平行四边形,∵AF=DE ,∴MQ=PQ=PN=MN ,∴四边形MNPQ 是菱形,∵AF ⊥DE ,∴∠AOD=90°,∴∠HQG=∠AOD=90°,∴四边形MNPQ 是正方形.考点:1.四边形综合题;2.综合题.9.(1)证明见解析;(2)菱形;(3)四边形AEGF 是矩形,理由见解析.【分析】(1)根据平行线的性质得到BDE A ∠=∠,根据题意得到DEFBDE ∠=∠,根据平行线的判定定理得到//AD EF ,根据平行四边形的判定定理证明;(2)根据三角形中位线定理得到12DE AC =,得到AD DE =,根据菱形的判定定理证明;(3)根据等腰三角形的性质得到AE EG ⊥,根据有一个角是直角的平行四边形是矩形证明.【详解】 (1)证明://DE AC ,BDE A ∴∠=∠,DEF A ∠=∠,DEF BDE ∴∠=∠,//AD EF ∴,又//DE AC ,∴四边形ADEF 为平行四边形;(2)解:ADEF 的形状为菱形, 理由如下:点D 为AB 中点, 12AD AB ∴=, //DE AC ,点D 为AB 中点,12DE AC ∴=, AB AC =,AD DE ∴=,∴平行四边形ADEF 为菱形,故答案为:菱形;(3)四边形AEGF 是矩形,理由如下:由(1)得,四边形ADEF 为平行四边形,//AF DE ∴,AF DE =,EG DE ,//AF DE∴,AF GE=,∴四边形AEGF是平行四边形,AD AG,EG DE=,AE EG∴⊥,∴四边形AEGF是矩形.【点睛】本题考查的是平行四边形、矩形、菱形的判定,掌握它们的判定定理是解题的关键.10.(1)10-t;(2)5秒;(3)见解析【分析】(1)先证明△APO≌△CQO,可得出AP=CQ=t,则BQ即可用t表示;(2)由题意知AP∥BQ,根据AP=BQ,列出方程即可得解;(3)过点O作直线EF⊥AP,垂足为E,与BC交于F,利用三角形面积公式求出EF,得到OE,利用勾股定理求出AE,再说明AP=2AE即可.【详解】解:(1)∵四边形ABCD是平行四边形,∴OA=OC,AD∥BC,∴∠PAO=∠QCO,∵∠AOP=∠COQ,∴△APO≌△CQO(ASA),∴AP=CQ=t,∵BC=10,∴BQ=10-t;(2)∵AP∥BQ,当AP=BQ时,四边形ABQP是平行四边形,即t=10-t,解得:t=5,∴当t为5秒时,四边形ABQP是平行四边形;(3)过点O作直线EF⊥AP,垂足为E,与BC交于F,在Rt△ABC中,∵AB=6,BC=10,∴,∴AO=CO=12AC=4,∵S△ABC=12AB AC⋅=12BC EF⋅,∴AB•AC=BC•EF,∴6×8=10×EF,∴EF=245,∴OE=125,∴AE=22AO OE-=165,当325t=时,AP=325,∴2AE=AP,即点E是AP中点,∴点O在线段AP的垂直平分线上.【点睛】本题考查了平行四边形的性质、全等三角形的判定与性质、勾股定理,垂直平分线的判定等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数解决问题.。
人教版四年级上册数学第五单元《平行四边形和梯形》单元测试卷(含答案)一、认真审题,填一填。
(每空1分,共21分)1.如果一个平行四边形的四个角都变成了90°,那么这个平行四边形就变成了( )或者( )。
2.两条平行线之间可以画( )条垂直线段,平行线间的距离( )。
3.平行四边形的对边( )且( ),内角和是( ),它具有( )性。
4.当梯形的上底缩小到一点时,梯形就转化成了( ),当梯形的上底增加到和下底相等时,梯形就转化成了( )。
5.一个梯形的两组对边分别是5厘米和7厘米、4厘米和4厘米,这是一个( )梯形,它的周长是( )厘米。
6.如图,华华要从人行道一侧的O点走到另一侧,在OA、OB、OC三条路线中,( )最短。
(第6题图) (第7题图) (第8题图)7.将两张长方形纸如图交叉摆放,重叠部分(阴影部分)是( )形,你之所以这么认为,理由是( )。
8.上图中,与线段BC平行的线段是( ),与线段BD垂直的线段是( )与( )。
9.图中平行四边形AB边上的高是( )厘米,BC边上的高是( )厘米,图中梯形的高是线段( )。
二、仔细推敲,选一选。
(将正确答案的序号填在括号里)(每小题3分,共18分)1.关于平行四边形,下面说法中有( )个是正确的。
①平行四边形的对边互相平行②平行四边形的对边长度是相等的③平行四边形容易变形④等腰梯形是一种特殊的平行四边形A.1 B.2 C.3 D.42.把一个长方形框架拉成一个平行四边形后,周长( ),面积( )。
A.不变 B.变小 C.变大3.下图中,a∥b,如果∠1=35°,那么∠2的度数是( )。
A.145°B.35°C.无法确定4.下面各图形中,各个内角的度数的和不是360°的是( )。
5.用下图表示四边形之间的关系,正确的是( )。
6.在房屋建造过程中,有时会用到铅垂线来检查墙壁是否竖直,如果墙壁竖直,铅垂线会与墙壁( )。
《第18章平行四边形》单元测试卷(1)一.选择题(共10小题,满分30分,每小题3分)1.(3分)如图,在平行四边形ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD于点E,若AB=4,EF=1,则BC长为()A.7B.8C.9D.102.(3分)如图,在菱形ABCD中,AC、BD相交于点O,F为AB的中点,且DF⊥AB,若AC=6,则DF的长为()A.2B.3C.3D.43.(3分)如图,在正方形ABCD中,点A的坐标是(﹣3,2),点D的坐标是(﹣1,0),则C点的坐标是()A.(1,2)B.(2,2)C.(3,2)D.(2,1)4.(3分)如图,四边形ABED是平行四边形,点C在BE的延长线上,DE=DC,∠C=75°,则∠B等于()A.80°B.75°C.70°D.60°5.(3分)要从一张长40cm,宽20cm的矩形纸片中剪出长为18cm,宽为12cm的矩形纸片则最多能剪出()A.1张B.2张C.3张D.4张6.(3分)下列说法不正确的是()A.两组对角分别相等的四边形是平行四边形B.一组邻边都相等的四边形是菱形C.有三个角是直角的四边形是矩形D.对角线相等的菱形是正方形7.(3分)如图,点A、D、G、M在半圆上,四边形ABOC、DEOF、HMNO均为矩形,设BC=a,EF=b,HN=c,则a、b、c三者间的大小关系为()A.a>b>c B.a<b<c C.a=b=c D.a>c>b8.(3分)如图,在▱ABCD中,对角线AC与BD相交于点O,添加下列条件中能判定▱ABCD 为矩形的是()A.AB=BC B.AC⊥BD C.∠ABC=90°D.∠1=∠29.(3分)已知长方形ABCD,AB=3,AD=4,过对角线BD的中点O作BD的垂直平分线EF,分别交AD,BC于点E,F,则AE的长为()A.1B.2C.D.10.(3分)如图,将边长为4个单位的等边△ABC沿边BC向右平移2个单位得到△DEF,则四边形ABFD的周长为()A.12B.16C.20D.24二.填空题(共6小题,满分18分,每小题3分)11.(3分)如图,AD∥BC,要使四边形ABCD成为平行四边形还需要添加的条件是(只需写出一个即可)12.(3分)如图,在▱ABCD中,AC=BC,∠CAD=30°,则∠D的度数为.13.(3分)如图,在四边形ABCD中,AD与BC不平行,AB=CD.AC,BD是四边形ABCD 的对角线,E,F,G,H分别是BD,BC,AC,AD的中点.下列结论:①EG⊥FH;②四边形EFGH是矩形;③EG=(BC﹣AD);④HF平分∠EHG.其中正确的是.14.(3分)已知Rt△ABC,∠ABC=90°,小明按如下步骤作图,①以A为圆心,BC长为半径作弧,以C为圆心,AB长为半径作弧,两弧相交于点D;②连接DA,DC,则四边形ABCD为.15.(3分)如图,将长方形纸片ABCD沿BD折叠,得到△BDC1,C1D与AB交于点E,若∠1=35°,则∠2的度数是.16.(3分)如图,∠MON=90°,矩形ABCD的顶点A、B分别在OM、ON上,当点B在ON上移动时,点A随之移动,AB=2,BC=1,运动过程中,点D到点O的最大距离为.三.解答题(共5小题)17.如图,在正方形ABCD中,BE平分∠DBC交CD于点E,延长BC到F,使CF=CE,连接DF交BE的延长线于点G.(1)求∠BGF的度数;(2)求证:DE=CE.18.如图,四边形ABCD是平行四边形,BE∥DF,BE、DF分别交AC于点E,F.(1)求证:△ABE≌△CDF;(2)当四边形ABCD是菱形时,请判断四边形BEDF的形状,并证明你的结论.19.如图,将平行四边形ABCD的边AB延长到点E,使BE=AB,DE交边BC于点F.(1)求证:四边形BECD为平行四边形;(2)连接BD、CE,若∠BFD=2∠A,求证:四边形BECD是矩形.20.已知:如图,在平行四边形ABCD中,E、F分别为AB、CD的中点,G、H分别为DE、BF的中点.(1)试判断四边形EHFG的形状,并证明;(2)若∠ABC=90°,试判断四边形EHFG的形状并加以证明.21.如图,▱ABCD中,E是AD的中点,△BCE是等边三角形.求证:四边形ABCD是矩形.。
第18章平行四边形单元测试卷(6)一.选择题(共10小题,满分30分,每小题3分)1.(3分)如图,菱形ABCD的对角线AC、BD相交于点O,∠ABD=30°,BC=4,则边AD与BC之间的距离为()A.2B.2C.D.2.(3分)下列条件不能判定四边形ABCD是平行四边形的是()A.AB∥CD,AD∥BC B.AB∥CD,∠A=∠CC.AB∥CD,AD=BC D.∠A=∠C,∠B=∠D3.(3分)在平行四边形ABCD中,∠A=65°,则∠C的度数是()A.65°B.105°C.115°D.125°4.(3分)如图,已知点D、E、F分别是△ABC边AB、AC、BC的中点,设△ADE和△BDF 的周长分别为L1和L2,则L1和L2的大小关系是()A.L1=L2B.L1<L2C.L1>L2D.L1与L2的大小关系不确定5.(3分)在矩形纸片ABCD中,AB=3,AD=5.如图所示,折叠纸片,使点A落在BC 边上的A′处,折痕为PQ,当点A′在BC边上移动时,折痕的端点P、Q也随之移动,若限定点P、Q分别在线段AB、AD边上移动,则点A′在BC边上可移动的最大距离为()A.1B.2C.3D.46.(3分)如图,在Rt△ABC中,∠BAC=90°,AB=3,BC=10,点D边AB上的动点,连接CD,线段CD绕点C顺时针旋转90°得CE,连接AE,则△ACE的面积()A.是变量B.等于5C.等于10D.等于7.(3分)如图,在四边形ABCD中,E是BC边的中点,连接DE并延长,交AB的延长线于点F,AB=BF.添加一个条件使四边形ABCD是平行四边形,你认为下面四个条件中可选择的是()A.AD=BC B.CD=BF C.∠A=∠C D.∠F=∠CDF 8.(3分)如图,E是边长为2的正方形ABCD的对角线AC上一点,且AE=AB,F为BE 上任意点,FG⊥AC于点G,FH⊥AB于点H,则FG+FH的值是()A.B.C.2D.19.(3分)如图,在平行四边形ABCD中,AC,BD相交于点O,若AC=8,则线段AO的长为()A.3B.4C.5D.1610.(3分)如图,在菱形ABCD中,E、F分别是AB、BC边的中点,EP⊥CD于点P,∠BAD=110°,则∠FPC的度数是()A.35°B.45°C.50°D.55°二.填空题(共10小题,满分30分,每小题3分)11.(3分)如图,在▱ABCD中AB=2.6,BC=4,∠ABC的平分线交CD的延长线于点E,则DE的长为.12.(3分)计算:8a2b5÷(2ab2)2=.13.(3分)已知a,b,c为三角形ABC的三边,且a4﹣b4=c2(a2+b2),则三角形ABC为三角形14.(3分)如图,点P是正方形ABCD的对角线BD上一点,PE⊥BC,PF⊥CD,垂足分别为点E,F,连接AP,EF,给出下列四个结论:①AP=EF;②∠PFE=∠BAP;③PD=EC;④△APD一定是等腰三角形,其中正确的结论序号是.15.(3分)如图,在▱ABCD中,AC=BC,∠CAD=30°,则∠D的度数为.16.(3分)如图,矩形ABCD中,已知:AB=3,BC=9,将矩形沿EF翻折,使点C与点A重合,点D落在点D'处,则EF=.17.(3分)已知菱形的两条对角线的长分别是8和6,则该菱形的周长是.18.(3分)边长为a的正方形,在一个角剪掉一个边长为的b正方形,则所剩余图形的周长为.19.(3分)如图,在▱ABCD中,E、F是对角线AC上两点,AE=EF=CD,∠ADF=90°,∠BCD=66°,则∠ADE的大小为.20.(3分)如图,P为菱形ABCD的对角线上一点,PE⊥AB于E,AP=5,AE=4,则点P 到边AD的距离等于.三.解答题(共8小题,满分70分)21.(6分)如图,在正方形ABCD中,点M是对角线BD上的一点,过点M作ME∥CD 交BC于点E,作MF∥BC交CD于点F.求证:AM=EF.22.(6分)如图,∠A=∠B=40°,P为AB中点,点M为射线AC上(不与点A重合)的任意一点,连接MP,并使MP的延长线交射线BD于点N,设∠BPN=α.(1)求证:△APM≌△BPN;(2)当α等于多少度时,以A、M、B、N为顶点的四边形是菱形?23.(8分)如图,平行四边形ABCD中,∠BCD的平分线交AD于E,∠ABC的平分线交ED于点F.(1)求证:AE=DF;(2)若∠A=120°,BF=8,EF=3,求BC的长.24.(8分)如图,△ABC中,∠BAC=90°,AH是高,BD平分∠ABC交AH于E,DF⊥BC于F,试说明四边形AEFD是菱形.25.(10分)如图,E为矩形ABCD对角线BD上一点,AE=AB=a,∠ADB=θ,请你用a、θ表示BE的长.26.(10分)如图所示,AB∥CD,AF∥CE,BE=DF,求证:AB=CD.27.(10分)如图所示,▱ABCD中的对角线AC、BD相交于O,EF经过点O与AD延长线交于E,与CB延长线交于F.求证:OE=OF.28.(12分)如图,正方形ABCD中,点E,F分别在边CD,AD上,AE⊥BF于点G.(1)求证:AE=BF;(2)若AB=4,CE=1,求BF的长.。
八年级数学下册《平行四边形的判定》单元测试卷(附带答案)一.选择题1.四边形ABCD中,AD∥BC.要判别四边形ABCD是平行四边形,还需满足条件()A.∠A+∠C=180°B.∠B+∠A=180°C.∠A=∠D D.∠B=∠D2.四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()A.AB∥DC,AD∥BC B.AB=DC,AD=BCC.AO=CO,BO=DO D.AB=DC,AD∥BC3.如图,四边形ABCD的对角线AC,BD交于点O,则不能判断四边形ABCD是平行四边形的是()A.∠ABC=∠ADC,AD∥BC B.∠ABD=∠BDC,∠BAD=∠DCBC.∠ABD=∠BDC,OA=OC D.∠ABC=∠ADC,AB=CD4.下列说法不正确的是()A.两组对边分别平行的四边形是平行四边形B.一组对边平行,另一组对边相等的四边形是平行四边形C.一组对边平行且相等的四边形是平行四边形D.一组对边平行,一组对角相等的四边形是平行四边形5.如图,在▱ABCD中,AB=6,BC=8,∠C的平分线交AD于E,交BA的延长线于F,则AE+AF的值等于()A.2B.3C.4D.66.如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为()A.66°B.104°C.114°D.124°7.已知四边形ABCD的对角线AC、BD相交于点O,给出下列5个条件:①AB∥CD;②OA=OC;③AB =CD;④∠BAD=∠DCB;⑤AD∥BC,从以上5个条件中任选2个条件为一组,能判定四边形ABCD 是平行四边形的有()组.A.4B.5C.6D.78.如图,在平行四边形ABCD中,E,F是对角线BD上不同的两点,连接AE,CE,AF,CF.下列条件中,不能得出四边形AECF一定是平行四边形的为()A.BE=DF B.AE=CF C.AF∥CE D.∠BAE=∠DCF9.如图,在▱ABCD中,点E,F分别在边BC,AD上,有下列条件:①BE=DF;②AE∥CF;③AE=CF;④∠BAE=∠DCF.其中,能使四边形AECF是平行四边形的条件有()A.1个B.2个C.3个D.4个10.如图,在▱ABCD中,∠ABC=45°,BC=4,点F是CD上一个动点,以F A、FB为邻边作另一个▱AEBF,当F点由D点向C点运动时,下列说法正确的选项是()①▱AEBF的面积先由小变大,再由大变小②▱AEBF的面积始终不变③线段EF最小值为4A.①B.②C.①③D.②③二.填空题11.如图,BD是▱ABCD的对角线,点E、F在BD上,要使四边形AECF是平行四边形,还需增加的一个条件是.12.如图,在▱ABCD中,AB=2cm,AD=4cm,AC⊥BC,则△DBC比△ABC的周长长cm.13.如图,在四边形ABCD中,若AB=CD,则添加一个条件,能得到平行四边形ABCD.(不添加辅助线,任意添加一个符合题意的条件即可)14.在平面直角坐标系中,A(﹣1,1),B(2,3),C(3m,4m+1),D在x轴上,若以A,B,C,D四点为顶点的四边形是平行四边形,求点D的坐标.15.如图,四边形ABCD中,AD∥BC,AD=12cm,BC=15cm,点P自点A向D以1cm/s的速度运动,到D点即停止.点Q自点C向B以2cm/s的速度运动,到B点即停止,直线PQ截原四边形为两个新四边形.则当P,Q同时出发秒后其中一个新四边形为平行四边形.16.如图,在平面直角坐标系中,有一Rt△ABC,∠C=90°且A(﹣1,3)、B(﹣3,﹣1)、C(﹣3,3),已知△A1AC1是由△ABC旋转得到的.若点Q在x轴上,点P在直线AB上,要使以Q、P、A1、C1为顶点的四边形是平行四边形,满足条件的点Q的坐标为.17.在平面直角坐标系里,A(1,0),B(0,2),C(﹣4,2),若以A、B、C、D为顶点的四边形是平行四边形,则点D的坐标为.18.如图,在平面直角坐标系中,点A的坐标为(1,0),点B的坐标为(4,0),点C在y的正半轴上,且OB=2OC,在直角坐标平面内确定点D,使得以点D、A、B、C为顶点的四边形是平行四边形,请写出点D的坐标为.三.解答题19.如图,点B,E,C,F在一条直线上,AB=DE,AB∥DE,BE=CF.(1)求证:△ABC≌△DEF;(2)连接AD,求证:四边形ACFD是平行四边形.20.E,F是四边形ABCD对角线AC上的两点,AD∥BC,DF∥BE,AE=CF.(1)根据题意,画出图形;(2)求证:①△AFD≌△CEB;②四边形ABCD是平行四边形.21.已知,如图所示,AB∥CD,AB=CD,点E、F在BD上.∠BAE=∠DCF,连接AF、EC,求证:(1)AE=FC;(2)四边形AECF是平行四边形.22.如图,四边形ABCD中AC、BD相交于点O,延长AD至点E,连接EO并延长交CB的延长线于点F,∠E=∠F,AD=BC.(1)求证:O是线段AC的中点:(2)连接AF、EC,证明四边形AFCE是平行四边形.23.如图,AB=CD,E,F分别为AB、CD上的点,连接BC,分别与AF、ED相交于点G,H.∠B=∠C,BH=CG.(1)求证:AG=DH;(2)求证:四边形AFDE是平行四边形.24.已知,如图,在平行四边形ABCD中,延长DA到点E,延长BC到点F,使得AE=CF,连接EF,分别交AB,CD于点M,N,连接DM,BN.(1)求证:△AEM≌△CFN;(2)求证:四边形BMDN是平行四边形.参考答案一.选择题1.解:∵AD∥BC∴∠A+∠B=180°,∠D+∠C=180°∴A.∠A+∠C=180°,可得∠B=∠C,这样的四边形是等腰梯形,不是平行四边形,故此选项错误;B.∠A+∠B从题目已知条件即可得出,无法证明四边形为平行四边形,此选项错误;C.同理A,这样的四边形是等腰梯形,故此选项错误;D.∠B=∠D,可得∠A+∠D=180°,则BA∥CD,故四边形ABCD是平行四边形,此选项正确;故选:D.2.解:∵AB∥DC,AD∥BC∴四边形ABCD是平行四边形,故选项A不合题意;∵AB=CD,AD=BC∴四边形ABCD是平行四边形,故选项B不合题意;∵AO=CO,BO=DO∴四边形ABCD是平行四边形,故选项C不合题意;∵AB=CD,AD∥BC∴四边形ABCD不一定是平行四边形,故选项D符合题意;故选:D.3.解:A、∵AD∥BC∴∠ABC+∠BAD=180°∵∠ABC=∠ADC∴∠ADC+∠BAD=180°∴AB∥CD∴四边形ABCD是平行四边形,故此选项不合题意;B、∵∠ABD=∠BDC,∠BAD=∠DCB∴∠ADB=∠CBD∴AD∥CB∵∠ABD=∠BDC∴AB∥CD∴四边形ABCD是平行四边形,故此选项不合题意;C、∵∠ABD=∠BDC,OA=OC又∠AOB=∠COD∴△AOB≌△COD(AAS)∴四边形ABCD是平行四边形,故此选项不合题意;D、∠ABC=∠ADC,AB=CD不能判断四边形ABCD是平行四边形,故此选项符合题意;故选:D.4.解:A、∵两组对边分别平行的四边形是平行四边形∴选项A不符合题意;B、∵一组对边平行,另一组对边相等的四边形不一定是平行四边形∴选项B符合题意;C、∵一组对边平行且相等的四边形是平行四边形∴选项C不符合题意;D、∵一组对边平行,一组对角相等的四边形是平行四边形∴选项D不符合题意;故选:B.5.解:∵四边形ABCD是平行四边形∴AB∥CD,AD=BC=8,CD=AB=6∴∠F=∠DCF∵CF平分∠BCD∴∠FCB=∠DCF∴∠F=∠FCB∴BF=BC=8同理:DE=CD=6∴AF=BF﹣AB=2,AE=AD﹣DE=2∴AE+AF=4;故选:C.6.解:∵四边形ABCD是平行四边形∴AB∥CD∴∠ACD=∠BAC由折叠的性质得:∠BAC=∠B′AC∴∠BAC=∠ACD=∠B′AC=∠1=22°∴∠B=180°﹣∠2﹣∠BAC=180°﹣44°﹣22°=114°;7.解:①与⑤根据两组对边分别平行的四边形是平行四边形,能推出四边形ABCD为平行四边形;①与③根据一组对边平行且相等的四边形是平行四边形,能推出四边形ABCD为平行四边形;①与④,⑤与④根据两组对角分别相等的四边形是平行四边形,能推出四边形ABCD为平行四边形;①与②,②与⑤根据对角线互相平分的四边形是平行四边形,能推出四边形ABCD为平行四边形.所以能推出四边形ABCD为平行四边形的有6组.故选:C.8.解:如图,连接AC与BD相交于O在▱ABCD中,OA=OC,OB=OD要使四边形AECF为平行四边形,只需证明得到OE=OF即可;A、若BE=DF,则OB﹣BE=OD﹣DF,即OE=OF,故本选项不符合题意;B、若AE=CF,则无法判断OE=OE,故本选项符合题意;C、AF∥CE能够利用“角角边”证明△AOF和△COE全等,从而得到OE=OF,故本选项不符合题意;D、由∠BAE=∠DCF,从而推出△DFC≌△BEA,然后得出∠DFC=∠BEA,∴∠CFE=∠AEF,∴FC∥AE,由全等可知FC=AE,所以四边形AECF是平行四边形;故本选项不符合题意;故选:B.9.解:①正确,理由如下:∵四边形ABCD平行四边形∴AD=BC,AD∥BC又∵BE=DF∴AF=EC.又∵AF∥EC∴四边形AECF是平行四边形.②正确,理由如下:∵AF∥EC,AE∥CF∴四边形AECF是平行四边形;④正确;理由如下:∵四边形ABCD是平行四边形∴∠B=∠D∵∠BAE=∠DCF∴∠AEB=∠CFD.∵AD∥BC∴∠AEB=∠EAD.∴∠CFD=∠EAD.∴AE∥CF.∵AF∥CE∴四边形AECF是平行四边形.∵AE=CF不能得出四边形AECF是平行四边形∴③不正确;能使四边形AECF是平行四边形的条件有3个.故选:C.10.解:过点C作CG⊥AB于点G则∵AB与CG的值始终不变化∴△ABF的面积始终不变化∵▱AEBF的面积=2×△ABF的面积∴▱AEBF的面积始终不变∴①错误,②正确;连接EF,与AB交于点H∵四边形AEBF是平行四边形∴AH=BH,EH=FH当FH⊥AB时,FH的值最小,EF=2FH的值也最小此时,FH=CG∵∠ABC=45°,CG⊥AB∴BG=CG∵BG2+CG2=BC2=16∴∴FH=∴线段EF最小值为EF=2FH=4.∴③正确故选:D.二.填空题(共8小题)11.解:如图,连接AC交BD于点O∵四边形ABCD为平行四边形∴AO=CO,BO=DO∴当BE=DF时,可得OE=OF,则四边形AECF为平行四边形∴可增加BE=DF故答案为:BE=DF(答案不唯一).12.解:在▱ABCD中,∵AB=CD=2cm,AD=BC=4cm,AO=CO,BO=DO ∵AC⊥BC∴AC==6cm∴OC=3cm∴BO==5cm∴BD=10cm∴△DBC的周长﹣△ABC的周长=BC+CD+BD﹣(AB+BC+AC)=BD﹣AC=10﹣6=4cm 故答案为:4.13.解:根据平行四边形的判定,可再添加一个条件:AD=BC.故答案为:AD=BC(答案不唯一).14.解:由点C的坐标可以判断出点C在直线y=上已知A、B两点,所以以AB为边和对角线分类讨论当AB为边时,AB∥CD,AB=CD,如图可证得△ABE≌△CDF∴FC=BE=2,AE=DF=3若点D在x轴正半轴时∴点C坐标为(,﹣2)∴点D坐标为(,0)若点D在x轴负半轴时点C坐标为(,2)点D坐标为(﹣,0)当AB为对角线时AB与CD相交于AB的中点(,2)设点D(m,0)可得点C坐标为(1﹣m,4)将点C坐标代入解析式可得m=点D坐标为(,0)故点D的坐标为(,0)或(,0)或(﹣,0).15.解:根据题意有AP=tcm,CQ=2tcm,PD=(12﹣t)cm,BQ=(15﹣2t)cm.①∵AD∥BC∴当AP=BQ时,四边形APQB是平行四边形.∴t=15﹣2t解得t=5.∴t=5s时四边形APQB是平行四边形;②AP=tcm,CQ=2tcm∵AD=12cm,BC=15cm∴PD=AD﹣AP=(12﹣t)cm∵AD∥BC∴当PD=QC时,四边形PDCQ是平行四边形.即:12﹣t=2t解得t=4s∴当t=4s时,四边形PDCQ是平行四边形.综上所述,当P,Q同时出发4或5秒后其中一个新四边形为平行四边形.故答案是:4或5.16.解:∵点Q在x轴上,点P在直线AB上,以Q、P、A1、C1为顶点的四边形是平行四边形当A1C1为平行四边形的边时∴PQ=A1C1=2∵P点在直线y=2x+5上∴令y=2时,2x+5=2,解得x=﹣1.5令y=﹣2时,2x+5=﹣2,解得x=﹣3.5∴点Q的坐标为(﹣1.5,0),(﹣3.5,0)当A1C1为平行四边形的对角线时∵A1C1的中点坐标为(3,2)∴P的纵坐标为4代入y=2x+5得,4=2x+5解得x=﹣0.5∴P(﹣0.5,4)∵A1C1的中点坐标为:(3,2)∴直线PQ的解析式为:y=﹣x+当y=0时,即0=﹣x+解得:x=6.5故Q为(﹣1.5,0)或(﹣3.5,0)或(6.5,0).故答案为(﹣1.5,0)或(﹣3.5,0)或(6.5,0).17.解:如图有三种情况:①平行四边形AD1CB∵A(1,0),B(0,2),C(﹣4,2)∴AD1=BC=4,OD1=3则D的坐标是(﹣3,0);②平行四边形AD2BC∵A(1,0),B(0,2),C(﹣4,2)∴AD2=BC=4,OD2=1+4=5则D的坐标是(5,0);③平行四边形ACD3B∵A(1,0),B(0,2),C(﹣4,2)∴D3的纵坐标是2+2=4,横坐标是﹣(4+1)=﹣5则D的坐标是(﹣5,4)故答案为:(﹣3,0)或(5,0)或(﹣5,4).18.解:如图,①当BC为对角线时,易求M1(3,2);②当AC为对角线时,CM∥AB,且CM=AB.所以M2(﹣3,2);③当AB为对角线时,AC∥BM,且AC=BM.则|M y|=OC=2,|M x|=OB+OA=5,所以M3(5,﹣2).综上所述,符合条件的点D的坐标是M1(3,2),M2(﹣3,2),M3(5,﹣2).故答案为:(3,2)(﹣3,2)(5,﹣2).三.解答题19.证明:(1)∵AB∥DE∴∠B=∠DEF∵BE=CF∴BE+CE=CF+CE即BC=EF在△ABC和△DEF中∴△ABC≌△DEF(SAS);(2)由(1)得:△ABC≌△DEF∴AC=DF,∠ACB=∠F∴AC∥DF∴四边形ACFD是平行四边形.20.(1)解:如图,即为所画的图形;(2)证明:①如图,∵AD∥BC,DF∥BE∴∠DAF=∠BCE,∠DF A=∠BEC又AE=CF∴AE+EF=CF+EF即AF=CE在△AFD与△CEB中∴△AFD≌△CEB(ASA);②由①知,△AFD≌△CEB则AD=CB又∵AD∥BC∴四边形ABCD是平行四边形.21.证明:(1)∵AB∥CD∴∠B=∠D.在△ABE和△CDF中∴△ABE≌△CDF(ASA).∴AE=CF.(2)由(1)△ABE≌△CDF得AE=CF,∠AEB=∠CFD ∴180°﹣∠AEB=180°﹣∠CFD即∠AEF=∠CFE.∴AE∥CF.∵AE=CF∴四边形AECF是平行四边形.22.证明:(1)∵∠E=∠F∴AD∥BC∵AD=BC∴四边形ABCD是平行四边形∴AC,BD互相平分;即O是线段AC的中点.(2)∵AD∥BC∴∠EAC=∠FCA在△OAE和△OCF中∴△OAE≌△OCF(ASA).∴OE=OF又∵OA=OC∴四边形AFCE是平行四边形.23.证明:(1)∵BH=CG∴BH+HG=CG+HG∴BG=CH在△ABG与△CDH中∴△ABG≌△CDH(SAS)∴AG=DH;(2)∵△ABG≌△CDH∴∠AGB=∠CHD∴AF∥DE∵∠B=∠C∴AB∥CD∴四边形AFDE是平行四边形.24.证明:(1)四边形ABCD是平行四边形∴∠DAB=∠BCD∴∠EAM=∠FCN又∵AD∥BC∴∠E=∠F.∵在△AEM与△CFN中∴△AEM≌△CFN(ASA);(2)∵四边形ABCD是平行四边形∴AB=CD,AB∥CD又由(1)得AM=CN∴BM=DN,BM∥DN∴四边形BMDN是平行四边形.。
浙教版八年级数学下册单元测试卷第四章平行四边形姓名:___________班级:___________学号:___________一、选择题(本大题共10小题,共30.0分)1.小斌家买了一套新房正在进行装修,星期天小斌陪父母一起到瓷砖商店去购买一种多边形形状的瓷砖,用来铺设客厅地面(需无缝),则购买的瓷砖形状不可以是()A. 三角形地砖B. 正方形地砖C. 正六边形地砖D. 正五边形地砖2.如图,在▱ABCD中,CD=2AD,BE⊥AD于点E,F为DC的中点,连结EF、BF,若∠FBE=40°,则∠DFE=()A. 35°B. 40°C. 50°D. 30°3.已知图形:①等边三角形,②平行四边形,③菱形,④圆.其中既是轴对称图形,又是中心对称图形的有()A. 1个B. 2个C. 3个D. 4个4.学习了平行四边形的相关知识后,小明采用下列方法钉制了一个平行四边形框架:如图,将两根木条AC、BD的中点重叠并用钉子固定,然后用木条将AB、BC、CD、DA分别钉起来.此时四边形ABCD即为平行四边形,这样做的依据是()A. 两组对边分别平行的四边形是平行四边形B. 两组对边分别相等的四边形是平行四边形C. 一组对边平行且相等的四边形是平行四边形D. 对角线互相平分的四边形是平行四边形5.如图,四边形ABCD中,∠A=90°,AB=12,AD=5,点M、N分别为线段BC、AB上的动点(含端点,但点M不与点B重合),点E、F分别为DM、MN的中点,则EF长度的可能为()A. 2B. 5C. 7D. 96.用反证法证明命题“三角形中必有一个内角小于或等于60°”时,首先应该假设这个三角形中()A. 有一个内角小于60°B. 每一个内角都小于60°C. 有一个内角大于60°D. 每一个内角都大于60°7.如图,在平行四边形ABCD中,∠B=30°,且BC=CA,将△ABC沿AC翻折至△AB′C,AB′交CD于点E,连接B′D.若AB=3√3,则B′D的长度为()A. 6√3B. 9√3C. 6D. 98.已知点D与点A(−5 , 0),B(0,12),C(a,a)是一平行四边形的四个顶点,则CD长的最小值为()A. 172√2 B. 132√2 C. 13 D. 129.如图是跷跷板示意图,横板AB绕中点O上下转动,立柱OC与地面垂直,设B点的最大高度为ℎ1.若将横板AB换成横板A′B′,且A′B′=2AB,O仍为A′B′的中点,设B′点的最大高度为ℎ2,则下列结论正确的是A. ℎ1 =ℎ2 B. ℎ1=2ℎ2 C. 2ℎ1 =ℎ2 D. ℎ1.ℎ2大小不确定10.如图,在平行四边形ABCD中,∠C=120º,AD=2AB=4,点H、G分别是边AD、BC上的动点.连接AH、HG,点E为AH的中点,点F为GH的中点,连接EF.则EF的最大值与最小值的差为()A. 1B.C.D.二、填空题(本大题共8小题,共24.0分)11.一个多边形的内角和与某一个外角的度数总和为1350°,则这个多边形的边数是________。
第四章平行四边形班级__________ 座号_____ 姓名__________ 分数__________一、选择题(本题有10小题,每小题3分,共30分)1.七边形的外角和为()A.180°B.360°C.900°D.1260°2.已知正多边形的一个外角等于40°,那么这个正多边形的边数为()A.6 B.7 C.8 D.93.如图,□ABCD的对角线AC,BD相交于点O,且AC+BD=16,CD=6,则△ABO的周长是()A.10 B.14 C.20 D.224.如图,在平行四边形ABCD中,AD=4,AB=3,AE平分∠BAD交BC于点E,则线段BE,EC的长分别为()A.2与2B.3与1C.3与2D.1与35.下面四个手机应用图标中,属于中心对称图形的是()A.B.C.D.6.下列命题的逆命题错误的是()A.平行四边形的对角线互相平分B.两组对角相等的四边形是平行四边形C.平行四边形的一组对边平行,另一组对边相等D.两组对边分别相等的四边形是平行四边形7.已知在△ABC中,AB≠AC,求证:∠B≠∠C.若用反证法证明这个结论,可假设()A.∠A=∠B B.AB=AC C.∠B=∠C D.∠A=∠C 8.如图,E,F分别是□ABCD的边AD,BC上的点,EF=6,∠DEF=60°,将四边形EFCD 沿EF翻折,得到EFC′D′,ED′交BC于点G,则△GEF的周长为()A .6B .12C .18D .249. 如图,在△ABC 中,∠BAC =45°,AB =AC =8,P 为AB 边上一动点,以P A ,PC 为边作平行四边形P AQC ,则对角线PQ 的最小值为( ) A .6 B .8 C .2 2 D .4 210.如图,点E ,F 是□ABCD 对角线上两点,在条件①DE =BF ;②∠ADE =∠CBF ;③AF =CE ;④∠AEB =∠CFD 中,选择一个条件添加,使四边形DEBF 是平行四边形,可添加的条件有( )A .①②③B .①②④C .①③④D .②③④二、填空题(本题有8小题,每小题3分,共24分)11.一个多边形的每一个外角均为30°,那么这个多边形的边数为__________.12.平行四边形的两邻边之比是2︰3,周长是30cm ,则较短的一边长为__________cm .13.如图,在△ABC 中,点E 、F 分别为AB 、AC 的中点.若EF 的长为2,则BC 的长为__________.14.请举反例说明命题“对于任意实数x ,x 2+5x +5的值总是整数”是假命题,你举的反例是x =__________(写出一个x 的值即可).15.如图,有一底角为35°的等腰三角形纸片,现过底边上一点,沿与底边垂直的方向将其剪开,分成三角形和四边形两部分,则四边形中,最大角的度数是__________.ABCEF16.如图,在8×8的方格纸中,每一个小正方形的边长均为1,则格点多边形的面积为__________.17.如图,在□ABCD 中,E ,F 分别是AB ,DC 边上的点,AF 与DE 相交于点P ,BF 与CE 相交于点Q ,若S △APD =16 cm 2,S △BQC =25 cm 2,则图中阴影部分的面积为__________cm 2. 错误!未找到引用源。
第18章平行四边形一、选择题1.如图4-161所示,沿虚线EF将ABCD剪开(BF≠AE),得到的四边形ABFE是( )A.梯形 B.平行四边形C.矩形 D.菱形2.下列说法中正确的有 ( )①平行四边形的对角线互相平分;②菱形的对角线互相平分且相等;③矩形的对角线相等;④正方形的对角线互相平分且相等;⑤等腰梯形的对角线相等.A.2个 B.3个 C.4个 D.5个3.五边形的内角和与外角和之比是 ( )A.5∶2 B.2∶3 C.3∶2 D.2∶54.下列图形中,既是中心对称图形,又是轴对称图形的是 ( )A.等腰三角形 B.正三角形C.等腰梯形 D.菱形5.已知菱形的周长为40,一条对角线长为12,则这个菱形的面积为 ( )A.190 B.96 C.47 D.406.一个多边形截去一个角(不过顶点)后,所成的一个多边形的内角和是2520°,那么原多边形的边数是( )A.13 B.15 C.17 D.197.平面图形的密铺是指在一定范围的平面内,这些图形间 ( )A.没有空隙,可以重叠 B.既有空隙,又可重叠C.可有空隙,但无重叠 D.既无空隙,也不重叠8.若四边形的两条对角线互相垂直,则这个四边形 ( )A.一定是矩形 B.一定是菱形C.一定是正方形 D.形状不确定9.如图4-162所示,设F为正方形ABCD中AD边上一点,CE⊥CF交AB的延长线于E,若正方形ABCD的面积为64,△CEF的面积为50,则△CBE的面积为 ( )A.20 B.24 C.25 D.2610.如图4-163所示,正方形ABCD中,点E,F分别在CD,BC上,且CF=DE,连接BE,AF相交于点G,则下列结论不正确的是 ( )A.∠DAF=∠BE C B.∠AF B+∠BE C=90°C.BE=AF D.AF⊥BE二、填空题11.在四边形ABCD中,∠A∶∠B∶∠D=1∶2∶4,∠C=108°,则∠A= .12.边长为10 cm的正方形的对角线长是 cm,这条对角线和正方形一边的夹角是,这个正方形的面积是 cm2.13.在梯形ABCD中,AB∥CD,AB>CD,CE∥DA交AB于E,且△BCE的周长为10 cm,CD=5 cm,则梯形ABCD 的周长是.14.若矩形的一条短边的长为5 cm,两条对角线的夹角为60°,则它的一条较长的边为 cm.15.如图4-164所示,在矩形纸片ABCD中,AD=9,AB=3,将其折叠,使点D与点B重合,折痕为EF,那么折痕EF的长为 .16.菱形的周长为40 cm,如果把它的高增加4 cm,周长不变,那么面积变为原来倍,则菱形的原面积是.的11217.在四边形ABCD中,AB=CD,要使其变为平行四边形,需要增加的条件是.(只需填一个你认为正确的条件即可)18.如图4-165所示;折叠矩形纸片ABCD,先折出折痕BD,再折叠,使AD落在对角线BD上,A对应A′,得折痕DG,若AB=2,BC=1,则AG= .三、解答题19.如图4-166所示,在ABCD中,E,F在平行四边形的外部,且AE=CF,BE=DF,试指出AC和EF的关系,并说明理由.20.如图4-167所示,在△ABC中,O是AC边上的一个动点,过O作直线MN∥BC,交∠BCA的平分线于点正,交∠BCA的外角平分线于点F.(1)试说明OE=OF;(2)当点O运动到何处时,四边形A ECF是矩形?说明理由.21.(1)如图4-168(1)所示,你能设法将左图的平行四边形变成与它面积相等的右边的矩形吗?画一画;(2)任意剪一张梯形纸片(如图4-168(2)所示),与同学们交流、讨论、研究,怎样通过平移、旋转、轴对称以及折纸等方法将梯形剪拼成一个面积与它相等的矩形?并在图(2)中画出设计方案,简述设计的过程.22.矩形的长和宽如图4-169所示,当矩形周长为12时,求a的值.23.如图4-170所示,O为ABCD的对角线AC的中点,过点O作一条直线分别与AB,CD交于点M,N,点E,F在直线MN上,且OE=OF.(1)图中共有几对全等三角形?请把它们都写出来;(2)试说明∠MAE=∠NCF.参考答案1. A 2.C 3.C 4.D 5.B 6.B 7.D 8.D9.B[提示:由全等可知△CEF是等腰直角三角形,又其面积为50,则CF=CE=10,因为正方形ABCD的面积为64,所以边长BC=8,由勾股定理,得BE=6,所以S△CBE=12BE·BC=12×6×8=24.]10.B 11.36°12.102 45° 100 13.20 cm14.3515.1016.80 cm 217.AB ∥CD ,或AD =BC (答案不唯一)18.12-5[提示:A 对应点A ′,则△A ′DG 和△A ′BG 均为直角三角形,设AG =x ,则A ′G =x ,A ′B =BD-A ′D =5-l ,BG =AB -AG =2-x ,由勾股定理,得A ′G 2+A ′B 2=GB 2,所以x 2+(5-1)2=(2-x )2,解得x =12-5.] 19.提示:连接AF ,EC ,可由AE =CF ,且AE ∥CF ,得四边形A ECF 是平行四边形,故AC 与EF 互相平分.20.提示:(1)先说明OE =OC ,再说明OF =OC . (2)当点O 运动到AC 的中点时,四边形A ECF 是矩形(理由略).21.解:(1)如图4-171所示。
平行四边形和梯形单元测试卷
一.选择题.
1.一个四边形,只有一组对边平行,另一组对边相等,它是()
A.长方形B.平行四边形C.等腰梯形
2.下面的条件中,能够判断同一平面内两条直线互相平行的是()
A.两条直线看起来没有交点
B.这两条直线都与另外一条直线互相垂直
C.这两条直线之间的距离很远
3.把25厘米长的线段向两端各延长2米,得到一条()
A.直线B.线段C.射线
4.从梯形的一条底上的一点到对边可以画()垂线.
A.一条B.无数条C.两条D.无法确定
5.两个完全一样的锐角三角形可以拼成一个()
A.正方形B.平行四边形C.梯形D.三角形二.判断题.
6.两条直线互相平行,它们之间的距离一定相等.( )
7.把一个长方形拉成平行四边形后还是有两组对边分别平行.( )
8.长方形的长和宽相等的时候,就变成正方形.( )
9.平行四边形是特殊的四边形,具有稳定性.( )
三.填空题
10.平行四边形可以从边上任意一点向对边画垂线,画出的这些线段都
11.把平行四边形沿高通过割补平移,可以转换为形,这个图形的长相当于平行四边形的,宽相当于平行四边形
的。
12.黑板的两条长边互相,三角板的两条直角边互
相.
13.如图中,a∥b,有个平行四边形,有个梯形.
14.如图中有条射线,组成了个角.
四.操作题
15.过A点画直线BC的垂线。
16.在下面方格图中画出不同的梯形.
(1)直角梯形.
(2)等腰梯形.
(3)任意梯形.
17.李奶奶家有一块地,形状如图,李奶奶想把地分成两
部分,并且增加两个直角,你能帮忙吗?
18.在如图的右边画一个同样的平行四边形。
人教版四年级上册数学第五单元《平行四边形和梯形》测试卷一.选择题(共6题,共12分)1.过直线外一点可以画()条直线与这条直线平行。
A.1B.2C.3D.无数2.下图中有()个平行四边形。
A.4B.6C.8D.93.()的四边形叫做梯形。
A.两组对边分别平行B.只有一组对边平行C.有一组对边平行4.下面图形中,有且只有一组平行线的是()。
5.直线行驶的汽车车轮留下的两行印迹()。
A.互相平行B.互相垂直C.相交6.四边形的性质是()。
A.三个角B.四条边C.对边相等二.判断题(共6题,共12分)1.一条直线的平行线有无数条。
()2.在同一平面内,过直线外一点只能画一条已知直线的平行线。
()3.在一个梯形中画一条直线,可以得到两个平行四边形。
()4.把一个周长20厘米的长方形木框拉成一个平行四边形,平行四边形的周长还是20厘米。
()5.两条平行线之间垂直的线段不一定相等。
()6.梯形只能画出一条高。
()三.填空题(共6题,共14分)1.一个平行四边形的一组对边共长16厘米,另一组对边的长度和是10厘米,这个平行四边形的周长是()厘米。
2.在同一平面内,与已知直线平行的直线有()条;过直线外一点作已知直线的垂线,可以作()条。
3.把一张正方形纸对折两次后展开,得到的折痕互相()。
4.已知一条直线,可以画()条直线与它平行。
5.平行四边形对边平行且()。
6.在同一平面内的两条直线,不是()就是()。
四.作图题(共2题,共10分)1.在方格纸分别画一个锐角,一个直角,一个钝角,一个长方形和一个平行四边形。
2.画一个长5cm,宽2cm的长方形。
五.解答题(共5题,共29分)1.王伯伯在小河边围了一块等腰梯形菜地,菜地上底长6米,下底长13米,两腰各长7米,但他只用了20米长的篱笆。
你知道他是怎么围的吗?请一画,并在图中标明数据。
2.小乐家住在A处,他要去超市,共有三条路,走那条路最近?为什么?3.一个梯形的下底是上底的3倍,如果将上底延长10厘米,这个梯形就变成了一个平行四边形。
初中数学能力强化专题〔九〕———平行四边形班级___________ 姓名_________考点:①平行四边形的性质;②平行四边形的判定;③举行的判定和性质;④菱形的判定和性质;⑤正方形的判定和性质。
一、选择题1、以下命题中,真命题是〔 〕 A 、两条对角线相等的四边形是矩形B 、 两条对角线互相垂直的四边形是菱形C 、两条对角线互相垂直且相等的四边形是正方形D 、两条对角线互相平分的四边形是平行四边形 2、菱形具有而矩形不具有的性质是 ( )A 、对角相等B 、四边相等C 、对角线互相平分D 、四角相等 3、如图,在平面直角坐标系中,□ABCD 的顶点A 、B 、D 的坐标分别是〔0,0〕,〔5,0〕〔2,3〕,那么顶点C 的坐标是〔 〕 A 、〔3,7〕 B.〔5,3〕 C.〔7,3〕 D.〔8,2〕4、菱形的边长和一条对角线的长均为2cm ,那么菱形的面积为〔 〕 A 、24cmB 、23cmC 、223cmD 、23cm5、如图,在菱形ABCD 中,E 、F 分别是AB 、CD 的中点,如果EF=2,那么ABCD 的周长是〔 〕A 、4B 、8C 、12D 、166、矩形一条对角线与一边的夹角是40度,那么两条对角线所成锐角的度数为 〔 〕 A 、50度; B 、60度; C 、70度; D 、80度;7、如图,在矩形ABCD 中,横向阴影局部是矩形,另一阴影局部是平行四边形,依照图中标注的数据,计算图中空白局部的面积,其面积是〔 〕A 、bc -ab +ac +c 2B 、ab -bc -ac +c 2C 、a 2+ab +bc -ac D 、b 2-bc +a 2-ab8、直角梯形的一腰长为6cm ,这腰与底所成的角为30°,那么另一腰长是〔 〕A 3cmB 1.5cmC 6cmD 9cm二、填空9、在□ABCD 中,AB =14cm ,BC =16cm ,那么此平行四边形的周长为 cm . 10、 的平行四边形是菱形〔填一个适宜的条件〕O 〔A 〕 BC D 第3题第5题11、如图,l 是四形形ABCD 的对称轴,如果AD ∥BC ,有以下结论:①AB ∥CD ②AB =BC ③AB ⊥BC ④AO =OC 其中正确的结论是 。
第十八章平行四边形单元测试卷题号一二三总分得分一、选择题(每题3分,共30分)1.直角三角形中,两直角边长分别是12和5,则斜边上的中线长是( )A.34B.26C.8.5D.6.52.如图,矩形ABCD的两条对角线相交于点O,∠AOD=60°,AD=4,则AC 的长是( )A.4B.8C.4错误!未找到引用源。
D.8错误!未找到引用源。
3.一个菱形的周长为8 cm,高为1 cm,这个菱形相邻两角的度数之比为( )A.3∶1B.4∶1C.5∶1D.6∶14.下列命题错误..的是( )A.对角线互相垂直平分的四边形是菱形B.平行四边形的对角线互相平分C.矩形的对角线相等D.对角线相等的四边形是矩形5.若顺次连接四边形ABCD四边的中点,得到的图形是一个矩形,则四边形ABCD一定是( )A.矩形B.菱形C.对角线相等的四边形D.对角线互相垂直的四边形6.如图,在矩形ABCD中,对角线AC,BD相交于点O,过O的直线EF分别交AB,CD于点E,F,若图中阴影部分的面积为6,则矩形ABCD的面积为( )A.12B.18C.24D.307.平行四边形ABCD的对角线交于点O,有五个条件:①AC=BD,②∠ABC=90°,③AB=AC,④AB=BC,⑤AC⊥BD,则下列哪个组合可判定这个四边形是正方形( )A.①②B.①③C.①④D.④⑤8.如图,已知E是菱形ABCD的边BC上一点,且∠DAE=∠B=80°,那么∠CDE的度数为( )A.20°B.25°C.30°D.35°9.如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BA E=22.5°,EF⊥AB,垂足为F,则EF的长为( )A.1B.错误!未找到引用源。
C.4-2 错误!未找到引用源。
D.3 错误!未找到引用源。
-410.如图,在矩形ABCD中,点E是AD的中点,∠EBC的平分线交CD于点F,将△DEF沿EF折叠,点D恰好落在BE上的M点处,延长BC,EF交于点N.有下列四个结论:①DF=CF;②BF⊥EN;③△BEN是等边三角形;④S.其中,将正确结论的序号全部选对的是( )△BEF=3S△DEFA.①②③B.①②④C.②③④D.①②③④二、填空题(每题3分,共30分)11.如图,在平行四边形ABCD中,点E,F分别在边BC,AD上,请添加一个条件__________,使四边形AECF是平行四边形(只填一个即可).12.如图,在周长为20的平行四边形ABCD中,AB<AD,AC与BD交于点O,OE⊥BD,交AD于点E,则△ABE的周长为__________.13.如图,已知AB=BC=CD=AD,∠DAC=30°,那么∠B=__________.14.如图,在矩形ABCD中,对角线AC,BD相交于O,DE⊥AC于E,∠EDC∶∠EDA=1∶2,且AC=10,则EC的长度是__________.15.如图,在四边形ABCD中,对角线AC⊥BD,垂足为O,点E,F,G,H分别为AD,AB,BC,CD的中点.若AC=8,BD=6,则四边形EFGH的面积为__________.16.如图,菱形纸片ABCD中,∠A=60°,折叠菱形纸片ABCD,使点C落在DP(P为AB的中点)所在的直线上的点C'处,得到经过点D的折痕DE.则∠DEC的大小为__________.17.正方形ABCD的边长是4,点P是AD边的中点,点E是正方形边上的一点,若△PBE是等腰三角形,则腰长为__________.18.已知:如图,正方形ABCD中,对角线AC和BD相交于点O.E,F分别是边AD,DC上的点,若AE=4 cm,CF=3 cm,且OE⊥OF,则EF的长为____cm.19.菱形ABCD在直角坐标系中的位置如图所示,其中点A的坐标为(1,0),点B的坐标为(0,错误!未找到引用源。
平行四边形单元测试卷# 平行四边形单元测试卷一、选择题(每题2分,共20分)1. 平行四边形的对边具有什么性质?A. 相等B. 平行C. 垂直D. 相交2. 平行四边形的对角线有什么特点?A. 相等B. 平行C. 垂直D. 相交3. 下列哪个不是平行四边形的性质?A. 对边相等B. 对角相等C. 对角线互相平分D. 内角和为360度4. 矩形是平行四边形的一种特殊类型,其特点是:A. 对角线相等B. 对角线垂直C. 四个角都是直角D. 相邻边相等5. 菱形也是平行四边形的一种,其特点是:A. 对角线相等B. 对角线垂直C. 四边相等D. 四个角都是直角二、填空题(每空1分,共10分)6. 平行四边形的面积公式是:________。
7. 如果一个平行四边形的对角线互相垂直,那么它是一个________。
8. 平行四边形的内角和是________度。
9. 矩形的对角线________(相等/不相等)。
10. 菱形的对角线________(互相平分/不互相平分)。
三、简答题(每题5分,共10分)11. 解释什么是平行四边形,并列举其三个基本性质。
12. 描述如何判断一个四边形是否为平行四边形。
四、计算题(每题7分,共14分)13. 已知平行四边形的底边长度为10厘米,高为5厘米,求其面积。
14. 如果一个平行四边形的对角线长度分别为12厘米和16厘米,且它们互相平分,求平行四边形的边长。
五、证明题(每题6分,共6分)15. 证明:如果一个平行四边形的对角线互相垂直,那么它是一个菱形。
六、应用题(每题10分,共10分)16. 一个矩形花园的长是30米,宽是20米。
如果花园的一边靠墙,那么围起这个花园需要多少米的篱笆?注意:本测试卷旨在检验学生对平行四边形概念、性质、公式和应用的理解和掌握程度。
请在规定时间内完成所有题目,并确保答案的准确性。
数学平行四边形单元测试附解析一、选择题1.如图,在正方形ABCD 中,点E 、F 、H 分别是AB 、BC 、CD 的中点,CE 、DF 交于点G,连接AG 、HG .下列结论:①CE ⊥DF ;②AG=DG;③∠CHG=∠DAG .其中,正确的结论有( )A .0个B .1个C .2个D .3个2.如图,正方形ABCD 的对角线AC ,BD 相交于点O ,E 是AC 上的一点,且AB=AE ,过点A 作AF ⊥BE ,垂足为F ,交BD 于点G ,点H 在AD 上,且EH ∥AF.若正方形ABCD 的边长为2,下列结论:①OE=OG ;②EH=BE ;③AH=222-,其中正确的有( )A .0个B .1个C .2个D .3个3.如图,正方形ABCD 中,4AB =,点E 在BC 边上,点F 在CD 边上,连接AE 、EF 、AF ,下列说法:①若E 为BC 中点,1CF =,则90AEF ∠=︒;②若E 为BC 中点,90AEF ∠=︒,则1CF =;③若90AEF ∠=︒,1CF =,则点E 为BC 中点,正确的有( )个A .0B .1C .2D .34.如图,在ABC ,90C ∠=︒,8AC =,6BC =,点P 为斜边AB 上一动点,过点P 作PE AC ⊥于点E ,PF BC ⊥于点F ,连结EF ,则线段EF 的最小值为( )A .1.2B .2.4C .2.5D .4.85.如图,矩形ABCD 中,AB =2,对角线AC 、BD 交于点O ,∠AOD =120°,E 为BD 上任意点,P 为AE 中点,则PO +PB 的最小值为 ( )A .3B .13+C .7D .3 6.如图,正方形ABCD 的边长为5,4AG CH ==,3BG DH ==,连接GH ,则线段GH 的长为( )A .435B .75 C .2 D .52-7.如图,在菱形ABCD 中,5AB cm =,120ADC =∠︒,点E 、F 同时由A 、C 两点出发,分别沿AB 、CB 方向向点B 匀速移动(到点B 为止),点E 的速度为1/cm s ,点F 的速度为2/cm s ,经过t 秒DEF ∆为等边三角形,则t 的值为( )A .34B .43C .32D .538.如图,在ABC 中,ACB 90∠=︒,2AC BC ==,D 是AB 的中点,点E 在AC 上,点F 在BC 上,且AE CF =,给出以下四个结论:(1)DE DF =;(2)DEF 是等腰直角三角形;(3)四边形CEDF 面积ABC 1S 2=△;(4)2EF 的最小值为2.其中正确的有( ).A .4个B .3个C .2个D .1个9.如图,△A 1B 1C 1中,A 1B 1=4,A 1C 1=5,B 1C 1=7.点A 2、B 2、C 2分别是边B 1C 1、A 1C 1、A 1B 1的中点;点A 3、B 3、C 3分别是边B 2C 2、A 2C 2、A 2B 2的中点;……;以此类推,则第2019个三角形的周长是( )A .201412B .201512 C .201612 D .20171210.如图,△ABC 中,AB =24,BC =26,CA =14.顺次连接△ABC 各边中点,得到△A 1B 1C 1;再顺次连接△A 1B 1C 1各边中点,得到△A 2B 2C 2…如此进行下去,得到n n n A B C ,则△A 8B 8C 8的周长为( )A .1B .12C .14D .18二、填空题11.如图,正方形ABCD 中,AB=4,E 是BC 的中点,点P 是对角线AC 上一动点,则PE+PB 的最小值为 .12.如图,在△ABC 中,∠BAC =90°,点D 是BC 的中点,点E 、F 分别是直线AB 、AC 上的动点,∠EDF =90°,M 、N 分别是EF 、AC 的中点,连结AM 、MN ,若AC =6,AB =5,则AM -MN 的最大值为________.13.如图,在正方形ABCD 中,点,E F 将对角线AC 三等分,且6AC =.点P 在正方形的边上,则满足5PE PF +=的点P 的个数是________个.14.如图所示,菱形ABCD ,在边AB 上有一动点E ,过菱形对角线交点O 作射线EO 与CD 边交于点F ,线段EF 的垂直平分线分别交BC 、AD 边于点G 、H ,得到四边形EGFH ,点E 在运动过程中,有如下结论:①可以得到无数个平行四边形EGFH ;②可以得到无数个矩形EGFH ;③可以得到无数个菱形EGFH ;④至少得到一个正方形EGFH .所有正确结论的序号是__.15.如图,在平行四边形ABCD 中,AB =6,BC =4,∠A =120°,E 是AB 的中点,点F 在平行四边形ABCD 的边上,若△AEF 为等腰三角形,则EF 的长为_____.16.如图,在矩形ABCD 中,AB =2,AD =3,E 为BC 边上一动点,作EF ⊥AE ,且EF =AE .连接DF ,AF .当DF ⊥EF 时,△ADF 的面积为_____.17.如图,在菱形ABCD 中,AC 交BD 于P ,E 为BC 上一点,AE 交BD 于F ,若AB=AE ,EAD 2BAE ∠∠=,则下列结论:①AF=AP ;②AE=FD ;③BE=AF .正确的是______(填序号).18.如图,在矩形ABCD 中,16AB =,18BC =,点E 在边AB 上,点F 是边BC 上不与点B 、C 重合的一个动点,把EBF △沿EF 折叠,点B 落在点B '处.若3AE =,当CDB '是以DB '为腰的等腰三角形时,线段DB '的长为__________.19.如图,有一张长方形纸片ABCD ,4AB =,3AD =.先将长方形纸片ABCD 折叠,使边AD 落在边AB 上,点D 落在点E 处,折痕为AF ;再将AEF ∆沿EF 翻折,AF 与BC 相交于点G ,则FG 的长为___________.20.如图所示,已知AB = 6,点C ,D 在线段AB 上,AC =DB = 1,P 是线段CD 上的动点,分别以AP ,PB 为边在线段AB 的同侧作等边△AEP 和等边△PFB ,连接EF ,设EF 的中点为G ,当点P 从点C 运动到点D 时,则点G 移动路径的长是_________.三、解答题21.如图,在四边形ABCD 中,AB ∥DC ,AB AD =,对角线AC ,BD 交于点O ,AC 平分BAD ∠,过点C 作CE AB ⊥交AB 的延长线于点E ,连接OE .(1)求证:四边形ABCD 是菱形;(2)若5AE =,3OE =,求线段CE 的长.22.如图,平行四边形ABCD 的对角线AC BD 、交于点O ,分别过点C D 、作//,//CF BD DF AC ,连接BF 交AC 于点E .(1)求证: FCE BOE ≌;(2)当ADC ∠等于多少度时,四边形OCFD 为菱形?请说明理由.23.已知正方形ABCD .(1)点P 为正方形ABCD 外一点,且点P 在AB 的左侧,45APB ∠=︒.①如图(1),若点P 在DA 的延长线上时,求证:四边形APBC 为平行四边形.②如图(2),若点P 在直线AD 和BC 之间,以AP ,AD 为邻边作APQD □,连结AQ .求∠PAQ 的度数.(2)如图(3),点F 在正方形ABCD 内且满足BC=CF ,连接BF 并延长交AD 边于点E ,过点E 作EH ⊥AD 交CF 于点H ,若EH=3,FH=1,当13AE CF =时.请直接写出HC 的长________.24.如图,在矩形ABCD 中,E 是AD 的中点,将ABE ∆沿BE 折叠,点A 的对应点为点G .图1 图2(1)填空:如图1,当点G 恰好在BC 边上时,四边形ABGE 的形状是________; (2)如图2,当点G 在矩形ABCD 内部时,延长BG 交DC 边于点F .①求证:BF AB DF =+. ②若3AD AB =,试探索线段DF 与FC 的数量关系.25.如图,在长方形ABCD 中,8,6AB AD ==. 动点P Q 、分别从点、D A 同时出发向点C B 、运动,点P 的运动速度为每秒2个单位,点Q 的运动速度为每秒1个单位,当点P 运动到点C 时,两个点都停止运动,设运动的时间为()t s .(1)请用含t 的式子表示线段PC BQ 、的长,则PC ________,BQ =________. (2)在运动过程中,若存在某时刻使得BPQ ∆是等腰三角形,求相应t 的值.26.猜想与证明:如图①摆放矩形纸片ABCD 与矩形纸片ECGF ,使B ,C ,G 三点在一条直线上,CE 在边CD 上.连结AF ,若M 为AF 的中点,连结DM ,ME ,试猜想DM 与ME 的数量关系,并证明你的结论. 拓展与延伸:(1)若将“猜想与证明”中的纸片换成正方形纸片ABCD 与正方形纸片ECGF ,其他条件不变,则DM 和ME 的关系为__________________;(2)如图②摆放正方形纸片ABCD 与正方形纸片ECGF ,使点F 在边CD 上,点M 仍为AF 的中点,试证明(1)中的结论仍然成立.[提示:直角三角形斜边上的中线等于斜边的一半]① ②27.如图1,在OAB 中,OAB 90∠=,30AOB ∠=,8OB =,以OB 为边,在OAB Λ外作等边OBC Λ,D 是OB 的中点,连接AD 并延长交OC 于E .(1)求证:四边形ABCE是平行四边形;(2)连接AC,BE交于点P,求AP的长及AP边上的高BH;(3)在(2)的条件下,将四边形OABC置于如图所示的平面直角坐标系中,以E为坐标原点,其余条件不变,以AP为边向右上方作正方形APMN:①M点的坐标为.②直接写出正方形APMN与四边形OABC重叠部分的面积(图中阴影部分).28.如图,正方形ABCD的对角线AC,BD相交于点O,点E是AC的一点,连接EB,过点A做AM⊥BE,垂足为M,AM与BD相交于点F.(1)猜想:如图(1)线段OE与线段OF的数量关系为;(2)拓展:如图(2),若点E在AC的延长线上,AM⊥BE于点M,AM、DB的延长线相交于点F,其他条件不变,(1)的结论还成立吗?如果成立,请仅就图(2)给出证明;如果不成立,请说明理由.29.如图,在长方形ABCD中,AB=CD=6cm,BC=10cm,点P从点B出发,以2cm/秒的速度沿BC向点C运动,设点P的运动时间为t秒:(1)PC=cm.(用t的代数式表示)(2)当t为何值时,△ABP≌△DCP?(3)当点P从点B开始运动,同时,点Q从点C出发,以vcm/秒的速度沿CD向点D运动,是否存在这样v的值,使得△ABP与△PQC全等?若存在,请求出v的值;若不存在,请说明理由.30.如图,矩形ABCD中,点O是对角线BD的中点,过点O的直线分别交AB,CD于点E,F.(1)求证:四边形DEBF是平行四边形;(2)若四边形DEBF是菱形,则需要增加一个条件是_________________,试说明理由;(3)在(2)的条件下,若AB=8,AD=6,求EF的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】连接AH,由四边形ABCD是正方形与点E、F、H分别是AB、BC、CD的中点,容易证得△BCE≌△CDF与△ADH≌△DCF,根据全等三角形的性质,容易证得CE⊥DF与AH⊥DF,故①正确;根据垂直平分线的性质,即可证得AG=AD,继而AG=DC,而DG≠DC,所以AG≠DG,故②错误;由直角三角形斜边上的中线等于斜边的一半,即可证得HG=12 DC,∠CHG=2∠GDC,根据等腰三角形的性质,即可得∠DAG=2∠DAH=2∠GDC.所以∠DAG=∠CHG,④正确,则问题得解.【详解】∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠B=∠BCD=90°,∵点E. F. H分别是AB、BC、CD的中点,∴BE=FC∴△BCE≌△CDF,∴∠ECB=∠CDF,∵∠BCE+∠ECD=90°,∴∠ECD+∠CDF=90°,∴∠CGD=90°,∴CE⊥DF,故①正确;连接AH,同理可得:AH⊥DF,∵CE⊥DF,∴△CGD为直角三角形,∴HG=HD=12 CD,∴DK=GK,∴AH垂直平分DG,∴AG=AD=DC,在Rt△CGD中,DG≠DC,∴AG≠DG,故②错误;∵AG=AD, AH垂直平分DG∴∠DAG=2∠DAH,根据①,同理可证△ADH≌△DCF∴∠DAH=∠CDF,∴∠DAG=2∠CDF,∵GH=DH,∴∠HDG=∠HGD,∴∠GHC=∠HDG+∠HGD=2∠CDF,∴∠GHC=∠DAG,故③正确,所以①和③正确选择C.【点睛】本题考查正方形的性质,全等三角形的判定与性质,利用边角边,容易证明△BCE≌△CDF,从而根据全等三角形的性质和等量代换即可证∠ECD+∠CDF=90°,从而①可证;证②时,可先证AG=DC,而DG≠DC,所以②错误;证明③时,可利用等腰三角形的性质,证明它们都等于2∠CDF即可.2.D解析:D【分析】根据正方形的性质及全等三角形的判定与性质即可分别求证判断.【详解】在正方形ABCD中,AO=BO,∠AOG=∠BOE,AC⊥BD∵AF⊥BE,∴∠EAF+∠BEO=∠BEO+∠OBE=90°,∴∠OAG=∠OBE,∴△OAG≌△OBE,故OE=OG,①正确;∵AB=AE,∴∠ABE=∠AEB,∵EH ∥AF ∴HE ⊥BE ,∴∠AEF+∠AEH=∠ABE+∠CBE,∴∠AEH=∠CBE又∵AE=AB=CB,∠HAE=∠ECB=45°,∴△AEH ≌△CBE ,∴EH=BE ,②正确;∵△AEH ≌△=∴AH=CE=AC-AE=,③正确.故选D【点睛】此题主要考查正方形的性质与线段的证明,解题的关键是熟知正方形的性质定理及全等三角形的判定与性质.3.D解析:D【解析】【分析】正方形的边长相等,因为AB=4,所以其他三边也为4,正方形的四个角都是直角,①若E 为BC 中点,1CF =,则能求出AE 2+EF 2=AF 2,用勾股定理可得90AEF ∠=︒.②若E 为BC 中点,90AEF ∠=︒,用勾股定理列方程可求得CF ,③若90AEF ∠=︒,1CF =,用勾股定理列方程可求得BE ,【详解】解:①若E 为BC 中点,1CF =,∵AB=4,∴BE=CE=2,DF=3,∴AE 2=42+22=20,EF 2=22+12=5,AF 2=42+32=25,∴AE 2+ EF 2=AF 2,∴90AEF ∠=︒;故①正确,②若E 为BC 中点,90AEF ∠=︒,设CF x =;则DF=4-x.∴AE 2=42+22=20,EF 2=4+x 2,AF 2=42+(4-x )2,∵90AEF ∠=︒∴∴AE 2+ EF 2=AF 2,∴20+4+ x 2=42+(4-x )2解得x=1;即CF=1.③若90AEF ∠=︒,1CF =,则DF=3,设BE=x ,∴AE 2+ EF 2=AF 2,即42+x 2+1+(4-x )2=42+32解得x=2,即BE=2,E 为BC 的中点.故①②③正确,答案选D.【点睛】本题考查了正方形的性质及勾股定理及勾股定理逆定理的应用,解题关键是应用勾股定理列方程并求解.4.D解析:D【分析】连接PC ,当CP ⊥AB 时,PC 最小,利用三角形面积解答即可.【详解】解:连接PC ,∵PE ⊥AC ,PF ⊥BC ,∴∠PEC=∠PFC=∠C=90°,∴四边形ECFP 是矩形,∴EF=PC ,∴当PC 最小时,EF 也最小,即当CP ⊥AB 时,PC 最小,∵AC=8,BC=6,∴AB=10,∴PC 的最小值为:68 4.810AC BC PC AB ⋅⨯=== ∴线段EF 长的最小值为4.8.故选:D .【点睛】本题主要考查的是矩形的判定与性质,关键是根据矩形的性质和三角形的面积公式解答.5.C解析:C【分析】设M 、N 分别为AB 、AD 的中点,则MN 为△ABD 的中位线,点P 在MN 上,作点O 关于MN 的对称点'O ,连接'BO ,则'BO 即为PO +PB 的最小值,易证△ABO 为等边三角形,过点A 作AH ⊥BO 于H ,求出AH OO =',然后利用勾股定理求出BO 即可.【详解】解:如图,设M 、N 分别为AB 、AD 的中点,则MN 为△ABD 的中位线,∵P 为AE 中点,∴点P 在MN 上,作点O 关于MN 的对称点'O ,连接'BO ,∴OP OP =',∴PO +PB =BP O P BO +='',∵四边形ABCD 是矩形,∠AOD =120°,∴OA =OB ,∠AOB =60°,∴△AOB 为等边三角形,∴AB =BO =4,过点A 作AH ⊥BO 于H , ∴2221=3AH =-,∵MN ∥BD ,点H 关于MN 的对称点为A ,点O 关于MN 的对称点为'O , ∴3AH OO =='OO BD ⊥', ∴2222+=2+(3)=7BO BO OO =''即PO +PB 7故选:C .【点睛】本题考查了利用轴对称求最短路径,矩形的性质,三角形中位线定理,等边三角形的判定及性质,勾股定理的应用,通过作辅助线,得出'BO 为PO +PB 的最小值是解题关键.6.C解析:C【分析】延长BG 交CH 于点E ,根据正方形的性质证明△ABG ≌△CDH ≌△BCE ,可得GE=BE-BG=1,HE=CH-CE=1,∠HEG=90°,由勾股定理可得GH 的长.【详解】解:如图,延长BG 交CH 于点E ,在△ABG 和△CDH 中,AB CD AG CH BG DH =⎧⎪=⎨⎪=⎩,∴△ABG ≌△CDH (SSS ),AG 2+BG 2=AB 2,∴∠1=∠5,∠2=∠6,∠AGB=∠CHD=90°,∴∠1+∠2=90°,∠5+∠6=90°,又∵∠2+∠3=90°,∠4+∠5=90°,∴∠1=∠3=∠5,∠2=∠4=∠6,在△ABG 和△BCE 中,1324AB BC ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABG ≌△BCE (ASA ),∴BE=AG=4,CE=BG=3,∠BEC=∠AGB=90°,∴GE=BE -BG=4-3=1,同理可得:HE=1,在Rt △GHE 中,2222112GE EH +=+故选:C.【点睛】本题主要考查正方形的性质、全等三角形的判定与性质、勾股定理及其逆定理的综合运用,通过证三角形全等得出△GHE 为等腰直角三角形是解题的关键.7.D解析:D【分析】连接BD ,证出△ADE ≌△BDF ,得到AE=BF ,再利用AE=t ,CF=2t ,则BF=BC -CF=5-2t 求出时间t 的值.【详解】解:连接BD ,∵四边形ABCD 是菱形,∠ADC =120°,∴AB =AD ,∠ADB =12∠ADC =60°, ∴△ABD 是等边三角形,∴AD =BD ,又∵△DEF 是等边三角形,∴∠EDF =∠DEF =60°,又∵∠ADB =60°,∴∠ADE =∠BDF , 在△ADE 和△BDF 中,AD BD A DBC ADE BDF =⎧⎪∠=∠⎨⎪∠=∠⎩∴△ADE ≌△BDF (ASA ),∴AE =BF ,∵AE =t ,CF =2t ,∴BF =BC −CF =5−2t ,∴t =5−2t∴t =53, 故选:D.【点睛】 本题考查全等三角形,等边三角形,菱形等知识,熟练掌握全等三角形的判定与性质,等边三角形的判定与性质,菱形的性质为解题关键.8.A解析:A【分析】根据等腰三角形的性质,可得到:CD AB ⊥,从而证明ADE ≌CDF 且ADC 90∠=︒,即证明DE DF =和DEF 是等腰直角三角形,以及四边形CEDF 面积ABC 1S 2=△;再根据勾股定理求得EF ,即可得到答案. 【详解】∵ACB 90∠=︒,2AC BC == ∴22AB 222=+=∴A B 45∠=∠=︒∵点D 是AB 的中点∴CD AB ⊥,且1AD BD CD AB 2====∴DCB 45∠=︒∴A DCF ∠∠=,在ADE 和CDF 中 AD CD A DCF AE CF =⎧⎪∠=∠⎨⎪=⎩∴ADE ≌()CDF SAS∴DE DF =,ADE CDF ∠∠=∵CD AB ⊥∴ADC 90∠=︒∴EDF EDC CDF EDC ADE ADC 90∠∠∠∠∠∠=+=+==︒∴DEF 是等腰直角三角形∵ADE ≌CDF∴ADE 和CDF 的面积相等∵D 为AB 中点∴ADC 的面积1ABC 2=的面积 ∴四边形CEDF 面积EDC CDF EDC ADE ADC ABC 1S S S S S S 2=+=+==;当DE AC ⊥,DF BC ⊥时,2EF 值最小根据勾股定理得:222EFDE DF =+此时四边形CEDF 是正方形即EF CD ==∴22EF 2==∴正确的个数是4个故选:A .【点睛】本题考察了等腰三角形、全等三角形、正方形、直角三角形、勾股定理的知识;解题的关键是熟练掌握等腰三角形、全等三角形、正方形、直角三角形的性质,从而完成求解.9.A解析:A【分析】由三角形的中位线定理得:22B C ,22A C ,22A B 分别等于11A B 、11B C 、11C A 的12,所以△222A B C 的周长等于△111A B C 的周长的一半,以此类推可求出结论.【详解】 解:△111A B C 中,114A B =,115AC =,117B C =,∴△111A B C 的周长是16,2A ,2B ,2C 分别是边11B C ,11A C ,11A B 的中点,22B C ∴,22A C ,22A B 分别等于11A B 、11B C 、11C A 的12, ⋯,以此类推,则△444A B C 的周长是311622⨯=; ∴△n n n A B C 的周长是4122n -, 当2019n =时,第2019个三角形的周长42019120142122-==故选:A .【点睛】 本题考查了三角形的中位线定理,中位线是三角形中的一条重要线段,由于它的性质与线段的中点及平行线紧密相连,因此,它在几何图形的计算及证明中有着广泛的应用.10.C解析:C【分析】根据三角形中位线定理求出△A 1B 1C 1的周长,根据计算总结规律,根据规律解答.【详解】根据三角形中位线定理求出△A 1B 1C 1的周长,根据计算结果总结规律,根据规律解答. 解:∵A 1、C 1分别为AB 、AC 的中点,∴A 1C 1=BC =13,同理,A 1B 1=12AC =7,B 1C 1=12AB =12, ∴△A 1B 1C 1的周长=7+12+13=32, ∴△A 1B 1C 1的周长=△ABC 的周长×12, 则△A 2B 2C 2的周长=△A 1B 1C 1的周长×12=△ABC 的周长×(12)2, …… ∴△A 8B 8C 8的周长=△ABC 的周长×(12)8=64×1256=14, 故选:C .【点睛】本题考查三角形中位线定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.二、填空题11.25 【详解】由于点B 与点D 关于AC 对称,所以如果连接DE ,交AC 于点P ,那PE+PB 的值最小.在Rt △CDE 中,由勾股定理先计算出DE 的长度,即为PE+PB 的最小值.连接DE ,交AC 于点P ,连接BD .∵点B 与点D 关于AC 对称,∴DE 的长即为PE+PB 的最小值,∵AB=4,E 是BC 的中点,∴CE=2,在Rt △CDE 中, DE=25.考点:(1)、轴对称-最短路线问题;(3)、正方形的性质.12.52【分析】连接DM ,直角三角形斜边中线等于斜边一半,得AM=DM ,利用两边之差小于第三边得到AM MN DN -≤,又根据三角形中位线的性质即可求解.【详解】连接DM ,如下图所示,∵90BAC EDF ∠=∠=︒又∵M 为EF 中点∴AM=DM=12EF ∴AM MN DM MN DN -=-≤(当D 、M 、N 共线时,等号成立)∵D 、N 分别为BC 、AC 的中点,即DN 是△ABC 的中位线∴DN=12AB=52∴AM MN -的最大值为52 故答案为52. 【点睛】 本题考查了直角三角形斜边中线的性质,三角形的三边关系,关键是确定AM MN -的取值范围.13.8个【分析】作点F 关于BC 的对称点M ,连接FM 交BC 于点N ,连接EM ,交BC 于点H ,可得点H 到点E 和点F 的距离之和最小,可求最小值,即可求解.【详解】如图,作点F 关于BC 的对称点M ,连接FM 交BC 于点N ,连接EM ,交BC 于点H , ∵点E ,F 将对角线AC 三等分,且AC =6,∴EC =4,FC =2=AE ,∵点M 与点F 关于BC 对称,∴CF =CM =2,∠ACB =∠BCM =45°,∴∠ACM =90°,∴EM则在线段BC 存在点H 到点E 和点F 的距离之和最小为5,在点H 右侧,当点P 与点C 重合时,则PE +PF =4+2=6,∴点P 在CH 上时,PE +PF ≤6,在点H 左侧,当点P 与点B 重合时,∵FN ⊥BC ,∠ABC =90°,∴FN ∥AB ,∴△CFN ∽△CAB , ∴FN CN CF 1===AB CB CA 3,∵AB =BC =2AC =∴FN =13AB ,CN =13BC∴BN =BC -CN =,BF =,∵AB=BC,CF=AE,∠BAE=∠BCF,∴△ABE≌△CBF(SAS),∴BE=BF=10,∴PE+PF=210,∴点P在BH上时,25<PE+PF<210,∴在线段BC上点H的左右两边各有一个点P使PE+PF=5,同理在线段AB,AD,CD上都存在两个点使PE+PF=5.即共有8个点P满足PE+PF=5,故答案为8.【点睛】本题考查了正方形的性质,最短路径问题,在BC上找到点H,使点H到点E和点F的距离之和最小是本题的关键.14.①③④【分析】由“AAS”可证△AOE≌△COF,△AHO≌△CGO,可得OE=OF,HO=GO,可证四边形EGFH 是平行四边形,由EF⊥GH,可得四边形EGFH是菱形,可判断①③正确,若四边形ABCD 是正方形,由“ASA”可证△BOG≌△COF,可得OG=OF,可证四边形EGFH是正方形,可判断④正确,即可求解.【详解】解:如图,∵四边形ABCD是菱形,∴AO=CO,AD∥BC,AB∥CD,∴∠BAO=∠DCO,∠AEO=∠CFO,∴△AOE≌△COF(AAS),∴OE=OF,∵线段EF的垂直平分线分别交BC、AD边于点G、H,∴GH过点O,GH⊥EF,∵AD∥BC,∴∠DAO=∠BCO,∠AHO=∠CGO,∴△AHO≌△CGO(AAS),∴HO=GO,∴四边形EGFH是平行四边形,∵EF⊥GH,∴四边形EGFH是菱形,∵点E是AB上的一个动点,∴随着点E的移动可以得到无数个平行四边形EGFH,随着点E的移动可以得到无数个菱形EGFH,故①③正确;若四边形ABCD是正方形,∴∠BOC=90°,∠GBO=∠FCO=45°,OB=OC;∵EF⊥GH,∴∠GOF=90°;∠BOG+∠BOF=∠COF+∠BOF=90°,∴∠BOG=∠COF;在△BOG和△COF中,∵BOG COF BO COGBO FCO ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BOG≌△COF(ASA);∴OG=OF,同理可得:EO=OH,∴GH=EF;∴四边形EGFH是正方形,∵点E是AB上的一个动点,∴至少得到一个正方形EGFH,故④正确,故答案为:①③④.【点睛】本题考查了菱形的判定和性质,平行四边形的判定,正方形的判定,全等三角形的判定和性质等知识,灵活运用这些性质进行推理是关键.15.33或57 2【分析】△AEF 为等腰三角形,分三种情况讨论,由等腰三角形的性质和30°直角三角形性质、平行四边形的性质可求解.【详解】解:当AE AF =时,如图,过点A 作AH EF ⊥于H ,E 是AB 的中点, 132AE AB ∴==, =AE AF ,AH EF ⊥,120A ∠=︒,30AEF AFE ∴∠=∠=︒,FHEH =, 1322AH AE ∴==,333EH AH ==, 233EF EH ∴==,当AF EF =时,如图2,过点A 作AN CD ⊥于N ,过点F 作FM AB ⊥于M ,图2在平行四边形ABCD 中,6AB =,4BC =,120A ∠=︒,4AD BC ∴==,60ADC ∠=︒,30DAN ∴∠=︒,122DN AD ∴==,323AN DN == //AB CD ,AN CD ⊥,FM AB ⊥,23AN MF ∴==AF EF =,FM AB ⊥,32AM ME ∴==, 22957124EF ME MF ∴++; 当3AE EF ==时,如图3,图33 EF∴=,综上所述:EF的长为33或3或57.【点睛】本题考查了平行四边形的性质,等腰三角形的性质,勾股定理,利用分类讨论思想解决问题是本题的关键.16.3﹣32 2【分析】作辅助线,构建全等三角形和矩形,利用面积法可得AE的长,根据勾股定理可得BE的长,设AE=x,证明△ABE≌△EQF(AAS),得FQ=BE=2,最后根据三角形面积公式可得结论.【详解】解:如图,过D作DH⊥AE于H,过E作EM⊥AD于M,连接DE,∵EF⊥AE,DF⊥EF,∴∠DHE=∠HEF=∠DFE=90°,∴四边形DHEF是矩形,∴DH=EF=AE,∵四边形ABCD是矩形,∴∠B=∠BAD=90°,∵∠AME=90°,∴四边形ABEM是矩形,∴EM=AB=2,设AE=x,则S△ADE=11AD EM AE DH 22⋅=⋅,∴3×2=x2,∴x ,∵x >0,∴x ,即AE ,由勾股定理得:BE ,过F 作PQ ∥CD ,交AD 的延长线于P ,交BC 的延长线于Q ,∴∠Q =∠ECD =∠B =90°,∠P =∠ADC =90°,∵∠BAE +∠AEB =∠AEF =∠AEB +∠FEQ =90°,∴∠FEQ =∠BAE ,∵AE =EF ,∠B =∠Q =90°,∴△ABE ≌△EQF (AAS ),∴FQ =BE ,∴PF =2,∴S △ADF =1AD PF 2⋅=13(22⨯⨯=3 【点睛】此题主要考查了矩形的性质,全等三角形的判定和性质,勾股定理,有难度,正确作辅助线构建全等三角形是关键,并用方程的思想解决问题.17.②③【分析】根据菱形的性质可知AC ⊥BD ,所以在Rt △AFP 中,AF 一定大于AP ,从而判断①;设∠BAE=x ,然后根据等腰三角形两底角相等表示出∠ABE ,再根据菱形的邻角互补求出∠ABE ,根据三角形内角和定理列出方程,求出x 的值,求出∠BFE 和∠BE 的度数,从而判断②③.【详解】解:在菱形ABCD 中,AC ⊥BD ,∴在Rt △AFP 中,AF 一定大于AP ,故①错误;∵四边形ABCD 是菱形,∴AD ∥BC ,∴∠ABE+∠BAE+∠EAD=180°,设∠BAE=x°,则∠EAD=2x°,∠ABE=180°-x°-2x°,∵AB=AE ,∠BAE=x°,∴∠ABE=∠AEB=180°-x°-2x°,由三角形内角和定理得:x+180-x-2x+180-x-2x=180,解得:x=36,即∠BAE=36°,∠BAE=180°-36°-2×36°=70°,∵四边形ABCD是菱形,∴∠BAD=∠CBD=12∠ABE=36°,∴∠BFE=∠ABD+∠BAE=36°+36°=72°,∴∠BEF=180°-36°-72°=72°,∴BE=BF=AF.故③正确∵∠AFD=∠BFE=72°,∠EAD=2x°=72°∴∠AFD=∠EAD∴AD=FD又∵AD=AB=AE∴AE=FD,故②正确∴正确的有②③故答案为:②③【点睛】本题考查了菱形的性质,等腰三角形的性质,熟记各性质并列出关于∠BAE的方程是解题的关键,注意:菱形的对边平行,菱形的对角线平分一组对角.18.16或10【分析】等腰三角形一般分情况讨论:(1)当DB'=DC=16;(2)当B'D=B'C时,作辅助线,构建平行四边形AGHD和直角三角形EGB',计算EG和B'G的长,根据勾股定理可得B'D的长;【详解】∵四边形ABCD是矩形,∴DC=AB=16,AD=BC=18.分两种情况讨论:(1)如图2,当DB'=DC=16时,即△CDB'是以DB'为腰的等腰三角形(2)如图3,当B'D=B'C时,过点B'作GH∥AD,分别交AB与CD于点G、H.∵四边形ABCD是矩形,∴AB∥CD,∠A=90°又GH∥AD,∴四边形AGHD是平行四边形,又∠A=90°,∴四边形AGHD是矩形,∴AG=DH,∠GHD=90°,即B'H⊥CD,又B'D=B'C,∴DH=HC=18CD=,AG=DH=8,3∵AE=3,∴BE=EB'=AB-AE=16-3=13,EG=AG-AE=8-3=5,在Rt△EGB'中,由勾股定理得:GB′2213512,∴B'H=GH×GB'=18-12=6,在Rt△B'HD中,由勾股定理得:B′D22+=6810综上,DB'的长为16或10.故答案为: 16或10【点睛】本题是四边形的综合题,考查了矩形的性质,勾股定理,等腰三角形一般需要分类讨论.192【解析】【分析】根据折叠的性质可得∠DAF=∠BAF=45°,再由矩形性质可得FC=ED=1,然后由勾股定理求出FG即可.【详解】由折叠的性质可知,∠DAF=∠BAF=45°,∴AE=AD=3,EB=AB-AD=1,∵四边形EFCB为矩形,∴FC=BE=1,∵AB∥FC,∴∠GFC=∠DAF=45°,∴GC=FC=1,∴22112FG GC FC=+=+=,故答案为:2.【点睛】本题考查了折叠变换,矩形的性质是一种对称变换,理解折叠前后图形的大小不变,位置变化,对应边和对应角相等是解决此题的关键.20.2【分析】分别延长AE,BF交于点H,易证四边形EPFH为平行四边形,得出点G为PH的中点,则G的运动轨迹为△HCD的中位线MN,再求出CD的长度,运用中位线的性质求出MN的长度即可.【详解】解:如图,分别延长AE,BF交于点H,∵∠A=∠FPB=60°,∴AH∥PF,∵∠B=∠EPA=60°,∴BH∥PE∴四边形EPFH为平行四边形,∴EF与HP互相平分,∵点G为EF的中点,∴点G为PH的中点,即在P运动的过程中,G始终为PH的中点,∴G的运动轨迹为△HCD的中位线MN,∵CD=6-1-1=4,∴MN=12CD=2,∴点G移动路径的长是2,故答案为:2.【点睛】本题考查了等边三角形及中位线的性质,以及动点的问题,是中考热点,解题的关键是得出G 的运动轨迹为△HCD 的中位线MN .三、解答题21.(1)见解析;(2)11【分析】(1)根据题意先证明四边形ABCD 是平行四边形,再由AB=AD 可得平行四边形ABCD 是菱形;(2)根据菱形的性质得出OA 的长,根据直角三角形斜边中线定理得出OE=12AC ,在Rt ACE ∆应用勾股定理即可解答.【详解】(1)证明:∵AB CD ∥,∴OAB DCA ∠=∠,∵AC 为DAB ∠的平分线,∴OAB DAC ∠=∠,∴DCA DAC ∠=∠,∴CD AD AB ==,∵AB CD ∥,∴四边形ABCD 是平行四边形,∵AD AB =,∴ABCD 是菱形;(2)∵四边形ABCD 是菱形∴AO CO =∵CE AB ⊥∴90AEC ∠=︒∴26AC OE ==在Rt ACE ∆中,2211CE AC AE -故答案为(211.【点睛】本题主要考查了菱形的判定和性质,平行四边形的判定和性质,角平分线的定义,勾股定理,熟练掌握菱形的判定与性质是解题的关键.22.(1)见解析;(2)当ADC 满足90ADC ∠=︒时,四边形OCFD 为菱形,证明详见解析【分析】(1)证明四边形OCFD 是平行四边形,得出OD=CF ,证出OB=CF ,再证明全等即可(2)证出四边形ABCD 是矩形,由矩形的性质得出OC=OD ,即可得出四边形OCFD 为菱形.【详解】(1)证明:∵//,//CF BD DF AC ,∴四边形OCFD 是平行四边形, OBE CFE ∠=∠,∴OD CF =,∵四边形ABCD 是平行四边形,∴OB OD =,∴OB CF =,在FCE △和BOE △中, OBE CFE BEO FEC OB CF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()FCE BOE AAS ≌.(2)当ADC 满足90ADC ∠=︒时,四边形OCFD 为菱形.理由如下:∵90ADC ∠=︒,四边形ABCD 是平行四边形,∴四边形ABCD 是矩形∴,,,OA OC OB OD AC BD ===∴OC OD =,∴四边形OCFD 为菱形【点睛】本题考查全等三角形判定与性质,平行四边形和菱形的判定与性质等知识,熟练掌握平行四边形的判定和性质和菱形的判定是解题的关键.23.(1)①证明见详解;②45PAQ ∠=︒,见解析;(2)5.【分析】(1)①只要证明//PB AC 即可解决问题;②如图2中,连接QC ,作DT DQ ⊥交QC 的延长线于T ,利用全等三角形的性质解决问题即可;(2)如图3中,延长EH 交BC 于点G ,设AE=x ,由题意易得AB=BC=CF=EG=3x ,然后可得CG=2x ,HG=3x-3,CH=3x-1,利用勾股定理求解即可.【详解】(1)①证明:四边形ABCD 是正方形,∴//B DP C ,45DAC ∠=︒,∴135PAC ∠=︒45APB ∠=︒,∴+180APB PAC ∠∠=︒,∴//PB AC∴四边形APBC 是平行四边形; ②四边形PADQ 是平行四边形,∴DQ//,//,AP AD PQ AD PQ BC ==,AD//B C ,∴,//PQ BC PQ BC =,∴四边形PQCB 是平行四边形,∴QC//BP ,∴45APQ DQC ∠=∠=︒,90ADC QDT ∠=∠=︒,∴DQ=DT ,45,T DQT ADQ CDT ∠=∠=︒∠=∠,AD=DC ,∴ADQ CDT ≌,∴45AQD T ∠=∠=︒,AP//DQ ,∴45PAQ DQA ∠=∠=︒;(3)CH=5,理由如下:如图3所示:延长EH 交BC 于点G ;四边形ABCD 是正方形,∴AB=BC ,90D ∠=︒, 又EH=3,FH=1,EH ⊥AD ,∴EH//CD ,∴90HGC ∠=︒设AE=x ,1,3AE CF BC CF ==,∴AB=BC=CF=EG=3x , ∴CG=2x ,HG=3x-3,CH=3x-1 在Rt HGC △中,()()22222243331CG HG CH x x x +=+-=-即,解得121,2x x ==当x=1时,AB=3(不符合题意,舍去);当x=2时,AB=6,∴CH=5.故答案为5.【点睛】本题主要考查正方形的综合问题、三角形全等及勾股定理,关键是利用已知条件及四边形的性质得到它们之间的联系,然后利用勾股定理求解线段的长即可.24.(1)四边形ABGE 的形状是正方形;(2)①详见解析;②DF=3CF【分析】(1)由四边形ABCD 是矩形,可得90A ABC ︒∠=∠=,由折叠得:90BGE A ︒∠=∠=,根据三个内角是直角可判断四边形ABGE 为矩形,由折叠得:AB=BG ,根据一组邻边相等的矩形是正方形可判断矩形ABGE 为正方形;(2)①如图,连结EF ,在矩形ABCD 中,AB=DC ,AD=BC ,∠A=∠C=∠D=90°,由△ABE 沿BE 折叠后得到△GBE ,可得BG=AB ,EG=AE=ED ,∠A=∠BGE=90°,故∠EGF=∠D=90°,由HL 可判断Rt △EGF ≌Rt △EDF ,得到DF=FG ,问题得证;②设AB=DC=a ,则AD=BC=3a ,另设CF=x ,则DF=DC-CF=a-x ,由①得BF=AB+DF =2a-x ,在Rt △BCF 中,由勾股定理得:BF 2=BC 2+CF 2,代入数据运算可得:x=14a ,即CF=14a ,DF=a-x=34a ,进而可得DF 与CF 关系.【详解】(1)四边形ABGE 的形状是正方形.理由是:∵四边形ABCD 是矩形,∴90A ABC ︒∠=∠=,由折叠得:90BGE A ︒∠=∠=,∴四边形ABGE 为矩形,由折叠得:AB=BG ,∴矩形ABGE 为正方形;故答案为:正方形.(2)①如图,连结EF ,在矩形ABCD 中,AB=DC ,AD=BC ,∠A=∠C=∠D=90°,∵E 是AD 的中点,∴AE=DE ,∵△ABE 沿BE 折叠后得到△GBE ,∴BG=AB ,EG=AE=ED ,∠A=∠BGE=90°,∴∠EGF=∠D=90°,Rt △EGF 和Rt △EDF 中,EG ED EF EF =⎧⎨=⎩,∴Rt △EGF ≌Rt △EDF (HL ),∴DF=FG ,∴BF=BG+GF=AB+DF ;②不妨假设AB=DC=a,则,另设CF=x,则DF=DC-CF=a-x,由①得BF=AB+DF=a+a-x=2a-x,在Rt△BCF中,由勾股定理得:BF2=BC2+CF2,即(2a-x)2a)2+x2,整理得:x=14a,∴CF=14a,DF=a-x=34a,∴DF=3CF.【点睛】本题主要考查了折叠的性质,正方形的判定,三角形全等的判定,勾股定理等内容,根据图形作出辅助线找出线段的等量关系列出方程是解题的关键.25.(1)8-2t,8-t;(2)83或74【分析】(1)根据P、Q的运动速度以及AB和CD的长即可表示;(2)分PQ=PB、BP=BQ和QP=QB三种情况进行分析即可.【详解】解:(1)由题意可得:DP=2t,AQ=t,∴PC=8-2t,BQ=8-t,故答案为:8-2t,8-t;(2)当PQ=PB时,如图①,QH=BH,则t+2t=8,解得,t=83,当PQ=BQ时,(2t-t)2+62=(8-t)2,解得,t=74,当BP=BQ时,(8-2t)2+62=(8-t)2,方程无解;∴当t=83或74时,△BPQ为等腰三角形.【点睛】本题考查的是矩形的性质、等腰三角形的判定,掌握性质并灵活运用性质是解题的关键,注意分情况讨论思想的应用.26.猜想与证明:猜想DM 与ME 的数量关系是:DM =ME ,证明见解析;拓展与延伸:(1)DM =ME ,DM ⊥ME ;(2)证明见解析【分析】猜想:延长EM 交AD 于点H ,利用△FME ≌△AMH ,得出HM=EM ,再利用直角三角形中,斜边的中线等于斜边的一半证明.(1)延长EM 交AD 于点H ,利用△FME ≌△AMH ,得出HM=EM ,再利用直角三角形中,斜边的中线等于斜边的一半证明,(2)连接AC ,AC 和EC 在同一条直线上,再利用直角三角形中,斜边的中线等于斜边的一半证明,【详解】解:猜想与证明:猜想DM 与ME 的数量关系是:DM =ME.证明:如图①,延长EM 交AD 于点H.①∵四边形ABCD 、四边形ECGF 都是矩形,∴AD ∥BG ,EF ∥BG ,∠HDE =90°.∴AD ∥EF.∴∠AHM =∠FEM.又∵AM =FM ,∠AMH =∠FME ,∴△AMH ≌△FME.∴HM =EM.又∵∠HDE =90°,∴DM =12EH =ME ; (1)∵四边形ABCD 和CEFG 是正方形,∴AD ∥EF ,∴∠EFM=∠HAM ,又∵∠FME=∠AMH ,FM=AM ,在△FME 和△AMH 中,EFM HAM FM AMFME AMH ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△FME ≌△AMH (ASA )∴HM=EM ,在RT △HDE 中,HM=EM ,。
平行四边形 (共120分)
一、选择题(每小题3分,共30分)
1.平行四边形的一边长是10cm ,那么这个平行四边形的两条对角线的长可以是 ( ) A.4cm 和6cm B.6cm 和8cm C.8cm 和10cm D.10cm 和12cm
2.能判定四边形ABCD 为平行四边形的条件是 ( ) A. AB ∥CD ,AD =BC B. AB =CD ,AD =BC C. ∠A =∠B ,∠C =∠D D. AB =AD ,CB =CD
3.矩形具有而一般的平行四边形不一定具有的特征 ( ) A.对角相等 B.对角线互相平分 C.对角线相等 D.对边相等
4.在矩形ABCD 中,AB =3,BC =4,则点A 到对角线BD 的距离为 ( ) A.512 B.2 C.25 D.513
5.如图,平行四边形ABCD 中,AE 平分DAB ∠, 100=∠B ,则DEA ∠等于 ( ) A . 100 B. 80
C. 60
D. 40
6.如图,△ABC 中,∠ACB =90°,点E 为AB 的中点,点D 在BC 上,且AD =BD ,AD 、CE 相交于点F ,若∠B =20°,则∠DFE 等于 ( ) A.70° B. 60° C.50° D.40°
7.如图, □ABCD 的对角线AC 、BD 相交于点O,EF 过点O 与BC,AD 分别相交于点E,F,若AB =4,BC =5,OE =1.5,那么四边形EFDC 的周长为 ( ) A.16 B.14 C.12 D.10
8.下列命题中是真命题的是 ( ) A.两边相等的平行四边形是菱形 B.一组对边平行一组对边相等的四边形是平行四边形 C.两条对角线相等的平行四边形是矩形 D.对角线互相垂直且相等的四边形是正方形 9.在四边形ABCD 中,若有下列四个条件:①AB //CD ;②AD =BC ;③∠A =∠C ;④AB =CD ,现以其中的两个条件为一组,能判定四边形ABCD 是平行四边形的条件有 ( ) A.3组 B.4组 C.5组 D.6组
10.如图,矩形ABCD 中,DE ⊥AC 于E ,且∠ADE :∠EDC =3:2,则∠BDE 的度数为 ( ) A.36° B.9° C.27° D.18°
班级______________ 姓名_______________ 考号________________
————————密————封————线————内————不————要————答 ——
—题 —————
第5题
第6题 第7题
第16题 第17题
第15题 A B
D C
11.如图,矩形ABCD 沿AE 折叠,使D 点落在BC 边上的F 点处,如果∠BF A =30°,那么∠CEF 等于 ( ) A.20° B. 30° C. 45° D. 60°
12.如图,△ABC 中,AB =AC ,点D,E 分别是边AB,AC 的中点,点G ,F 在BC 边上,四边形DEFG 是正方形.若DE =2cm,则AC 的长为 ( )
A. B. 4cm
C.
D.
二、填空题(每小题3分,共24分)
13.已知菱形两条对角线长分别是4cm 和8cm,则它的边长为_________. 14.在平行四边形ABCD 中,∠C =∠B +∠D,则∠A =________,∠D =________.
15.如图菱形ABCD 的边长是2cm,E 是AB 的中点,且DE ⊥AB ,则菱形ABCD 的面积为_____cm 2. 16.如图, □ABCD 的对角线AC,BD 相交于点O ,点E,F 分别是线段AO,BO 的中点.若 AC +BD =24cm,△OAB 的周长是18 cm,则EF = cm.
17.如图,矩形ABCD 的对角线AC,BD 相交于点O,CE ∥BD,DE ∥AC .若AC =4,则四边形CODE
19.如图,延长正方形ABCD 的边AB 到E ,使BE =AC ,则∠E = °.
20.如图,正方形ABCD 的边长为4cm
,∠DAC 的平分线交DC 于点E ,若点P 、Q 分别是AD 和AE 上的动点,则DQ+PQ
的最小值为 . 三.解答题:(共60分)
E D
C B 第18题 第19题 第20题 第10题
第12题
_ _ F
_ E
_ D 第11题
21.如图,将□ABCD 中的对角线BD 向两个方向延长至点E 和点F ,使BE =DF ,求证:四边形AECF 是平行四边形.(8分)
22.如图,矩形ABCD 的对角线AC 、BD 相交于点O ,AE BD ⊥,垂足为E ,12∠=∠,2AB cm =.(1)求BAC ∠的度数;(2)求BC 的长.(8分)
23.如图,在四边形ABCD 中,AB=AD ,CB=CD ,E 是CD 上一点,BE 交AC 于F ,连接DF . (12分) (1)证明:∠BAC =∠DAC ,∠AFD =∠CFE. (2)若AB ∥CD ,试证明四边形ABCD 是菱形;
(3)在(2)的条件下,试确定E 点的位置,使∠EFD =∠BCD,并说明理由.
A
B C
D
O E
1 2
A
B
C
D
E
F
A B C
D
E
F
24.如图,在平行四边形ABCD 中, E,F 分别为边AB,CD 的中点,连接DE,BF ,BD .(10分)
(1)求证:ADE CBF △≌△.
(2)若AD BD ,则四边形BFDE 是什么特殊四边形?请证明你的结论.
25.如图,已知平行四边形ABCD ,延长AD 到E ,使DE =AD ,连接BE 与DC 交于O 点.(10分) (1)求证: △BOC ≌△EOD ; (2)当∠A =12
∠EOC 时,连接BD 、CE ,求证:四边形BCED 为矩形.
26.如图1,在正方形ABCD 中,E 、F 分别是边AD 、DC 上的点,且AF ⊥BE .(12分) (1)求证:AF =BE ; (2)如图2,在正方形ABCD 中,M 、N 、P 、Q 分别是边AB 、BC 、CD 、DA 上的点,且MP ⊥NQ. MP 与NQ 是否相等?并说明理由.。