青羊区2016届二诊数学试题(扫描版)
- 格式:doc
- 大小:3.78 MB
- 文档页数:6
(2017 年四川省成都市青羊区中考数学二诊试卷)A 卷(共 100 分)第Ⅰ卷(选择题,共 30 分)一、选择题(本大题共10 个小题,每题 3 分,共 30 分)1.在算式 (-2)□ (-3),□的中填上运算符号,使结果最小,运算符号是()A. 加号B. 减号C. 乘号D. 除号2.国家卫生和计划生育委员会宣告H7N 9禽流感病毒直径约为0.00000012 米,这素来径用科学计数法表示为()× 10-9米 B. 12× 10-8米× 10-8米×10-7米3.下面的图形中,既是轴对称图形又是中心对称图形的是()A B C D4. 以下计算正确的选项是()A. 3x25x32xB. 6x32x23xC. (1x3)2x6 D. 3(2x 4)6x 12 35.如图, AB 是⊙ O 的直径, C、 D 是⊙ O 上的点,∠ CDB=30 °,过点 C 作⊙ O 的切线交 AB 的延长线于 E,则 sin ∠E 的值为()1323A. B. C. D.22236.如图,将三角形的直角极点放在直尺的一边上,∠1=30°,∠ 3=20°,则∠ 2= ()A. 55°B. 30°C. 50°D. 60°7.如图,△ DEF 经过怎样的平移获取△ABC ()A. 把△ DEF 向左平移 4 个单位,再向下平移 2 个单位B. 把△ DEF 向右平移 4 个单位,再向下平移 2 个单位C. 把△ DEF 向右平移 4 个单位,再向上平移 2 个单位D. 把△ DEF 向左平移 4 个单位,再向上平移 2 个单位8.将一个三角形改成与它相似的三角形,若是面积扩大为原来的9 倍,那么周长扩大为原来的()A. 9倍倍 C. 81倍 D. 18倍9.某小区 20 户家庭的日用电量(单位:千瓦时)统计以下:这 20 户家庭日用电量的众数、中位数分别是()A. 6,B. 6,7C. 6,D. 7,10.某电子元件厂准备生产 4600 个电子元件,甲车间独立生产了一半后,由于要赶忙投入市场,乙车间也加入该电子元件的生产,若乙车间每天生产的电子元件是甲车间的 1.3 倍,结果用33 天完成任务,问甲车间每天生产电子元件多少个?在这个问题中设甲车间每天生产电子元件x 个,依照题意可得方程为()第Ⅱ卷(非选择题,共70 分)二、填空题(本大题共 4 个小题,第小题 4 分,共 16 分)11.分解因式:3x312x212 x.12.如图,已知⊙O 的半径为30mm,先 AB=36mm ,则点 O 到 AB 的距离为mm.13.如图,一人乘雪橇沿坡比1:3 的斜坡笔直滑下72米,那么他下降的高度为米 .14.关于 x 的方程(m 2) x22x 1 0 有实数根,则偶数m的最大值为.三、解答题(本大题共 6 个小题,共 54 分)15.(每题 6 分,共12 分)( 1)计算:( 1)2017(1)3(cos76 3 )0 3 2 sin 602( 2)解方程:2x23x 1016、(本小题满分 6 分)如图,在△ABC 中, AB=AC , BD=CD , CE⊥ AB 于 E.(1)求证:△ ABD ∽△ CBE ;(2)若 BD=3 ,BE=2 ,求 AC 的值 .第 16题图17.(本小题满分8 分)如图,放置在水平桌面上的台灯的灯臂AB 长为 40cm,灯罩与底座构成的∠BAD=60 °.使用发现,光辉最正确时灯罩BC BC 长为 30cm,底座厚度为2cm,灯臂与水平线所成的角为30°,此时灯罩顶端 C 到桌面的高度CE是多少cm?(结果精确到0.1m )(参照数据:2≈, 3 ≈)第 17题图18.(本小题满分8 分)某校将举办“气度感恩孝敬父亲母亲”的活动,为此,校学生会就全校 1 000名同学暑期期间平均每天做家务活的时间,随机抽取部分同学进行检查,并绘制成以下条形统计图.( 1)本次检查抽取的人数为,估计全校同学在暑期期间平均每天做家务活的时间在40 分钟以上(含 40 分钟)的人数为;(2)校学生会拟在表现突出的甲、乙、丙、丁四名同学中,随机抽取两名同学向全校报告.请用树状图或列表法表示出全部可能的结果,并求恰好抽到甲、乙两名同学的概率.19.(本小题满分10 分)如图,一次函数 y kx b 的图象与反比率函数y mP(n,2),与 x 轴交于( x> 0)的图象交于点x点 A ,与 y 轴交于点 C, PB⊥ x 轴于点 B ,且 AC=BC , S△PBC=4.( 1)求一次函数、反比率函数的剖析式;( 2)反比率函数图象上可否存在点 D ,使四边形BCPD 为菱形?若是存在,求出点果不存在,说明原由.D 的坐标;如第19题图20.(本小题满分 10 分)如图,在 Rt △ ABC 中,∠ C=90 °, BD 为∠ ABC 的均分线, DF ⊥ BD 交 AB 于点 F ,△ BDF 的外接圆⊙ O 与边 BC 订交于点 M ,过点 M 作 AB 的垂线交 BD 于点 E ,交⊙ O 于点 N ,交 AB 于点 H ,连接 FN.( 1)求证: AC 是⊙ O 的切线;( 2)若 AF=1 , tan ∠ N= 4,求⊙ O 的半径 r 的长;3( 3)在( 2)的条件下,求 BE 的长 .B 卷(满分 50 分)一、填空题(本大题共 5 小题,每题4 分,共 21.如图,在一个直角三角形的内部作一个矩形在斜边上,设矩形的一边AB= xm ,矩形的面积为20 分)ABCD ,其中 AB 和 AD ym 2 ,则 y 的最大值为分别在两直角边上,.C 点22.有五 正面分 有数 2 ,0, 1, 3, 4 的不透明卡片,它 除了数字不相同外其余全部相同。
中考数学二模试卷一、选择题(本大题共12小题,每小题3分,共36分)每小题都给出代号为(A)、(B)、(C)、(D)四个结论,其中只有一个是正确的,请考生用2B铅笔在答题卷上将选定的答案标号涂黑.1.在实数0,﹣π,,﹣4中,最小的数是()A.0 B.﹣π C.D.﹣42.下列计算中正确的是()A.a3+a3=a6 B.a3•a3=a6 C.a3÷a3=0 D.(a3)3=a6.3.如图,直线l∥m,将含有45°角的三角板ABC的直角顶点C放在直线m上,若∠1=25°,则∠2的度数为()A.20° B.25° C.30° D.35°4.已知关于x的方程2x+a﹣9=0的解是x=2,则a的值为()A.2 B. 3 C. 4 D. 55.下列汽车标志中,既是轴对称图形又是中心对称图形的是()A.B.C.D.6.一名射击运动员连续打靶8次,命中的环数如图所示,这组数据的众数与中位数分别为()A.9与8 B.8与9 C.8与8.5 D.8.5与97.某单位要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排10场比赛,则参加比赛的球队应有()A.7队B.6队C.5队D.4队8.如图,在▱ABCD中,DB=DC,∠C=65°,AE⊥BD于点E,则∠DAE等于()A.20° B.25° C.30° D.35°9.关于反比例函数y=,下列叙述错误的是()A.y随x的增大而减小B.图象位于一、二象限C.图象关于直线y=x对称D.点(﹣1,﹣2)在这个函数的图象上10.把抛物线y=(x+1)2向下平移2个单位长度,再向右平移1个单位长度,所得到的抛物线是()A.y=x2﹣2 B.y=x2+2 C.y=(x+2)2﹣2 D.y=(x+2)2+211.如图,将矩形纸片ABCD沿EF折叠,使点B与CD的中点重合,若AB=2,BC=3,则△FCB′与△B′DG的面积之比为()A.9:4 B.3:2 C.4:3 D.16:912.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①b2﹣4ac>0;②abc>0;③8a+c>0;④9a+3b+c<0其中,正确结论的个数是()A.1 B. 2 C. 3 D. 4二、填空题(本大题共6小题,每小题3分,共18分)13.要使函数y=有意义,则x的取值范围是.14.一个多边形的每个外角都是60°,则这个多边形边数为.15.某红外线遥控器发出的红外线波长为0.00000094m,用科学记数法表示这个数是m.16.布袋中装有2个红球和5个白球,它们除颜色外其它都相同.如果从这个布袋里随机摸出一个球,那么所摸到的球恰好为红球的概率是.17.如图,△ABC的三个顶点的坐标分别为A(﹣1,3)、B (﹣2,﹣2)、C(4,﹣2),则△ABC外接圆上劣弧AB的长度为.(结果保留π)18.如图,在函数y=(x>0)的图象上有点P1、P2、P3…、P n、P n+1,点P1的横坐标为2,且后面每个点的横坐标与它前面相邻点的横坐标的差都是2,过点P1、P2、P3…、P n、P n+1分别作x轴、y轴的垂线段,构成若干个矩形,如图所示,将图中阴影部分的面积从左至右依次记为S1、S2、S3…、S n,则S n=.(用含n的代数式表示)三、(本大题共2小题,每小题6分,共12分)19.计算:2tan60°﹣+(π﹣1)0+(﹣1)2015.20.先化简(1﹣)÷,再从a=1、2、3中选取一个合适的数代入求值.四、(本大题共2小题,每小题8分,共16分)21.“中国梦”关乎每个人的幸福生活,为进一步感知我们身边的幸福,展现成都人追梦的风采,我市某校开展了以“梦想中国,逐梦成都”为主题的摄影大赛,要求参赛学生每人交一件作品.现将参赛的50件作品的成绩(单位:分)进行统计如下:等级成绩(用s表示)频数频率A 90≤s≤100 x 0.08B 80≤s<90 35 yC s<80 11 0.22合计50 1请根据上表提供的信息,解答下列问题:(1)表中的x的值为,y的值为(2)将本次参赛作品获得A等级的学生依次用A1,A2,A3,…表示,现该校决定从本次参赛作品中获得A等级学生中,随机抽取两名学生谈谈他们的参赛体会,请用树状图或列表法求恰好抽到学生A1和A2的概率.22.如图,已知:梯形ABCD中,AD∥BC,E为AC的中点,连接DE并延长交BC于点F,连接AF.(1)求证:AD=CF;(2)在原有条件不变的情况下,请你再添加一个条件(不再增添辅助线),使四边形AFCD 成为菱形,并说明理由.五、(本大题满分8分)23.如图是某地下商业街的入口,数学课外兴趣小组的同学打算运用所学的知识测量侧面支架的最高点E到地面的距离EF.经测量,支架的立柱BC与地面垂直,即∠BCA=90°,且BC=1.5m,点F、A、C在同一条水平线上,斜杆AB与水平线AC的夹角∠BAC=30°,支撑杆DE⊥AB于点D,该支架的边BE与AB的夹角∠EBD=60°,又测得AD=1m.请你求出该支架的边BE及顶端E到地面的距离EF的长度.六、(本大题满分10分)24.(10分)(2015•西乡塘区二模)甲乙两件服装的进价共500元,商场决定将甲服装按30%的利润定价,乙服装按20%的利润定价,实际出售时,两件服装均按9折出售,商场卖出这两件服装共获利67元.(1)求甲乙两件服装的进价各是多少元;(2)由于乙服装畅销,制衣厂经过两次上调价格后,使乙服装每件的进价达到242元,求每件乙服装进价的平均增长率;(3)若乙服装每件的进价为242元,商场把乙服装按8折出售.问标价至少为多少时,销售乙服装才不亏本?(结果取整数)七、(本大题满分10分)25.(10分)(2015•西乡塘区二模)如图,已知:矩形ABCD,以对角线AC的中点O为圆心,OA的长为半径作⊙O,⊙O经过B、D两点,过点B作BK⊥AC,垂足为点K,过点D作DH∥KB,DH分别与AC、AB、⊙O及CB的延长线相交于点E、F、G、H.(1)求证:AE=CK;(2)若F是EG的中点,且DE=6,求⊙O的半径.八、(本大题满分10分)26.(10分)(2015•西乡塘区二模)如图,已知抛物线y=ax2+bx+c(a>0,c<0)交x轴于点A,B,交y轴于点C,设过点A,B,C三点的圆与y轴的另一个交点为D.(1)如图1,已知点A,B,C的坐标分别为(﹣2,0),(8,0),(0,﹣4);①求此抛物线的函数解析式;②若点M为抛物线上的一动点,且位于第四象限,求△BDM面积的最大值;(2)如图2,若a=1,c=﹣4,求证:无论b取何值,点D的坐标均不改变.参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)每小题都给出代号为(A)、(B)、(C)、(D)四个结论,其中只有一个是正确的,请考生用2B铅笔在答题卷上将选定的答案标号涂黑.1.在实数0,﹣π,,﹣4中,最小的数是()A.0 B.﹣π C.D.﹣4考点:实数大小比较.分析:根据正数都大于0,负数都小于0,两个负数绝对值大的反而小即可求解.解答:解:∵正数大于0和一切负数,∴只需比较﹣π和﹣4的大小,∵|﹣π|<|﹣4|,∴最小的数是﹣4.故选D.点评:此题主要考查了实数的大小的比较,注意两个无理数的比较方法:统一根据二次根式的性质,把根号外的移到根号内,只需比较被开方数的大小.2.下列计算中正确的是()A.a3+a3=a6 B.a3•a3=a6 C.a3÷a3=0 D.(a3)3=a6.考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.分析:根据合并同类项,可判断A,根据同底数幂的乘法,可判断B,根据同底数幂的除法,可判断C,根据幂的乘方,可判断D.解答:解:A、合并同类项系数相加字母部分不变,故A错误;B、同底数幂的乘法底数不变指数相加,故B正确;C、同底数幂的除法底数不变指数相减,故C错误;D、幂的乘方底数不变指数相乘,故D错误;故选:B.点评:本题考查了同底数幂的除法,熟记法则并根据法则计算是解题关键.3.如图,直线l∥m,将含有45°角的三角板ABC的直角顶点C放在直线m上,若∠1=25°,则∠2的度数为()A.20° B.25° C.30° D.35°考点:平行线的性质.分析:首先过点B作BD∥l,由直线l∥m,可得BD∥l∥m,由两直线平行,内错角相等,即可求得答案∠4的度数,又由△ABC是含有45°角的三角板,即可求得∠3的度数,继而求得∠2的度数.解答:解:过点B作BD∥l,∵直线l∥m,∴BD∥l∥m,∴∠4=∠1=25°,∵∠ABC=45°,∴∠3=∠ABC﹣∠4=45°﹣25°=20°,∴∠2=∠3=20°.故选A.点评:此题考查了平行线的性质.此题难度不大,注意辅助线的作法,注意掌握两直线平行,内错角相等定理的应用.4.已知关于x的方程2x+a﹣9=0的解是x=2,则a的值为()A.2 B.3 C. 4 D. 5考点:一元一次方程的解.分析:根据方程的解的定义,把x=2代入方程,解关于a的一元一次方程即可.解答:解;∵方程2x+a﹣9=0的解是x=2,∴2×2+a﹣9=0,解得a=5.故选:D.点评:本题考查了一元一次方程的解,把解代入方程求解即可,比较简单.5.下列汽车标志中,既是轴对称图形又是中心对称图形的是()A.B.C.D.考点:中心对称图形;轴对称图形.专题:几何图形问题.分析:根据轴对称图形与中心对称图形的概念求解.解答:解:A、是轴对称图形,不是中心对称图形;B、是中心对称图形,不是轴对称图形;C、是轴对称图形,不是中心对称图形;D、是中心对称图形,也是轴对称图形.故选D.点评:本题考查中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.6.一名射击运动员连续打靶8次,命中的环数如图所示,这组数据的众数与中位数分别为()A.9与8 B.8与9 C.8与8.5 D.8.5与9考点:众数;中位数.专题:图表型.分析:先读出数据,再按大小排列,然后利用众数、中位数的概念求解.这里中位数是第4、5个数的平均数.解答:解:这组数据从小到大排列为7,8,8,8,9,9,10,10,众数为8,中位数为=8.5.故选C.点评:本题为统计题,考查众数与中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.7.某单位要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排10场比赛,则参加比赛的球队应有()A.7队B.6队C.5队D.4队考点:一元二次方程的应用.分析:设邀请x个球队参加比赛,那么第一个球队和其他球队打(x﹣1)场球,第二个球队和其他球队打(x﹣2)场,以此类推可以知道共打(1+2+3+…+x﹣1)场球,然后根据计划安排10场比赛即可列出方程求解.解答:解:设邀请x个球队参加比赛,依题意得1+2+3+…+x﹣1=10,即=10,∴x2﹣x﹣20=0,∴x=5或x=﹣4(不合题意,舍去).故选C.点评:此题和实际生活结合比较紧密,准确找到关键描述语,从而根据等量关系准确的列出方程是解决问题的关键.此题还要判断所求的解是否符合题意,舍去不合题意的解.8.如图,在▱ABCD中,DB=DC,∠C=65°,AE⊥BD于点E,则∠DAE等于()A.20° B.25° C.30° D.35°考点:平行四边形的性质.分析:要求∠DAE,就要先求出∠ADE,要求出∠ADE,就要先求出∠DBC.利用DB=DC,∠C=65°即可求出.解答:解:∵DB=DC,∠C=65°,∴∠DBC=∠C=65°,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠ADE=∠DBC=65°,∵AE⊥BD,∴∠AEB=90°,∴∠DAE=90°﹣∠ADE=25°.故选B.点评:本题考查了平行四边形的性质,解决本题的关键是利用三角形内角和定理,等边对等角等知识得到和所求角有关的角的度数.9.关于反比例函数y=,下列叙述错误的是()A.y随x的增大而减小B.图象位于一、二象限C.图象关于直线y=x对称D.点(﹣1,﹣2)在这个函数的图象上考点:反比例函数的性质.分析:根据k>0,双曲线的两支分别位于第一、第三象限对B,C进行判断;根据反比例函数图象上点的坐标特征对D进行判断;根据反比例函数的增减性质对A进行判断.解答:解:k=2>0,反比例函数的图象分布在第一、第三象限,图象是轴对称图形,所以B、C选项的说法正确;需要强调在每一象限内,y的值随x的增大而减小,所以A选项的说法错误;当x=﹣1时,y=﹣2,故D选项正确.故选A.点评:本题考查了反比例函数的性质:y=(k≠0)的图象是双曲线;当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.10.把抛物线y=(x+1)2向下平移2个单位长度,再向右平移1个单位长度,所得到的抛物线是()A.y=x2﹣2 B.y=x2+2 C.y=(x+2)2﹣2 D.y=(x+2)2+2考点:二次函数图象与几何变换.分析:易得原抛物线的顶点,然后得到经过平移后的新抛物线的顶点,根据平移不改变二次项的系数可得新抛物线解析式.解答:解:抛物线y=(x+1)2的顶点坐标是(﹣1,0),向下平移2个单位长度,再向右平移1个单位长度后抛物线的顶点坐标是(0,﹣2),所以平移后抛物线的解析式为:y=x2﹣2,故选:A.点评:本题考查了二次函数图象与几何变换,抛物线平移问题,实际上就是两条抛物线顶点之间的问题,找到了顶点的变化就知道了抛物线的变化.11.如图,将矩形纸片ABCD沿EF折叠,使点B与CD的中点重合,若AB=2,BC=3,则△FCB′与△B′DG的面积之比为()A.9:4 B.3:2 C.4:3 D.16:9考点:翻折变换(折叠问题).专题:数形结合.分析:设BF=x,则CF=3﹣x,B'F=x,在Rt△B′CF中,利用勾股定理求出x的值,继而判断△DB′G∽△CFB′,根据面积比等于相似比的平方即可得出答案.解答:解:设BF=x,则CF=3﹣x,B'F=x,又点B′为CD的中点,∴B′C=1,在Rt△B′CF中,B'F2=B′C2+CF2,即x2=1+(3﹣x)2,解得:x=,即可得CF=3﹣=,∵∠DB′G+∠DGB'=90°,∠DB′G+∠CB′F=90°,∴∠DGB′=∠CB′F,∴Rt△DB′G∽Rt△CFB′,根据面积比等于相似比的平方可得:===.故选D.点评:此题考查了翻折变换的知识,解答本题的关键是求出FC的长度,然后利用面积比等于相似比的平方进行求解,难度一般.12.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①b2﹣4ac>0;②abc>0;③8a+c>0;④9a+3b+c<0其中,正确结论的个数是()A.1 B. 2 C. 3 D. 4考点:二次函数图象与系数的关系.专题:压轴题.分析:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.解答:解:①由图知:抛物线与x轴有两个不同的交点,则△=b2﹣4ac>0,故①正确;②抛物线开口向上,得:a>0;抛物线的对称轴为x=﹣=1,b=﹣2a,故b<0;抛物线交y轴于负半轴,得:c<0;所以abc>0;故②正确;③根据②可将抛物线的解析式化为:y=ax2﹣2ax+c(a≠0);由函数的图象知:当x=﹣2时,y>0;即4a﹣(﹣4a)+c=8a+c>0,故③正确;④根据抛物线的对称轴方程可知:(﹣1,0)关于对称轴的对称点是(3,0);当x=﹣1时,y<0,所以当x=3时,也有y<0,即9a+3b+c<0;故④正确;所以这四个结论都正确.故选:D.点评:主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.二、填空题(本大题共6小题,每小题3分,共18分)13.要使函数y=有意义,则x的取值范围是x≥﹣2.考点:函数自变量的取值范围.分析:根据被开方数大于等于0列式计算即可得解.解答:解:由题意得,2x+4≥0,解得x≥﹣2.故答案为:x≥﹣2点评:本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.14.一个多边形的每个外角都是60°,则这个多边形边数为6.考点:多边形内角与外角.分析:利用外角和除以外角的度数即可得到边数.解答:解:360÷60=6.故这个多边形边数为6.故答案为:6.点评:此题主要考查了多边形的外角和,关键是掌握任何多边形的外角和都360°.15.某红外线遥控器发出的红外线波长为0.00000094m,用科学记数法表示这个数是9.4×10﹣7m.考点:科学记数法—表示较小的数.分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:0.00000094=9.4×10﹣7;故答案为:9.4×10﹣7.点评:本题考查了用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.16.布袋中装有2个红球和5个白球,它们除颜色外其它都相同.如果从这个布袋里随机摸出一个球,那么所摸到的球恰好为红球的概率是.考点:概率公式.分析:根据概率公式,求摸到红球的概率,即用红球除以小球总个数即可得出得到红球的概率.解答:解:∵一个布袋里装有2个红球和5个白球,∴摸出一个球摸到红球的概率为:=.故答案为:.点评:此题主要考查了概率公式的应用,由已知求出小球总个数再利用概率公式求出是解决问题的关键.17.如图,△ABC的三个顶点的坐标分别为A(﹣1,3)、B (﹣2,﹣2)、C(4,﹣2),则△ABC外接圆上劣弧AB的长度为.(结果保留π)考点:弧长的计算;勾股定理;等腰直角三角形;圆周角定理.分析:分别作BC、AC的中垂线找到圆心I的位置,继而求出IA、IB,结合AB的长度可得出△ABI是直角三角形,继而可求出劣弧AB的长度.解答:解:作BC、AC的中垂线,则可得圆心I的坐标为(1,0),则IA=IB==,∵AB2=12+52=26=IA2+IB2,∴∠AIB=90°,l劣弧AB==π.故答案为:π.点评:本题考查了弧长的计算、勾股定理、勾股定理的逆定理,解答本题的关键确定圆心I的坐标,注意掌握利用在格点三角形求线段的长度.18.如图,在函数y=(x>0)的图象上有点P1、P2、P3…、P n、P n+1,点P1的横坐标为2,且后面每个点的横坐标与它前面相邻点的横坐标的差都是2,过点P1、P2、P3…、P n、P n+1分别作x轴、y轴的垂线段,构成若干个矩形,如图所示,将图中阴影部分的面积从左至右依次记为S1、S2、S3…、S n,则S n=.(用含n的代数式表示)考点:反比例函数系数k的几何意义.专题:规律型.分析:根据反比例函数图象上点的坐标特征得到P1(2,),P2(4,),P3(6,),则利用矩形的面积公式得到S1=2×(﹣),S2=2×(﹣),S3=2×(﹣),根据此规律得S n=2×(﹣,然后化简即可.解答:解:∵P1(2,),P2(4,),P3(6,),∴S1=2×(﹣),S2=2×(﹣)S3=2×(﹣),所以S n=2×(﹣=﹣=.故答案为.点评:本题考查了反比例函数比例系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.也考查了正方形的性质.三、(本大题共2小题,每小题6分,共12分)19.计算:2tan60°﹣+(π﹣1)0+(﹣1)2015.考点:实数的运算;零指数幂;特殊角的三角函数值.分析:原式第一项利用特殊角的三角函数值计算,第二项化为最简二次根式,第三项利用零指数幂法则计算,最后一项利用乘方的意义计算即可得到结果.解答:解:原式=2﹣3+1﹣1=﹣.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.先化简(1﹣)÷,再从a=1、2、3中选取一个合适的数代入求值.考点:分式的化简求值.分析:先根据分式混合运算的法则把原式进行化简,再选取合适的x的值代入进行计算即可.解答:解:原式=•=,当a=3时,原式=3.点评:本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.四、(本大题共2小题,每小题8分,共16分)21.“中国梦”关乎每个人的幸福生活,为进一步感知我们身边的幸福,展现成都人追梦的风采,我市某校开展了以“梦想中国,逐梦成都”为主题的摄影大赛,要求参赛学生每人交一件作品.现将参赛的50件作品的成绩(单位:分)进行统计如下:等级成绩(用s表示)频数频率A 90≤s≤100 x 0.08B 80≤s<90 35 yC s<80 11 0.22合计50 1请根据上表提供的信息,解答下列问题:(1)表中的x的值为4,y的值为0.7(2)将本次参赛作品获得A等级的学生依次用A1,A2,A3,…表示,现该校决定从本次参赛作品中获得A等级学生中,随机抽取两名学生谈谈他们的参赛体会,请用树状图或列表法求恰好抽到学生A1和A2的概率.考点:频数(率)分布表;列表法与树状图法.分析:(1)用50减去B等级与C等级的学生人数,即可求出A等级的学生人数x的值,用35除以50即可得出B等级的频率即y的值;(2)由(1)可知获得A等级的学生有4人,用A1,A2,A3,A4表示,画出树状图,通过图确定恰好抽到学生A1和A2的概率.解答:解:(1)∵x+35+11=50,∴x=4,或x=50×0.08=4;y==0.7,或y=1﹣0.08﹣0.22=0.7;(2)依题得获得A等级的学生有4人,用A1,A2,A3,A4表示,画树状图如下:由上图可知共有12种结果,且每一种结果可能性都相同,其中抽到学生A1和A2的有两种结果,所以从本次参赛作品中获得A等级学生中,随机抽取两名学生谈谈他们的参赛体会,恰好抽到学生A1和A2的概率为:P=.点评:本题考查读频数(率)分布表的能力和利用图表获取信息的能力.利用统计图表获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.用到的知识点为:各小组频数之和等于数据总数;各小组频率之和等于1;频率=频数÷数据总数;概率=所求情况数与总情况数之比.22.如图,已知:梯形ABCD中,AD∥BC,E为AC的中点,连接DE并延长交BC于点F,连接AF.(1)求证:AD=CF;(2)在原有条件不变的情况下,请你再添加一个条件(不再增添辅助线),使四边形AFCD 成为菱形,并说明理由.考点:梯形;全等三角形的判定与性质;菱形的判定.专题:证明题;开放型.分析:(1)∵AD∥BC,∴∠DAE=∠FCE.∠ADE=∠EFC,∵E为AC的中点,∴AE=CE.利用AAS证得△DEA≌△FEC.∴AD=CF;(2)若四边形AFCD成为菱形,则应证四边形AFCD是平行四边形,因而加一组邻边相等即可,如:DA=DC.解答:(1)证明:在△DEA和△FEC中,∵AD∥BC,∴∠DAE=∠FCE,∠ADE=∠EFC.又∵E为AC的中点,∴AE=CE.∴△DEA≌△FEC.∴AD=CF.(2)添加DA=DC.证明:∵AD∥BC,又∵AD=CF,∴四边形AFCD为平行四边形.又∵DA=DC,∴四边形AFCD为菱形.点评:本题利用了:(1)两直线平行,内错角相等;(2)全等三角形的判定和性质;(3)平行四边形和菱形的判定.五、(本大题满分8分)23.如图是某地下商业街的入口,数学课外兴趣小组的同学打算运用所学的知识测量侧面支架的最高点E到地面的距离EF.经测量,支架的立柱BC与地面垂直,即∠BCA=90°,且BC=1.5m,点F、A、C在同一条水平线上,斜杆AB与水平线AC的夹角∠BAC=30°,支撑杆DE⊥AB于点D,该支架的边BE与AB的夹角∠EBD=60°,又测得AD=1m.请你求出该支架的边BE及顶端E到地面的距离EF的长度.考点:解直角三角形的应用.分析:过B作BH⊥EF于点H,在Rt△ABC中,根据∠BAC=30°,BC=1.5,可求得AB 的长度,又AD=1m,可求得BD的长度,在Rt△EBD中解直角三角形求得EB的长度,然后根据BH⊥EF,求得∠EBH=30°,继而可求得EH的长度,易得EF=EH+HF的值.解答:解:过B作BH⊥EF于点H,∴四边形BCFH为矩形,BC=HF=1.5m,∠HBA=∠BAC=30°,在Rt△ABC中,∵∠BAC=30°,BC=1.5m,∴AB=3m,∵AD=1m,∴BD=2m,在Rt△EDB中,∵∠EBD=60°,∴∠BED=90°﹣60°=30°,∴EB=2BD=2×2=4m,又∵∠HBA=∠BAC=30°,∴∠EBH=∠EBD﹣∠HBD=30°,∴EH=EB=2m,∴EF=EH+HF=2+1.5=3.5(m).答:该支架的边BE为4m,顶端E到地面的距离EF的长度为3.5m.点评:本题考查了解直角三角形的应用,解题的关键是将实际问题转化为数学问题,构造直角三角形并解直角三角形,难度适中.六、(本大题满分10分)24.(10分)(2015•西乡塘区二模)甲乙两件服装的进价共500元,商场决定将甲服装按30%的利润定价,乙服装按20%的利润定价,实际出售时,两件服装均按9折出售,商场卖出这两件服装共获利67元.(1)求甲乙两件服装的进价各是多少元;(2)由于乙服装畅销,制衣厂经过两次上调价格后,使乙服装每件的进价达到242元,求每件乙服装进价的平均增长率;(3)若乙服装每件的进价为242元,商场把乙服装按8折出售.问标价至少为多少时,销售乙服装才不亏本?(结果取整数)考点:一元二次方程的应用;一元一次方程的应用;一元一次不等式的应用.分析:(1)若设甲服装的进价为x元,则乙服装的进价为(500﹣x)元.根据公式:总利润=总售价﹣总进价,即可列出方程.(2)利用乙服装的进价为200元,经过两次上调价格后,使乙服装每件的进价达到242元,利用增长率公式求出即可;(3)设每件乙衣服的标价为m元,根据题意列不等式0.8m﹣242≥0,求解后取整数即可.解答:解:(1)设甲服装的进价为x元,则乙服装的进价为(500﹣x)元,根据题意得:90%•(1+30%)x+90%•(1+20%)(500﹣x)﹣500=67,解得:x=300,500﹣x=200.答:甲服装的进价为300元、乙服装的进价为200元.(2)∵乙服装的进价为200元,经过两次上调价格后,使乙服装每件的进价达到242元,∴设每件乙服装进价的平均增长率为y,则200(1+y)2=242,解得:y1=0.1=10%,y2=﹣2.1(不合题意舍去).答:每件乙服装进价的平均增长率为10%;(3)设每件乙衣服的标价为m圆,则0.8m﹣242≥0,解得:m≥302.5,∵结果取整数,∴乙衣服的标价至少为303元,才不亏本.点评:此题主要考查了一元二次方程的应用以及增长率问题和一元一次不等式的应用,注意售价的算法:售价=定价×打折数.七、(本大题满分10分)25.(10分)(2015•西乡塘区二模)如图,已知:矩形ABCD,以对角线AC的中点O为圆心,OA的长为半径作⊙O,⊙O经过B、D两点,过点B作BK⊥AC,垂足为点K,过点D作DH∥KB,DH分别与AC、AB、⊙O及CB的延长线相交于点E、F、G、H.(1)求证:AE=CK;(2)若F是EG的中点,且DE=6,求⊙O的半径.考点:相似三角形的判定与性质;全等三角形的判定与性质;圆周角定理.分析:(1)由四边形ABCD是矩形,得到AD∥BC,AD=BC,于是得到∠DAE=∠BCK,得到∠BKC=∠AED=90°,推出△BKC≌△ADE,即可得到结论;(2)根据三角形中位线定理可求出EF,再利用△AFD≌△HBF可求出HF,然后即可求出GH;利用射影定理求出AE,再利△AED∽△HEC求证AE=AC,然后即可求得AC即可.解答:(1)证明:∵四边形ABCD是矩形,∴AD∥BC,AD=BC,∴∠DAE=∠BCK,∵BK⊥AC,DH∥KB,∴∠BKC=∠AED=90°,在△BKC与△ADE中,,∴△BKC≌△ADE,∴AE=CK;(2)DG是圆的弦,又有AE⊥GD得GE=ED,∵DE=6,∴GE=6,又∵F为EG中点,∴EF=EG=3,∵△BKC≌△DEA,∴BK=DE=6,∴EF=BK,且EF∥BK,∴△AEF∽△AKB,且相似比为1:2,∴EF为△ABK的中位线,∴AF=BF,又∵∠ADF=∠H,∠DAF=∠HBF=90°,在△AFD≌△BFH中,,∴△AFD≌△BFH(AAS),∴HF=DF=3+6=9,∴GH=6,∵DH∥KB,BK⊥AC,四边形ABCD为矩形,∴∠AEF=∠DEA=90°,∴∠FAE+∠DAE=∠FAE+∠AFE=90°,∴∠AFE=∠DAE,∴△AEF∽△DEA,∴AE:ED=EF:AE,∴AE2=EF•ED=3×6=18,∴AE=3,∵△AED∽△HEC,∴==,∴AE=AC,∴AC=9,则AO=,故⊙O的半径是.点评:此题主要考查相似三角形的判定与性质,全等三角形的判定与性质,三角形中位线定理,垂径定理等知识点,综合性很强,利用学生系统的掌握知识,是一道很典型的题目.八、(本大题满分10分)26.(10分)(2015•西乡塘区二模)如图,已知抛物线y=ax2+bx+c(a>0,c<0)交x轴于点A,B,交y轴于点C,设过点A,B,C三点的圆与y轴的另一个交点为D.。
2016-2017学年九年级二模数学答案与评分标准一、选择题(30分)二、填空题(18分)11.7 12.1 13.91 14.6° 15.4π16.22或4-22 三、解答题(共8题,共72分)17. 15x -3=3(x -4)15x -3=3x -12…………3分 12x=-9 …………6分 x=43-…………8分 18. OA=OB,AC=BD …………2分 △ABD ≌△BAC …………6分 AD =BC …………8分19.⑴50,72;…………4分 ⑵略; …………6分 ⑶400. …………8分20.设A ,B 两种产品应分别生产x,(10-x)件 (1)x+3(10-x)=14 解答x=8答:A ,B 两种产品应分别生产8,2件…………4分 (2)由题知⎩⎨⎧≤-+>-+44)10(52,14)10(3x x x x解得2≤x<8设利润为W,则W=x+3(10-x)=30-2x因为k=-2<0,所以W 的值随k 的增大而减小故当x=2时,W 有最大值26.…………8分21.(1)线段PB ,AB 之间的数量关系为:AB =3PB . 理由:连接OC , ∠PCB =∠PAC , △PCB ∽△PAC , ∴,∴PC 2=PB •PA ,∵PC =2PB ,∴PA =4PB ,∴AB =3PB .…………4分 (2)过点O 作OH ⊥AD 于点H ,四边形OCEH 是矩形, ∴OC =HE ,∴AE =+OC , ∵OC ∥AE ,∴△PCO ∽△PEA ,∴,∴=,∴OC =,∴AB =5.…………8分22.(1)P(2,3) m=6…………3分 (2) 设P(t,t 6) C 2-C 1=2t+t 12-10=)3)(2(2--t t t∵t>2,∴当2<t<3时,C 2<C 1;当t=3时,C 2=C 1;当t>3时,C 2>C 1;…………7分 (3)46…………10分23.(1)略:…………3分 (20证△ADH ∽△ACE,AC AD AE AH =…………5分 同理△ABG ∽△ACFACABAF AG = ∴AE AHAF AG = ∴△AGH ∽△AFE …………7分 (3)21-3…………10分24.解:(1)(3,0);(2)点、点的位置如图所示;(3)①如图,∵特征点C为直线上一点,∴.∵抛物线的对称轴与x轴交于点D,∴对称轴.∴点D的坐标为.∵点F的坐标为(1,0),∴.∵特征直线y=ax+b交y轴于点E,∴点E的坐标为.∵点C的坐标为,∴CE∥DF.∵DE∥CF,∴四边形DECF为平行四边形.∴∴.∴特征点C的坐标为.②或。
青羊区初2016届第一次诊断性测试题九年级数学 A 卷(共100分) 第Ⅰ卷(选择题,共30分)一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1. 一元二次方程290x -=的解是( )A .13x =,23x =-B .19x =,29x =-C .3x =D .3x =-2. 下列右图是由5个相同大小的正方体搭成的几何体,则它的俯视图是( )3. 下列函数中,图象经过点(22)-,的反比例函数关系式是( )A .1y x=-B .1y x= C .4y x= D .4y x=-4. AB 是O 的弦,P 是AB 上一点,10AB =,6AP =,5OP =,则O 的半径为( )A .5B .6C .7D .85. 如图,将AOB ∠放置在55⨯的正方形网格中,则tan AOB ∠的值是( )A .23B .32CDD.C.B.A.6. 如图,O 是矩形ABCD 的对角线AC 的中点,M 是AD 的中点.若5AB =,12AD =,则四边形ABOM 的周长为( ) A .16 B .20 C .29 D .347. 某地区为估计该地区黄羊的只数,先捕捉20只黄羊给它们分别作上标志,然后放回,待有标志的黄羊完全混合于黄羊群后,第二次捕捉40只黄羊,发现其中两只有标志.从而估计该地区有黄羊( )A .200只B .400只C .800只D .1000只8. 某经济开发区今年1月份工业生产总值达50亿元,第一季度总产值为175亿元,问2月、3月平均每月增长率是多少?设平均每月的增长率为x ,根据题意列方程为( )A .250(1)175x +=B .25050(1)175x ++=C .250(1)50(1)175x x +++=D .25050(1)50(1)175x x ++++=9. 如图,小芳和爸爸正在散步,爸爸身高1.8m ,他在地面上的影长为2.1m .若小芳比爸爸矮0.3m ,则她的影长为( ) A .1.3m B .1.65m C .1.75m D .1.8m10.如图,矩形AOBC 的面积为4,反比例函数ky x=的图象的一支经过矩形对角线的交点P ,则该反比例函数的解析式是( ) A .1y x=B .2y x=C .4y x=D .12y x=OMDCBA第Ⅱ卷(非选择题,共70分)二、填空题(本大题共4个小题,每小题4分,共16分,把答案填写在答题卡上) 11.抛物线23(1)2y x =-+的顶点坐标是.12.如图,在菱形ABCD 中,已知10AB =,12AC =,那么菱形ABCD 的面积为.13.寒假即将来临,小明和小亮每人要从甲、乙、丙三个社区中随机选取一个社区参加综合实践活动,那么小明和小亮选到同一社区参加实践活动的概率为 .14.如图,O 为原点,点A 的坐标为(04),,点B 的坐标为(30),,D 过A 、B 、O 三点,点C 为优弧OAB 上一点(不与O 、A 两点重合),则cos C 的值为.三、解答题(本大题共6个小题,共54分.解答应写出必要的文字说明、证明过程或演算步骤.) 15.(本小题满分12分,每题6分)⑴解不等式:4113x x -->,并把解集在数轴上表示出来 ⑵计算:22cos30sin 45tan60︒+︒-︒16.(本小题6分)化简:2221211x x xx x x -+÷-+-17.(本小题8分)在一个不透明的布袋中装有相同的三个小球,其上面分别标注数字1、2、3,现从中任意摸出一个小球,将其上面的数字作为点M 的横坐标;将球放回袋中搅匀,再从中任意摸出一个小球,将其上面的数字作为点M 的纵坐标. ⑴写出点M 坐标的所有可能的结果;⑵求点M 的横坐标与纵坐标之和是偶数的概率. 18.(本小题满分8分)如图,某探测队在地面A 、B 两处均探测出建筑物下方C 处有宝藏,已知探测线与地面的夹角分别是25︒和60︒,且4AB =米,求该宝藏所在位置C 的深度.(结果精确到0.1米.参考数据:sin 250.4︒≈,cos250.9︒≈,tan 250.5︒≈1.7≈)ODCBA19.(本小题10分)如图,直线112y ax =+与x 轴、y 轴分别相交于A 、B 两点,与双曲线(0)k y x x =<相交于点P ,PC x ⊥轴于点C ,且2PC =,点A 的坐标为(40),.⑴求双曲线的解析式;⑵若点Q 为双曲线上点P 左侧的一点,且QH x ⊥轴于H ,当以点Q 、C 、H 为顶点的三角形与AOB △相似时,求点Q 的坐标.20.(本小题满分10分)如图,O的直径为ABCD 内接圆O ,AC BD ⊥于点H ,P为CA 延长线上的一点,且PDA ABD ∠=∠.⑴试判断PD 与O 的位置关系,并说明理由; ⑵若3sin 5ADB ∠=,PH =,求BD 的长;⑶在⑵的条件下,求四边形ABCD 的面积.B 卷(50分)一、填空(本大题5个小题,每小题4分,共20分.) 21.若实数a 、b 满足2222()(2)8a b a b ++-=,则22a b +=.22.如图,AB 是O 的直径,AC 是O 的弦,过点B 作O 的切线,与AC 延长线交于点D ,作AE AC ⊥交直线DB 于点E .若13AB =,12AC =,则BE =.P23.如图,在平面直角坐标系中,菱形OBCD 的边OB 在x 轴正半轴上,反比例函数(0)ky x x=>的图象经过该菱形对角线的交点A ,且与边BC 交于点F .若点D 的坐标为(34),,则点F 的坐标是.24.如图,正方形ABCD 的边长为6,点E 、F 分别在AB ,AD上,若CE =45ECF ∠=︒,则CF 的长为.25.如图,抛物线2y ax bx c =++的对称轴是1x =-.且过点102⎛⎫⎪⎝⎭,,有下列结论:①0abc >;②240a b c -+=;③251040a b c -+=;④320b c +>;⑤()a b m am b --≥;其中所有正确的结论是 (填写正确结论的序号)FED CBA二、解答题(本大题共3个小题,共30分.解答题应写出必要的文字说明,证明过程或演算步骤.) 26.(8分)在圣诞节期间,晨光文具店购进一种卡通贺年卡进行试销,通过对5天的销售情况进行统⑴计算这5天销售量的平均数;⑵通过对上面表格中的数据进行分析,发现销量y (打)与单价x (元/打)之间存在一次函数关系,求y 关于x 的函数关系式;(不需要写出函数自变量的取值范围) ⑶预计在今后的销售中,销量与单价仍然存在⑵中的关系,且该产品的成本是20元/打,若该店要想每天通过销售此品牌的贺年卡获得192元的利润,又想通过增加销售量来提高该店的知名度,每打单价应定为多少元?27.(本小题满分10分)已知:把Rt ABC △和Rt DEF △按如图⑴摆放(点C 与点E 重合),点B 、C(E )、F 在同一条直线上.90ACB EDF ∠=∠=︒,45DEF ∠=︒,24cm AC =,10cm BC =,25cm EF =. 如图⑵,DEF △从图⑴的位置出发,以1cm/s 的速度沿CB 向ABC △匀速移动,在DEF △移动的同时,点P 从ABC △的顶点B 出发,以2cm/s 的速度沿BA 向点A 匀速移动.当DEF △的顶点D 移动到AC 边上时,DEF △停止移动,点P 也随之停止移动.DE 与AC 相交于点Q ,连接PQ ,设移动时间为(s)t .解答下列问题: ⑴当AP AQ =时,求t 的值.⑵移动时间t 为何值时,BPE △面积最大?并求出BPE S △的最大值。
一、选择题:本大题共10小题,每小题5分,共50分.1.已知集合{|A x y ==,{|||2}B x x =≤,则A B =UA. [2,2]-B. [2,4]-C. [0,2]D. [0,4]【答案】B【解析】{|04}A x x =≤≤,{|22}B x x =-≤≤,故{|24}A B x x =-≤≤U 2. 函数()22xf x x =+-的零点所在的区间是A. (,1)-∞-B. (1,0)-C. (0,1)D. (1,2)【答案】C【解析】(0)1,(1)1f f =-=,由零点存在定理知()f x 的零点所在的区间是(0,1) 3.复数31iz i+=-(其中i 为虚数单位)的虚部为A. 1-B. i -C. 2iD. 2【答案】D 【解析】3121iz i i+==+-,故复数z 的虚部为24、已知某几何体的正视图和侧视图君如右图所示,则该几何体的俯视图不可能为A. B. C. D.【答案】A【解析】答案A 的正视图或者侧视图上半部分的三角形的底边长应该比下半部分的顶边长短一些5、将函数()cos 6f x x π⎛⎫=+⎪⎝⎭图像上所有点的横坐标缩短为原来的12倍,纵坐标不变,得到函数()g x 的图像,则函数()g x 的一个减区间是A. ,63ππ⎡⎤-⎢⎥⎣⎦ B. 5,33ππ⎡⎤-⎢⎥⎣⎦ C. 11,66ππ⎡⎤-⎢⎥⎣⎦ D. 5,1212ππ⎡⎤-⎢⎥⎣⎦【答案】D【解析】平移后的解析式为()cos 26g x x π⎛⎫=+⎪⎝⎭,令2226k x k ππππ≤+≤+,解得51212k x k ππππ-+≤≤+,故D 答案符合.另解:平移后的周期为π,单调减区间的区间长最多为半周期,只有D 答案符合要求 6.某校高三(1)班在一次单元测试中,每位同学的考试分数都在区间[100,128]内,将该班所有同学的考试分数分为七组:[100,104),[104,108),[108,112),[112,116), [116,120),[120,124),[124,128],绘制出频率分布直方图如图所示. 已知分数低于112分的人有18人,则分数不低于120分的人数为 A. 10 B. 12 C. 20 D. 40 【答案】A【解析】分数低于112分的人对应的频率/组距为0.09,分数不低于120分的人数对应的频率/组距为0.05,故其人数为180.05100.09⨯=人7.某微信群中甲、乙、丙、丁、戊五名成员同时抢4个红包,每人最多抢一个红包,且红包全被抢光,4个红包中有两个2元,两个3元(红包中金额相同视为相同的红包),则甲乙两人都抢到红包的情况有 A. 36种 B. 24种 C. 18种 D. 9种 【答案】C【解析】甲乙两人都抢到红包一共有三种情况:(1)都抢到2元的红包,对应人数为23C (从剩下的三个人中选两个抢3元的红包);(2)都抢到3元的红包,对应人数为23C (从剩下的三个人中选两个抢2元的红包);(3)一个抢到2元一个抢到3元,对应人数为1223C A (由于红包金额不一样,所有甲乙之间有个排列,从剩下的三个人选两个进行排列,然后分别对应一个2元和一个3元的红包),故总共的情况有18种.8.在三棱锥P ABC -中,已知PA ⊥底面ABC ,AB BC ⊥,E F 、分别是线段PB PC 、上的动点. 则下列说法错误的是 A. 当AE PB ⊥时,AEF ∆一定为直角三角形 B. 当AF PC ⊥时,AEF ∆一定为直角三角形C. 当//EF 平面ABC 时,AEF ∆一定为直角三角形D. 当PC ⊥平面AEF 时,AEF ∆一定为直角三角形【答案】B【解析】PA ⊥底面ABC ,则PA BC ⊥,又AB BC ⊥, 则BC ⊥平面PAB(1) 当AE PB ⊥时,BC AE ⊥,则AE ⊥平面PBC ,AE EF ⊥,A 正确.(2) 当//EF 平面ABC 时,又EF ⊂平面PBC ,平面PBC I 平面ABC BC =,则//EF BC ,故EF ⊥平面PAB ,AE EF ⊥,故C 正确 (3) 当PC ⊥平面AEF 时,PC AE ⊥,又BC AE ⊥,则AE ⊥平面PBC ,AE EF ⊥,故D 正确.用排除法可选B.9.已知函数()3,031,0x x f x x x ⎧≥=⎨+<⎩,则不等式()()()41f f x f x <+的解集是A. 1,03⎛⎫- ⎪⎝⎭B. 1,13⎛⎫- ⎪⎝⎭C. ()0,2D. 31,log 23⎛⎫- ⎪⎝⎭【答案】D【解析】利用特殊值法,当0x =时,原不等式化为341<+,故0是原不等式的解,排除A ,C 两个答案;在令3log 2x =,原不等式化为981<+,故3log 2不是原不等式的解,排除C 答案,故选D10.已知抛物线2y x =的焦点为F ,经过y 轴正半轴上一点N 作直线l 与抛物线交于A B、两点,且2OA OB =u u u r u u u rg (O 为坐标原点),点F 关于直线OA 的对称点为C ,则四边形OCAB面积的最小值为A. 3B.C. D.32【答案】A【解析】不妨设()()()112212,,,0A x y B x y x x <<,即点A 在点B 左侧. 当直线斜率不存在时,不满足题意,故可设直线方程为y kx b =+,联立抛物线方程可得:20x kx b --=,故1212212x x kx x b y y b ⎧+=⎪=-⎨⎪=⎩,2OA OB =u u u r u u u r Q g,212122x x y y b b ∴+=-+=,又0b >,2b ∴=,2111112()()224OCAB OAB OFA S S S x x x ∆∆∴=+=⨯⨯-+⨯⨯-()21938x x =+-≥= 第II 卷(非选择题,共100分)二、填空题:本大题共5个小题,每小题5分,共25分.11.双曲线22215x y a -=的一个焦点坐标为()3,0,则该双曲线的离心率为____________. 【答案】32【解析】22259c a b a =+=+=,故2a =,离心率32c e a == 12.()61x x-的展开式中,2x 项的系数为__________. (用数字作答)【答案】20-【解析】2x 的系数为()336120C -=-13.已知实数,x y 满足24481x y x y x y +≥⎧⎪-≤⎨⎪-≥-⎩,则222x y x +-的取值范围是_________.【答案】1,195⎡⎤-⎢⎥⎣⎦【解析】可行域为如图所示的三角形:目标函数()2222211z x y x x y =+-=-+-根据其几何意义可看成与可行域内的点到点()1,0D 的距离相关 则最大值应该在()3,4A 处取得,max 19z =;过点D 做BC 的垂线,垂足为E ,且点D 到直线BC 的距离55d ==,则最小值应该在点E 处取得,故最小值为2min 115z d =-=-14.执行如图所示的程序框图,输出的S 的值为__________. 【答案】2 【解析】23172tantantan tan36363636S ππππ=⋅⋅⋅g g g 1tan tan tan 12παααα⎛⎫=-=⨯= ⎪⎝⎭Q g23172tantantan tan 236363636S ππππ∴=⋅⋅⋅=g g g 15.已知函数()sin 2f x x x =+. 给出以下四个命题: ①0x ∀>,不等式()2f x x <恒成立;②k R ∃∈,使方程()f x k =有四个不相等的实数根; ③函数()f x 的图象存在无数个对称中心;④若数列{}n a 为等差数列,123()()()3f a f a f a π++=,则2a π=. 其中正确的命题有_________. (写出所有正确命题的序号)【答案】③④【解析】'()12cos 2f x x =+,则'()0f x =有无数个解,在结合()f x 是奇函数,且总体上呈上升趋势,可画出()f x 的大致图像为xy (1,2)C (2,0)A (3,4)O(1) 令()2()sin 2g x x f x x x =-=-,则'()12cos 2g x x =-,令'()0g x =,则6x k ππ=+,则066g ππ⎛⎫=< ⎪⎝⎭,即存在06x π=>使得()2f x x >,故①错误(2) 由图像知不存在y k =的直线和()f x 的图像有四个不同的交点;故②错误 (3) ()()22sin 2cos 2f a x f a x a a x ++-=+,令sin 20a =,则2k a π=,即(),a a ,其中2k a π=均是函数的对称中心,故③正确 (4) 123()()()3f a f a f a π++=,则123123sin 2sin 2sin 23a a a a a a π+++++=,即22223sin(22)sin 2sin(22)3a a d a a d π+-+++=,2223sin 22sin 2cos 23a a a d π∴++= 223sin 2(12cos 2)3a a d π∴++=2233sin 212cos 212cos 2a a d dπ∴=-++则问题转化为()sin 2f x x =与33()12cos 212cos 2g x x d dπ=-++的交点个数如果直线()g x 要与()f x 有除(,0)π之外的交点,则斜率的范围在4,23π⎛⎫-- ⎪⎝⎭,而直线的斜率312cos 2d-+的取值范围为(,1][3,)-∞-+∞U ,故不存在除(,0)π之外的交点,故2a π=,④正确三、解答题:本大题共6个小题,共75分. 16.(本小题满分12分)在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,已知a =且223b c bc +=+.(I )求角A 的大小;(II )求sin b C 的最大值. 【答案】(I )3π;(II )32【解析】(I)223,b c bc a +=+=Q 222b c a bc ∴+-=2221cos 22b c a A bc +-∴==又A ∠是ABC ∆的内角 故3A π=(II )2232b c bc bc +=+≥Q ,3bc ∴≤,故1sin 2ABC S bc A ∆=≤故1sin 32sin 1422ab Cb C a ==≤=,当且仅当bc =时取得最大值17.(本小题满分12分) 已知数列{}n a 满足11a =,()()()*1112,n n n a n a n n N -+=-≥∈. (I )求数列{}n a 的通项公式n a ;(II )设数列{}n a 的前n 项和为n S ,证明:2n S <.【答案】(I )2(1)n n +;(II )见解析【解析】(I )()()()*1112,n n n a n a n n N -+=-≥∈Q ,111n n a n a n --∴=+ 故1212112113n n n n a a a n n a a a n n -----⋅⋅⋅=⋅⋅⋅+g g g g g g 即()*1222,(1)(1)n a a n n N n n n n ==≥∈++g,又()121111a ==+ 故2(1)n a n n =+(II )1121n a n n ⎛⎫=-⎪+⎝⎭11111112212122311n S n n n ⎛⎫⎛⎫=-+-+⋅⋅⋅+-=-< ⎪ ⎪++⎝⎭⎝⎭18.(本小题满分12分)某商场举行购物抽奖活动,抽奖箱中放有除编号不同外,其余均相同的20个小球,这20个小球编号的茎叶图如图所示. 活动规则如下:从抽奖箱中随机抽取一球,若抽取的小球编号是十位数字为1的奇数,则为一等奖,奖金100元;若抽取小球的编号是十位数字为2的奇数,则为二等奖,奖金为50元;若抽取的小球是其余编号则不中奖. 现某顾客有放回的抽奖两次,两次抽奖相互独立. (I )求该顾客在两次抽奖中恰有一次中奖的概率; (II )记该顾客两次抽奖后的奖金之和为随机变量X ,求X 得分布列和数学期望 【答案】(I );(II ) 【解析】(I )记中一等奖为事件A ,中二等奖为事件B ,不中奖为事件C ; 由茎叶图知3()20P A =,51()204P B ==,3()5P C =,则中奖的概率为2()5P C = 故两次抽奖中恰有一次中奖的概率为:12()()()()25P C P C P C P C +=(II )X 可能的取值为0,50,100, 150, 200()202390525P X C ⎛⎫===⎪⎝⎭()12133504510P X C ==⨯=()22122133971004205400P X C C ⎛⎫==+= ⎪⎝⎭g ()1231315020440P X C ==⨯= ()223392002020400P X C ==⨯= X ∴的分布列为()55E X =元19.(本小题满分12分)如图,在三棱柱111ABC A B C -中,已知侧棱与底面垂直,90CAB ∠=o,且1AC =,2AB =,E 为1BB 的中点,M 为AC 上一点,23AM AC =u u u u r u u u r.(I )证明:1//CB 平面1A EM ;(II )若二面角11C A E M --的余弦值为55,求1AA 的长度. 【答案】(I )(II ) 【解析】以点A 为坐标原点,AB 为x 轴,AC 为y 轴,1AA 为z 轴,建立空间直角坐标系,并设1AA a =,则(0,0,0)A ,(2,0,0)B ,()0,1,0C ,()12,0,B a ,()10,0,A a ,2,0,2a E ⎛⎫ ⎪⎝⎭,20,,03M ⎛⎫⎪⎝⎭,()10,1,C a (I )()12,1,CB a =-u u u r ,12,0,2a A E ⎛⎫=- ⎪⎝⎭u u u r ,120,,3MA a ⎛⎫=- ⎪⎝⎭u u u u r故平面1A EM 的一个法向量为(),6,4n a a =r ,故10CB n =u u u r r g ,即1CB n ⊥u u u r r1//CB ∴平面1A EM(II )()110,1,0AC =u u u u r ,12,0,2a A E ⎛⎫=- ⎪⎝⎭u u u r ,120,,3MA a ⎛⎫=- ⎪⎝⎭u u u u r 故平面11C A E 的一个法向量为()1,0,4n a =u r, 平面1MA E 的一个法向量为()2,6,4n a a =u u r,即22255163716a a =++,解得2a =,2a =-(舍去) 故1AA 的长度为2PS :第一问可以连接1AB 交1A E 于点F ,连接MF ,可证1//MF CB 20.(本小题满分13分)已知椭圆2222:1(0)x y C a b a b+=>>的左右焦点分别为12,F F ,抛物线24y x =与椭圆C 有相同的焦点,点P 为抛物线与椭圆C 在第一象限的交点,且17||3PF =. (I )求椭圆C 的方程;(II )与抛物线相切于第一象限的直线l ,与椭圆相交于,A B 两点,与x 轴交于M 点,线段AB 的垂直平分线与y 轴交于N 点,求直线MN 斜率的最小值.【答案】(I )22143x y +=;(II)【解析】(I )解法一:可设点P 的坐标为2,4y y ⎛⎫ ⎪⎝⎭,则22249149y y ⎛⎫++= ⎪⎝⎭,解得283y =,2803y =-(舍去),将P 点坐标代入抛物线方程式可得2248193a b+=,又221a b -=,联立可解得23b =,24a =,所以椭圆的方程为22143x y += 解法二:抛物线的焦点坐标为()1,0,故221a b -=设2||PF t =,由抛物线定义,得点P 到直线1x =-的距离为t .123cos 7tPF F ∴∠=. 又由余弦定理可得,2124944cos 7223t PF F +-∴∠=⨯⨯,即24943477223t t +-=⨯⨯解得53t =或133t =-(舍去)由椭圆定义,得12||||42PF PF a +==,故2,a b ==∴椭圆方程为22143x y += (II )设切点坐标为()2000,04y y y ⎛⎫> ⎪⎝⎭,则20002:4y l y y x y ⎛⎫-=- ⎪⎝⎭整理,得002:2y l y x y =+. 20,04y M ⎛⎫∴- ⎪⎝⎭联立直线方程和椭圆方程可得220201638120x x y y ⎛⎫+++-= ⎪⎝⎭设()()1122,,,A x y B x y ,201220420012200831612316y x x y y y x x y ⎧⎪∆>⎪⎪-⎪∴+=⎨+⎪⎪-⎪=+⎪⎩, AB ∴的中点坐标为32002200342,316316y y y y ⎛⎫ ⎪- ⎪++ ⎪⎝⎭AB ∴的垂直平分线方程为3200022003423162316y y y y x y y ⎛⎫-=-+ ⎪++⎝⎭即2020120,316y N y ⎛⎫- ⎪ ⎪+ ⎪⎝⎭ 0202316MN y k y -∴=+002000220,163163MN y y k y y y -->∴==≥++Q 21.(本小题满分14分)设函数()ln f x x =(I )求函数()1()g x x f x =--的极小值;(II )若关于x 的不等式1()1x mf x x -≥+在[1,)+∞上恒成立,求实数m 的取值范围. (III )已知(0,)2πα∈,试比较(tan )f α与cos2α-的大小,并说明理由.【答案】(I )(1)0g =;(II )12m ≥;(III )见解析 【解析】 (I )()1()1ln g x x f x x x =--=--,则'11()1x g x x x-=-=()g x ∴在(0,1)上单调递减,在()1,+∞上单调递增 ∴当1x =时,函数()g x 取得极小值(1)0g =.(II )【解法一】当1x =时,m R ∈;当1x >时,不等式111()1ln 1x x mf x m x x x --≥⇔≥++g 令()11()1ln 1x h x x x x -=>+g ,则()()'2212ln ()ln 1x x x h x x x ⎛⎫-- ⎪⎝⎭=+ 令()1()2ln 1x x x x x ϕ⎛⎫=--≥ ⎪⎝⎭,则()2'22121()10x x x x x ϕ--=--=≤()()10x ϕϕ∴≤=,即'()0h x ≤函数()h x 在(1,)+∞上单调递减 由洛必达法则,的11lim ()2x h x →= 12m ∴≥ 【解法二】 11()ln 011x x mf x m x x x --≥⇔-≥++ 令1()ln 1x h x m x x -=-+,则2'2(1)2()(1)m x x h x x x +-=+ 0(1)0,1h x =∴∃>Q ,使得函数()h x 在[1,)+∞上单调递增.2221(1)2x m x x x∴≥=+++在0[1,]x 上恒成立 故12m ≥ 经验证,当12m ≥时,函数'()0h x ≥,函数()h x 在[1,)+∞上单调递增,满足题意 (III )令()ln(tan )cos 2F ααα=+,则'2(1sin 2)()sin 2F ααα-= 0,2πα⎛⎫∈ ⎪⎝⎭Q ,sin 20α∴>,'()0F α∴>故()F α单调递增又04F π⎛⎫= ⎪⎝⎭∴当04πα<<,(tan )cos 2f αα<- 当4πα=,(tan )cos 2f αα=- 当42ππα<<,(tan )cos 2f αα>-。
2024年四川省成都市青羊区中考数学二诊试卷一、选择题(本大题共8个小题,每小题4分,共32分)1.(4分)﹣2024的相反数是()A.2024B.C.﹣2024D.2.(4分)下列运算正确的是()A.3x2+2x2=6x4B.(﹣2x2)3=﹣6x6C.(x+2)2=x2﹣4x+4D.﹣6x2y3÷2x2y2=﹣3y3.(4分)光线在不同介质中的传播速度是不同的,因此当光线从空气射向水中时,要发生折射,由于折射率相同,所以在水中是平行的光线,在空气中也是平行的,如图,水面和杯底互相平行,∠1+∠2=130°,∠3=100°,则∠1的度数为()A.55°B.50°C.45°D.40°4.(4分)如图所示,小正方形的边长均为1,则下列选项中阴影部分的三角形与△ABC相似的是()A.B.C.D.5.(4分)关于反比例函数,下列说法正确的是()A.图象分布在第一、二象限B.在各自的象限内,y随x的增大而增大C.函数图象关于y轴对称D.函数图象与直线y=2x有两个交点6.(4分)某校为了解学生在校一周体育锻炼时间,随机调查了40名学生,调查结果列表如下:锻炼时间/h5678人数913126则这40名学生在校一周体育锻炼时间的中位数为()A.5h B.6h C.7h D.8h7.(4分)我国古代数学名著《张丘建算经》中记载:“今有清酒一斗直粟十斗,醑酒一斗直粟三斗,今持粟三斛,得酒五斗,问清、醑酒各几何?”意思是:现在一斗清酒价值10斗谷子,一斗醑酒价值3斗谷子,现在拿30斗谷子,共换了5斗酒,问清、醑酒各几斗,设清酒有x斗,那么可列方程为()A.3x+10(5﹣x)=30B.C.D.10x+3(5﹣x)=308.(4分)如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴相交于A(﹣1,0),B(2,0)两点,则以下结论:①ac<0;②对称轴为x=1;③2a+c=0;④a+b+c>0.其中正确的个数为()A.1B.2C.3D.4二、填空题(本大题共5个小题,每小题4分,共20分)9.(4分)因式分解3x(x﹣2)+2(x﹣2)=.10.(4分)2023年12月22日成都市政府新闻办召开解读《成都大运会绿色低碳办赛报告》新闻通气会,记者在会上获悉,成都大运会通过新能源汽车使用、无纸化办公、办公租赁、减少塑料制品等措施产生碳减排3.2万吨,3.2万用科学记数法表示为.11.(4分)若点A(m,﹣3)与点B(﹣4,n)关于原点对称,则m+2n=.12.(4分)如图是中国共产主义青年团团旗上的图案,该图案绕中心至少旋转度后能与原图案重合.13.(4分)如图,在▱ABCD中,按以下步骤作图:①以点B为圆心,以适当长为半径作弧分别交AB,BC于M,N两点;②以点M和点N为圆心,大于长为半径作弧,两弧交于点P;③作射线BP 交AD于点E,过E作EF⊥BE交BC延长线于F.若AB=4,BC=5,则CF=.三、解答题(本大题共5个小题。
12016年中考数学模拟试题A 卷(共100分)一、选择题:(每小题3分,共30分) 1.13-的相反数是( ) A . 13B .3C .13-D . -32.下列计算中,正确的是( )A. 248a a a =÷ B. 532)(a a = C. 3|3|-=- D. 4)4(2-=--3.如图所示,在下面四种正多边形中,用同一种图形不能平面镶嵌的是( )4.如图所示,对a 、b 、c 三种物体的重量判断正确的是( )A. c a <B. b a <C. c a >D. c b < 5.如图所示,梯子跟地面的夹角为∠A ,关于∠A 的三角函数值与梯子的 倾斜程度之间,叙述正确的是( )A. sinA 的值越小,梯子越陡B. cosA 的值越小,梯子越陡C. tanA 的值越小,梯子越陡D. 陡缓程度与∠A 的三角函数值无关6.右图(1)是由白色纸板拼成的立体图形,将此立体图形中的两面涂上颜色,如右图(2)所示,下图(3)的四个图形中( )是图(2)的展开图。
(3)7.吸烟有害健康.据中央电视台2012年5月30日报道,全世界每因吸烟引起的疾病致死的人数大约为600万,数据600万用科学记数法表示为( )A .0.6×107B .6×106C .60×105D .6×105D 8.某村办工厂今年前5个月生产某种产品的总量c(件)关于时间t(月)的图象如图所示,则该厂对这种产品来说()A. 1月至3月每月生产总量逐月增加,4、5两月生产总量逐月减少B. 1月至3月每月生产总量逐月增加,4、5月生产总量与3月持平C. 1月至3月每月生产总量逐月增加,4、5两月均停止生产D. 1月至3月每月生产总量不变,4、5两月均停止生产9.在△ABC中,∠C=90°,sin A=54,BC=6,则△ABC的周长为() .A.18 B.237C.19 D.2110.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500m,先到终点的人原地休息.已知甲先出发2s.在跑步过程中,甲、乙两人的距离y(m)与乙出发的时间t(s)之间的关系如图所示,给出以下结论:①a=8;②b=92;③c=123.其中正确的是()A.①②③ B.仅有①② C.仅有①③ D.仅有②③二、填空题:(每小题4分,共16分)11.函数xxy2-=中,自变量x的取值范围是。