双曲线知识点复习总结
- 格式:doc
- 大小:293.00 KB
- 文档页数:33
双曲线知识点总结abc一、双曲线的定义双曲线是平面上的一种曲线,它有两个独立的渐近线,这两条渐近线之间的曲线是称为双曲线。
通常我们用两个焦点F1和F2以及一个正实数c来定义一个双曲线。
具体来说,双曲线是满足以下条件的点P的轨迹:PF1 - PF2 = c。
双曲线可以分为两种类型:椭圆双曲线和双曲双曲线。
椭圆双曲线有两个焦点和一个实数c,而双曲双曲线有两个焦点和一个虚数c。
接下来我们将分别介绍这两种双曲线的性质。
二、双曲线的性质1. 对称性:双曲线是关于其中心对称的。
2. 渐进线性:双曲线有两条渐近线,它们在双曲线的两个分支上分别作为渐进线。
3. 椭圆双曲线的焦点:椭圆双曲线有两个焦点,它们的距离等于2c。
4. 双曲双曲线的焦点:双曲双曲线也有两个焦点,只不过它们是虚数的。
5. 原点与直线的位置关系:双曲线的两条分支可以穿过x轴和y轴,也可以都在其中一个轴的同一侧。
6. 双曲线的方程:双曲线的一般方程是(x/a)^2 - (y/b)^2 = 1,其中a和b分别是横轴和纵轴的长度。
三、双曲线的图形特征双曲线的图形特征与其方程相关。
通过调整方程中参数的值,我们可以得到不同形状的双曲线。
例如,当a>b时,双曲线的中心位于x轴上;当a<b时,双曲线的中心位于y轴上。
双曲线的图形特征还包括焦点、渐近线、顶点等。
焦点是双曲线的固有属性,它们对于双曲线的形状起着决定性作用。
渐近线是双曲线的近似线,它们与双曲线的曲线有一个相同的极限。
顶点是双曲线的两个分支的交点,它是双曲线的特征点。
四、双曲线的应用双曲线在数学、物理、工程和经济等领域都有着广泛的应用。
在数学领域,双曲线是一种重要的曲线,它可以用来研究曲线的性质和方程。
在物理领域,双曲线可以描述一些物理现象,例如声波的传播,光线的折射等。
在工程领域,双曲线可以用来设计一些工程结构,例如天桥的弧度等。
在经济领域,双曲线可以用来描述一些经济现象,例如消费的增长速度等。
双曲线是数学中的一种特殊曲线形式,具有许多有趣的性质和应用。
在本文中,我
们将对双曲线的相关知识点进行总结。
1.双曲线的定义:双曲线是一个平面上的曲线,其定义是到两个定点
(焦点)的距离之差等于常数的点的集合。
双曲线有两支,分别称为实轴和虚轴,这两支在无穷远处相交。
2.双曲线的方程:双曲线的一般方程形式为:(x2/a2) - (y2/b2) = 1,其
中a和b为正实数。
这个方程可以通过平移、旋转和伸缩来得到不同形状的双曲线。
3.双曲线的性质:
•双曲线的中心在原点,它的对称轴为x轴和y轴。
•双曲线的渐近线是直线y = bx,其中b = ±(a/b)。
•双曲线的离心率定义为e = c/a,其中c为焦点到中心的距离。
离心率小于1时,双曲线是“瘦长”的;离心率大于1时,双曲线是“扁平”的。
•双曲线的焦点到顶点的距离等于半径的距离,即c = a/e。
4.双曲线的应用:
•双曲线广泛应用于物理学、光学和电工领域。
例如,在光学中,双曲线被用来描述抛物面镜和双曲透镜的形状。
•双曲线也是一类重要的函数图像,如双曲正弦函数和双曲余弦函数。
这些函数在数学分析和应用中有广泛的应用。
•双曲线还在计算机图形学和计算机辅助设计等领域中被广泛使用。
它们可以用于生成各种曲线和曲面的形状。
总结:双曲线是一种有趣且重要的数学概念,它具有许多有用的性质和应用。
通过理解双曲线的定义、方程和性质,我们可以更好地理解和应用这一概念。
无论是在数学学习中还是在实际应用中,双曲线都有着广泛的应用和重要性。
高中数学双曲线知识点总结一、双曲线的定义双曲线是由平面上距离不变的所有点的轨迹组成的曲线。
具体地说,双曲线是平面上的一条曲线,其上的每一点到两个给定的不同点F1和F2的距离之差是一个常数。
在平面直角坐标系中,双曲线的定义可以表示为:一个点到两个不同点F1和F2的距离之差是一个常数e,即PF1-PF2=e。
二、双曲线的性质1. 双曲线包括两条分支,它们分别靠近两个焦点。
对于双曲线的每个分支来说,离焦点越远,离另一个分支越近。
2. 双曲线的两个焦点之间的距离称为焦距,是双曲线的重要参量,通常用2c表示。
3. 双曲线的渐近线是双曲线的一条特殊的直线,与双曲线有两个不同的交点。
双曲线的两条分支在渐近线上无限趋近。
4. 双曲线具有对称性,关于两个坐标轴都具有对称性,即当双曲线与一个坐标轴相交时,在另一个坐标轴上也有交点。
5. 双曲线有一个中心,它是两个焦点的中点,也是双曲线的对称中心。
6. 双曲线的方程通常可以表示为x^2/a^2-y^2/b^2=1或者y^2/b^2-x^2/a^2=1,其中a 和b分别是椭圆的轴长。
三、双曲线的方程在平面直角坐标系中,双曲线的一般方程可以表示为:1. 若横轴为实轴,纵轴为虚轴,则双曲线的方程为x^2/a^2-y^2/b^2=1;2. 若横轴为虚轴,纵轴为实轴,则双曲线的方程为y^2/b^2-x^2/a^2=1。
在双曲线的方程中,a和b分别代表横轴和纵轴方向的轴长,e为离心率。
四、双曲线的图像1. 当a>b时,双曲线的中心在x轴上,两分支朝向y轴;2. 当a<b时,双曲线的中心在y轴上,两分支朝向x轴。
双曲线的图像可以通过手工绘图或者计算机绘图软件来绘制,使学生更好地理解双曲线的性质和特点。
双曲线的图像在实际生活中也有许多应用,比如在光学中的抛物面镜和双曲面镜、在通信中的双曲线天线和成像原理等。
五、双曲线的相关定理和定律1. 双曲线的面积定理:双曲线的面积等于焦距的一半与两个辅助椭圆的面积之和。
高考双曲线知识点总结一、双曲线的定义和性质1. 双曲线的定义双曲线是平面上的一类曲线,其定义为到两个定点的距离之差的绝对值等于常数的点的集合。
2. 双曲线的性质(1)双曲线的标准方程双曲线的标准方程为:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(横轴为实轴)或$\frac{y^2}{a^2}-\frac{x^2}{b^2}=1$(纵轴为实轴)。
其中,a和b分别为横轴和纵轴半轴的长度。
(2)双曲线的对称性双曲线关于x轴、y轴、原点对称。
(3)渐近线双曲线有两条渐近线,分别是x轴和y轴。
(4)焦点和直焦距双曲线的焦点定义为到两个定点的距离之差的绝对值等于常数的点的集合。
焦点之间的距离称为直焦距。
(5)双曲线的渐近线双曲线有两条渐近线,分别是x轴和y轴。
双曲线与它的渐近线有如下关系:a)当曲线的方程是$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$或$\frac{y^2}{a^2}-\frac{x^2}{b^2}=1$时,它的渐近线是x=±a,当曲线的方程是$\frac{x^2}{a^2}-\frac{y^2}{b^2}=-1$或$\frac{y^2}{a^2}-\frac{x^2}{b^2}=-1$时,它的渐近线是y=±b;b)当曲线的方程是$\frac{x^2}{a^2}-\frac{y^2}{b^2}<1$或$\frac{y^2}{a^2}-\frac{x^2}{b^2}<1$时,它的渐近线是y=ax或x=ay;c)当曲线的方程是$\frac{x^2}{a^2}-\frac{y^2}{b^2}>0$或$\frac{y^2}{a^2}-\frac{x^2}{b^2}>0$时,它的渐近线是没有。
(6)四条特殊的双曲线内离心双曲线,外离心双曲线,右开弧双曲线,左开弧双曲线。
二、双曲线的图像与方程1. 双曲线的图像(1)当$a>b$时,双曲线的图像为两支开口朝左右的曲线,焦点在横轴上。
双曲线的基本知识点总结双曲线基本知识点总结1. 定义双曲线是二次曲线的一种,它是由一个平面和一个双圆锥面相交,除去与锥面的两个交点(焦点)所得到的曲面。
在笛卡尔坐标系中,标准形式的双曲线方程为 \( \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \) 或 \( \frac{y^2}{b^2} - \frac{x^2}{a^2} = 1 \),其中 \( a \) 和 \( b \) 是实数,且 \( a > 0 \) 和 \( b > 0 \)。
2. 几何性质- 焦点:双曲线有两个焦点,位于主轴上,且距离为 \( 2c \),其中 \( c^2 = a^2 + b^2 \)。
- 实轴:通过双曲线中心的一条轴,且与双曲线的两个分支相切。
- 虚轴:垂直于实轴并通过双曲线中心的轴。
- 半焦距:焦点到双曲线中心的距离,等于 \( c \)。
- 半实轴:实轴的一半,长度为 \( a \)。
- 半虚轴:虚轴的一半,长度为 \( b \)。
- 渐近线:双曲线的两条直线,它们不与双曲线相交,但双曲线的分支趋近于这些线。
渐近线的方程为 \( y = \pm \frac{b}{a}x \)。
3. 标准方程- 横向双曲线:\( \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \),其中 \( a \) 和 \( b \) 是正实数,且 \( a^2 < b^2 \)。
- 纵向双曲线:\( \frac{y^2}{b^2} - \frac{x^2}{a^2} = 1 \),其中 \( a \) 和 \( b \) 是正实数,且 \( a^2 < b^2 \)。
4. 双曲线的类型- 右双曲线:中心在原点,实轴向右延伸。
- 左双曲线:实轴向左延伸。
- 上双曲线:实轴向上延伸。
- 下双曲线:实轴向下延伸。
5. 双曲线的性质- 双曲线的两个分支是对称的。
数学双曲线知识点总结一、双曲线的定义1. 定义:双曲线是平面上一个点到两个给定点的距离之差等于一个常数的动点轨迹。
这两个给定点称为焦点,常数称为离心率。
双曲线的离心率小于1。
双曲线有两个分支,每个分支有一组渐近线。
2. 方程:双曲线的标准方程为x^2/a^2 - y^2/b^2 = 1。
其中,a和b分别为双曲线在x轴和y轴上的焦点坐标。
3. 参数方程:双曲线的参数方程为x = a·secθ, y = b·tanθ。
其中,a和b分别为双曲线在x 轴和y轴上的焦点坐标,θ为参数。
4. 极坐标方程:双曲线的极坐标方程为r^2 = a^2·sec^2θ - b^2·tan^2θ。
其中,a和b分别为双曲线在x轴和y轴上的焦点坐标,θ为参数。
二、双曲线的性质1. 对称性:双曲线关于x轴和y轴均对称。
2. 渐近线:双曲线有两条渐近线。
两条渐近线的夹角等于双曲线的离心率e的反正切值。
第一条渐近线的斜率为b/a,第二条渐近线的斜率为-b/a。
3. 凹凸性:双曲线的两个分支分别为凹曲和凸曲。
4. 渐进性质:当x趋于正无穷时,双曲线的y趋于无穷;当x趋于负无穷时,双曲线的y 趋于无穷。
当y趋于正无穷时,双曲线的x趋于无穷;当y趋于负无穷时,双曲线的x趋于无穷。
5. 双曲线的离心率e的物理意义:离心率e表示焦距和直距的比值,即e=c/a。
其中,c 为焦点之间的距离,a为双曲线在x轴上的焦点坐标。
6. 双曲线的离心率与点到焦点的距离的关系:双曲线上任意一点P到两个焦点F1和F2的距离之差等于一个常数2a。
即|PF1 - PF2| = 2a。
三、双曲函数1. 双曲正弦函数:sinh x = (e^x - e^(-x))/2,定义域为x∈R,值域为y>0。
2. 双曲余弦函数:cosh x = (e^x + e^(-x))/2,定义域为x∈R,值域为y≥1。
3. 双曲正切函数:tanh x = sinh x / cosh x = (e^x - e^(-x))/(e^x + e^(-x)),定义域为x∈R,值域为y∈(-1, 1)。
双曲线相关知识点总结一、双曲线的定义双曲线是平面上一组点的集合,满足到两个定点的距离之差等于一个常数的性质。
具体来说,设F1(-c,0)和F2(c,0)是平面上的两个定点,c是正实数,点P(x,y)在双曲线上当且仅当PF1-PF2=2a(a>0)。
双曲线分为左右两支,由F1和F2确定的两支双曲线分别称为向左开口和向右开口的双曲线,分别称为左双曲线和右双曲线。
二、双曲线的基本性质1. 定义域和值域:双曲线的定义域是实数集R,值域是实数集R。
2. 对称性:关于坐标轴和原点对称。
3. 渐近线:y=±a/x(斜渐近线)。
4. 渐近线性质:双曲线与其渐近线的交点趋于无穷,且渐近线是双曲线的渐近线。
5. 单调性:双曲线在x轴的两侧都是单调递增或单调递减。
6. 拐点:双曲线的两支在原点都有拐点,拐点的坐标为(0,±a)。
7. 渐近线与曲线的位置关系:当a为正数时,双曲线的两支位于渐近线的两侧;当a为负数时,双曲线的两支位于渐近线的同一侧。
三、双曲线的方程1. 标准方程:双曲线的标准方程分别为x^2/a^2-y^2/b^2=1(右双曲线)和y^2/b^2-x^2/a^2=1(左双曲线),其中a和b分别为双曲线两支离心率的绝对值。
2. 中心点、顶点和焦点:双曲线的中心点为坐标原点,顶点为(±a,0),焦点为(±c,0)。
3. 离心率:双曲线的离心率为e=c/a。
4. 参数方程:双曲线的参数方程分别为x=acosh(t),y=bsinh(t)(右双曲线)和x=asinh(t),y=bcosh(t)(左双曲线),其中t为参数。
四、双曲线的图像1. 双曲线的图像具有对称性,关于x轴和y轴对称,同时关于原点对称。
2. 双曲线与其渐近线之间的位置关系决定了双曲线的图像形状。
3. 当a和b的取值变化时,双曲线的形状也随之变化。
五、双曲线的应用1. 物理学中,双曲线常用于描述波的传播和衰减,尤其是在光学和声学中有着广泛的应用。
双曲线知识点总结班级姓名知识点一:双曲线的定义在平面内,到两个定点、的距离之差的绝对值等于常数(大于0且)的动点的轨迹叫作双曲线.这两个定点、叫双曲线的焦点,两焦点的距离叫作双曲线的焦距.注意:1. 双曲线的定义中,常数应当满足的约束条件:,这可以借助于三角形中边的相关性质“两边之差小于第三边”来理解;2. 若去掉定义中的“绝对值”,常数满足约束条件:(),则动点轨迹仅表示双曲线中靠焦点的一支;若(),则动点轨迹仅表示双曲线中靠焦点的一支;3. 若常数满足约束条件:,则动点轨迹是以F1、F2为端点的两条射线(包括端点);4.若常数满足约束条件:,则动点轨迹不存在;5.若常数,则动点轨迹为线段F1F2的垂直平分线。
知识点二:双曲线的标准方程1.当焦点在轴上时,双曲线的标准方程:,其中;2.当焦点在轴上时,双曲线的标准方程:,其中.注意:1.只有当双曲线的中心为坐标原点,对称轴为坐标轴建立直角坐标系时,才能得到双曲线的标准方程;2.在双曲线的两种标准方程中,都有;3.双曲线的焦点总在实轴上,即系数为正的项所对应的坐标轴上.当的系数为正时,焦点在轴上,双曲线的焦点坐标为,;当的系数为正时,焦点在轴上,双曲线的焦点坐标为,.知识点三:双曲线的简单几何性质双曲线(a>0,b>0)的简单几何性质(1)对称性:对于双曲线标准方程(a>0,b>0),把x换成―x,或把y换成―y,或把x、y同时换成―x、―y,方程都不变,所以双曲线(a>0,b >0)是以x轴、y轴为对称轴的轴对称图形,且是以原点为对称中心的中心对称图形,这个对称中心称为双曲线的中心。
(2)范围:双曲线上所有的点都在两条平行直线x=―a和x=a的两侧,是无限延伸的。
因此双曲线上点的横坐标满足x≤-a或x≥a。
(3)顶点:①双曲线与它的对称轴的交点称为双曲线的顶点。
②双曲线(a>0,b>0)与坐标轴的两个交点即为双曲线的两个顶点,坐标分别为A1(―a,0),A2(a,0),顶点是双曲线两支上的点中距离最近的点。
双曲线知识点总结复习
1. 双曲线的定义:
(1)双曲线:焦点在x 轴上时1-2222=b y a x (222
c a b =+),焦点在y 轴上时2
222-b
x a y =1(0a b >>)。
双曲线方程也可设为:22
1(0)x y mn m n
-
=>这样设的好处是为了计算方便。
(2)等轴双曲线:
(注:在学了双曲线之后一定不要和椭圆的相关内容混淆了,他们之间有联系,可以类比。
)
例一:已知双曲线C 和椭圆22
1169
x y +=有相同的焦点,且过(3,4)P 点,求双曲线C 的轨迹方程。
(要分清椭圆和双曲线中的,,a b c 。
)
思考:定义中若(1)20a =;(2)122a F F =,各表示什么曲线?
2. 双曲线的几何性质:
(1)双曲线(以)(0,01-22
22>>=b a b
y a x 为例):①范围:x a x a ≥≤-且;②焦点:
两个焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心(0,0),四个顶点
(,0),(0,)a b ±±,其中实轴长为2a ,虚轴长为2b ;④准线:两条准线2
a x c
=±; ⑤离心
率:c
e a =,双曲线⇔1e >,e 越大,双曲线开口越大;e 越小,双曲线开口越小。
⑥通
径22b a
(2)渐近线:双曲线22
221(0,0)x y a b a b
-=>>的渐近线为:
等轴双曲线的渐近线方程为: ,离心率为:
(注:利用渐近线可以较准确的画出双曲线的草图)
例二:方程
1112
2=--+k
y k x 表示双曲线,则k 的取值范围是___________________ 例三:双曲线与椭圆
164
162
2=+y x 有相同的焦点,它的一条渐近线为x y -=,则双曲线的方程为__________________
例四:双曲线142
2=+b
y x 的离心率)2,1(∈e ,则b 的取值范围是___________________
例五:已知双曲线)0,0(122
22>>=-b a b
y a x 的右焦点为F ,过点F 作直线PF 垂直于
该双曲线的一条渐近线l 于)3
6,33(P .求该双曲线的方程为:
渐近线
准线
离心率
顶点
对称性
范围
3.直线与双曲线的位置关系:
(1)相交:0∆>⇔直线与椭圆相交或直线与渐近线平行。
(2)相切:0∆=⇔直线与椭圆相切; (3)相离:0∆<⇔直线与椭圆相离;
例六:过点P(1,1)与双曲线22
1916
x y -
=只有一个交点的直线共有 条。
例七:过点(0,3)P 的直线l 和双曲线22
:14
y C x -=,仅有一个公共点,求直线l 的方程。
∆4、焦半径(双曲线上的点P 到焦点F 的距离)的计算方法:利用双曲线的第二定义,转化到相应准线的距离,即焦半径0r ed ex a ==±,其中d 表示P 到与F 所对应的准线的距离。
例八:经过双曲线2
2
1x y -=的左焦点1F 作倾斜角为
6
π
的弦AB 。
求的2F AB ∆周长。
例九:已知A(3,2),M是双曲线H:上
的动点,F2是H的右焦点,求的最小值及此时M的坐标。
5、弦长问题:(直线与椭圆的交点坐标设而不求) 若直线y kx b =+与圆锥曲线相交于两点A 、B ,且12,x x 分别为A 、B 的横坐标,则AB
12x -,若12,y y 分别为A 、B 的纵坐标,则AB =212
1
1y y k -+
, (若弦AB 所在直线方程设为x ky b =+,则AB
12y -。
特别地,焦点
弦(过焦点的弦):焦点弦的弦长的计算,一般不用弦长公式计算,而是将焦点弦转化为两条焦半径之和后,利用第二定义求解,如例八。
)
例十:直线1+=x y 与双曲线13
22
2=-y x 相交于B A ,两点,则AB =_____________ 六、圆锥曲线的中点弦问题:(直线和双曲线的交点设而不求)
遇到中点弦问题常用“韦达定理”或“点差法”求解。
在椭圆1-22
22=b
y a x 中,以
00(,)P x y 为中点的弦所在直线的斜率k=0
20
2y a x b ;
例十一:过点)1,3(-M 且被点M 平分的双曲线14
22
=-y x 的弦所在直线方程为_____________
例十二:已知双曲线C 2x 2-y 2=2与点P (1,2)
(1)求过P (1,2)点的直线l 的斜率取值范围,使l 与C 分别有一个交点,两个交点,没有交点
(2)若Q (1,1),试判断以Q 为中点的弦是否存在
例十三:过双曲线的右焦点F2作倾斜角为
的直线
,它们的交点为A、B,求:(1)线段AB的中点M与F2的距离;
(2)线段AB的长度。
例十四:双曲线的中心在坐标原点O,焦点在X轴上,过双曲线的右焦点,且斜率为
的直线交双曲线于P、Q两点,若OP⊥OQ,
,求双曲线的方程。
例十五:过点P(1,1)作双曲线的弦AB,使AB的中点恰与P点重合,这样的弦AB是否存在并说明理由。
例十三:双曲线的中心在坐标原点O,焦点在X轴上,过双曲线的右焦点,且斜率为
的直线交双曲线于P、Q两点,若OP⊥OQ,
,求双曲线的方程。
解:设双:,直线PQ方程为
由,消去
得
设P(),Q ()
若,故
,则直线PQ与双曲线渐近线平行,与双曲线只能有一个交点,与题设矛盾,故
故
由于P、Q在直线上可记为P (),Q
()
由OP⊥OQ,则整理得
将(*)代入,又由,并整理得即
由,则
由,得
2
整理得将(*)式代入,又
代入,解得,从而
,故双曲线方程
[例7] 过点P(1,1)作双曲线的弦AB,使AB的中点恰与P点重合,这样的弦AB是否存在并说明理由。
解:设AB:代入双曲线方程并整理得
(*)
若,不合题意,若
,由
,得若P是AB的中点,即
得(舍去)
此时,
代入(*)
当不存在时,直线
与双曲线只有一个公共点
因此这样的弦AB不存在
另法:设A(),B (),由A、B在双曲线上
两式相减得
,其中
,得
以下同解法1。